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Abstract

Detergents are amphiphilic compounds that have crucial roles in the extraction, purification
and stabilization of integral membrane proteins and in experimental studies of their structure

and function. One technique that is highly dependent on detergents for solubilization of

membrane proteins is solution-state NMR spectroscopy, where detergent micelles often serve

as the best membrane mimetic for achieving particle sizes that tumble fast enough to produce
high-resolution and high-sensitivity spectra, although not necessarily the best mimetic for a

biomembrane. For achieving the best quality NMR spectra, detergents with partial or complete

deuteration can be used, which eliminate interfering proton signals coming from the detergent

itself and also eliminate potential proton relaxation pathways and strong dipole-dipole
interactions that contribute line broadening effects. Deuterated detergents have also been

used to solubilize membrane proteins for other experimental techniques including small angle

neutron scattering and single-crystal neutron diffraction and for studying membrane proteins

immobilized on gold electrodes. This is a review of the properties, chemical synthesis and
applications of detergents that are currently commercially available and/or that have been

synthesized with partial or complete deuteration. Specifically, the detergents are sodium

dodecyl sulphate (SDS), lauryldimethylamine-oxide (LDAO), n-octyl-b-D-glucoside (b-OG),
n-dodecyl-b-D-maltoside (DDM) and fos-cholines including dodecylphosphocholine (DPC).

The review also considers effects of deuteration, detergent screening and guidelines for

detergent selection. Although deuterated detergents are relatively expensive and not always

commercially available due to challenges associated with their chemical synthesis, they will
continue to play important roles in structural and functional studies of membrane proteins,

especially using solution-state NMR.
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Introduction

Detergents are amphiphilic compounds usually having a well-

defined hydrophilic domain often referred to as the ‘hydro-

philic head’ and a separate hydrophobic domain often referred

to as the ‘hydrophobic tail’ (Figure 1A). The high aqueous

solubility of detergent molecules, as monomers and as

micelles or when associated with other molecules, has given

them a crucial role in the extraction, purification and

stabilization of integral membrane proteins and in experi-

mental studies of their structure and function including

crystallization and NMR spectroscopy (le Maire et al., 2000,

Damberg et al., 2001, Garavito & Ferguson-Miller, 2001,

Seddon et al., 2004, Privé, 2007, Kim et al., 2009, Arnold &

Linke, 2008, Lin & Guidotti, 2009, Linke, 2009, Sonoda

et al., 2011, Arachea et al., 2012). The detergent molecules

act as a membrane mimetic by surrounding the membrane

protein in a protein-detergent micelle complex (Figure 1B)

that solubilizes and/or stabilizes them in an aqueous envir-

onment, and therefore allows them to be used in a wide range

of experimental techniques. Under such conditions, care has

to be taken as to what extent the native structure and

functional activity of the protein is retained. There are of

course a number of other membrane mimetics used in the

final stages of experimental studies with membrane proteins

including organic solvents, lipids, bicelles, nanodiscs, fluori-

nated surfactants and amphipols (Bayburt & Sligar, 2010,

Popot, 2010, Warschawski et al., 2011, Dürr et al., 2012,

2013, Inagaki et al., 2013, Zhou & Cross, 2013, Zoonens and

Popot, 2014) which have different advantages and disadvan-

tages, but this review is limited to detergent micelles. Even

with these alternative membrane mimetics, detergents are

often still used during the early stages of experimental

procedures with membrane proteins, for example in initial

solubilization from the native membrane.

One technique that has been highly dependent on deter-

gents for structural and functional studies of integral mem-

brane proteins is solution-state NMR spectroscopy.
Correspondence: Simon G. Patching, 37 Dene House Court, Leicester
Place, Leeds, LS2 9BS, UK. E-mail: sgp_uk2000@yahoo.co.uk



Detergents often provide the best solubility, stability, isotropic

and homogenous samples, and particle sizes that tumble fast

enough for achieving high-resolution and high-sensitivity

NMR spectra. Detergent samples are also generally more

straightforward to prepare than those using other membrane

mimetics. Indeed, the large majority of integral membrane

protein structures determined by solution-state NMR have

used proteins solubilized in detergent micelles (Page et al.,

2006, Kim et al., 2009, Nietlispach & Gautier, 2011,

Patching, 2011, Klammt et al., 2012, Arora, 2013,

Maslennikov & Choe, 2013, Reckel and Hiller, 2013). An

earlier assessment of the prevalence of detergent types in

membrane structural biology revealed that approximately

40% of 115 membrane protein structures determined by NMR

were prepared in dodecylphosphocholine micelles, whilst

nearly 40% of 1200 membrane protein structures determined

by X-ray crystallography were in the sugar-based detergents

n-octyl-b-D-glucoside, n-decyl-b-D-maltoside or n-dodecyl-

b-D-maltoside (Oliver et al., 2013, Raman et al., 2006). The

most prolific detergents used in experimental studies are not

necessarily the best for retaining the native structure and

functional activity of the protein, however. In many cases,

detergents with partial deuteration or complete deuteration

(perdeuteration) have been used for NMR. Deuterated

detergents eliminate interfering proton signals in NMR

spectra that come from the detergent itself, which can be

very intense and not easily removed by the NMR pulse

sequence. They also eliminate potential proton relaxation

pathways and strong dipole-dipole interactions that would

otherwise contribute to line broadening effects on the spectra.

Using deuterated detergents therefore provides better reso-

lution and sensitivity, access to overlapped areas of the

protein spectrum and simplifies the application of more

advanced pulse sequences. The potential benefits from using

deuterated detergents for NMR studies of membrane proteins

were first demonstrated with the 26-residue amphiphilic

peptide melittin bound to fully deuterated dodecylphoshocho-

line micelles (Brown, 1979, Brown & Wüthrich, 1981). These

conditions allowed an almost complete assignment of 1H

NMR resonances and the measurement of 1H-1H nuclear

Overhauser effects (NOEs) to reveal global features for the

conformation of micelle-bound melittin. Proton detected

NMR experiments usually require the use of deuterated

detergents. Heteronuclear NMR experiments can help in

eliminating the interference of detergent signals through the

intrinsic filtering effects of the pulse sequence. It has been

suggested that for large membrane protein-detergent com-

plexes there is no significant difference in the quality of
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Figure 1. Structures of detergents and of a protein-micelle complex. (A) Chemical structures of the detergents sodium dodecyl sulphate (SDS),
lauryldimethylamine-oxide (LDAO), n-octyl-b-D-glucoside (b-OG), n-dodecyl-b-D-maltoside (DDM) and fos-cholines -10, -11, -12 and -14. The pink
areas indicate the hydrophilic head groups. (B) Illustration of a protein-detergent micelle complex: Molecular dynamics simulation of the outer
membrane b-barrel protein OmpA from Escherichia coli in a dodecylphosphocholine micelle. The picture of the OmpA-micelle complex was
reproduced with permission from Bond and Sansom (2003), which was originally published in JMB (Bond PJ, Sansom MS. 2003. Membrane protein
dynamics versus environment: Simulations of OmpA in a micelle and in a bilayer. J Mol Biol 329:1035–1053), copyright by Elsevier Science Ltd 2003.
This Figure is reproduced in colour in the online version of Molecular Membrane Biology.
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heteronuclear correlation spectra obtained using a non-

deuterated or perdeuterated detergent (Arora and Tamm,

2001). For example, the quality of [15N,1H]-TROSY and

TROSY-HNCA spectra of the 30 kDa human b-barrel outer

membrane protein VDAC-1 was independent of the degree of

detergent deuteration (Hiller & Wagner, 2009). The same

study, however, also showed a sensitivity decrease of around

10–30% in 15N-resolved [1H,1H]-NOESY spectra when going

from deuterated to protonated detergent and use of deuterated

detergent was essential for the recording of 3D and 4D

NOESY-type spectra of isoleucine, leucine and valine methyl

groups (Hiller & Wagner, 2009). It therefore appears that

while backbone directed experiments may be performed in a

protonated detergent, NOE experiments and experiments

involving side-chain signals have clear benefits from the use

of deuterated detergents. Also, the studies described above

that comment on the effects of a deuterated detergent on the

quality of heteronuclear correlation spectra both refer to

b-barrel membrane proteins. We suggest that the effects of a

deuterated detergent are protein-specific since in our experi-

ence with a large a-helical membrane protein, a deuterated

detergent was essential for achieving the best quality

[15N,1H]-TROSY spectra (see later). The use of a deuterated

detergent is generally beneficial to solution-state NMR

structural studies of membrane proteins.

