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Ransomware deployment methods 
and analysis: views from a predictive model 
and human responses
Gavin Hull1, Henna John2 and Budi Arief3* 

Abstract 

Ransomware incidents have increased dramatically in the past few years. The number of ransomware variants is also 
increasing, which means signature and heuristic-based detection techniques are becoming harder to achieve, due to 
the ever changing pattern of ransomware attack vectors. Therefore, in order to combat ransomware, we need a better 
understanding on how ransomware is being deployed, its characteristics, as well as how potential victims may react 
to ransomware incidents. This paper aims to address this challenge by carrying out an investigation on 18 families of 
ransomware, leading to a model for categorising ransomware behavioural characteristics, which can then be used to 
improve detection and handling of ransomware incidents. The categorisation was done in respect to the stages of 
ransomware deployment methods with a predictive model we developed called Randep. The stages are fingerprint, 

propagate, communicate, map, encrypt, lock, delete and threaten. Analysing the samples gathered for the predictive 
model provided an insight into the stages and timeline of ransomware execution. Furthermore, we carried out a study 
on how potential victims (individuals, as well as IT support staff at universities and SMEs) detect that ransomware was 
being deployed on their machine, what steps they took to investigate the incident, and how they responded to the 
attack. Both quantitative and qualitative data were collected through questionnaires and in-depth interviews. The 
results shed an interesting light into the most common attack methods, the most targeted operating systems and 
the infection symptoms, as well as recommended defence mechanisms. This information can be used in the future to 
create behavioural patterns for improved ransomware detection and response.
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Introduction
Ransomware is a form of malware that blackmails its 

victim. he name “ransomware” comes from the ran-

som note asking its victim to pay some money (ransom) 

in return for gaining back access to their data or device, 

or for the attacker not to divulge the victim’s embar-

rassing or compromising information. It usually spreads 

through malicious e-mail attachments, infected software 

apps, infected external storage devices or compromised 

websites. Unlike other types of malware (which typically 

try to remain undetected), ransomware exposes itself at 

some stage of its execution in order to deliver the ransom 

demand to its victim. his demand is usually presented 

with a note that appears on the screen before or after the 

encryption occurs, outlining the threat and accompanied 

by a detailed set of instructions for making the payment, 

typically through a cryptocurrency.

Ransomware has had a rapid year-on-year growth of 

new families since 2013, costing an estimated more than 

5 billion USD globally and growing over an expected rate 

of 350% in 2017 (Morgan 2017; Clay 2016). he major-

ity of ransomware strains target Windows operating 

systems (Mansield-Devine 2016) and are of the crypto-

ransomware type (Savage et  al. 2015). Crypto-ransom-

ware attacks have a greater threat than any other type of 

ransomware, as they can lock out a user from valuable 

assets, afecting productivity and availability of services. 
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he attacks mainly afect small and medium sized enter-

prises (SMEs) (Savage et al. 2015) and critical infrastruc-

ture including educational institutions and healthcare 

trusts (Barker 2017; Dunn 2017; Heather 2017), which 

are more likely to fall victim or lounder under the pres-

sure and pay to release the encrypted contents. he num-

ber of attacks has grown partly because malware authors 

have adopted an easy-to-use modular design of the ran-

somware. Furthermore, Ransomware-as-a-Service (RaaS) 

products (Conner 2017; Cimpanu 2017) have become 

more readily available, which assist the attacker through 

simplistic distribution with phishing and exploitation kits 

and a trustworthy business model.

he attacks are often achieved through leveraging 

social engineering tactics to get a victim to download 

and activate the binary, which evades the anti-virus scan-

ner’s signature-based detection through oligomorphic or 

polymorphic decryptors, metamorphic code (Szor 2005) 

or the generation of a new variant. According to Syman-

tec’s reports (Savage et  al. 2015; O’Brien et  al. 2016), 

phishing attacks are the prime cause of ransomware 

being activated on a victim’s computer. A likely scenario 

of the vectors toward activation could be from an email 

with a payload or a link to a website that triggers a drive-

by-download. he downloaded binary could initiate the 

process of carrying out the ransom, or in cases of more 

sophisticated attacks, it will irst ingerprint the victim’s 

environment prior to dropping the malicious binary or 

process (Lindorfer et al. 2011).

Researchers have analysed ransomware variants, but 

are yet to propose a predictive model of ransomware 

deployment methods. It is vital to have a deep under-

standing of the deployment methods of ransomware to 

efectively ight against them.

he main contribution of this paper is a predictive 

model of ransomware stages, which came out from a 

study of 18 ransomware families by looking into Win-

dows Application Programming Interface (API) func-

tion calls during each ransomware execution. Another 

contribution of this research focuses on querying and 

interviewing ransomware victims to find common factors 

between attacks, in order to be able to generate a more 

high-level understanding of ransomware deployment 

methods.

he rest of the paper is organised as follows. he "Ran-

somware overview" section provides a more in-depth 

look into ransomware, including its attack vectors, 

the way it may target user iles, as well as an outline of 

related work, both in understanding ransomware and 

in combatting it. he  "Methodology" section outlines 

the two-pronged methodology used in our research, 

namely the development of a predictive model of ran-

somware deployment, and the user study to gain better 

understanding on ransomware deployment. he "Results, 

analysis and discussion" section presents the results of 

our research, in particular the predictive model of ran-

somware deployment involving the stages of ransomware 

deployment, leading to ideas for preventive action to 

deal with ransomware deployment threat efectively. he 

results from the user study are also summarised, analysed 

and discussed, shedding light into the ransomware vic-

tims’ perception and behaviour in the aftermath of a ran-

somware incident. All of these may contribute towards 

better techniques in combatting ransomware. "Conclu-

sion" section concludes our paper and presents some 

ideas for future work.

