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a b s t r a c t

Amyloid fibrils are proteinaceous elongated aggregates involved in more than fifty human diseases.
Recent advances in electron microscopy and solid state NMR have allowed the characterization of fibril
structures to different extents of refinement. However, structural details about the mechanism of fibril
formation remain relatively poorly defined. This is mainly due to the complex, heterogeneous and tran-
sient nature of the species responsible for assembly; properties that make them difficult to detect and
characterize in structural detail using biophysical techniques. The ability of solution NMR spectroscopy
to investigate exchange between multiple protein states, to characterize transient and low-population
species, and to study high molecular weight assemblies, render NMR an invaluable technique for studies
of amyloid assembly. In this article we review state-of-the-art solution NMR methods for investigations
of: (a) protein dynamics that lead to the formation of aggregation-prone species; (b) amyloidogenic
intrinsically disordered proteins; and (c) protein–protein interactions on pathway to fibril formation.
Together, these topics highlight the power and potential of NMR to provide atomic level information
about the molecular mechanisms of one of the most fascinating problems in structural biology.
� 2015 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
1.1. Challenges in studying aggregation-prone proteins by NMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2. Studying intermediate species that act as amyloidogenic precursors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.1. Conformational dynamics investigated by relaxation-dispersion NMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.2. Characterization of amyloidogenic intermediates using real-time NMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.3. H/D exchange studies on folded amyloid precursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3. The role of disorder in amyloid aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.1. Chemical shifts probe transient secondary structure propensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.2. Paramagnetic relaxation enhancement (PRE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3. Residual dipolar couplings reveal residual structure in unfolded proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4. Ensemble calculations – the importance of incorporating a plethora of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4. Investigating interactions in higher-order species on pathway to amyloid fibrils using NMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.1. Direct detection of oligomeric intermediates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2. Dark exchange saturation transfer (DEST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3. Visualization of transient protein–protein interactions on pathway to fibril assembly using paramagnetic NMR. . . . . . . . . . . . . . . . . . . . 97
4.4. H/D exchange in the fibrillar state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5. Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

http://dx.doi.org/10.1016/j.pnmrs.2015.05.002
0079-6565/� 2015 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding authors. Tel.: +44 (0) 113 343 3270 (T.K. Karamanos), +44 (0) 113 343 3170 (S.E. Radford).

E-mail addresses: T.Karamanos@leeds.ac.uk (T.K. Karamanos), s.e.radford@leeds.ac.uk (S.E. Radford).

Progress in Nuclear Magnetic Resonance Spectroscopy 88-89 (2015) 86–104

Contents lists available at ScienceDirect

Progress in Nuclear Magnetic Resonance Spectroscopy

journal homepage: www.elsevier .com/ locate/pnmrs

http://crossmark.crossref.org/dialog/?doi=10.1016/j.pnmrs.2015.05.002&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.pnmrs.2015.05.002
http://creativecommons.org/licenses/by/4.0/
mailto:T.Karamanos@leeds.ac.uk
mailto:s.e.radford@leeds.ac.uk
http://dx.doi.org/10.1016/j.pnmrs.2015.05.002
http://www.sciencedirect.com/science/journal/00796565
http://www.elsevier.com/locate/pnmrs


1. Introduction

Amyloid diseases are devastating disorders caused by the
polymerization of initially innocuous proteins into amyloid fibrils
[1–3]. Amyloid assembly is a multistage process in which complete
or partial unfolding of the monomeric precursor is usually (but not
always) the triggering event [4,5], generating aggregation-prone
species. Alternatively, amyloid assembly may commence from
intrinsically disordered peptides or proteins [1]. These amyloido-
genic (partially) unfolded monomers are then incorporated in a
cascade of protein–protein interactions until the formation of the
critical nucleus (nucleation phase, Fig. 1), in a process reminiscent
of the early stages of crystallization [6,7]. Later in assembly, after
the formation of the critical nucleus, a second conformational
change causes the assembling protein to adopt the characteristic
cross-b fold of amyloid [1–3,8,9] in a rapid process (elongation
phase, Fig. 1). Thus, amyloid assembly (which is commonly moni-
tored by the fluorescence of thioflavin T (ThT) – Fig. 1) is the out-
come of rare conformational rearrangements combined with
heterogeneous protein–protein interactions that are abnormally
interlinked.

Despite the fact that the general features of the amyloid fold
(fibrillar morphology and cross-b architecture) shared by all amy-
loid fibrils were first discovered in the 1950s and 1960s using elec-
tron microscopy (EM) [1,14,15] and fiber diffraction studies [6–
8,16–18], the precise structural and mechanistic details that gov-
ern amyloid formation remain largely elusive. Recent develop-
ments in the fields of cryo-electron microscopy, electron
tomography and solid-state NMR spectroscopy as well as the use
of small peptide fragments in X-ray studies, have allowed the char-
acterization of the cross-b structure of amyloid in near atomic res-
olution [19–26]. However, the transient and heterogeneous nature
of the monomeric and oligomeric species present during assembly
render solution NMR the only technique for characterizing these in
atomic detail.

In this article we review the contribution that state-of-the art
solution NMR methods have made to the investigation of the
mechanisms of amyloid assembly using examples obtained in the
authors’ own laboratory as well as those of others. The review is
organized in three parts. After briefly mentioning the challenges
in studying amyloidogenic proteins by NMR, we move on to dis-
cussing the NMR methods used to characterize the conformational

dynamics of the native state that lead to the population of
aggregation-prone intermediates. The second part of the review
focuses on intrinsically disordered proteins that aggregate into
amyloid fibrils and how NMR has been used to study their struc-
tural flexibility that drives amyloid formation. To finish, NMR
approaches that can be used to study the protein–protein interac-
tions formed in early amyloid precursors and how these species
subsequently form higher-ordered species, important for primary
or secondary processes (such as secondary nucleation events),
are discussed. Overall, the review demonstrates how NMR is con-
tributing to developing a new understanding of every stage of
the amyloid cascade at a structural molecular level.

1.1. Challenges in studying aggregation-prone proteins by NMR

NMR studies usually need to be performed on relatively highly
concentrated protein samples (0.1–1 mM). For soluble proteins,
increased concentration results in improved signal-to-noise ratio,
but when studying aggregation-prone proteins, elevated protein
concentrations are likely to result in enhanced oligomerisation that
can complicate analysis and/or interpretation of an NMR experi-
ment. Self-association also leads to an increase in the effective cor-
relation time for molecular tumbling, causing the NMR signals to
become broader or undetectable. Since aggregation is highly
dependent on protein concentration and solution conditions, it is
important to balance the protein concentration and the experi-
mental acquisition time in order to optimize the sample for analy-
sis by different NMR techniques. Sample quality can be tested at
the beginning and the end of each experiment (for instance by
recording 1H–15N HSQC fingerprint spectra). Another avenue is to
fine-tune the experimental conditions to modulate the aggregation
propensity. In this regard, NMR spectra of amyloidogenic proteins
are often assigned under non-amyloidogenic conditions and the
chemical shifts are then transferred to the more relevant
(aggregation-prone) conditions via titration experiments [27–29].
The need to ensure that the starting material is purely monomeric
and is not contaminated by even small amounts of aggregates or
oligomers is of particular importance. For instance, when analyzing
the conformational dynamics of the native state that may lead to
the population of aggregation-prone species, in the absence of an
appropriate kinetic model the presence of even small amounts of
oligomers can make the data misleading. In such cases,
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Fig. 1. Mechanisms of amyloid assembly. The schematic represents some of the possible routes of amyloid formation through primary (black arrows) or secondary pathways
(green arrows). Assembly commences from a monomeric precursor that could be unfolded, partially folded or natively folded (left-hand side). During the nucleation phase,
the dynamic equilibrium between these states is responsible for generating species with increased amyloid potential, which then self-assemble. Once the critical nucleus is
generated rapid formation of b-rich amyloid fibrils starts (elongation phase). Secondary mechanisms, such as secondary nucleation on the surface of preformed fibrils (or
aggregates), or fibril fragmentation, are also crucial determinants of the fate of assembly [4,5,10–13]. The fluorescence of thioflavin T (ThT-blue trace), a dye that binds to
cross-b aggregates, is commonly used to follow the progress of the reaction. The circled numbers denote which part of the cascade each section of this review describes.
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complementary techniques such as analytical ultracentrifugation
(AUC), dynamic light scattering (DLS), analytical size exclusion
chromatography (SEC), fluorescence correlation spectroscopy
(FCS), or short NMR TRACT or diffusion experiments [30] can be
used to ensure the quality of the starting material.