Despite the essential requirement of deuterated detergents

for structural and functional studies of membrane proteins

using solution-state NMR and other techniques, only a

relatively few are commercially available or have been

produced at all. Principal reasons for this are the challenges

and costs associated with their chemical synthesis. The

amphipathic nature of detergents immediately introduces

extra challenges to the synthesis of these compounds and

their precursors, especially in work-up and purification steps.

Introduction of partial or complete deuteration into detergent

compounds requires identification of suitable and commer-

cially available deuterated starting compounds and/or reagents

along with an appropriate synthetic route. Furthermore, the

deuterated precursor compounds are themselves generally

relatively expensive since they have to be produced by

biological or chemical deuteration. Details for producing

specific deuterated precursor compounds for synthesis of

deuterated detergents are described in later sections of this

review. The original source of deuterium nuclei for these

deuterated precursor compounds is usually deuterium oxide

(D2O). D2O is produced using the Girdler-Sulphide or Girdler-

Spevack process that depends on exchange of deuterium atoms

between molecules in a mixture of water and hydrogen

sulphide (Andreeva, 2001); this is followed by final concen-

tration to 99.8% heavy water by vacuum distillation or

electrolysis based on Nobel prize winning work by Urey and

co-workers (Urey et al., 1932, Washburn & Urey, 1932).

It is fortunate that, chemically, deuterium behaves similarly

to ordinary hydrogen, but there are significant differences in

bond energy and in bond length for compounds of heavy

hydrogen isotopes that are larger than the isotopic differences

in any other element. For example, the C-D bond is around

10 times stronger than the C-H bond and therefore more

resistant to breakage; O-D, N-D and S-D bonds are also

stronger than the corresponding protonated forms (Katz,

1965, Thomas 1971). Such large effects are seen because

when hydrogen is replaced with deuterium the mass is

doubled, whilst there is a much smaller change in mass for

isotope substitutions of other elements such as 12C for 13C or
14N for 15N. Consequently, deuteration can have large effects

on the rates of chemical and biochemical reactions, especially

when the position of deuteration is directly involved in the

breaking or formation of covalent bonds in the rate limiting

step (primary kinetic isotope effect) (Wiberg 1955,

Westheimer 1961). Indeed, experimental kinetic isotope

effect values for deuterium (¼ rate of reaction with protium/

rate of reaction with deuterium, kH/kD) can be as large as 10 or

more with a theoretical maximum of 18 (Bigeleisen &

Goeppert-Mayer, 1947, Saunders et al., 1960, Westheimer

1961, Pascal et al., 1986, Yu et al., 1987, Krumbiegel, 2011,

Pedras et al., 2011), whilst experimental values for 13C or 15N

are typically in the range 1.01–1.07 with a theoretical

maximum of 1.25 (Bigeleisen & Goeppert-Mayer, 1947,

Isaacs, 1987, Wade, 1999, Krumbiegel, 2011). The deuterium

kinetic isotope effect has been used to study reaction

mechanisms, enhance the stability of technical products

against oxidative and hydrolytic degradation and to alter the

rates of metabolism and the pharmacokinetic effects of drug

compounds (Wiberg 1955, Hoffman et al., 1983, White et al.,

1983, Baldwin et al., 2004, Cleland, 2005, He et al., 2006,

Shao & Hewitt, 2010, Krumbiegel, 2011, Sharma et al., 2012,

Simmons & Hartwig, 2012, Manley et al., 2013, Guengerich,

2013, Timmins, 2014). Deuterium isotope effects on non-

covalent interactions between molecules are generally much

less significant but they can be substantial (Wade, 1999).

Based on some of the investigations performed so far,

deuteration of proteins does not appear to have significant

effects on protein structure, but it can affect protein function

and substrate specificity through kinetic isotope effects

(Murad et al., 1977, Yang & Ishizaki, 1992, Hochuli et al.,

2000, Mittermaier & Kay, 2002, Fisher & Helliwell, 2008, de

Ghellinck et al., 2014). No published work appears to be

available on the effects of deuteration on detergent properties

(e.g., shape, CMC, aggregation number, solubility, thermo-

dynamic and volumetric parameters, phase behaviour) or the

effects of deuterated detergents on the solubilization of

proteins or on protein structure or function.

The following sections in this review consider detergent

screening approaches, the properties and chemical synthesis

of deuterated detergents and examples of their applications for

structural and functional studies of membrane proteins using

solution-state NMR spectroscopy and other techniques, and

some guidelines for choosing an appropriate detergent.

Detergent screening

In choosing the most suitable detergent for NMR studies with

a membrane protein a number of factors have to be

considered. These include achievement of good quality

spectra from a stable NMR sample under conditions that

retain the native structure and activity of the protein. The

detergent that provides the highest quality NMR spectra is not

necessarily the best for retaining structure and activity, so a

balanced view has to be taken. Due to curvature of the water-

micelle interface detergents that form the largest micelles tend

DOI: 10.3109/09687688.2015.1125536 Deuterated detergents: Review 141



to have the least deleterious effects on membrane protein

structure, but it is more challenging to achieve high resolution

NMR spectra for larger complexes.

The screening of detergents for experimental studies with

membrane proteins has some common attributes for using a

wide range of techniques, including crystallography and

NMR. An initial screen of multiple detergents can simply

determine if the protein is soluble or if it precipitates. This

can involve purification in a mild and stable detergent,

binding to an affinity column, washing and elution with a

buffer containing a new detergent and running on an SDS-

PAGE gel. If the protein precipitates in the new detergent it

will remain on the column or if the protein is solubilized by

the new detergent it will be eluted and give a band on the gel.

In this test the concentrations of both protein and detergent

can be varied and it can be made high-throughput. Under

conditions of successful solubilization, the protein can then be

tested for structural and functional integrity, monodipersity

and thermal stability using a range of enzymatic, ligand

binding or spectroscopic assays of which some can be made

high-throughput. Circular dichroism spectroscopy can be used

to test secondary structure (far-UV) and tertiary structure

(near-UV) integrity, thermal stability and ligand binding

activity (Kelly & Price, 2000, Miles & Wallace, 2006,

Patching et al., 2012, Bettaney et al., 2013, Matsuo & Gekko,

2013, Siligardi et al., 2014). Fluorescence spectroscopy can

be used to test structural integrity (spectral shape), ligand

binding activity and thermal stability (Kalverda et al., 2014)

and a microscale fluorescent screen using the thiol-specific

fluorochrome N-[4-(7-diethylamino-4-methyl-3-coumarinyl)-

phenyl]maleimide (CPM) has been developed for screening

stability (Alexandrov et al., 2008). Light scattering and

turbidity measurements can be used to test for aggregation

and to measure particle size (Goñi and Alonso, 2000, Postis

et al., 2008, Slotboom et al., 2008, Neale et al., 2013, Meyer

et al., 2015). Differential filtration can be used to screen

stability and particle size (Vergis et al., 2010). Electrophoresis

(e.g., SDS-PAGE, native-PAGE) and chromatography (e.g.,

size exclusion) can be used alongside these techniques to test

for structural degradation, aggregation, monodispersity and

oligomerization and to measure the size of protein-detergent

complexes. Analytical ultracentrifugation can be used to

investigate the oligomeric state and the detergent-to-protein

ratio in protein-detergent complexes and to evaluate sample

homogeneity (Maslennikov et al., 2007). Cell-free expressed

membrane proteins can be produced in the presence of a

detergent, which can also serve as an initial test for

solubilization or precipitation (Klammt et al., 2005).

Because deuterated detergents are generally not used for

crystallography, the use and screening of detergents for

crystallography will not be considered further in this review

and the reader is referred to other published work on this

theme (Yeh et al., 2006, Privé, 2007, Tate, 2010, Sonoda

et al., 2011, Kang et al., 2013).