Ransomware overview
In 1996, Young and Yung introduced the idea of cryp-

tovirology (Young and Yung 1996), which shows that 

cryptography can be used for ofensive purposes, such as 

extortion. Since then, this idea had evolved into ransom-

ware, and ransomware has become a growing cyber secu-

rity threat, with an increased number of infections and 

many variants being created daily. According to a Syman-

tec report, 98 new ransomware families were found in 

2016, more than tripling the igure for the previous year 

(Symantec: Internet Security hreat Report 2017).

he main types of ransomware are scare, lock, crypto, 

and wipe, where the latter was irst seen with the 2017 

PetrWrap attack that encrypted the Master File Table 

(MFT) of victims, but did not unlock it after payment. 

Encrypting the MFT renders the content of a hard drive 

unusable, and is rarely used among ransomware fami-

lies. Other examples of crypto-ransomware targeting the 

MFT include Seftad (Kharraz et al. 2015), Petya (Mans-

ield-Devine 2016), and Satana (Villanueva 2016). he 

latter two (as well as PetrWrap) start by corrupting the 

MFT and forcing the operating system (OS) to reboot. 

Like computer worms (Szor 2005; Yang et al. 2008), ran-

somware can self-propagate such as when TeslaCrypt 

infected a laptop integral to a gambling website and led 

to spreading itself to over 15 servers and 80 other con-

nected computers through the use of shared folders 

(Spring 2016). Perhaps the most infamous ransomware 

is the WannaCry cryptoworm, which hit the headline in 

May 2017, and afected more than 200,000 computers in 

150 countries, including the UK National Health Service 

(National Audit Oice 2017).

Attack vectors for distributing ransomware

Various tactics are used by ransomware attackers to get 

their victims to activate the malware, grant it elevated 

privileges, and submit to the demands. Common infec-

tion vectors of ransomware include phishing, exploit 

kits, downloader and trojan botnets, social engineering 
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tactics, and traic distribution systems (Sgandurra et al. 

2016). Despite phishing still prevailing as the preferred 

choice for deployment (Savage et al. 2015), in 2015–2016 

there was a noticeable increase in the use of exploit kits, 

such as Angler, which was used to spread CryptoWall and 

TeslaCrypt in 2015 (Abrams 2016a). Angler had a very 

high activity in the malware distribution world until the 

arrest of its developers in 2016 (Cisco 2017).

Due to the nature of the attacks, ransomware can be 

seen as having a business model (Hernandez-Castro 

et  al. 2017), where victims are the attackers’ custom-

ers who purchase decryptors or keys to regain access to 

assets. Hence, attackers should be in the mindset of tak-

ing advantage of the victim without them noticing until 

presented with the ransom note. he note should deliver 

a clear message that provokes or threatens the victim to 

pay, and should have user-friendly and reliable methods 

for the victims to follow in order to pay and regain access 

(Andronio et al. 2015). Moreover, due to the international 

scale of the ransomware market, ransom notes need lex-

ibility in language based on the target’s locale.

he business model breaks when either the integrity of 

the crypto-virus’ encryption is broken, payment transac-

tions are denied or unsuccessful, or the encrypted iles 

become unavailable to the decryptor. For the sake of 

maintaining ransomware’s reputation of returning access 

after payment, ransomware authors develop their code in 

a modular fashion to enable simple generation of variants 

by less-skilled coders or even script-kiddies (Mansield-

Devine 2016; Sinitsyn 2015). Moreover, the develop-

ment of Ransomware-as-a-Service (Cimpanu 2017), has 

further simpliied the process for aspiring ransomware 

attackers, while maintaining the quality of attacks.

Since 2013, ransomware has increasingly integrated in-

gerprinting measures to get the time, date, language, and 

geolocation (Savage et  al. 2015) to facilitate social engi-

neering on a global scale with ransom notes presented 

in the victim’s language. For instance, some ransomware 

identiies the locality and language of the targeted com-

puter and hence displays the note in that language. he 

least costly ransom note is text-based, however, other 

delivery mechanisms have been used including recorded 

voice. Examples of language-sensitive ransomware 

include Reveton, with 10 translations of a text-based ran-

som note and the March 2016 version of Cerber, which 

has 12 recorded voice ransom notes in the 12 most com-

mon languages (Clay 2016).

How ransomware targets user iles

he signature characteristics of how ransomware targets 

user iles is through mapping the user environment. Tar-

geted iles need to be recent and of some value or impor-

tance, therefore ransomware may look at the recent iles 

history and usually maps important folders, such as My 

Documents, Pictures, and other generic folders, as well 

as the Recycle Bin (Abrams 2016a, b; Lee et  al. 2017). 