2. Studying intermediate species that act as amyloidogenic

precursors

The appearance of one or more partially structured states that
are prone to oligomerization, or become partially structured upon
oligomer formation is key to amyloid assembly, as depicted in
Fig. 1. Such species can be formed from the natively folded protein,
or from the unfolded (or intrinsically disordered) state. The follow-
ing two sections describe NMR methods that can be used to inves-
tigate the very first steps of oligomerization and subsequent fibril
assembly starting from the native state (Section 2) or from the
unfolded state (Section 3).

In cases where the natively folded protein is not amyloidogenic
but is in exchange with an amyloidogenic state, the population of
these species is often highly skewed toward the native state.
However, as long as different species are in exchange with each
other on a suitable timescale, a number of NMR methods can be
utilized to obtain structural, kinetic and thermodynamic informa-
tion about the aggregation-prone species. These methods are
highly sensitive to the properties of the ‘hidden’ (lowly populated)
state, while detection takes place via the major, highly populated
state.

2.1. Conformational dynamics investigated by relaxation-dispersion
NMR

As depicted in Fig. 1, the initiating event of protein aggregation
in many cases involves conformational exchange between the

non-amyloidogenic native state (A) and a highly amyloidogenic
intermediate state (B) (Fig. 2A). The populations of these species
are often highly skewed toward the native state and thus intercon-
version takes place between a highly populated, ground state A,
and a lowly populated, excited state B. If the exchange is slow on
the NMR chemical shift timescale (where the rate of exchange
kex = kAB + kBA, is slower than the chemical shift difference between
the species Dd, kex < Dd) then two separate peaks should be visible
in the NMR spectrum (assuming that the two spin states develop
different chemical shifts) (Fig. 2A). However, if the populations of
the inter-converting species are severely skewed toward one of
them (the main species), then direct detection of the minor peak
can be difficult or impossible [31,32]. In this instance, it is possible
to detect the chemical shift of the minor state by observing
changes in the intensity (or line shape) of the main peak. The basic
idea behind relaxation dispersion experiments is to quantify the
effective line width of peaks in the spectra as a function of the
number of refocusing pulses in a Carr–Purcell–Meiboom–Gill
(CPMG) pulse sequence [33,34]. Parameters that can be extracted
from such an experiment include kex (from which the populations
of the conformations in equilibrium can be calculated), but also the
chemical shifts of the excited states. This then enables structural
characterization of the lowly populated species which cannot be
obtained in atomic resolution by any other technique [35–38].

For relaxation dispersion experiments it is crucial that the
probes (spins) evolve at different frequencies (chemical shift) in
states A and B (noted by xA and xB, respectively). If we consider
a period of time, t, where the spin exists only in state A and a refo-
cusing pulse is applied in the middle of this period then the fre-
quency evolution of the spin due to its chemical shift over this
time is zero and the chemical shift is ‘refocused’. On the other
hand, if during time t there is exchange (one or more events)
between states A and B, the refocusing pulse is not able to fully
refocus the chemical shift. In such a scenario, at the end of the
pulse scheme the spin would have evolved at a frequency which
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Fig. 2. Relaxation dispersion CPMG experiments. (A) In a slowly exchanging system between a major state A and a minor state B the corresponding NMR spectrum should
show two peaks, assuming that state A and state B show a chemical shift difference, and that the rate of exchange kex < Dd (kex = kAB + kBA). The peak intensities are then
proportional to the populations of each state. However, in a system like the one shown, where the populations are highly skewed toward state A, the peak corresponding to
state B is likely not to be detectable (no noise is shown in the spectra for clarity). (B) When a refocusing 180� pulse is applied the spin will be refocused after a period of time t
(marked as 2), unless exchange is taking place during that time interval. If exchange is active, the refocusing is not complete, resulting in a loss of signal intensity due to line
broadening (marked as 1). When a small number of refocusing pulses is applied (top), the chances for complete refocusing are lower since the time between the pulses is
longer, allowing for more exchange events to happen. In a CPMG experiment the peak intensity is measured against the frequency of the refocusing pulses resulting in a
typical profile shown in the bottom right-hand side. PA and PB denote the populations of states A and B respectively, which are proportional to the peak intensity.
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depends on the time it spends in each state and the number of
exchange events. If the frequency of the refocusing pulses
increases, then there is higher probability for complete refocusing
after each pulse, resulting in sharper peaks (Fig. 2B). By measuring
the intensity of the peaks as a function of the frequency of the refo-
cusing pulses a relaxation dispersion profile is obtained (Fig. 2B).

The recent development of pulse schemes able to detect relax-
ation dispersion data for a variety of (backbone) nuclei (15N, 1HN,
13CO, 13Ca and 1Ha) [37] combined with methodologies that allow
the accurate determination of the three dimensional (3D) structure
based solely on chemical shifts [39], allows the characterization of
the ‘invisible’ species in atomic detail [31]. Following such an
approach (supplemented by relaxation dispersion-derived residual
dipolar couplings (RDCs) and chemical shift anisotropies – see
Section 3.3), Kay and co-workers were able to solve the backbone
structure of an excited state of a mutant of the Fyn SH3 domain
which aggregates to form amyloid-like fibrils [40,41]. The structure
of the intermediate shows a native-like arrangement of the
main-chain apart from the N- and C-terminal regions. These minor
differences are enough to expose hydrophobic parts of the protein
that presumably act as nucleation points for amyloid aggregation
[40]. CPMG studies on the human immunoglobulin jIV
light-chain variable domain (LEN) helped to reveal that motions
on the slow timescale (ms), related to intermolecular interactions
across the interface of the dimer, are correlated with amyloid for-
mation [42]. At near physiological pH (6.0), conditions under with
the protein is not amyloidogenic, minor CPMG profiles were
observed (population of the excited state �2–4%) suggesting that
the protein is stable in its dimeric form. In contrast, when the pH
was decreased to 2.0 (conditions under which the protein retains
a largely native fold, but becomes amyloidogenic) significant
CPMG profiles were obtained for the majority of the residues in
the dimer interface. The population of the excited state is increased
to �10–15% and the protein readily forms amyloid fibrils. Although
the motions in the fast (ps–ns) timescale remain unchanged
between the two conditions (pH 2.0–6.0), the CPMG studies
showed that increased dynamics on the slow timescale (ms) are
important in destabilizing the native fold, leading to dimer dissoci-
ation and amyloid assembly [42]. Relaxation dispersion was also
used to reveal information about the nature of the conformational
changes in the amyloidogenic monomer of transthyretin after its
dissociation from the native tetramer [43].

Extension of the relaxation dispersion methodology to include
side-chain atoms may lead to a full atom 3D representation of
invisible amyloidogenic intermediates, and may also be used to
shed light on the specific side-chain motions that are responsible
for ‘native-like’ aggregation [5,44]. However, CPMG experiments
have certain limitations. Exchange has to take place on an appro-
priate timescale (although efforts have been made to extend the
range of timescales amenable to CPMG [45]) and a very high
signal-to-noise ratio is required. Therefore, CPMG experiments on
large macromolecular systems or proteins that aggregate too
rapidly at high concentrations are difficult, but not necessarily
impossible [46].

2.2. Characterization of amyloidogenic intermediates using real-time
NMR

The folding or unfolding transitions that lead to the population
of an amyloidogenic precursor can be as slow as several minutes. In
these cases the kinetics of the reaction can be studied in real-time
in the NMR tube [47]. To enable these studies, the unfolded protein
is usually separated from the refolding buffer by an air bubble and
refolding is initiated by an injection system in the NMR probe.
Historically, such experiments were recorded as one dimensional
data [48,49]; however recent developments in pulse sequences

and data processing have allowed two dimensional (2D) and three
dimensional (3D) experiments to be acquired in seconds, or even
relaxation measurements in real-time [50–52].