Regardless of the techniques described above, the deter-

gent solubilized protein will only be suitable for solution-

state NMR studies if it produces sufficiently high quality

multidimensional NMR spectra in terms of sensitivity and

resolution, number and dispersion of peaks and lifetime

of the sample. This can initially be assessed by

obtaining 2D correlation 15N-1H HSQC or TROSY or
13C-1H methyl-TROSY NMR spectra for highly pure 15N-

and/or 13C-labelled protein in homogenous samples with

different detergents and with varying concentrations of

protein and detergent and using different temperatures, pH

values and salt concentrations (Krueger-Koplin et al., 2004,

Page et al., 2006, Chen et al., 2011). Larger proteins will

likely require deuteration of the protein and benefit from a

deuterated detergent for the reasons already described. The

area under the amide proton region in 1D 1H spectra as a

function of time can be used as an indicator of NMR sample

stability (Krueger-Koplin et al., 2004). The lifetime of peaks

in the NMR spectra should correlate with measurements in

the stability of protein structural integrity and activity

obtained using other techniques under the same sample and

temperature conditions. For some detergent-solubilized mem-

brane proteins, such as receptors or those with an enzymatic

function, an activity assay using the natural ligand or substrate

may be feasible. For other membrane proteins, such as

channels and transporters, an assay of their functional activity

is not usually possible under detergent solubilized conditions,

so an assay of inhibitor binding may be used. In some cases

membrane protein activity may be demonstrated in an NMR

experiment by observing the shift, appearance or disappear-

ance of peaks following addition of an appropriate ligand. The

size of membrane protein-detergent complexes in the NMR

sample can be estimated from pulsed field gradient (PFG)

translational diffusion measurements (Krueger-Koplin et al.,

2004, Horst et al., 2011, Yao et al., 2014) or from rotational

correlation times obtained using NMR relaxation measure-

ments (Korchuganov et al., 2004, Krueger-Koplin et al., 2004,

Lee et al., 2006). For membrane proteins available only in

small quantities, microcoil NMR technology has been

developed for screening the detergent solubilization, proper

folding and translational diffusion of microscale quantities of

membrane proteins destined for structural studies (Zhang

et al., 2008, Stanczak et al., 2009, Horst et al., 2012, Stanczak

et al., 2012). There have been some attempts to rationalize the

predictive selection of detergents for optimal solubilization,

sample homogeneity and native protein folding with specific

membrane proteins in NMR structural studies. These include

the design of mixed micelles based on matching of micelle

dimensions to those of the hydrophobic surface of the protein

to avoid exchange processes that reduce NMR observations

(Columbus et al., 2009), correlation of micelle properties with

ligand-binding activity (O’Malley et al., 2011), assessment of

amino acid sequence hydropathy (Nadeau et al., 2012) and the

effects of detergent concentration and changes in effective

CMC values for specific detergents in the presence of a

membrane protein (Horst et al., 2012). Clearly, more work on

this theme has to be performed before robust generalized

guidelines can be made for predictive detergent selection.

Deuterated detergents

The use of deuterated detergents in experimental studies with

membrane proteins using solution-state NMR and other

techniques introduces extra considerations, which include

the pattern of deuteration in the detergent molecule, avail-

ability and cost. Deuterated detergents that are currently

142 K. Hiruma-Shimizu et al. Mol Membr Biol, 2015; 32(5–8): 139–155



advertised as commercially available (up to the end of 2014)

are listed as follows: Sodium dodecyl sulphate (SDS) in

perdeuterated form (d25-SDS); lauryldimethylamine-oxide

(LDAO) in perdeuterated form (d31-LDAO); n-octyl-b-D-

glucoside (b-OG) with the aliphatic tail deuterated

(d17-b-OG) and perdeuterated (d24-b-OG); n-dodecyl-b-D-

maltoside (DDM) with the aliphatic tail deuterated

(d25-DDM); fos-choline-10 (n-decylphosphocholine) with a

semi-deuterated head (d9-fos-choline-10) and with a perdeut-

erated head (d13-fos-choline-10); fos-choline-11 (n-undecyl-

phosphocholine) with a semi-deuterated head (d9-fos-choline-

11) and with a perdeuterated head (d13-fos-choline-11);

fos-choline-12 (dodecylphosphocholine, DPC) with a semi-

deuterated head (d9-DPC), perdeuterated head (d13-DPC),

tail deuterated (d25-DPC) and perdeuterated (d38-DPC);

fos-choline-14 (n-tetradecylphosphocholine) with a semi-

deuterated head (d9-fos-choline-14), perdeuterated head

(d13-fos-choline-14) and perdeuterated (d42-fos-choline-14).

The chemical structures of these detergents are shown in

Figure 1(A) and some of their properties are given in Table I.

Sodium dodecyl sulphate

Sodium dodecyl sulphate (SDS), also known as sodium lauryl

sulphate, is an anionic detergent with an aliphatic 12-carbon

chain and a small negatively charged head group (Table I and

Figure 1A). SDS is a harsh detergent often used as a protein

denaturant, hence its use in polyacrylamide gel electrophor-

esis for the separation of proteins and for estimation of their

molecular masses in a denatured state. Despite these proper-

ties, SDS has been used to solubilize a significant number of

membrane proteins for investigations of their structure and

function. In the case of solution-state NMR, the principal

reason for this is its ability to form relatively small and

uniform complexes with membrane proteins that tumble fast

enough in solution to achieve high-resolution spectra. The

large majority of NMR structures determined in SDS micelles

are for membrane peptides or for relatively small a-helical

membrane proteins. Structures of membrane proteins deter-

mined in SDS micelles include fd coat protein (Almeida &

Opella, 1997), the mitochondrial membrane protein stannin

(Buck-Koehntop et al., 2005), MerF of the mercury detoxi-

fication system from Morganella Morganii (Howell et al.,

2005), the human zetazeta-transmembrane domain (Call

et al., 2006), a thermostable mutant of the potassium ion

channel KcsA (Chill et al., 2006), the human DAP12-NKG2C

heterotrimeric immunoreceptor complex (Call et al., 2010),

LC4 region of CC chemokine receptor 5 (Miyamoto &

Togiya, 2011) and regulatory subunits of the of the Na,K-

ATPase (Franzin et al., 2007, Teriete et al., 2007, Gong et al.,

2015). The synthesis of SDS is most commonly achieved by

sulphonation of n-dodecanol (Takei et al., 1985) using sulphur

trioxide (Mitsuda & Kono, 2012), chlorosulphonic acid

(Mészáros et al., 2005) or sulphuric acid (Yamamoto, 2000)

followed by neutralization of the resultant sulphate using

sodium hydroxide or sodium carbonate (Figure 2A).

Uniformly deuterated SDS (d25-SDS) can be produced by

using d25-n-dodecanol in this synthesis. d25-n-Dodecanol,

which is commercially available, can be produced by

reduction of the deuterated fatty acid (d23-n-dodecanoic

acid) using lithium aluminium deuteride (LiAlD4). An early

method for preparing saturated fatty acids with deuteration at

all carbon positions was to heat fatty acids with D2O in the

presence of alkali (KOH) and active platinum (van Heyningen

et al., 1938), but this method gave only partial deuteration at

each position. A simple and efficient method for preparing

fully deuterated fatty acids was later developed by heating

(195 �C) fatty acids and deuterium gas over a palladium on

charcoal catalyst (Hsiao et al., 1974). High isotopic purity

deuterium gas (499.98%) can be produced by electrolysing

high isotopic purity D2O (99.8%) down to around 30% of its

original volume (Persky and Kuppermann, 1974). A similar

approach has been used for deuteration of fatty acyl chains in

synthetic phospholipid molecules (Török et al., 1993). There

has also been a renewed and increased interest in using a

variety of hydrogen/deuterium-exchange reactions at carbon

centres for production of deuterium-labelled compounds

rather than using classical synthesis with deuterated precur-

sors (Atzrodt et al., 2007). Due to its relative ease of synthesis

and longstanding commercial availability, d25-SDS has been

one of the most commonly used deuterated detergents for

solubilising membrane proteins, principally for solution-state

NMR measurements of structure, dynamics and ligand

binding interactions.