Whilst mapping, a process counts the number of mapped 

iles, based on the extension and their location, and 

reports the results to the Command & Control (C&C) 

server (Hasherezade 2016). To determine the impor-

tance of the iles, the last accessed date is observed, and 

a diference is calculated between the creation and last 

modiied date, both of these indicate the amount of work 

carried out on a ile, as well as the user’s level of interest 

(Kharraz et al. 2015). To ensure the iles are genuine, the 

ransomware calculates the entropy, which is the informa-

tion density, of the ile names and their contents (Kharraz 

et al. 2016). If the entropy is too high or low, resembling 

random content or just padding respectively, the ransom-

ware will interpret the ile as auto-generated, and discard 

it from its map. After mapping, it will either request from 

the C&C to start encryption along with the number of 

iles targeted, or instantly start encrypting (Hasherezade 

2016; Kharraz et al. 2016).

he ransom message may take the form of an appli-

cation, Blue Screen of Death, a text ile on the desktop, 

screen-saver or other means of gaining the user’s atten-

tion. he encryption phase has varying levels of robust-

ness, from the trivial coding of base64 to Advanced 

Encryption Standard (AES), where the most common 

form is AES-256 for symmetric encryption (Savage et al. 

2015; Mansield-Devine 2016). Additionally, the names 

of the iles will frequently be changed to signify locking, 

often adding an extension related to the ransomware 

family name.

Related work

Many researchers (Andronio et  al. 2015; Lee et  al. 

2016; Kharraz et al. 2016; Sgandurra et al. 2016; Zscaler 

2016) agree that crypto-ransomware’s typical behav-

iour involves the manipulation of iles and displaying 

a threatening message, which can be identiied through 

the ransomware’s use of Windows API function calls. It is 

possible to monitor read, encrypt, and delete operations 

called at the user-level, which are then passed onto the 

kernel to the input/output (I/O) scheduler (Kharraz et al. 

2016). According to (Kharraz et al. 2016) there are three 

ways ransomware encrypts iles: (i) overwriting originals 

with the encrypted versions, (ii) encryption then unlink-

ing of the originals, and (iii) encryption and secure dele-

tion of the originals.

Behavioural heuristic detection through the mapping 

of Windows API function calls can be useful for detect-

ing potential ransomware attacks, but it may sufer from 

high false positive rates (for example, the legitimate 

owner of the iles may choose to encrypt their iles, which 
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would exhibit ransomware-like behaviour). herefore, 

it is important to complement the behavioural heuristic 

approach with techniques based on deployment charac-

teristics of ransomware, including possible classiication 

to ransomware families. his will enable more subtle and 

more accurate behavioural analysis—such as a typical 

sequence of actions and timing of Windows API func-

tion calls, as well as other behavioural patterns – to be 

considered before deciding whether a particular set of 

activities have a high probability of indicating a ransom-

ware attack, or even, it represents known behaviour of a 

particular ransomware family. As ransomware families 

may evolve (e.g. by changing the function calls used), it 

is important to still be able to detect potentially mali-

cious behaviour of the new variants. Our contribution is 

through modelling the higher-level behaviour of the sam-

ple and analysing them to determine if they represent a 

potential ransomware deployment taking place.

Tools and strategies for analysing ransomware

he development and use of sandboxes in the security 

industry has enabled a secure environment for the acti-

vation and analysis of malicious samples. Monitoring 

tools are integrated into sandboxes to observe and report 

on the sample’s behaviour at the user and kernel-level. 

Malware analysis is available online at VirusTotal.
com, hybrid-analysis.com and Malwr.com, as 

a bare-metal sandbox such as Barecloud and BareBox 

(Yokoyama et  al. 2016), and as a package such as Ran-

Sim (KnowBe4  2017), REMnux (Zeltser  2014), Cisco 

(Umbrella  2016; Zscaler  2016; SonicWall 2016) and the 

well-known Cuckoo Sandbox (Ferrand 2015; Yokoyama 

et  al. 2016; Kharraz et  al. 2016). Cuckoo Sandbox allows 

the submission of Dynamic Linked Libraries (DDLs), Java 

iles, binary executables, URLs, MS Oice documents, and 

PDFs as samples (Ferrand 2015). Several researchers have 

developed analysis systems for the detection and classiica-

tion of ransomware threats including Unveil (Kharraz et al. 

2016), HelDroid (Andronio et  al.  2015), EldeRan (Sgan-

durra et al. 2016), and CloudRPS (Lee et al. 2016).

Kharraz et  al. (2016) developed a ransomware detec-

tion and classiication system called Unveil that identiies 

ransomware based on its behavioural constructs. Unveil is 

fully automated, and works with Cuckoo Sandbox, where 

they submitted hundreds of thousands of malware sam-

ples into Windows XP SP3 virtual machines. he analy-

sis returned a high percentage of successful detections of 

samples of known ransomware. he author’s approach 

is through monitoring access patterns of the sandbox’s 

ilesystem at the kernel-level, as well as pattern matching 

of text in the ransom note for threatening phrases.

Sgandurra et  al. (2016) developed an automated pro-

gram for the dynamic analysis of ransomware, called 

EldeRan, which uses machine learning to classify mali-

cious samples based on their early behaviour. hey have 

mapped key behavioural features to enable the detec-

tion of new variants and families. he program needs a 

few behavioural characteristics for training, for which 

they used Regularised Logistic Regression classiiers. 

he outcome is a detection system that has less than 6% 

error-rate, and above an average of 93% at detecting new 

ransomware families.