The main condition for monitoring reactions by real-time NMR
experiments is that the transition must be slow, in the range of sec-
onds to minutes. Beta-2 microglobulin (b2m), the light chain of the
major histocompatibility complex I (MHC-I) [53,54], accumulates
as amyloid fibrils in the joints of patients undergoing haemodialy-
sis, giving rise to the disorder dialysis-related amyloidosis [55–59].
b2m folds slowly, which is attributed to isomerization of a single
proline residue (Pro 32) [60–62]. As a consequence of the large
energy barrier for proline-isomerization (70–80 kJ/mol) an inter-
mediate containing a non-native trans isomer at position 32 accu-
mulates (termed IT) [62,63]. Under native-conditions, the
concentration of IT is directly related to the aggregation propensity
of the protein (fibril elongation rate) [62] and its structural charac-
terization was crucial for understanding the aggregation pathway
of b2m [27,64]. Real-time NMR studies have shown that residues
in the apical region of the protein, in close proximity to Pro32,
undergo slow conformational dynamics, while the rest of the pro-
tein retains a native-like structure [65,66]. Comparison of the
chemical shifts of the IT state, collected in real-time (Fig. 3A), with
those of the truncation mutant DN6, in which the N-terminal 6
amino acids are deleted, confirmed the structural similarity of
the two proteins [27]. Structural characterization of the
aggregation-proneDN6 by solution NMR [27] and X-ray crystallog-
raphy [64] confirmed that the protein contains a trans peptidyl
X-Pro 32 bond and has an otherwise native-like structure.
However, Pro isomerization causes major rearrangements of the
hydrophobic core, resulting in exposure of previously buried
hydrophobic residues, a phenomenon which leads to an increased
aggregation potential for this b2m variant (Fig. 3B) [67,68].

Real-time NMR studies on a-lactalbumin, another protein able
to form amyloid-like fibrils (although not connected to disease),
allowed the characterization of its folding pathway.
a-lactalbumin is known to populate a molten globule state [70],
which is stabilized at low pH (2.5). Molten globules are character-
ized by the presence of native-like secondary structure, but lack
persistent tertiary structure, making them vastly heterogeneous
ensembles, difficult to characterize by conventional NMR tech-
niques. Precise determination of the folding rates for the majority
of residues of a-lactalbumin by 1D [49] and 2D real-time NMR
showed similar time constants for all residues, revealing that the
transition from the molten globule to the native state is two state
[71]. Importantly, the flexibility and the precise structural charac-
teristics of a-lactalbumin’s molten globule states, generated under
different conditions (low pH or removal of the Ca++ ions bound to
the protein) dictate the rate of fibril assembly, suggesting that
the formation of a flexible/unfolded state is required for successful
amyloid assembly [72].

2.3. H/D exchange studies on folded amyloid precursors

H/D exchange experiments provide a powerful tool for the char-
acterization of local and/or global structural fluctuations of native
proteins (native state H/D exchange) that take place on a timescale
of milliseconds or slower [73–75]. These motions may expose
sequences with increased amyloid potential and act as triggers of
aggregation (Fig. 1). The combination of H/D exchange with the
residue-specific information available using NMR spectroscopy
thus offers the possibility of a detailed characterization of these
aggregation-prone species.

In a H/D exchange experiment, numerous parameters affect the
rate of exchange such as temperature, pH and the amino acid
sequence [76]. Hydrogen atoms in native proteins are protected
from exchange with deuterons by the formation of hydrogen bonds
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and/or by burial from solvent, implying that a global or local ‘open-
ing’ event has to occur prior to H/D exchange. Scheme (1) summa-
rizes the H/D exchange reaction in a native protein [74,76]:

NHclosed �! �

kop

kcl
NHopen �! �

kch ND ðScheme 1Þ

where kop is the rate of protein opening (unfolding), kcl is the rate of
protein refolding and kch is the intrinsic rate of H/D exchange from
the open state. As is evident from Scheme (1) the observed rate of
exchange (kobs) upon exposure of a protonated protein in a deuter-
ated buffer is given by:

kobs ¼
kopkch

kop þ kcl þ kch
ð1Þ

Assuming that for a natively folded protein the rate of opening
is much slower than the rate of closing, Eq. (1) can be simplified as
follows:

kobs ¼
kopkch
kcl þ kch

ð2Þ

Based on Eq. (2) different exchange mechanisms emerge depending
on the relationship between kcl and kch. When the rate of closing is
much faster than the intrinsic rate of H/D exchange (kcl� kch) Eq.
(2) translates into:

kobs ¼
kopkch
kcl

¼ Kopkch ð3Þ

This mechanism of H/D exchange is known as EX2 exchange
and usually is the outcome of small, non-cooperative fluctuations
in native fold. Importantly the determination of the equilibrium
position Kop allows the calculation of the free energy of unfolding.
The opposite scenario where kcl� kch allows the removal of kcl
from Eq. (4), resulting in EX1 exchange:

kobs ¼ kop ð4Þ

Thus, EX1 exchange reports on the kinetics of the unfolding pro-
cess, which is usually the outcome of large scale motions, or results
from the protein visiting the globally unfolded state. The

protection factor (PF) is a metric of how much more slowly the
exchange is taking place in the folded protein structure in compar-
ison with the same sequence in an unfolded polypeptide chain and
is defined as:

PF ¼ kch=kobs ð5Þ

When analyzed by NMR, the folded protonated protein is
introduced into a deuterated buffer and the peak intensities (nor-
mally of amide protons) are measured over time. Peak intensities
are traditionally followed by one dimensional or 2D NMR meth-
ods [77,78]. More recently, fast-pulsing sequences [51] or
non-uniformly sampled pulse schemes [52] have been used to
improve temporal resolution, such that rapidly exchanging
amides (minutes to hours) can also be monitored. Fitting of the
intensity profiles to a single exponential function yields kobs,
while kch can be approximated based on the primary sequence
and the solution conditions using software tools such as CIntX
(http://sblab.sastra.edu/cintx.html) [79]. Another approach
involves the transfer of the magnetization from the protein under
investigation to water molecules through H/D exchange. This
methodology is particularly suited to very rapidly exchanging
systems (sub-second), since pulse schemes such as
CLEANEX-PM [80,81] can achieve the magnetization transfer with
millisecond time resolution.

Owing to the power of the method and its relative ease of use,
H/D exchange has been used to study protein stability and pro-
tein folding of many proteins in both kinetic and equilibrium
experiments [73,76]. Other applications include the investigation
of protein dynamics [76], the identification of binding interfaces
[82], and the characterization of allosteric effects upon binding
[83,84]. In terms of protein misfolding, numerous studies have
been performed on amyloid precursors including Ab40/42
[85,86], a-synuclein [87], b2m [84,88,89], lysozyme [90,91], prion
protein (PrP) [92] and transthyretin [93]. For an extended review
of H/D exchange methods to study amyloid aggregation see Ref.
[94]. A general correlation between a loss in H/D exchange pro-
tection and increased amyloidogenicity is suggestive of partial
unfolding of the natively folded protein as the initial step that
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triggers aggregation. Especially in the case of b2m, transient inter-
molecular interactions are responsible for destabilizing the native
fold (as monitored by H/D exchange), which catalytically converts
non-aggregation-prone molecules to amyloid precursors by
biomolecular interactions [84]. Importantly, the recent develop-
ment of chemical exchange saturation transfer (CEST) pulse
sequences allows the determination of H/D exchange rates even
in lowly populated excited protein states [95]. Apart from study-
ing (near) natively folded monomeric precursors, H/D exchange
has also been used extensively to study oligomeric species and
fibrils themselves. In this case the kinetic models and the exper-
imental setup differ and will be discussed later (Section 4.3).

3. The role of disorder in amyloid aggregation

Proteins exhibit motions that span a wide range of timescales
(from ns to mins or slower) [96,97]. These motions have been
connected with various aspects of protein function, such as enzy-
matic catalysis [98], regulation of protein synthesis [99] and
many others [100]. Proteins that possess at least one region that
does not have a fixed secondary or tertiary structure are known
as intrinsically disordered proteins (IDPs) and lie at the extreme
of the spectrum for molecular motions, since their disordered
regions can sample a very large range of different conformations
[101,102]. IDPs are often found in systems where transient inter-
actions are desirable, or systems where the interactions have to
be switched on or off quickly, such as cell signaling [103,104].
IDPs also have various other advantages in comparison with their
folded counterparts. Upon binding they can adopt conformations
that are sterically hindered for structured proteins, such as wrap-
ping around their protein partner in order to maximize the bur-
ied surface area [105,106]. From an evolutionary point of view,
disordered regions are less likely than folded proteins to lose
binding capacity or functionality upon mutation [105,107] and
can act as mediators of shuffling protein domains [108]. As an
outcome, IDPs can access functional mechanisms that are not
available to their folded counterparts and, therefore, are advanta-
geous for evolution. Based on all these characteristics, IDPs can
promote splicing, expose or hide binding interfaces, or promote
protein modularity, explaining their prevalence in the eukaryotic
kingdom (more than 25% of the proteome) [109].