Early NMR studies with the ion channel-forming penta-

decapeptide gramicidin A achieved high-resolution 2D spec-

tra for the peptide solubilized in d25-SDS micelles. These

were used to confirm that the ion-channel state of gramicidin

A adopts an N-terminal to N-terminal (head-to-head) dimer

formed by two right-handed, single-stranded helices with 6.3

Table I. Properties of detergents. These properties are for the undeuterated compounds and were obtained from catalogues of the product suppliers:
Anatrace, Cambridge Isotope Laboratories, Cortecnet, Generon, Sigma-Aldrich.

SDS LDAO b-OG DDM Fos-choline-10 Fos-choline-11 Fos-choline-12 Fos-choline-14

Detergent type Anionic Zwitterionic Non-ionic Non-ionic Zwitterionic Zwitterionic Zwitterionic Zwitterionic
Aliphatic chain length 12xC 12xC 8xC 12xC 10xC 11xC 12xC 14xC
Molecular formula C12H25SO4Na C14H31NO C14H28O6 C24H46O11 C15H34NO4P C16H36NO4P C17H38NO4P C19H42NO4P
Molecular weight 288.4 229.4 292.4 510.6 323.4 337.4 351.5 379.5
Melting point 206 �C 132-133 �C 98-103 �C 224-226 �C 93-96 �C 93-96 �C 93-96 �C 93-96 �C
CMCa 6-8 mM 1-2 mM 20-25 mM 0.2 mM 11 mM 1.9 mM 1.5 mM 0.12 mM
Aggregation numbera 62 76 84 98 24 18 54 108
Micelle molecular weight 18 kDa 17.5 kDa 25 kDa 50 kDa 7.8 kDa 6 kDa 19 kDa 47 kDa
Solubilitya 0.1 M �30% 41 g in 10 ml �20% �10% �20% �20% �10%

aln H2O at 20 �C
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residues per turn (Arseniev et al., 1985, Bystrov et al., 1986).

This work also demonstrated the future potential for

investigating the structure and function of ion channels

solubilized in detergent micelles using solution-state NMR

spectroscopy. Gramicidin A solubilized in d25-SDS micelles

was later used as a simplified model for transmembrane ion

channels to investigate their interactions with the anaesthetic

and non-immobilizer compounds 1-chloro-1,2,2-trifluorocy-

clobutane and 1,2-dichlorohexafluoro-cyclobutane, respect-

ively, by 2D 1H-1H NOESY measurements (Tang et al.,

1999). The former compound significantly altered the chem-

ical shifts of tryptophan indole N-H protons near the channel

entrance, consistent with anaesthetic compounds causing a

functional change of the channel by interacting with the

amphipathic domains at the peptide-lipid water interface.

Another model membrane protein, the 50-residue M13 coat

protein, which becomes an integral membrane protein during

the infection stage of the life cycle of the M13 phage, has

been solubilized in d25-SDS micelles for measurement of

side-chain dynamics by 1H NMR (O’Neil & Sykes, 1989).
1H-exchange rates for a primary amide in the side chain of

glutamine-15 and for the indole amine of tryptophan-26 were

measured. Whilst the glutamine-15 proton exchanged at a rate

identical with that in glutamine model peptides, the trypto-

phan-26 indole amine proton exchange was biphasic, possibly

reflecting protein dimerization or aggregation in the SDS

micelles. 1H NMR measurements on a model transmembrane

helix based on the GCN4 leucine zipper solubilized in d25-
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Figure 2. Synthesis of d25-SDS and its use in solubilizing helix A from brome mosaic virus protein 1a and the C-terminal region of the Frizzled
receptor 1. (A) Synthesis of d25-SDS from d25-n-dodecanol. The grey area shows the region of deuteration. (B) (i) [15N-1H]HSQC spectrum with
assignments of brome mosaic virus 1a helix A bound to 100 mM d25-SDS micelles and (ii) ensemble of 20 structures (backbone atoms only)
determined for helix A bound to an SDS micelle where white¼ helix and grey¼ coil. This picture was modified from Liu et al. (2009), which was
originally published in PLoS Pathog (Liu L, Westler WM, den Boon JA, Wang X, Diaz A, Steinberg HA, Ahlquist P. 2009. An amphipathic alpha-helix
controls multiple roles of brome mosaic virus protein 1a in RNA replication complex assembly and function. PLoS Pathog 5:e1000351), copyright by
Liu et al., 2009. (C) (i) [15N-1H]HSQC spectrum with assignments of the C-terminal region of the Frizzled receptor 1 (residues 623-647) in d25-SDS
micelles, (ii) NOESY spectrum with NOE interactions labelled and (iii) structure determined from 104 NOE restraints. This picture was modified from
Gayen et al. (2013) which was originally published in Molecules (Gayen S, Li Q, Kim YM, Kang C. 2013. Structure of the C-terminal region of the
Frizzled receptor 1 in detergent micelles. Molecules 18:8579–8590), copyright by Gayen et al., 2013. This Figure is reproduced in colour in the online
version of Molecular Membrane Biology.
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SDS micelles helped to demonstrate how inter-helical hydro-

gen bonding drives strong interactions in membrane proteins

(Zhou et al., 2000). This was achieved by monitoring cross

peaks in NOESY spectra that revealed information about an

asparagine side chain and helical secondary structure near

that position. A number of complementary NMR approaches

have been used to investigate the structure and interaction of

mastoparan, a 14-residue peptide toxin from wasp venom,

with lipid membranes (Hori et al., 2001). These included

determination of the 3D structure of mastoparan solubilized

in d25-SDS using 1H NOE measurements and distance

geometry calculation, which revealed a straight amphipathic

a-helix. Combined with solid-state NMR experiments that

described the interaction, orientation and insertion of masto-

paran with lipid bilayers, the results were used to propose a

pore-forming peptide that can undergo a flip-flop between

monolayers and therefore movement of mastoparan across the

membrane. The conformation of orexin-B, an orphan G-

protein coupled receptor agonist and neuropeptide implicated

in sleep-wakefulness and feeding regulation, in d25-SDS

micelles was determined by 2DNMR andmolecular modelling

(Miskolzie et al., 2003). The 28-residue peptide had a

secondary structure containing two a-helical segments (resi-

dues 7–18 and 22–26) believed to be involved in membrane

binding and the unstructured C-terminus (residues 27 and 28)

is proposed to have conformational freedom for binding to the

receptor. Interaction of the neurotransmitters dopamine and

acetylcholine with an amphiphilic resorcinarene receptor

solubilized in d25-SDS micelles has also been investigated by
1H NMR measurements (Demura et al., 2005). Distances of

these neurotransmitters from the hydrophilic cavity of the

receptor were estimated based on calculation of the ring

current shift using atomic coordinates obtained frommolecular

dynamics calculation. NMR analysis of an 18-residue amphi-

pathic peptide (residues 392–409, also known as helix A)

solubilized in d25-SDS has helped to demonstrate how it

controls the multiple roles of the bromemosaic virus protein 1a

in RNA replication complex assembly and function (Liu et al.,

2009). This study included determination of the 3D structure of

the peptide based on measurement of NOE restraints and

additional dihedral angle constraints, which revealed an

a-helical conformation for residues 397–406 (Figure 2B).

Screening of detergents for NMR analysis of the catalytic

C-terminal domain (residues 466–718) of the Stt3p subunit

from yeast oligosaccharyl transferase identified d25-SDS to be

the most suitable (over DDM, DPC, digitonin, LDAO and OG)

since it produced a 2D [15N-1H]HSQC spectrum with good

dispersion and narrow line widths providing a count of 245

resolved peaks out of 263 non-proline residues (Huang et al.,

2010). Furthermore, CD spectra showed that the C-terminus of

Stt3p is highly helical and has a stable tertiary structure in SDS

micelles. Although this work did not yet determine the

structure of the Stt3p C-terminal domain, peptide ligand

binding was measured using NMR saturation transfer differ-

ence (STD) and titration experiments with Ile/Leu/Val-methyl-

protonated samples and 2D [15N-1H]HSQC spectra, respect-

ively. A structure of a 25-residue sequence (residues 623-647)

from the C-terminal domain of the Frizzled receptor 1 in d25-

SDSmicelles was determined from 104 NOE restraints (Figure

2C) (Gayen et al., 2013). This revealed that residues 627–639

formed an a-helix and that the C-terminus of the peptide was

not structured. The NMR structure and an analysis of the

helices hydrophobic properties indicated that it is an amphi-

pathic a-helix, which may have similar function to the helix 8

of classical G protein-coupled receptors at the membrane

interface.