EldeRan (Sgandurra et  al. 2016) works with Cuckoo 

Sandbox, machine learning and negative feedback to 

determine a set of key features for ransomware. Train-

ing data, consisting of benign software and malware, 

are dynamically analysed based on ive attributes: API 

invocations, use of registry keys, ile or directory opera-

tions, Internet download activity, and hardcoded strings. 

EldeRan was trained in Windows XP SP3 32-bit, which is 

more vulnerable than later editions of the Windows OS 

suite. However, since the OS has been deprecated since 

2014, it would have been beneicial to test or train a ver-

sion on Windows 7 or later. his would have given a good 

comparison of how well the system works over diferent 

generations.

Identiication of ransomware families is indeed a valu-

able research angle, as demonstrated by several other 

papers. Homayoun et al. (2017) used Sequential Pattern 

Mining to detect best features that can be used to distin-

guish ransomware applications from benign applications. 

hey focussed on three ransomware families (Locky, Cer-

ber and TeslaCrypt) and were able to identify a given ran-

somware family with a 96.5% accuracy within 10 s of the 

ransomware’s execution.

CloudRPS (Lee et  al. 2016) is a cloud-based ransom-

ware analysis system, which supervises an organisation’s 

activity over the internet. Based on behavioural analytics, 

it quarantines and classiies suspicious downloads, which 

are analysed dynamically in a sandbox.

Andronio et  al. (2015) developed HelDroid, which 

analyses and detects ransomware on Android devices, 

where the system monitors actions involving locking, 

encryption, or displaying a ransom note. he detection 

of threatening text uses optical character recognition 

and natural language processing to facilitate detection 

in potentially any language. Like Unveil, HelDroid moni-

tors the ransomware’s access to system APIs for locking, 

encryption, network activity, ile renaming and deletion.

Another promising approach for detecting the pres-

ence of ransomware (and malware in general) is by moni-

toring the energy consumption proile of the device. his 

approach could be more robust compared to other detec-

tion techniques based on the behaviour or pattern pro-

ile of the device, since it is harder to hide or fake energy 

consumption characteristic. A paper by Azmoodeh et al. 
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(2017) demonstrated the feasibility of this energy con-

sumption monitoring approach for detecting potential 

ransomware apps on Android devices. hey managed to 

achieve a detection rate of 95.65% and a precision rate of 

89.19%, which point to the feasibility of this approach.

Tools for combatting ransomware

here are also tools that can be used to protect against 

ransomware, for example by early detection of ransom-

ware attacks in progress and/or through recovery meas-

ures to neutralise the need to pay the demand. hese 

tools are valuable and complementary to the work we 

present in this paper. Several of these tools are described 

below for completeness but they are not discussed fur-

ther in this paper.

PayBreak (Kolodenker et  al.  2017) took a proactive 

approach in combatting ransomware by implementing a 

key escrow mechanism in which hooks are inserted into 

known cryptographic functions such that the relevant 

encryption information (the symmetric keys) can be 

extracted. his approach came about from an insight that 

eicient ransomware encryption needs a hybrid encryp-

tion in which symmetric session keys are stored on the 

victim’s computer (in particular, their key vault, which 

is secured with asymmetric encryption allowing the vic-

tim to unlock the vault using their private key). After the 

victim’s computer is infected with ransomware, they can 

access their vault and PayBreak attempts to decrypt the 

encrypted iles using the symmetric session keys stored 

in the vault, therefore saving the victim from paying the 

ransom.

Another approach to recover from a ransomware attack 

without needing to pay a ransom is by copying a ile when 

it is being modiied, storing the copy in a protected area 

and allowing any changes to be made to the original ile. 

his approach is used by ShieldFS (Continella et al. 2016), 

which keeps track of changes made to iles. When a new 

process requests to write or delete a ile, a copy is created 

and stored in a protected (i.e. read-only) area. If ShieldFS 

decides later that this process is benign, the copied ile 

can be removed from the protected area as the assump-

tion here is that the original ile has not been encrypted 

by ransomware. However, if ShieldFS determines that a 

process is malicious, the ofending process will be sus-

pended and the copies can be restored, replacing the 

modiied (encrypted) versions.

Redemption (Kharraz and Kirda 2017) uses a similar 

approach to ShieldFS, but in Redemption, ile operations 

are being redirected to a dummy copy. his technique 

creates a copy of each of the iles targeted by the ran-

somware, and then redirects the ilesystem operations 

(invoked by the ransomware to encrypt the target iles) 

to the copies, hence leaving the original iles intact. 

Redemption uses the Windows Kernel Development 

framework to redirect (“relect”) the write requests from 

the target iles to the copied iles in a transparent data 

bufer.

Methodology
We developed a predictive model of ransomware, in 

our attempt to characterise all variants of each family of 

ransomware into one model. he process included the 

development of a classiier (to parse, classify and output 

graphs detailing the behavioural constructs of a ransom-

ware), as well as creating a safe environment to analyse 

the ransomware samples.

In conjunction to this model, we carried out a user 

study to get a picture of ransomware deployment process.