In the early days of studies of amyloid formation using bio-
physical approaches, aggregation was commonly carried out
under non-native conditions, such as low pH or in the presence
of co-solvents such as sodium dodecyl-sulfate (SDS) or
tri-fluoroethanol (TFE) [110–112]. These studies led to the discov-
ery that all (or most) proteins can form amyloid-like fibrils from
their unfolded/disordered state under the appropriate conditions
[3]. Proteins that are natively disordered are associated with
numerous amyloid diseases, including Ab (Alzheimer’s disease),
a-synuclein (Parkinson’s), tau protein (dementia) and amylin
(type II diabetes) [113]. Due to their heterogeneous nature and
the fact that they sample such an enormous conformational
space, NMR has a significant advantage for the characterization
of disordered proteins, as each NMR observable represents the
(per residue) ensemble average over all available conformations.
On the other hand, the numerous degrees of freedom of the sys-
tem require the measurement of a large number of uncorrelated
complementary restraints in order to reach convergence [114].
Fortunately, NMR chemical shifts, paramagnetic relaxation
enhancement (PRE) and residual dipolar couplings (RDCs) are
all independent measurements that can be used to describe the
complex structural behavior of IDPs. The next sections give a
brief overview of how these NMR methods can be used to inves-
tigate these structurally dynamic proteins.

3.1. Chemical shifts probe transient secondary structure propensity

The chemical shift reports accurately on the nature of the elec-
tronic micro-environment of each nuclear spin, and thus chemical
shifts are inherently sensitive to changes in the primary sequence,
secondary/tertiary structure, ligand binding, protein–protein inter-
actions and many other biologically relevant phenomena. Early on,
it was realized that the chemical shift can be used to infer struc-
tural information about proteins [115] by comparing the deviation
of experimentally measured 1H and 13C chemical shifts with
respect to their random coil values (secondary chemical shift –
dSCS). The dSCS is a metric often used to identify the secondary struc-
ture content of a protein as it is easy to determine and reliable.
However, dSCS depends on the definition of the random coil chem-
ical shift values, a quantity that remains to be precisely defined and
depends on the model used for a random structure, the amino acid
sequence, the temperature and the pH [116–118]. This sensitivity
to the precise reference conditions is particularly important when
interpreting chemical shifts of disordered proteins.

Since the chemical shift is so sensitive to a variety of factors it
can be difficult to deconvolute the true contribution of structure
on the observed shift, especially for proteins that do not have a per-
sistent fold such as IDPs. However, with the increasing number of
available native protein structures whose chemical shifts are
known experimentally, it has become possible to develop
machine-learning approaches to predict the chemical shift directly
from the three-dimensional structure of a protein. These
approaches include SHIFTX2 [119], SPARTA+ [120] and CamShift
[121], all of which rely on a static representation of the protein.
Recently, a method that takes protein dynamics into account by
predicting (the potentially already ensemble-averaged) chemical
shifts during long molecular dynamics (MD) trajectories has been
developed [122–124]. However, it has to be noted that chemical
shifts depend highly on the experimental conditions, making their
prediction and detailed interpretation difficult in the absence of
supplementary evidence, especially for IDPs and dynamic protein
ensembles. Chemical shifts have been used as powerful comple-
mentary restraints alongside other NMR observables that, com-
bined together, can provide an accurate description of the
conformational distribution of amyloidogenic IDPs (see
Section 3.4).

3.2. Paramagnetic relaxation enhancement (PRE)

In the presence of a paramagnet such as 1-oxyl-2,2,5,5-tetram
ethyl-D3-pyrroline-3-methyl) methanethiosulfonate (MTSL –
Fig. 4A), nuclei show a different magnetic response owing to vari-
ous molecular phenomena such as dipole–dipole interactions,
Curie-spin relaxation and pseudocontact shifts (reviewed in
[125]). The paramagnetic effect can be detected by an increased
relaxation rate of nearby nuclei (PRE), pseudocontact shifts (PCS)
and residual dipolar couplings (RDC) (Fig. 4). The PRE can be mea-
sured in any paramagnetic system, while PCS and RDC measure-
ments require an anisotropic g-tensor, meaning that it is
necessary to assign the paramagnetic and diamagnetic states sep-
arately, a task that can be challenging [126,127]. PRE arises from
the magnetic dipolar interactions (in most cases) between a
nucleus and an unpaired electron of the paramagnetic probe.
While both the nOe and PRE show the same r�6 distance depen-
dence (between the neighboring nuclei (nOe), or the nucleus with
the paramagnetic probe (PRE)), owing to the large magnetic
moment of the electron the PRE phenomenon extends to much lar-
ger distances (up to 35 Å), depending on the paramagnetic group
used. The effect of the dipole–dipole interaction is an increase in
the relaxation rates of the nuclear magnetization, which can be
measured using standard relaxation pulse schemes
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(Fig. 4B and C). Typically, relaxation rates (normally 1H) are mea-
sured in the presence of a spin label and subtracted from their cor-
responding values when the spin label is inactive (reduced)
resulting in the measurement of the PRE C2 rate [123]:

C2 ¼ R2;para � R2;dia ð6Þ

r ¼
K
C2

4sc þ
3sc

1þx2s2c

� �� �1=6

ð7Þ

where R2,para, R2,dia are the relaxation rates in the paramagnetic and
diamagnetic sample respectively, r is the distance between the spin
label and the nucleus, sc is the correlation time of the electron–
nucleus interaction (assumed to be the global correlation time of
the protein for nitroxide spin labels), x is the Larmor frequency
of the spin (proton) and K is 1.23 * 10�32 cm6 s�2.

The subtraction in Eq. (6) cancels out all relaxation processes
that are common in the reduced and oxidized states, and leaves
the paramagnetically-induced relaxation as the only difference
[128]. Alternatively, the same measurement can be performed by
comparing the peak intensities in a simple HSQC-type of experi-
ment in a sample containing the oxidized (Iox) versus the reduced
(Ired) spin label (Fig. 4B). The Iox/Ired ratio can then be converted to
PRE rates or directly into distances. Since the direct measurement
of the PRE rates requires very high signal-to-noise ratios to allow
robust fitting and is more time-consuming, determination of the
Iox/Ired ratio is often the method of choice, especially for proteins
of higher MW (>40 kDa) [128–133]. However, this can result in
biased PRE rates because of other NMR phenomena contributing
to the observed peak intensity in the presence of the paramagnet
(e.g. differential increase in the T1 relaxation between the oxidized
and reduced samples), which are not taken into account. Spin
labels are usually introduced via a single solvent-accessible cys-
teine residue (or a pair of cysteines) and are typically functional-
ized by nitroxide moieties and/or chelated metal ions (reviewed
in [134]). The choice of the appropriate spin label is based on the
distance range of the expected interaction and the precision
required. Most of the spin labels are at least partially hydrophobic
and therefore can cause artifacts especially when dealing with
exposed hydrophobic surfaces of amyloidogenic proteins. Thus,
when applied to aggregating proteins, PRE experiments need to
be carefully designed to ensure that the paramagnet introduced
does not affect protein structure, dynamics or aggregation.

When interpreting the PRE effect as a distance, special care has
to be taken to account for the increased flexibility of the MTSL side
chain. The problem can be taken care of by including an order
parameter for the internal motions of the side chain [135], and/or
averaging between multiple conformers of MTSL in ensemble
molecular dynamics simulations [125,136]. Alternatively, Clore
and co-workers presented a sophisticated theoretical framework
to allow direct back-calculation of C2 rates from 3D structure,
which is advantageous since it provides a tool for the full descrip-
tion of the PRE phenomenon in 3D space [125,135].

PRE experiments have been used to assist the structure calcula-
tion of large proteins [130], to characterize the domain organiza-
tion of multi-domain systems [129,134,137,138], to study
protein–DNA interactions [139–141], and to interrogate intrinsi-
cally disordered proteins [142]. However, one of the most powerful
features of this technique is its ability to provide unique informa-
tion about exchanging systems. In this case, the use of PRE-derived
information depends highly on the timescale of exchange [143]. If
the motions lie in the slow exchange regime, the PRE data can offer
a significant improvement in the quality of NMR structures in com-
parison with the classical nOe type of calculation. On the other
hand, if the timescale of exchange is fast, application of the PRE
methodology allows the characterization of dynamic processes
and the identification and structural elucidation of lowly popu-
lated intermediate species. More specifically, based on
McConnell’s equations for a two state system, the apparent PRE
rate (C2) is highly dependent on the rate of the exchange event
(kex = kAB + kBA) between states A and B (Fig. 5A). If the exchange
takes place in the slow PRE regime (kex� C2,B � C2,A), then the
presence of the minor species B has no effect on the measured
PRE C2

app rate, which in this case represents only the major species
A. However, for larger kex, the C2

app rate is highly influenced by the
minor state B (Fig. 5A and B). Thus, when kex� C2,B � C2,A (fast
exchange regime), the apparent C2 rate is the weighted populated
average of the C2 rates of the two species [125]. As IDPs are
expected to interconvert rapidly between numerous conforma-
tions in a large ensemble of species, visualization of the individual
ensemble members (which can be less than 1% populated) is
greatly facilitated by the PRE methodology [114].