In addition to NMR, d25-SDS has also found use in small

angle neutron scattering (SANS) studies with membrane

proteins as a contrasting reagent, especially for investigation

of association states and conformational changes (Breyton

et al., 2013). For example, SANS has contributed to a study of

the multimeric forms of the small multidrug resistance protein

EmrE solubilized in d25-SDS micelles revealing different

shapes for EmrE at varying concentrations of detergent and in

presence of the substrate tetraphenyl phosphonium (Bay et al.,

2010). In these experiments the use of d25-SDS instead of

hydrogenated SDS enhanced the contrast for EmrE within the

detergent micelle. The water solvent was contrast-matched

with d25-SDS so that the detergent became invisible due to the

differences in deuterium/hydrogen scattering angles and

resulting in the scattering pattern being that of EmrE alone.

Lauryldimethylamine-oxide

Lauryldimethylamine-oxide (LDAO), also known as N,N-

dimethyldodecylamine-N-oxide (DDAO), is a non-denaturing

zwitterionic detergent with an aliphatic 12-carbon chain

(Table I and Figure 1A). LDAO has been used to solubilize a

small number of membrane proteins for determination of their

3D structure by solution-state NMR. These proteins include

the autonomously folding Bacillus subtilis protein mistic that

can be used for high-level production of other membrane

proteins (Roosild et al., 2005), the human voltage-dependent

anion channel (VDAC-1) (Bayrhuber et al., 2008, Hiller et al.,

2008, Hiller & Wagner, 2009) and transmembrane domains of

the a4 and b2 subunits of the nicotinic acetylcholine receptor

(Bondarenko et al., 2012). Uniformly deuterated LDAO (d31-

LDAO) is commercially available from a number of sources

and a synthesis from d23-dodecanoic acid has been described

(Orädd et al., 1995). d23-Dodecanoic acid was reacted with

d6-dimethylamine to give d29-N,N-dimethyldodecanoylamide,

which was reduced to the amine using d4-lithium aluminium

hydride then oxidation with hydrogen peroxide gave d31-

LDAO (Figure 3A). The same work also used the d31-LDAO

and 2H solid-state NMR to investigate phase equilibria and

molecular packing in a system of LDAO/peptide gramicidin

D/water (Orädd et al., 1995). The deuterated precursor

compound d23-dodecanoic acid is commercially available

and its production by deuteration of the unlabelled fatty acid

was described in the section for SDS. d6-Dimethylamine can

be prepared from d9-trimethylamine via d9-trimethylamine-N-

oxide (Renaud & Leitch, 1968) and the d9-trimethylamine can

be prepared by heating deuterated methyl iodide (CD3I) and

ammonium hydroxide (NH4OH) (Walther et al., 1981). The

d4-lithium aluminium hydride (LiAlD4) can be prepared from

lithium deuteride (LiD) and aluminium bromide (AlBr3) with

prior preparation of lithium deuteride by the direct combin-

ation of lithium and deuterium at 700 �C with the deuterium

having been obtained from D2O by the use of magnesium

(Holding & Ross, 1958). The solution-state NMR structure
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determination of human VDAC-1 used d31-LDAO for solu-

bilization revealing a novel b-barrel fold with 19 transmem-

brane strands and with the first and last strands parallel with

each other giving a closed structure (Figure 3B) (Hiller et al.,

2008). The NMR structure of human VDAC-1 was in close

agreement with a combined NMR/X-ray crystal structure of

the same protein (Bayrhuber et al., 2008) and with an X-ray

crystal structure of mouse VDAC-1 (Ujwal et al., 2008, Hiller

& Wagner, 2009).

A tail-deuterated form a of a related detergent decyl-N,N0-

dimethyl amine oxide has been used in single-crystal neutron

diffraction studies with the Escherichia coli outer membrane

protein OmpF in its tetragonal crystal form (Pebay-Peyroula

et al., 1995). In the tetragonal crystal form of OmpF the

protein surface normally buried in the membrane is accessible

to the detergent solution and therefore provides an opportun-

ity for protein-detergent interactions to be studied. Using the

X-ray crystal structure (Cowan et al. 1995) as a model, the
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Figure 3. Synthesis of d31-LDAO and its use in solubilizing the human voltage-dependent anion channel (VDAC-1) and use of tail-deuterated decyl-
N,N0-dimethyl amine oxide in solubilizing Escherichia coli outer membrane protein OmpF. (A) Synthesis of d31-LDAO from d23-dodecanoic acid. The
grey areas show the regions of deuteration. (B) (i) [15N-1H]-TROSY spectrum of [U-2H,15N]VDAC-1 in d31-LDAO micelles, (ii) [13C-1H]HMQC
spectrum of [U-2H,13C,15N; 1Hd-IL;

1Hg-V]VDAC-1 in d31-LDAO micelles highlighting the spectral regions for Ile residues (red box, 11/11 assigned)
and Leu plus Val residues (blue box, 8/12 Val and 17/28 Leu assigned), (iii) structure of human VDAC-1 shown as a side view (top) and from above
(bottom) with the N-terminus in blue and C-terminus in red, which were drawn using PDB file 2K4T and PDB Protein Workshop 3.9 (Moreland et al.,
2005). Pictures of the spectra were reproduced with permission from Hiller et al. (2008), which were originally published in Science (Hiller S, Garces
RG, Malia TJ, Orekhov VY, Colombini M, Wagner G. 2008. Solution structure of the integral human membrane protein VDAC-1 in detergent micelles.
Science 321:1206–1210, copyright by American Association for the Advancement of Science 2008. (C) (i) Crystal structure of the E. coli outer
membrane protein OmpF in tetragonal crystal form as an above view with the N-terminus in blue and C-terminus in red, which was drawn using PDB
file 1OPF and PDB Protein Workshop 3.9 (Moreland et al., 2005). (ii) Single-crystal neutron diffraction density map of OmpF in tail-deuterated decyl-
N,N0-dimethyl amine oxide detergent contrast mapped parallel to the three-fold trimer axis where the porin trimer is represented by the Ca trace (pink)
obtained from the X-ray crystal structure. This picture was reproduced with permission from Pebay-Peyroula et al. (1995), which was originally
published in Structure (Pebay-Peyroula E, Garavito RM, Rosenbusch JP, Zulauf M, Timmins PA. 1995. Detergent structure in tetragonal crystals of
OmpF porin. Structure 3:1051–1059, copyright by Elsevier Inc. 1995. (iii) Structure of the detergent d21-decyl-N,N

0-dimethyl amine oxide. The grey
area shows the region of deuteration. This Figure is reproduced in colour in the online version of Molecular Membrane Biology.
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neutron diffraction measurements revealed how detergent

molecules bind to the hydrophobic region of the OmpF trimer

that is exposed to lipid in its native environment (Figure 3C).

These measurements used partially deuterated decyl-N,N0-

dimethyl amine oxide in order to increase the contrast

between protein and detergent (Pebay-Peyroula et al., 1995).