Ransomware deployment predictive model

Designing a model to predict deployment characteristics 

of all ransomware families is not a trivial task, because 

diferent malware authors are likely to develop their code 

base diferently. Furthermore, there is a high chance of 

code evolution and adaptation over time, as some ran-

somware source code may be made available and shared 

among malware authors. However, there are likely some 

similarities among ransomware families in the low 

between the stages of execution.

he 18 ransomware families investigated in this 

research are Cerber, Chimera, CTB-Locker, Donald 

Trump, Jigsaw, Petya, Reveton, Satana, TeslaCrypt, Tor-

rentLocker, WannaCry, CryptoLocker, Odin, Shade, 

Locky, Spora, CryptorBit, and CryptoWall. hese were 

chosen based on their threat-level, amount of infections, 

originality and media coverage. he details about three 

inluential ransomware samples (TeslaCrypt, Cerber and 

WannaCry) are provided in "Mapping ransomware vari-

ants to the Randep model" section.

We looked at the Windows Application Programming 

Interface (API) function calls made by these ransomware 

families, in order to understand what activities a ransom-

ware strain might do, and what stages it might get into. 

here are thousands of Windows API functions, and each 

sample analysed would use hundreds of those multiple 

times, making classiication of functions into our ran-

somware deployment model a laborious process. Hence, 

we made a collection of all functions used by samples and 

reduce them into a list for classiication into the model. 

To enable the plugging in of functions into the model, the 

category and description are gathered from Microsoft’s 

web site to decrease the load of the classiication process; 

either manually or automatically through an API scraper 

developed in our research. As a result of this exercise, we 

developed a model called Randep, being an amalgama-

tion of ransomware and deployment. he Randep model 
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contains eight stages that pair with matching function 

calls.

Development of Randep classiier

Cuckoo generates JSON reports for each sample ana-

lysed, detailing Windows API function calls, network 

traic, loaded libraries, registration keys, and ile I/O 

operations. Figure  1 shows a low chart of the Randep 

classiier, which classiies Cuckoo reports into Randep 

graphs. Five of the six main processes (parser, catego-

rise, classify, Randep map, and plot) are handled by the 

Randep classiier, which calls the remaining process 

(web scraper), as a subprocess. Since the size of a typical 

Cuckoo report sits in hundreds of MBs, processing each 

one on every invocation of the classiier would be costly. 

Hence, the results are permanently stored as JSON iles 

at the end of each process to decrease RAM cost, and to 

extract key information about the binary. he Randep 

classiier is available online with examples from https ://

githu b.com/Hullg j/repor t-parse r.

Classiication of Windows API functions into the Randep 

model

he Randep classiier’s parser maps Windows API func-

tions, signatures, registration keys, and network calls into 

categories of the eight states deined by the probabilistic 

Randep model. he classiication of functions into the 

states of the Randep model can be carried out manu-

ally or with the use of machine learning. We considered 

the use of machine learning as future work, but it is out 

of the scope of this paper. he work of manual classii-

cation has been reduced through the categorisation of 

functions and the API scraper’s gathering of descriptions 

and Microsoft API web page links. he results were com-

bined using a Python script called class_compare.
py, which outputs any conlicts of functions in diferent 

states. hose that had a conlict were discussed between 

the team members until an agreement was reached on 

the appropriate class for a particular function.

he classiication of the Windows API functions into 

the Randep model serves as a template or skeleton for 

the Randep classiier to map a ransomware sample’s 

function calls into states. However, further adjustments 

to the model should be made in cases where a particular 

function fails to suiciently deine its state within to the 

Randep model.

Sandbox hardening

Sandbox hardening involves denying any malicious activ-

ity from leaking between privilege rings, or out from 

the virtual machine (VM) container, as well as ensuring 

the analysis system is not detected, and that the sample 

will activate. As a simple precautionary measure, stealth 

malware is known to sleep or use stalling code to prevent 

detection while under surveillance in a sandbox (Sikorski 

and Honig 2012). However, most malware authors intend 

to promptly unleash the payload to avoid failure through 

a user restarting the machine or being detected by anti-

virus software (Kharraz et  al. 2016). Developments of 

hypervisors including VMware and Oracle’s Virtual-

Box have been tested and improved for laws where an 

attacker can escape into the physical machine or afect 

the bare metal (Balazs 2016; Duckett 2017). A well-

known and secure sandbox, Cuckoo Sandbox1 has been 

developed with security in mind, however; some malware 

is known to detect the analysis environment, and security 

analysts should take actions to defend against such vul-

nerabilities (Ferrand 2015).

It is crucial to harden the system to prevent leakage 

from guest to host. We used a tool called Paish (Para-

noid Fish2), which allows security researchers to develop 

VMs with anti-ingerprinting strategies. To decrease 

the number of lags generated by Paish and harden the 

sandbox VM, we copied the system information from a 

bare-metal machine into the VM’s coniguration, allo-

cated 2-CPUs, 4 GB RAM, 256 GB HDD in VirtualBox, 

and used antivmdetection.py from github.com/
nsmfoo/antivmdetection.

he user environment was populated with programs, 

iles and folders automatically using VMCloak and the 

antivmdetection script. he antivmdetection 

script required a list of ilenames, which can be automati-

cally generated using a random word generator at ran-
domwordgenerator.com, as well as a range of size for 

the iles. Injecting the script to run on each submission 

of a sample will avoid the VM from being ingerprinted 

based on information of the iles and folders. Using 

VMCloak we installed programs including Adobe Reader 

9.0, Google Chrome, MS Oice 2007, and Java 7 (some 

of these are old or legacy software, but they are still often 

found in potential target machines, hence their inclusion 

in the VM coniguration).