IDPs, such as a-synuclein or Ab40/42, are expected to show
some long-range interactions, much like the well-known
long-range interactions of unfolded globular proteins (e.g. under
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denaturing conditions [145]). The presence or absence of these
kinds of interactions was hypothesized to be important in the
aggregation properties of these amyloid-disease related proteins.
PRE studies on spin-labeled a-synuclein showed interactions
between the charged C-terminal residues 120–140 and residues
30–100 in the so-called NAC region, creating a compact form of
the protein [146]. This occluded conformation, as observed by
molecular dynamics simulations incorporating PRE-derived
restraints, was proposed to inhibit the aggregation of a-synuclein
by shielding the aggregation-prone NAC region of the protein.
Importantly these long-range interactions are preserved in the
physiologically relevant, N-terminally acetylated version of
a-synuclein [147]. Inter-chain interactions between different
a-synuclein monomers have also been monitored by paramagnetic
NMR. PREs were observed in the C-terminal region of the protein
when the spin label was attached in the N-terminal region and vice
versa, showing that a head-to-tail interaction is taking place

between a-synuclein monomers [148]. However, the relatively
weak PRE effect observed at neutral pH suggests that a-synuclein
prefers to interact with solvent molecules rather than itself.

3.3. Residual dipolar couplings reveal residual structure in unfolded
proteins

The through-space dipolar interaction (Dij) between two mag-
netically active nuclei (i, j) is given by:

Dij ¼ �
cicjhl0

4p2r3
3 cos2 h� 1

2

� �

; ð8Þ

where ci, cj are the gyromagnetic ratios of each nucleus, h, Plank’s
constant, l0 the permeability of a vacuum, r the distance between
nuclei i and j, and h the orientation of the nuclear vector with
respect to the external magnetic field. Proteins in isotropic solutions
tumble freely and thus h can take all possible values, causing Dij in
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Fig. 5. The effect of exchange rates in PRE measurements. (A) One spin-labeled (black open circle) protein that is in exchange between a major (A) and minor (B) state is
shown. The extended conformation of the major state gives rise to a smallC2 rate (2 s�1) for the spin label site shown, while the more compact structure of state B shows a C2

value of 2 ⁄ 103 s�1. (B) Line shape simulations of the resonance of state A as the exchange rate kex (kex = kAB + kBA) is increased from 4 to 4000 s�1. The simulations were
performed by solving the McConnell equations for a two-state system [144], using a chemical shift of 100 Hz for both states (assuming no pseudo-contact shifts), a
diamagnetic T2 relaxation rate of 30 s�1 and a population of 99% and 1% for states A and B, respectively. The curve of the right-hand panel is magnified by a factor of two for
clarity. When the exchange rate is in the fast exchange regime the line-shape is dominated by the C2 rate of the minor state although its population is as low as 1%.
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Eq. (8) to average to zero. Introduction of a protein into a medium
which can be aligned with respect to the magnetic field, such as a
liquid crystalline phase, causes limited restriction of the molecule’s
rotation such that the dipolar coupling becomes non-zero (Fig. 6A).
Measurement of the residual dipolar coupling (RDC) is extremely
powerful as it contains valuable long range angular information
for the internuclear vectors and can be used to complement short
or long range distances measured by nOe or PRE experiments,
respectively. Therefore, a variety of alignment media such as fila-
mentous phages, stretched gels, bicelles or glycol mixtures have
been developed in order to align folded proteins [149,150].
Structurally, RDCs can be analyzed as internuclear vectors oriented
in a common alignment tensor that is fixed in terms of the molec-
ular frame (Fig. 6B). For a fixed length bond between two nuclei
in a rigid fully anisotropically aligned object in solution, the RDC
can be calculated from the probability of alignment along three
orthogonal directions in the molecules frame of reference. This
information can be written as an alignment tensor. Five parameters
are required to describe an RDC from a known molecular structure:
three angles to align the molecule, plus the magnitude and rhom-
bicity of alignment. For a system undergoing conforma-
tional exchange the overall time averaged RDC value can be
computed from a simple weighted average of the RDC for each con-
former. The important insight that allowed this formalism to be
used for the ensemble modeling of IDPS is that for steric alignment
it has proved sufficient to predict the alignment tensor for each of
the conformations present in an ensemble of limited size as a static
snapshot without reference to time variations in order to generate
an empirically convincing model. Alternatively, new computational
methods that do not require the calculation of an alignment tensor
combined with molecular dynamics simulations may be useful in
capturing the time-averaged nature of RDCs, especially for confor-
mationally heterogeneous proteins such as IDPs [151,152]. RDCs
are typically measured using inphase–antiphase sequences (IPAP)
which can separate the upfield and downfield components of the
J-coupled doublet into separate spectra (Fig. 6C) [153].

Given the extreme flexibility of IDPs, RDCs for such proteins
might be expected to average close to zero even under conditions
of weak alignment due to conformational averaging. However,
non-zero RDCs have been measured for denatured proteins [154]
showing that RDCs can be used to probe structural propensities
in the conformational ensemble. HN-N-RDCs for IDPs show a neg-
ative sign and a bell-shape dependence on the polypeptide
sequence, reflecting the propensity of the polypeptide chain to
align parallel with the magnetic field [145,154,155]. However, it
has been observed that RDCs in disordered proteins are very sensi-
tive to local structure (for instance, formation of transient helices
changes the orientation of the amide vector in relation to B0).
Thus, the sign of the coupling and the magnitude of the observed
RDC are highly correlated with the size of the side chain [156–
158]. Therefore, RDCs contain valuable information about the con-
formational properties of a disordered polypeptide chain that
reports both on the local and long-range structure.

As denoted by the angle brackets in Eq. (8), the measured RDCs
report on the ensemble average over all possible conformations in
solution. As an outcome, averaging of the alignment tensors of
each member of an ensemble should reproduce the experimentally
measured RDCs, providing that the ensemble is of adequate size
and is correctly parametrized (see Section 3.4). RDC studies on
a-synuclein showed that the experimentally measured RDCs could
not be explained unless contacts between the N- and C-terminal
regions are included in the ensemble [159]. This finding confirmed
the occluded conformation of the protein as observed by PRE stud-
ies [146] and further highlights the importance of the charged resi-
dues in stabilizing these regions. Importantly, increasing the ionic
strength, deletion of the C-terminal region, and/or mutation in the

N-terminal region all cause increased fibrillation rates, consistent
with the importance of intra-molecular interactions between the
C-terminal and NAC regions, and inter-molecular interactions
between the N- and C-terminal regions, during the early stages
of aggregation.

Investigation of the conformational properties of the protein tau
also showed large discrepancies between the measured RDCs and
those predicted from the statistical coil model, in areas implicated
in aggregation [160]. Accelerated molecular dynamics simulations
(AMD) [161], in which the energy landscape is biased in order to
favor transitions between low energy states (thus providing access
to longer timescales and better conformational sampling), were
used in the same study to investigate the structural plasticity of
tau. This analysis revealed a high propensity for a b-turn conforma-
tion in regions of the polypeptide chain that could not be captured
by the statistical coil model. Importantly, incorporation of the
dihedral angle sampling derived from AMD to the coil model
resulted in much better prediction of the experimentally measured
RDCs [162]. These highly localized and sequence-dependent struc-
tural propensities were hypothesized to act as an inhibitor of b-rich
amyloid aggregate formation [162].

3.4. Ensemble calculations – the importance of incorporating a
plethora of data

Due to the large number of degrees of freedom of IDPs, a large
amount of experimental data is required to describe their confor-
mational ensemble adequately. To resolve this issue, the available
NMR restraints (chemical shifts, PREs, RDCs) can be analyzed
together to generate a consistent ensemble (Fig. 7). Chemical shifts
and RDCs mainly depend on local structural order, while PREs
report on the long range interactions of the polypeptide chain.
Combined together, these data provide a more complete represen-
tation of the conformational ensemble. In theory, chemical shift
anisotropies (CSA) could also be used to aid this process; however
they are difficult to measure. Originally, statistical coil models
were used to generate appropriate ensembles for IDPs [114]; how-
ever these fail to reproduce large experimental datasets, since
denatured proteins tend to sample extended conformations signif-
icantly [162,163]. Normally, tens of thousands of conformations
need to be averaged in order to reach convergence [164], making
the analysis computationally intense and time-consuming.
Recent developments from Blackledge [136,164] and Forman-Kay
[165] and their colleagues have allowed the generation of ensem-
bles representative of the conformational sampling of IDPs in solu-
tion at the amino-acid level, by using statistical coil models in
combination with sophisticated selection methods that allow the
derivation of appropriate sub-ensembles from broader distribu-
tions [164,166] (Fig. 7). Alternatively, experimental restraints can
be incorporated in restrained or replica exchange simulations
[163].