n-Octyl-b-D-glucoside

n-Octyl-b-D-glucoside (b-OG) is a non-ionic detergent with

an aliphatic eight-carbon chain (Table I and Figure 1A). The

mild and non-denaturing properties of b-OG make it an

attractive detergent to solubilize membrane proteins for

studies of their structure and function, but its shorter chain

length can contribute to protein deactivation. Only a few

NMR structures of membrane proteins have been determined

in b-OG micelles, presumably because the shorter aliphatic

chain does not usually produce the most stable sample and/or

best quality spectra compared with the longer chain deter-

gents. b-OG is commercially available with just the aliphatic

chain deuterated (d17-b-OG) and in perdeuterated form (d24-

b-OG), which can be synthesized by coupling n-octanol with

D-glucose using one or both of these starting compounds in

their deuterated forms, respectively (Keana & Roman, 1978,

Rosevear et al., 1980) (Figure 4A). The deuterated precursor

compound d17-n-octanol is commercially available and can be

produced by reduction of the deuterated fatty acid d15-n-

octanoic acid with deuterated lithium aluminium hydride

(LiAlD4); the deuteration of fatty acids was described in the

section for SDS. The d7-D-glucose is commercially available

and can be isolated from the hydrolysate of the carbohydrate

fraction of algae grown in a deuterated medium or prepared

using an isotopic hydrogen-exchange technique that intro-

duces deuterium by catalytic exchange with carbon-bound

hydrogen. The exchange reaction uses D2O and deuterated

Raney nickel, which itself is produced using D2O (Koch &

Stuart, 1978). A synthesis of b-OG, and of other sugar-

containing detergents, using a microwave-assisted glycosyla-

tion reaction from methyl glycosides may be useful for

improving the yields of the deuterated compounds

(Yoshimura et al., 2005). The best known NMR structure

for a membrane protein solubilized in d24-b-OG micelles is

that for the bacterial outer membrane enzyme PagP, which

transfers a palmitate chain from a phospholipid to lipid A

(Hwang et al., 2002). The structure, which was also

determined in d38-DPC micelles, consists of an eight-stranded

anti-parallel b-barrel preceded by an N-terminal amphipathic

a-helix (Figure 4B). Deuterated forms of b-OG have also

been used for solubilization of membrane proteins in SANS

experiments (Breyton et al., 2013), including d17-b-OG with

the outer-membrane 16-stranded b-barrel transport protein

FhaC of the Bordetella pertussis filamentous hemagglutinin

adhesion (Gabel et al., 2014). SANS measurements were

combined with molecular modelling to describe the solution

structure of FhaC in which the N-terminal a-helix was inside

the pore consistent with the crystal structure (Clantin et al.,

2007).

n-Dodecyl-b-D-maltoside

n-Dodecyl-b-D-maltoside (DDM) is a non-ionic detergent

with an aliphatic 12-carbon chain (Table I and Figure 1A),

which tends to disrupt lipid-lipid and lipid-protein inter-

actions but not protein-protein interactions. The mild and

non-denaturing properties of DDM make it a commonly used

detergent for the extraction and purification of membrane

proteins and for solubilization in experimental studies of their

structure, dynamics and function (Ward et al., 2000, Seddon

et al., 2004, Arnold & Linke, 2008, Pagliano et al., 2012,

Rouse et al., 2013). DDM tends to retain the native structure

and functional activity of membrane proteins to a greater

extent than any other detergents (Alexandrov et al., 2008). It

can therefore serve as the control condition when screening a

number of different detergents for structural and functional

studies of membrane proteins and can be used to validate the

use of other detergents. Despite being one of the most

successful detergents for membrane protein crystallization

(Newstead et al., 2008, Parker & Newstead, 2012, He et al.,

2014), very few NMR studies of membrane proteins have

been performed using DDM, however, since it tends to form

PagP

)B()A(

d17- and d24-β-OG

1. Ac2O, NaOAc, 50 °C, 2 h

2. HBr, AcOH, 0 °C-rt,
45 min

1. CD3(CD2)7OH, CH2Cl2,
Ag2CO3, I2, 4 Å, rt, 5 h-o/n

2. Et3N, MeOH, H2O, rt, 10 h

Figure 4. Synthesis of d17- and d24-b-OG and use of d24-b-OG in solubilizing the bacterial outer membrane enzyme PagP. (A) Synthesis of d17- and
d24-b-OG from d17-n-octanol and d7-D-glucose. The grey areas show the regions of deuteration. (B) Structure of PagP with the N-terminus in blue and
C-terminus in red, which was drawn using PDB file 1MM5 and PDB Protein Workshop 3.9 (Moreland et al., 2005). This Figure is reproduced in colour
in the online version of Molecular Membrane Biology.
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relatively large protein-micelle complexes compared with

those of other detergents. NMR studies using DDM include

work with the potassium ion channel KcsA (Takeuchi et al.,

2007) and with the E. coli sugar transport protein GalP

(Kalverda et al., 2014). DDM with deuteration in just the

aliphatic chain (d25-DDM) is commercially available, but a

perdeuterated form (d39-DDM) is not. d25-DDM can be

synthesized by coupling maltose with d25-n-dodecanol

(Figure 5A) (Hines et al., 1997, Vacklin et al., 2005a) and

this has been used in solution-state NMR studies with

bacteriorhodopsin (Patzelt et al., 2002, Schubert et al.,

2002) and with the potassium ion channel KcsA (Imai

et al., 2010). It has also been used in investigations of the

composition of supported model membranes determined by

neutron reflection (Vacklin et al., 2005a, 2005b), in studies of

hydrogen oxidation by a membrane-bound hydrogenase

immobilized on gold electrodes (Ciaccafava et al., 2012)

and in SANS studies of solubilized membrane proteins

(Breyton et al., 2013). The first synthesis of d39-DDM has

recently been reported (Hiruma-Shimizu et al., 2014). This

first required the coupling of two molecules of d7-D-glucose

with an a(1!4) glycosidic bond to give d14-maltose followed

by coupling with d25-n-dodecanol to give d39-DDM (Figure

5A). Methods for preparing the deuterated precursor com-

pounds d25-n-dodecanol and d7-D-glucose were described in

the sections for SDS and b-OG, respectively. The synthesized

d39-DDM has been used to solubilize the 52 kDa E. coli sugar

transport protein GalP to achieve the best resolution and

highest sensitivity [15N-1H]TROSY spectra for amino acid

selective labelled samples of a membrane protein with 12

unique transmembrane-spanning a-helices (Figure 5B)

(Kalverda et al., 2014). Based on the costs of the synthesis,

the cost of d39-DDM per typical NMR sample was £500–

£1000. This work also achieved high resolution

[13C-1H]methyl-TROSY spectra for ILV-selective labelled

samples of GalP and used the spectra to detect binding of a

small-molecule inhibitor, which was possible using non-

deuterated DDM for solubilization. For performing more

advanced methyl-TROSY based experiments on the largest

membrane protein-detergent complexes, use of a deuterated

detergent is likely to be essential, however.

Fos-cholines

The fos-cholines are zwitterionic detergents with a range in

lengths of their aliphatic carbon chain (Table I and

Figure 1A). By far the most commonly used of these is fos-

choline-12, also known as dodecylphosphocholine or DPC,

which has a 12-carbon aliphatic chain. DPC is also one of the

most commonly used of all detergents, notably it has been

used to solubilize a large number of membrane proteins for

determination of their structures by NMR. An earlier

assessment of the prevalence of detergent types in membrane

structural biology revealed that approximately 40% of 115

membrane protein structures determined by NMR were

prepared in DPC (Raman et al., 2006, Oliver et al., 2013).

These structures include the bacterial outer membrane

proteins OmpA (Arora et al., 2001, Cierpicki et al., 2006),

PagP (Hwang et al., 2002), OmpG (Liang and Tamm, 2007)

and OmpX (Hagn et al., 2013), the a-helical proteins human

phospholamban (Oxenoid and Chou, 2005), KcsA-charybdo-

toxin complex (Yu et al., 2005), disulfide bond formation

protein B (DsbB) (Zhou et al., 2008), diacylglycerol kinase
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Figure 5. Synthesis of d25- and d39-DDM and use of d39-DDM in solubilizing the E. coli sugar transport protein GalP. (A) Synthesis of d25- and d39-
DDM from d25-n-dodecanol and d7-D-glucose, see the work of Hiruma-Shimizu et al. (2014) for the complete synthesis, reaction and experimental
details. The grey areas show the regions of deuteration. (B) [15N-1H]TROSY spectrum at 900 MHz of [U-2H, 15N2-Trp]GalP in d39-DDM micelles
reproduced from Kalverda et al. (2014) in this journal. This Figure is reproduced in colour in the online version of Molecular Membrane Biology.
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(DAGK) (Van Horn et al., 2009), voltage sensor domain from

KvaP (Shenkarev et al., 2010), p7 channel from hepatitis C

virus (Montserret et al., 2010, OuYang et al., 2013),

mitochondrial uncoupling protein 2 (Berardi et al., 2011)

and others (Patching, 2011, http://www.drorlist.com/nmr/

MPNMR.html). A mention of all structures is beyond the

scope of this review, so a full list of NMR structures of

membrane proteins determined in DPC micelles (up to the

end of 2014) is given in Supplementary Table S1 (available

online).