User study methodology

As part of our research, we also wanted to ask the general 

public about their experiences with ransomware attacks 

to get a picture of how ransomware gets deployed. To get 

this information, we developed questionnaires, with the 

main target groups being students, SMEs in the UK, as 

well as universities in the UK and in the US.

1 https ://cucko osand box.org/.
2 https ://githu b.com/a0rte ga/pafis h.

https://github.com/Hullgj/report-parser
https://github.com/Hullgj/report-parser
https://cuckoosandbox.org/
https://github.com/a0rtega/pafish


Page 7 of 22Hull et al. Crime Sci             (2019) 8:2 

We wanted a clear, manageable scope, but also aimed 

to ind a high number of victims for the best possible 

result. Being hit by ransomware can be a sensitive subject 

to many organisations, hence the scope had to be decided 

carefully. Being part of a university research project, we 

wanted to learn from other students and universities. 

Start

End

Parser

Categorise

Plot

Cuckoo report 

for each binary
Parser Report

Classify Report

Web Scraper

List of APIs

Any API categorised?No

Randep Map

Randep Model
Pop categorised APIs 

from List

Maps of each binary

Classify:

automated or manual

Any new APIs?

Yes

No

Graphs of each binary

Yes

Fig. 1 Flow chart of Randep classifier with steps through the parser, categoriser, classifier, mapper according to the Randep model, and output of 

results as a graph
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Students are typically active online, with limited knowl-

edge of the threats. While getting information from 

them, we also wanted to spread awareness of ransomware 

attacks. he expectation was that universities and stu-

dents would be more open to participate in a study con-

ducted by other students, while at the same time, being 

the likely targets.

To widen the scope for more hits, we decided to include 

SMEs. SMEs are also potential targets for ransomware 

attacks, and they are often seen as an easy target by the 

attacker, due to the likelihood that they do not have a 

dedicated security team, or the relaxed atmosphere in 

their operation (NCSC and NCA 2018).

We gave questionnaire respondents an opportunity 

to participate in a follow-up interview to gain further 

insight into the attack, as well as a better understanding 

of the respondents’ views on ransomware.

Questionnaire generation

hree separate questionnaires were created, one for 

each target group (students, SMEs and universities). he 

questions were mostly the same, but small alterations 

were made considering the technical orientation of the 

respondent group. Forming the questions, the assump-

tion was made that all participants for the student ques-

tionnaire were in higher education in the UK or in the 

US, and meeting the minimum university-level English 

language requirements. Additionally, the student ques-

tionnaire questions assumed that the respondents were 

not technically oriented. he university and SME ques-

tionnaires were formed with the assumption that the 

respondents were working in the IT sector with a higher 

level of technical understanding. Notwithstanding, this 

limitation was taken into consideration that respondents 

may perceive questions in diferent manners and have 

diferent backgrounds.

Respondents were asked to give their consent before 

proceeding. If the respondent indicated that they had not 

been previously infected by ransomware, the question-

naire would end, otherwise questions related to when 

and how the infection happened and what operating 

systems were involved would be asked. Based on their 

answers, further questions were presented and some sec-

tions skipped. he inal part was always the same, and 

included further details about the attack, such as how 

many devices were infected and whether data could be 

recovered.

Questionnaire distribution

We carried out the initial student questionnaire at our 

University. To reach the students, the communication 

oicers at each School were contacted, asking them to 

help by posting the questionnaire in diferent newsletters 

and blogs around the University. he questionnaire was 

also posted on several social media sites. he student 

questionnaire was sent out in March 2017.

he strategy with the Universities was to gather con-

tact details for the IT department of each University and 

contact them asking whether they would be willing to 

participate in our research. Only if they agreed, the link 

to the online questionnaire was provided. his strategy 

was used because an email coming from an unknown 

source can be seen even more suspicious if it includes a 

link. Universities in the UK were contacted in April–May 

2017, and universities in the US in June–July 2017.

SME contact details were gathered from company web-

sites. A similar strategy to the one with the Universities 

was used, where irst their willingness to participate was 

enquired. he SMEs were contacted in June–July 2017.

Interviews

he questionnaire was kept completely anonymous. 

However, at the end of the questionnaire, the respond-

ents were given an opportunity to provide their email 

address and volunteer for an additional interview. Eight 

respondents volunteered to proceed to the in-depth 

interview.

he interviews were conducted via Skype, phone or 

email, depending on the respondent’s preference. he 

questions mainly focused on getting further details of the 

most recent attack they talked about in the questionnaire, 

but also on getting information about their planned and/

or implemented defence measures against ransomware 

attacks. he interview questions were similar in each 

interview, but were altered based on the responses the 

participants had given in the questionnaire. During each 

interview, the discussion was audio-recorded with the 

permission of the interviewee. Afterwards, the audio data 

were typed for record keeping and qualitative analysis.

Results, analysis and discussion
his section presents the results and analysis of applying 

the Randep model on 18 families of ransomware, along 

with the results and analysis of the user study. Each part 

is accompanied by relevant discussion to explain the 

indings and insights gained from the research.