Such an approach has been used in the case of a-synuclein by
combining PRE and RDC data to describe the long range
intramolecular interactions between the C-terminus and the NAC
region in atomic details (previously observed by PRE alone)
[167]. Release of these autoinhibitory interactions was hypothe-
sized to prime the protein for aggregation [167]. MD simulations
had suggested that a-synuclein adopts an ensemble containing a
number of oligomeric species, some of which may be a-helical or
b-sheet rich [168]. Analysis of a large experimental dataset by
Blackledge and co-workers [142], including chemical shifts for five
different nuclei, one set of RDCs, four sets of PRE restraints, supple-
mented by small angle X-ray scattering (SAXS) data, provided a
better representation of the conformational behavior of the protein
in solution. After careful cross-validation of the data, the unfolded
nature of the protein was confirmed. In the same study, the
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conformational ensemble of the 441-residue full-length human
protein tau was also investigated utilizing 11 sets of PREs, 5 sets
of chemical shifts, 1 set of RDCs and SAXS data [142]. In both cases
an elevated population for polyproline-II (bP) conformations was
directly observed, especially in regions of increased amyloido-
genicity, suggesting that this conformational behavior is a precur-
sor of amyloid fibril formation. Furthermore, by combining a
variety of experimental restraints, a better agreement between
the experimental data and the results of MD simulation was
achieved, in comparison to the statistical coil ensemble alone
[142], showing the validity and the predictive power of these
approaches.

4. Investigating interactions in higher-order species on pathway

to amyloid fibrils using NMR

In the pursuit of linking the different properties of initially
folded proteins to amyloidogenicity, many studies have focused
on analyzing the structural properties of monomeric amyloid pre-
cursors. Unfolding energies, hydrophobicity, propensity to form
inter/intra-molecular contacts and protein dynamics have all been
linked to increased amyloid propensity [27,43,169]. The wealth of
data available has allowed the generation of algorithms capable of
predicting amyloidogenicity, based either on the physicochemical
properties of the amino acid sequence involved, or the structure

of the protein, and how these are modulated by the dynamics of
the native state (reviewed in [170]). On the other hand, other
research efforts have focused on elucidating the structure of amy-
loid fibrils in order to establish their role in cytotoxicity and/or
protein function. The first atomic details of the structures of small
amyloid-forming peptide segments were solved by X-ray fiber
diffraction [171,172] and X-ray crystallography [19,24].
Structural models based on solid state NMR have also been pro-
posed for amyloid protofilaments or fibrils, including Ab40
[23,173,174], and the C-terminal domain of HET-s [21]. Very
recently, the structure of an amyloid fibril involving 2, 4, or 6
protofilaments of a peptide of transthyretin was determined using
a combination of solid-state NMR and EM [26].

By contrast with the highly-ordered stable amyloid fold, struc-
tural characterization of the oligomeric species formed during fibril
formation has proved difficult because of the transient nature and
heterogeneity of amyloid intermediates. These species are often
termed ‘amyloid oligomers’ and their short lifetimes, polymorphic
nature, dynamic properties and variety of mechanisms of forma-
tion make them inaccessible to most current structural tools. In
addition, the distinction between off- and on-pathway oligomers,
i.e. oligomers that directly precede amyloid fibrils, or represent
meta-stable species on an alternative assembly pathway, remains
one of the most challenging aspects of their characterization.
Amyloid oligomers show increased ability to penetrate lipid bilay-
ers, to interact with external cellular components, and to cause
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cytotoxicity, in comparison with monomeric or fibrillar forms of
the same protein precursors, highlighting their importance in
understanding the aggregation pathway and the origins of disease
[175–177].

Recently, a distinction between on- and off-pathway assemblies
in the early stages of amyloid formation was made possible using
fluorescence techniques. Cremades et al. [178] and Campioni
et al. [179] in two independent studies showed that human
a-synuclein and bacterial HypF aggregate through the formation
of oligomeric species of different size and structure and, as a result,
have different cytotoxicity. In the former case, single molecule flu-
orescence techniques and the analysis of individual species in solu-
tion allowed direct observation of the inter-conversion between
the different oligomeric forms. These findings highlighted the
dynamic nature of protein–protein interactions in the early stages
of amyloid formation, giving rise to species of the same overall
shape, but different in structural details, sufficient to make them
toxic (or not toxic) to the cell. Even though powerful and illuminat-
ing in that they provide insights into the overall architecture, size
and shape of the oligomeric assemblies, these studies fail to reveal
the structure of these key amyloid intermediates in atomistic
detail. Eisenberg and co-workers reported the first high resolution
crystal structure of a trapped, supposedly toxic, oligomer that
appears to be on-pathway to fibrils derived from a peptide seg-
ment of ab-crystallin [180]. Its structure revealed a novel
barrel-like cylindrical fold, termed cylindrin, that is only margin-
ally destabilised in comparison to the classic steric zipper form
that amyloid peptides often adopt in crystals [24]. Interestingly,
the cylindrin architecture appears to be more generic and not only
related to ab-crystallin [181].

Structurally describing the aggregates of different sizes, ranging
from dimers to high molecular weight oligomers, represents a
challenging task for solution NMR spectroscopy due to their size
(often >1 MDa) and their heterogeneous and dynamic nature.
However, significant progress has been made toward the charac-
terization of these species, either by studying the protein–protein
interactions within oligomeric species directly, or by inferring
information about the interacting species by exploiting the
exchange of monomeric species with the oligomers/fibrils. These
new insights and the NMR approaches used are highlighted in
the sections below.

4.1. Direct detection of oligomeric intermediates

Owing to its high sensitivity and increased chemical shift range,
19F NMR can be used to probe oligomer/fibril assembly directly.
The position and intensity of the 19F signal of fluorinated proteins
can provide information about the formation of oligomers in
real-time during fibril assembly. Following the 19F signal during
the aggregation of human islet associated polypeptide (IAPP) sug-
gested that fibril assembly is a two-state process (monomer to fib-
rils), without the accumulation of detectable intermediate species
[182]. On the other hand, at least six oligomeric species, each with
a distinct NMR signature, were observed for Ab40 [183], and the
formation of an octamer was associated with enhanced amyloido-
genicity of prion protein [184]. Other studies have inferred infor-
mation about the kinetics of protein oligomerization from the
loss of the NMR signal of the monomeric precursor during aggrega-
tion [185] while, more recently, fibril dynamics were studied
directly by investigating the release of soluble oligomers and
monomers using real-time NMR [186].

A new NMR technique that lies on the edge of solution and
solid-state NMR approaches is the so-called SedNMR [187].
Highly concentrated solutions of high molecular weight proteins
or assemblies are centrifuged either in situ (using the centrifugal
force of the magic-angle (MAS) rotor) or ex situ by placing the

MAS rotor in an ultracentrifuge prior to NMR analysis [187,188].
The precipitate formed on the walls of the rotor gives excellent
NMR spectra in comparison with lyophilized samples or microcrys-
talline phases, and remains highly hydrated compared with other
SS-NMR sample preparation protocols [188,189]. Therefore,
SedNMR is promising for the structural characterization of soluble
amyloid oligomers that are of sufficient mass to be spun out of
solution, or even partially insoluble species on-pathway to fibrils.
As sedimented samples contain both a solution and a ‘solid’ phase,
different spectroscopic techniques can be applied to detect signals
arising from each phase of the sample. Bertini et al. have applied
insensitive nuclei polarization transfer (INEPT), and
cross-polarization techniques, to study the solution (containing
monomer and or small Ab40 oligomers) and ‘solid’ (containing lar-
ger aggregates) phase of Ab40 aggregates in real-time [190]. This
method allowed a quantitative kinetic analysis of fibril assembly
to be made and, due to the high sensitivity of the technique,
assignment of the resonances of the aggregates was also possible
[190].

Although SedNMR represents a promising approach for study-
ing amyloid oligomers, the heterogeneity of these species may
reduce the SS-NMR spectral quality, rendering them intractable
to NMR analysis. In these cases, indirect detection of large assem-
blies is possible by investigating their influence on their mono-
meric counterparts, as described below.