Approximately a half of the NMR membrane protein

structures used perdeuterated DPC (d38-DPC), which is

commercially available and can be synthesized from d25-n-

dodecanol, d4-ethylene glycol and d9-trimethylamine

(Figure 6A) (Magolda & Johnson, 1985). The first reported

synthesis of d38-DPC used a similar approach but began with

the production of deuterated n-dodecanol from dodecanoic

acid (Brown, 1979). DPC is also commercially available with

a semi-deuterated head (d9-DPC), a perdeuterated head (d13-

DPC) and with just the aliphatic chain deuterated (d25-DPC),
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Figure 6. Synthesis of deuterated fos-cholines and use of d38-DPC in solubilizing the bacterial outer membrane protein OmpA and use of d42-
fos-choline-14 in solubilizing the human DAP12-NKG2C complex. (A) Synthesis of deuterated fos-cholines. The grey areas show the regions of
deuteration. (B) (i) [15N-1H]TROSY spectrum of OmpA in d38-DPC micelles. This picture was reproduced by permission from Macmillan Publishers
Ltd: [Nature Structural Biology] (Arora A, Abildgaard F, Bushweller JH, Tamm LK. 2001. Structure of outer membrane protein A transmembrane
domain by NMR spectroscopy. Nat Struct Biol 8:334–338), copyright (2001). (ii) Structure of OmpA with the N-terminus in blue and C-terminus in
red, which was drawn using PDB file 1G90 and PDB Protein Workshop 3.9 (Moreland et al., 2005). (C) [15N-1H]HSQC spectra of trimer samples
segmentally labeled with 15N-2H on the DAP12-only strand (i) or on the DAP12-NKG2C strand (ii) and of the DAP12 homodimer alone (iii) for
samples in 250 mM d42-fos-choline-14 with 25 mM d25-SDS and (iv) structure of the DAP12-NKG2C complex with the N-terminus in blue and
C-terminus in red, which was drawn using PDB file 2L35 and PDB Protein Workshop 3.9 (Moreland et al., 2005). Pictures of the spectra were
reproduced by permission from Macmillan Publishers Ltd: [Nature Immunology] (Call ME, Wucherpfennig KW, Chou JJ. 2010. The structural basis
for intramembrane assembly of an activating immunoreceptor complex. Nat Immunol 11:1023–1029), copyright (2010). This Figure is reproduced in
colour in the online version of Molecular Membrane Biology.
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which are obtainable by using just one or two of the

deuterated starting compounds or reagents in the synthesis.

Methods for preparing the deuterated precursor compounds

d25-n-dodecanol and d9-trimethylamine were described in the

sections for SDS and LDAO, respectively. d4-Ethylene glycol

(HOCD2CD2OH) can be produced by catalytic oxidation of

d4-ethylene (CD2CD2) by atmospheric oxygen at 200–300 �C

over a catalyst containing metallic silver to give d4-ethylene

oxide followed by hydration. The d4-ethylene can be produced

by the action of zinc dust suspended in dioxane on

d4-dibromoethane (BrCD2CD2Br), which is prepared from

d2-acetylene (CDCD) and deuterium bromide (DBr) (Leitch

& Morse, 1952). d2-Acetylene can be prepared from 1,4-

dioxane and D2O and deuterium bromide prepared by the

action of D2O on redistilled phosphorus tribromide (Leitch &

Morse, 1952). The Fos-cholines with other chain lengths can

be produced in deuterated forms by using the appropriate

deuterated alcohol in the synthesis (Figure 6A). One of the

first NMR structures of a b-barrel membrane protein,

the transmembrane domain of OmpA, was determined

with the protein solubilized in d38-DPC micelles to reveal

an eight-stranded antiparallel b-barrel (Figure 6B) (Arora

et al., 2001) that was closely similar to a crystal structure of

the same protein in n-octyltetraoxyethylene micelles (Pautsch

and Schulz, 1998, 2000).

Recent NMR structures of a-helical membrane proteins

determined in d38-DPC micelles include amyloid precursor

protein transmembrane domains (Nadezhdin et al., 2011,

2012, Chen et al., 2014), phospholamban pentamer phos-

phorylated at serine 16 (Vostrikov et al., 2013), HIV-1

envelope glycoprotein gp41 ectodomain (Roche et al., 2014)

and a gp41 envelope membrane proximal region trimer

(Reardon et al., 2014) and the 18 kDa mitochondrial

translocator protein with a high affinity ligand (Jaremko

et al., 2014). The latter protein mediates the uptake of

cholesterol and porphyrins into mitochondria and its

expression is strongly up-regulated in areas of brain injury

and in neuroinflammatory conditions. High quality NMR

spectra of the protein that enabled structure determination

were only achieved for the ligand-bound state. The structure

had a tight bundle of five unique transmembrane-spanning

a-helices with the ligand positioned towards the cytoplasmic

side (Figure 7). Ligand-induced stabilization of the structure

led to a proposed molecular mechanism for the stimulation of

cholesterol transport into mitochondria (Jaremko et al., 2014).

The longer chain d42-Fos-choline-14 has been used with d25-

SDS in a ratio of 10:1 to solubilise the human DAP12-

NKG2C immunoreceptor complex for determination of its

NMR structure (Call et al., 2010). The transmembrane

domain of the DAP12 signalling molecule has two identical

a-helices and the transmembrane domain of the natural killer

cell activating receptor NKG2C has one a-helix that packs in

an antiparallel orientation along the surface of the DAP12

dimer (Figure 6C). These recent structures demonstrate that

deuterated forms of DPC and other fos-cholines are still the

most successful membrane mimetic for determination of

membrane protein structures by solution-state NMR, includ-

ing those involved in human diseases.

Guidelines for detergent selection

In order to consolidate some guidelines to select a suitable

detergent for solution-state NMR structural studies of mem-

brane proteins, we can first consider the physical properties of

detergent molecules and their effects on micelle formation,

protein structure and function, and quality of NMR spectra.

These are summarized in Figure 8. Detergent molecules that

have a charged head group, smaller size of head group and

shorter length of alkyl chain tend to have lower aggregation

numbers and produce smaller micelles and protein-detergent

micelle complexes with shorter correlation times. These

harsher conditions using detergents such as SDS and its

shorter chain versions often produce the best quality NMR

spectra, especially for peptides and smaller membrane

proteins. On the other hand, these denaturing conditions

that produce micelles with a high curvature are not necessar-

ily suitable for retaining the native structural form and activity

of the protein. Detergent molecules that have a neutral head

group, larger head group and longer alkyl chain tend to have

higher aggregation numbers and produce larger micelles and

protein-detergent micelle complexes with longer correlation

times. These milder conditions using detergents such as DDM

and other long chain alkyl glycosides produce micelles with

lower curvature and usually retain the native structural form

and activity of the protein to a better extent, but produce

poorer NMR spectra. There are therefore competing tensions

in selecting the most suitable detergent for structural studies

of membrane proteins using solution-state NMR and other

experimental techniques. The solubility and CMC values of

detergent molecules, which are affected by the properties

given in Figure 8, also have to be considered during sample

preparation. For example, the high CMC value of 20–25 mM

for b-OG (Table I) means that a relatively high concentration

has to be used compared with other detergents. A sample that

is stable to days or weeks of NMR data acquisition time at

Figure 7. NMR structure of the mitochondrial translocator protein with
high affinity ligand determined in d38-DPC micelles. The NMR structure
of the mitochondrial translocator protein with high affinity ligand 1-(2-
chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline-carboxa-
mide (PK11195) determined in d38-DPC micelles (Jaremko et al., 2014)
is shown as a side view (i), viewed from the cytoplasm (ii) and viewed
from the intermembrane space (iii) with the N-terminus in blue and C-
terminus in red, which were drawn using PDB file 2MGY and PDB
Protein Workshop 3.9 (Moreland et al., 2005). This Figure is reproduced
in colour in the online version of Molecular Membrane Biology.
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elevated temperatures (typically �20 �C) is also required

based on current technical capabilities.