Model of predictive nature of ransomware

If we look at the higher level, ransomware (in particular, 

crypto-ransomware) will likely have three stages: stealth 

(in which its main priority is to remain undetected while 

it prepares the groundwork for the ransomware attack), 

suspicious (in which it starts carrying out the damaging 

part of the attack, but it may not be detected straight 

away), and obvious (in which it makes its presence known 

to its victim, namely by notifying of its demand through 
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a threatening message, and by deleting the victim’s iles). 

he transition at the higher level is pretty straightfor-

ward: stealth, followed by suspicious and then inally 

obvious.

Looking deeper, there are several lower level stages 

that ransomware may exhibit. hese are probabilistic in 

nature, in a sense that not all ransomware strains will 

have all of these stages and/or the transition sequence 

between stages may difer. he lower level stages are:

• Fingerprint creating signatures of the OS’s features 

and determining suitability for payload deployment.

• Propagate exploring the possibility of lateral move-

ment within a network or connected devices.

• Communicate sending and receiving data from the 

attacker’s C&C server.

• Map reading the contents of suitable files in the vic-

tim’s environment.

• Encrypt encrypting potentially valuable data on the 

victim’s computer.

• Lock reducing or disabling the availability of the OS 

to the victim.

• Delete overwriting or unlinking the contents of the 

victim’s data.

• hreaten presenting a threatening message to force 

the victim to pay up.

Figure  2 depicts our Randep predictive deployment 

model of ransomware. We have also developed a Randep 

classiier, which maps the Window API function calls, 

signatures, registration keys, and network calls into cat-

egories of the eight stages outlined above.

Lock-type ransomware would at least employ lock and 

threat stages. he majority of new ransomware families 

(> 95% in 2016) are of the crypto variety, therefore it is 

worth to focus on the actions of this type of ransomware. 

Crypto-ransomware has at least three stages: generating 

a map of iles to encrypt, encrypting them, and display-

ing a threat. We consider the mapping activities to be a 

stealthy operation, since it would not alter the user expe-

rience, whereas the encryption activities are suspicious, 

as they will involve a “write” operation to create a new 

ile, and the threat is obvious to the user, as it should 

spawn a window to cover the majority of the desktop to 

draw the user’s attention.

Each analysed ransomware sample behaved diferently 

in terms of Windows API function calls. Some started 

encrypting immediately after entering the device and oth-

ers spent more time on communicating, mapping, inger-

printing and/or propagating. However, there were some 

function calls that appeared in multiple results. SetF-
ilePointer could be seen as a part of many encryp-

tion processes, as well as CryptEncrypt. Most samples 

did some mapping or ingerprinting by enquiring system 

info by calling functions such as GetSystemTimeAs-
FileTime. Functions NtTerminateProcess and 

LoadStringW were also called by many samples, the 

former can be seen to represent the locking stage and the 

latter the threatening stage (displaying the ransom note).

he irst functions called by the samples (prior to 

encryption) are the ones that could be used for ran-

somware detection. For example, in the case of Cerber, 

the main encryption phase starts only after 330 s. Also 

types like WannaCry and TeslaCrypt spend more time 

Fig. 2 Predictive model of ransomware deployment methods
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ingerprinting and proiling their target. During this time, 

there is a chance to stop the execution before the real 

damage is done. Ransomware types that begin encryp-

tion immediately (e.g. CryptoLocker and Satana) are 

more challenging to stop. Possibly, if the plug is pulled 

immediately after the device is infected, at least some 

iles could be saved. In other cases, such as Jigsaw, the 

ransom note is displayed before encryption starts, mean-

ing the encryption phase could possibly be stopped by 

shutting down the device as soon as the ransom message 

is seen. he function calls can be used for ransomware 

detection in automated future solutions.

Randep model case distinction

he Randep model has two levels of stages: the higher 

level denotes stealth, suspicious, and obvious, and each 

contain other inite stages at a lower level. Since each 

lower level stage can be processed in parallel, it is not 

straightforward to determine which process starts and 

ends irst. So instead, we look at any edges between 

stages measured in terms of a control low diagram, 

propagation time, mutual parameters, CPU threads, call-

backs, and other processes. Our research has developed 

potential links for each stage at both higher and lower 

levels, as shown in Fig. 3. he links between stages repre-

sent two hypotheses between the two connected entities, 

where the direction is indicated by the order of letters in 

the subscript, e.g. HFC is a hypothesis that F (Fingerprint 

stage) is followed by C (Communicate to C&C stage), as 

opposed to HCF , in which C is followed by F.

At the higher level of the Randep predictive model, 

we hypothesise a low from stealth to suspicious to 

obvious; HStSu ⇒ HSuO . Stealth is irst due to ransom-

ware needing to scope out a suitable environment for 

deployment, to avoid detection by anti-virus vendors, 

and to appear as normal to the victim. Suspicious activ-

ity acts second, as the ransomware needs to hook its 

process and access the required privilege level to carry 

out malicious behaviour, which might seem suspicious 

to some vigilant users. he inal stage is obvious, as 

ransomware’s trait is to threaten the user into paying 

the attacker’s demands as well as blocking the user’s 

access to their important iles.