4.2. Dark exchange saturation transfer (DEST)

The powerful CPMG experiments presented in Section 2.1 rely
on the fact that two protein states in exchange have different
chemical shifts. Based on that observation, crucial information
about the minor state can be obtained by studying the modulation
its presence causes on the major, visible state (as long the
exchange is taking place at �10 ms–1 s). The known limitations
of solution NMR spectroscopy in resolving complexes of large
macromolecular size (<1 MDa, unless the assembly contains
dynamic regions) renders direct observation of a wealth of macro-
molecular assemblies such as membrane proteins, large molecular
machines, protein aggregates and surface bound molecules diffi-
cult using solution NMR methods unless 13C-methyl labeling,
deuteration and TROSY methods are employed [191]. The
decreased molecular tumbling rate of a protein when bound to a
high MW complex leads to a large increase in the relaxation rate
of the magnetization in the transverse plane, making these species
invisible by classic NMR methods. However, this increase in the T2
rates of the bound molecule is the basis of the DEST experiment,
recently proposed by Clore and co-workers [192]. The same basic
concept has been used in the past to study protein–ligand interac-
tions [193]. To understand these experiments, imagine a system
where an NMR-visible state (e.g. a monomer) is in exchange with
a species of high molecular weight (eg. an oligomer or an ensemble
of oligomers, Fig. 8A), where the two states show the same chem-
ical shift (for instance if the monomer conformation is unchanged
in the oligomeric species). In such a case, the monomeric species is
expected to give rise to narrow lines in its NMR spectrum
(Fig. 8A and B). In contrast, the oligomers formed give rise to very
broad lines and thus are NMR invisible. In a DEST experiment a
weak saturating field B1 is applied far off-resonance from the sharp
monomeric signal (Fig. 8C), leaving the resonances that are not in
exchange with the species of interest unaffected. However, the
extreme line-width of the bound resonances cause the saturation
to be transferred through chemical exchange from the high molec-
ular weight species to the NMR-visible state, resulting in an atten-
uation of the sharp signals that arise from the monomer (even
when B1 is applied far off-resonance) (Fig. 8C). The observed atten-
uation depends on the R2 of the bound-invisible state and thus can
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give information on the dynamics of the ‘dark’ state. Much like the
CPMG experiment, in DEST the invisible NMR state can be detected
by its effect on the sharp lines of the visible species [143,194].

The DEST approach is ideally suited to studies of protein aggre-
gation since the equilibrium between the low and high molecular
weight species can be tuned by adjusting the experimental condi-
tions (for instance protein concentration, temperature and pH) and
the exchange rate is expected to be slow. One such study was per-
formed on Ab40/42 [194]. Although no chemical shift differences
were observed between 50 and 270 lM Ab, the T2 relaxation rates
were found to be elevated by �2 s�1 in the more concentrated
sample [194,195]. Biophysical analysis (EM and AUC) showed that
at high protein concentrations the peptide is in exchange with
protofibrils, and DEST experiments were used to analyze this equi-
librium. Global fitting of DEST and T2 relaxation data showed that a
simple two state (monomer/fibril-bound) scheme is not sufficient
to describe the experimental data. Instead, a pseudo-two state
model had to be invoked [194]. In this model residues can be either
in direct contact with the protofibril, or alternatively, are tethered
to the protofibril indirectly by other regions of the same polypep-
tide chain that makes direct contact with the protofibril. Such an
analysis yields the global kon and koff rates, as well as per residue
tethering rates (k3), and the residue-specific R2 of the bound state,
essentially providing a complete picture of the exchange event
[194]. For both Ab40/42 the N-terminal 8 residues were found to
be tethered rather than directly bound, although differences
between the two peptides were observed in the C-terminal region.
Specifically, the C-terminal two residues of Ab42 are mobile, while
the C-terminus participates in the core of Ab40 fibrils [194]. These
differences may be the origin of the increased nucleation rates of
Ab42 [194].

In general, DEST-type experiments (now further developed for
methyl bearing side chains [196]) promise to provide crucial infor-
mation about oligomer formation and surface-catalyzed secondary
nucleation in amyloid formation [10,11,197], phenomena that are
vitally important in our quest to understand amyloid assembly in
structural and energetic terms.

4.3. Visualization of transient protein–protein interactions on pathway
to fibril assembly using paramagnetic NMR

PRE methods provide sensitive probes able to detect heteroge-
neous and lowly populated species in solution (see Section 3.2).
These studies can be used to analyze intra-molecular interactions
by spin-labeling an NMR visible molecule (13C, 15N- or sparsely
labeled) as in the case of IDPs (see Section 3.2), or by an
inter-molecular interaction (by mixing a spin labeled but
NMR-invisible (12C, 14N) molecule with an NMR-visible (13C, 15N)
protein). In the latter case, the observed PRE effect measures pro-
tein–protein interactions, rather than intramolecular arrange-
ments or motions. Intermolecular PRE studies, in combination
with complementary NMRmethodologies, have been used to study
rare biomolecular interactions that lead to enhancement of the
aggregation propensity of a poorly amyloidogenic protein (human
b2m) by transient interaction with its aggregation-prone counter-
part (DN6) [84]. Similar experiments were also used to probe the
inhibitory DN6–murine b2m (mb2m) association [84]. In these
experiments, NMR-invisible spin-labeled amyloidogenic DN6 was
mixed with NMR-visible less amyloidogenic variants of b2m
(mb2m or hb2m), allowing identification of the interfaces involved
in inhibition or promotion of assembly, respectively [84].
Unexpectedly, it was shown that the interaction surfaces are sim-
ilar for each complex, showing that the progress of assembly is
governed by the precise chemical details of the interface.
Specifically, inhibition occurs via rigid body docking of monomers
in a head-to-head orientation to form kinetically trapped dimers.
By contrast, the promotion of fibrillation involves relatively weak
protein association in a similar orientation but, in this case,
biomolecular collision results in conformational changes in the ini-
tially non-fibrillogenic partner. Even subtle differences in the mode
of interaction (even though its epicenter remains the same) can
thus cause a vastly different outcome of the interaction that
defines the course of amyloid assembly (Fig. 9).

Similar phenomena have been observed in prions or prion-like
proteins, wherein very similar proteins from different species are
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either able to be converted into a prion-like state [9,198–201], or
exhibit a species barrier [202–206]. Such systems, however, have
yet to be studied in the detail achieved for the b2m assembly, by
exploiting the power of paramagnetic NMR [84].

Inter-chain interactions between different monomers of
a-synuclein have also been monitored using intermolecular PRE
as described above [148]. Together, these reports demonstrate
the power of modern NMR methods to shed light on important
phenomena such as prion infectivity/transmissibility and prion

species barriers. They can also be used to explain why some amy-
loid precursors co-assemble while others do not. This remains a
significant unanswered question in the amyloid field, especially
in the context of the recent appreciation that different amyloid
sequences may co-assemble in amyloid disease [207].

4.4. H/D exchange in the fibrillar state

The wealth of hydrogen bonds that stabilize the cross-b fold of
amyloid renders these assemblies ideal for H/D exchange studies.
However, the high molecular weight of the fibrillar aggregates pre-
cludes direct observation of the species that are subject to H/D
exchange by solution NMR (only extremely mobile regions of fib-
rils, usually in loops and/or in the N- or C-terminal regions, can
be observed [208,209]). To deal with this issue various strategies
have been proposed, with the most common being solubilization
of the fibrils in an aprotic, organic solvent after H/D exchange
has taken place. In these experiments, protonated fibrils are intro-
duced into deuterated buffers and H/D exchange is allowed to pro-
ceed for a period of time. At specific time-points aliquots are
centrifuged to pellet the fibrils. The pellet is then freeze-dried
and re-suspended in a 95% d6-dimethyl sulfoxide (DMSO)–5%
D2O solution to depolymerize the fibrils to monomeric subunits
(DMSO is preferred as it does not contain any exchangeable pro-
tons). Analysis of each sample by 2D (1H–15N) NMR is then per-
formed to determine kobs(j) by fitting Eq. (10), and subsequently
PF (Eq. (5)). Residues buried in the hydrophobic core of the fibril
are expected to show a high PF in comparison with those that
are not. Thus, DMSO quenched H/D exchange studies coupled with
NMR spectroscopy represent a useful method to characterize fibril
structure. Such studies have been performed on Ab40/42,
a-synuclein, b2m, transthyretin (TTR), HET-s and Sup35 and were
used to identify the core and flexible regions of their fibrils.
Importantly, H/D exchange studies are able to distinguish between
different fibril types originating from the same protein precursor.
Examples include b2m, and the SH3 domain (Table 1).

Apart from characterizing fibril structure, H/D exchange can be
used to investigate the properties of intermediates formed during
fibril assembly. Konuma et al. have used H/D exchange in
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Table 1

H/D exchange studies on amyloid aggregates probed by solution NMR.