We can also look at which detergents have been most

successful in producing structures of membrane proteins by

solution-state NMR. As mentioned already, by far the most

prolific is DPC, which is intermediate on the scale of detergent

properties considered in Figure 8 and has solubility and CMC

values that are experimentally favourable (Table I). A

detergent that has proved successful for solubilising a certain

membrane protein in NMR structural studies may be assumed

to be suitable for a different protein of the same type. b-barrel

membrane proteins tend to accommodate a relatively wide

range of detergents including those with harsher properties

that favour better quality NMR spectra, for example LDAO

with human VDAC-1 (Figure 3). Large a-helical proteins,

such as secondary transporters, are generally restricted to the

mildest detergents such as DDM, hence the significant

challenges in performing structural studies with these proteins

using solution-state NMR. Such proteins likely require some

of the native membrane lipids to be carried over into the

detergent micelles for retaining their structural and functional

integrity, which is facilitated by the milder detergents. Use of a

deuterated detergent is generally beneficial and in some cases

essential for solution-state NMR structural studies of mem-

brane proteins, especially with larger proteins, and it is

important for contrast mapping in SANS experiments. These

are only guidelines and not strict rules, but they may be useful

in conserving time and materials in the selection of a suitable

detergent for structural studies of membrane proteins using

solution-state NMR spectroscopy and other techniques. In

reality, experimental investigations still have to be performed

with each individual protein to identify suitable detergent or

other membrane mimetic conditions. There have been some

recent rigorous assessments of how different membrane

mimetic environments, including detergents, affect the trans-

membrane domain structures of a-helical membrane proteins

(Tulumello and Deber, 2012, Zhou and Cross, 2013). More

work in this area will help in selecting suitable detergents and

other membrane mimetics for structural studies of membrane

proteins and for achieving native-like structures. With the

continued development of NMR techniques for high molecular

weight systems, we can envisage a migration to the more

common use of milder detergents in solution-state NMR

studies of membrane proteins.

Conclusions

This work has emphasized the crucial roles that detergents

have in the extraction, purification and stabilization of

integral membrane proteins and in experimental studies of

their structure and function, especially using solution-state

NMR spectroscopy. It has also highlighted the important role

of deuterated detergents in these studies, even though

deuterated detergents are relatively expensive and not

always commercially available due to challenges associated

with their chemical synthesis. Deuterated detergents provide

better resolution and sensitivity in NMR spectra, access to

overlapped areas of the protein spectrum and simplify the use

of more advanced pulse sequences. Proton-detected NMR

experiments usually require a deuterated detergent whilst

heteronuclear experiments on larger proteins with 13C/15N

labelling usually benefit from a deuterated detergent. Methyl-

TROSY based experiments that are required for structure

determination of larger membrane proteins also benefit from

a deuterated detergent, which is likely to be essential for the

most complex proteins. Deuterated detergents will continue to

play important roles in structural and functional studies of

membrane proteins along with deuterated forms of other

membrane mimetics including organic solvents, lipids,

nanodiscs, fluorinated surfactants and amphipols.

Developments in the synthesis and production of deuterated

forms of membrane mimetics is relatively unexplored and will

continue to evolve and expand along with the world of

membrane protein structure, mechanism, ligand interactions

and dynamics.
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Dürr UH, Soong R, Ramamoorthy A. 2013. When detergent meets
bilayer: birth and coming of age of lipid bicelles. Prog Nucl Magn
Reson Spectrosc 69:1–22.

Fisher SJ, Helliwell JR. 2008. An investigation into structural changes
due to deuteration. Acta Crystallogr A 64(Pt 3):359–367.

Franzin CM, Teriete P, Marassi FM. 2007. Structural similarity of a
membrane protein in micelles and membranes. J Am Chem Soc 129:
8078–8079.

Gabel F, Lensink MF, Clantin B, Jacob-Dubuisson F, Villeret V, Ebel C.
2014. Probing the conformation of FhaC with small-angle neutron
scattering and molecular modeling. Biophys J 107:185–196.

Garavito RM, Ferguson-Miller S. 2001. Detergents as tools in membrane
biochemistry. J Biol Chem 276:32403–32406.

Gayen S, Li Q, Kim YM, Kang C. 2013. Structure of the C-terminal
region of the Frizzled receptor 1 in detergent micelles. Molecules 18:
8579–8590.

Gong XM, Ding Y, Yu J, Yao Y, Marassi FM. 2015. Structure of the
Na,K-ATPase regulatory protein FXYD2b in micelles: implications
for membrane-water interfacial arginines. Biochim Biophys Acta
1848(1 Pt B):299–306.
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Orädd G, Lindblom G, Arvidson G, Gunnarsson K. 1995. Phase
equilibria and molecular packing in the N,N-dimethyldodecylamine
oxide/gramicidin D/water system studied by 2H nuclear magnetic
resonance spectroscopy. Biophys J 68:547–557.

OuYang B, Xie S, Berardi MJ, Zhao X, Dev J, Yu W, et al. 2013.
Unusual architecture of the p7 channel from hepatitis C virus. Nature
498:521–525.

Oxenoid K, Chou JJ. 2005. The structure of phospholamban pentamer
reveals a channel-like architecture in membranes. Proc Natl Acad Sci
USA 102:10870–10875.

Page RC, Moore JD, Nguyen HB, Sharma M, Chase R, Gao FP, et al.
2006. Comprehensive evaluation of solution nuclear magnetic reson-
ance spectroscopy sample preparation for helical integral membrane
proteins. J Struct Funct Genomics 7:51–64.

Pagliano C, Barera S, Chimirri F, Saracco G, Barber J. 2012.
Comparison of the a and b isomeric forms of the detergent
n-dodecyl-D-maltoside for solubilizing photosynthetic complexes
from pea thylakoid membranes. Biochim Biophys Acta 1817:
1506–1515.

Parker JL, Newstead S. 2012. Current trends in a-helical membrane
protein crystallization: an update. Protein Sci 21:1358–1365.

Pascal RA, Baum MW, Wagner CK, Rodgers LR, Huang DS. 1986.
Measurement of deuterium kinetic isotope effects in organic and
biochemical reactions by natural abundance deuterium NMR spec-
troscopy. J Am Chem Soc 108:6477–6482.

Patching SG. 2011. NMR structures of polytopic integral membrane
proteins. Mol Membr Biol 28:370–397.

Patching SG, Edara S, Ma P, Nakayama J, Hussain R, Siligardi G,
Phillips-Jones MK. 2012. Interactions of the intact FsrC membrane
histidine kinase with its pheromone ligand GBAP revealed through
synchrotron radiation circular dichroism. Biochim Biophys Acta
1818:1595–1602.

Patzelt H, Simon B, terLaak A, Kessler B, Kühne R, Schmieder P,
Oesterhelt D, Oschkinat H. 2002. The structures of the active center in

dark-adapted bacteriorhodopsin by solution-state NMR spectroscopy.
Proc Natl Acad Sci USA 99:9765–9770.

Pautsch A, Schulz GE. 1998. Structure of the outer membrane protein A
transmembrane domain. Nat Struct Biol 5:1013–1017.

Pautsch A, Schulz GE. 2000. High-resolution structure of the OmpA
membrane domain. J Mol Biol 298:273–282.

Pebay-Peyroula E, Garavito RM, Rosenbusch JP, Zulauf M, Timmins
PA. 1995. Detergent structure in tetragonal crystals of OmpF porin.
Structure 3:1051–1059.

Pedras MS, Minic Z, Sarma-Mamillapalle VK. 2011. Brassinin oxidase
mediated transformation of the phytoalexin brassinin: structure of the
elusive co-product, deuterium isotope effect and stereoselectivity.
Bioorg Med Chem 19:1390–1399.

Persky A, Kuppermann A. 1974. An apparatus for the production of
high isotopic purity deuterium, J Phys E: Scientific Instruments 7:
889–890.

Popot JL. 2010. Amphipols, nanodiscs, and fluorinated surfactants: three
nonconventional approaches to studying membrane proteins in
aqueous solutions. Annu Rev Biochem 79:737–775.

Postis VL, Deacon SE, Roach PC, Wright GS, Xia X, Ingram JC, et al.
2008. A high-throughput assay of membrane protein stability. Mol
Membr Biol 25:617–624.
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characterization of membrane protein-detergent micelle solu-
tions by use of microcoil equipment. J Am Chem Soc 131:
18450–18456.

Stanczak P, Zhang Q, Horst R, Serrano P, Wüthrich K. 2012. Micro-coil
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