Amyloid precursor Aggregation
state

Reference

Ab(25–35) Fibril [210]
Ab(1–40) Oligomers [211]
Ab(1–40) E22G Fibrils [212]
Ab(1–42) Fibrils [213,214]
Acylphosphatase Oligomers [215]
a-Synuclein Fibrils [209]
a-Synuclein A30P Fibrils [216]
a-Synuclein (30–110) Fibrils [209]
b2m Fibrils [208,217–

219]
Prion protein (106–126) Fibrils [220]
Prion protein (127–147) Fibrils [221]
RNAse A Oligomers [222]
SH3 domain Oligomers [223]
Cystatin Fibrils/

oligomers
[224]

Sup35 Fibrils [225]
CspA Fibrils [226]
HET-s (218–289) Fibrils [227–229]
TTR Oligomers [230]
TTR (Y114C) Fibrils [231]
Bacterial inclusion bodies (BMP2 (13–74)a,

ESAT-6b, MOG(ECD)c)
Fibrils [232]

a b-sheet fragment residues 13–74 of the secretory human bone morphogenetic
protein-2.

b Early secreted antigen 6-kDa protein.
c The extracellular domain (ECD) of the human membrane protein myelin

oligodendrocyte glycoprotein.
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combination with a stop-flow apparatus to study intermediates
during fibril elongation of b2m at low pH (2.5) [233]. By carefully
adjusting the pH of the reaction, H/D exchange or fibril elongation
can be favored (competition H/D exchange) such that a per-residue
image of kinetic intermediates formed during fibril elongation can
be obtained. Such studies showed that fibril elongation com-
mences by lateral association of an extended monomer conforma-
tion [233].

Amyloid fibrils are not static structures. Although the amyloido-
genic proteins are trapped into a large macromolecular structure
that appears stable thermodynamically and rigid macroscopically,
each subunit can exhibit protein motions, not only in their
side-chains, but also in their backbone atoms. In addition, fibrils
are in equilibrium with monomeric or oligomeric species, and thus
the model of H/D exchange for globular proteins presented in
Section 2.3 needs to be reconsidered for such systems. Carulla
et al. proposed a model for H/D exchange in which each fibril is
in equilibrium between a non-exchangeable (Ci)

(j,H) and an

exchangeable form ðCiÞ
ðj� ;HÞ [234]. Once in the exchangeable form,

all hydrogens exchange to deuterons with a first order rate con-
stant kex(j), (Eq. (9)). The observed rate of exchange kobs(j) is related
to the observed rate of exchange of the monomer, kobs(M), corrected
by a protection factor PF(j), to account for its incorporation into the
specific fibril structure (Eq. (10)). The concentration of fully deuter-
ated molecules at a given time into the H/D exchange experiments,
increases exponentially as shown by Eq. (11).

ðCiÞ
ðj;HÞ

�

kðjÞ

kðj�Þ
ðCiÞ

ðj� ;HÞ !
kexðjÞ
ðCiÞ

ðj;DÞ ð9Þ

where (Ci)
(j,H) and ðCiÞ

ðj� ;HÞ represent the protonated exchangeable
and non-exchangeable forms of the fibril, (Ci)

(j,D) the deuterated fib-
rillar state. k(j) and kðj�Þ are the forward and reverse rates for the

(Ci)
(j,H) to ðCiÞ

ðj� ;HÞ transition and kex(j) is the rate of H/D exchange.

kobsðjÞ ¼ kobsðMÞ=PFðjÞ ð10Þ

where kobs(j), kobs(M) are the observed H/D exchange rates for the fib-
ril and monomer respectively and PF(j) is the protection factor in the
fibrillar state.

ðCiÞ
ðj;DÞðtÞ ¼ ðCiÞ

ðjÞ
tot½1� expð�kobsðjÞtÞ� ð11Þ

This model can be used to explain processes such as fragmenta-
tion or molecular recycling through fibril ends. However, different
two-state models have also been proposed to describe fibril elon-
gation or species interacting with the fibrils [89,233].

5. Perspectives

Investigating the structural, kinetic and thermodynamic prop-
erties of the species formed during amyloid assembly in atomic
detail is of crucial importance in our quest to understand the struc-
tural mechanisms of amyloid formation. NMR is the only technique
capable of characterizing dynamic non-native states, as well as the
transient and lowly populated species formed in the early stages of
aggregation in atomistic detail. However, solution NMR suffers
from its well-known molecular size limitation, which restricts its
use (predominantly) to lower order species formed in the early
stages of assembly. The use of specific amino acid precursors that
result in sparse labeling of methyl groups of specific amino-acid
precursors has be used recently to overcome these limitations
[235]. As methyl groups have a shorter correlation time than the
protein in which they are located, specific labeling in combination
with transverse relaxation optimized techniques (Met-TROSY), can
be used to investigate large macromolecular assemblies in solu-
tion, extending the range of structures detectable by solution

NMR to �1 MDa [192,236]. Such approaches have been successful
in the characterization of large molecular machines [237–239], but
have yet to be used to explore the structural properties of amyloid
oligomers. The structural elucidation of oligomeric species can be
greatly aided by PRE methods (discussed in Sections 3.2 and 4.2).
Even though PRE techniques are well suited for the identification
of interfaces, the extraction of exact distances in some cases is
problematic due to the increased flexibility of the paramagnetic
moiety [125]. The development of new paramagnetic tags may
lead to better defined interatomic distances [134]. Recent advances
in the field of computational biology also hold great promise for
enhancing our understanding of amyloid formation. Molecular
dynamics (MD) simulations can now be extended to the ms time-
scale [240], making the simulation of protein dynamics that drive
the formation of amyloidogenic intermediates possible. The devel-
opment of accurate docking algorithms is also helping to model the
polymerization of these species restrained by the plethora of data
now available from using different NMR techniques [241–243].
Restraints from EM, SAXS and mass-spectrometry (MS) can provide
crucial additional structural information on the aggregation pro-
cess [26,142]. Direct electron detection extends the resolution of
EM to near atomic structures, while cross-linking the meta-stable
species formed during assembly, followed by MS analysis, will
aid the identification of interfaces in large macromolecular assem-
blies [244]. Double electron–electron resonance (DEER) electron
paramagnetic resonance (EPR) can also be used to probe distances
up to 5 or 10 nm between two paramagnetic centers. DEER
restraints, therefore, are ideal to complement NMR restraints in
MD simulations or structure calculation protocols [245]. A combi-
nation of solution-, solid-state NMR, EM, MS, EPR and also single
molecule Förster resonance energy transfer (FRET) restraints
together promise to shed light on the mechanisms of aggregation
and to reveal why, and how, normally innocuous and functional
proteins can convert into amyloidogenic conformers that
self-assemble and cause devastating diseases.
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Glossary of abbreviations

Å: Ångström
AFM: atomic force microscopy
AUC: analytical ultracentrifugation
Ab: amyloid-beta peptide
CD: circular dichroism
CPMD rd: Carr–Purcell–Meiboom–Gill relaxation dispersion
CSA: chemical shift anisotropy
DNA: deoxyribonucleic acid
DRA: dialysis-related amyloidosis
DEER: double electron–electron resonance
DEST: dark exchange saturation transfer
EM: electron microscopy
ESI-MS: electron-spray-ionisation mass spectrometry
EPR: electron paramagnetic resonance
FRET: Förster resonance energy transfer
FTIR: Fourier-transform infrared
H/D exchange: hydrogen–deuterium exchange
HSQC: heteronuclear singe quantum coherence

HMQC: heteronuclear multiple quantum coherence
Hb2m: human b2m
IDP: intrinsically disordered protein
MAS: magic angle spinning
MDa: mega-Dalton
MHC-I: major histocompatibility complex-I
MTSL: S-(2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl-oxyl)methyl

methanesulfonothioate
Mb2m: murine b2m
MD: molecular dynamics
NMR: nuclear magnetic resonance
nOe: nuclear Overhauser effect
PBD: protein data bank
pH: decimal cologarithm of hydrogen
ppm: parts per million
PRE: paramagnetic relaxation enhancement
R1: longitudinal relaxation rate
R2: transverse relaxation rate
RDC: residual dipolar coupling
RMSD: root mean square deviation
SAXS: small angle X-ray scattering
SedNMR: sedimentation NMR
ssNMR: solid state NMR
T1: longitudinal relaxation time
T2: transverse relaxation time
TEM: transmission electron microscopy
TROSY: transverse relaxation optimized spectroscopy
TTR: transthyretin
b2m: beta-2 microglobulin
Dd: chemical shift difference
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