At the lower level, we hypothesise potential lows 

either within the same high level grouping, or across 

diferent high level groups. For example, in the stealth 

high level group, the process is expected to low as fol-

lows: HFP ⇒ HPC ⇒ HCM . In other words, the typical 

start to end process from ingerprinting to mapping 

will go through propagation and communication stages 

in between. However, we may consider P and C as 

optional, which means that it is possible to have HFM 

or HFC ⇒ HCM or HFP ⇒ HPM without going through 

P and/or C. In the transition between suspicious to 

obvious groups, the process would typically low 

from HEL ⇒ HLD ⇒ HDT  , as ransomware would start 

encrypting iles in the background. When inished, the 

ransomware would lock the user out, and then delete 

traces of the original iles and any processes, before 

inally delivering the threatening message. Neverthe-

less, it is possible that some ransomware variants may 

start showing the threatening message before encryp-

tion takes place (e.g. Donald Trump and Jigsaw ran-

somware), or while carrying out the encryption process 

at the same time (e.g. Cerber and Satana).

Fig. 3 Potential links between stages at lower and higher levels
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Preventative action hypothesis

Usually the threatening message indicates that it is oblig-

atory to refrain from shutting down the computer, and 

proceed with the demands, otherwise the decryption key, 

user iles or decryption mechanism will be lost, or pay-

ment will go up. Alternatively, ransomware that corrupts 

the Master Boot Record and encrypts the MFT, such as 

Petya instigates a reboot into the ransom note, block-

ing access to the operating system. Damage to the user’s 

environment occurs after the stealth group of stages have 

been deployed. We assume that all crypto-ransomware 

maps their target to ind the iles that need encryption, 

or to read iles as part and parcel to the encrypt stage. 

Hence, preventative action may be more effective if it took 

place during the map stage.

Stopping ransomware in its tracks is fairly simple if you 

consider every unauthorised read or write operation on 

your iles. However, this would entail a heavy bias toward 

false-positive detections of applications such as archiv-

ing tools, and hence decrease user experience and per-

formance. here needs to be a good balance, preferably 

with a lower false acceptance rate for computer users. 

Since allowing the sample to continue past the map stage 

would lead to potential damage, it would be unreasonable 

to take action on the end-point machine.

Mapping ransomware variants to the Randep model

he Randep classiier produces graphs of timestamps of 

Windows API function calls per sample, as well as graphs 

that have been classiied according to the Randep model. 

We analysed 18 diferent ransomware families, three of 

them (TeslaCrypt, Cerber and WannaCry) were analysed 

in depth, due to their high infection rate and date of dis-

covery being around a year apart from 2015 to 2017.

TeslaCrypt

hree variants of TeslaCrypt were analysed. he key 

identiiers include deploying techniques to evade analysis 

environment, ingerprinting, communicating to known 

malicious IP addresses and domain names, connecting to 

a hidden service through TOR, injecting binaries, adding 

itself to the list of start-up programs, modifying the desk-

top wallpaper, dropping known ransom notes, replacing 

over 500 iles, and deleting the shadow copy of user iles.

Key identifiers of TeslaCrypt he Randep classiier 

processed the reports generated from Cuckoo Sand-

box and gathered 28 signatures, which mainly involved 

ingerprinting, ile handling, and network activity. he 

malware reportedly encrypted 2290 iles, which was 

indicated through a successful call to MoveFileWith-
ProgressW, which took place in folders including the 

user’s root, Desktop, Documents, Downloads, Pictures, 

Public, Videos, Recycle Bin, AppData, MSOCache, 

Program Files, and Python27. All encrypted iles kept the 

ilenames and extensions, but the .ecc extension was 

appended to them.

TeslaCrypt attempts to ingerprint and evade detec-

tion through various strategies including scanning reg-

istry keys and executables for the presence of anti-virus 

vendors and sandbox analysis systems including Cuckoo 

Sandbox, as well as other standard ingerprint tech-

niques. he samples delayed the analysis for at least 4 

mins 20 s, through the use of a call to NtDelayExecu-
tion, which issues a sleep command on one or more of 

its processes or threads.

Suspicious network activity was detected as the sam-

ples attempted to connect through a TOR gateway ser-

vice at epmhyca5ol6plmx3.tor2web.i, a tor2web 

domain name. A tor2web URL enables users to connect 

to a TOR service, however; without the use of an active 

TOR router or browser it does not anonymise the session.

Control flow of TeslaCrypt As shown in Fig. 4a, within 

1 s, TeslaCrypt deploys ingerprinting, communicating, 

and mapping states. his enables the initial setup of the 

malware to determine whether it is in a suitable environ-

ment, to establish a channel with the C&C and start the 

preliminary stages of the attack. Following is the lock-

ing state, in which after further inspection we notice that 

the malware has called NtTerminateProcess. How-

ever, it is clear this is not restricting the use of the desk-

top, and has been removed from the low control graph. 

At 41.89 s the encrypting state follows locking, however; 

looking at the function calls we see an early call to Get-
FileInformationByHandleEx, while the rest of 

the functions in that state start after 428 s. Since Get-
FileInformationByHandleEx is a borderline func-

tion call and could also be classed in the mapping state, 

we have removed it from TeslaCrypt’s low model, which 

amends the start of encrypting to 428.48 s. Another 

adjustment is to the threatening state, which started 

writing to the console with SendNotifyMessageW 

at 42.21 s, but did not draw the graphical user interface 

(GUI) with the ransom note until 470 s. he revised state 

low model is shown in Fig. 4b with a low in the order as 

follows: ingerprinting, communicating, mapping, delet-

ing, encrypting, propagating and threatening.

he low model of TeslaCrypt has a long deploy-

ment time from mapping the user environment to the 

start of any suspicious or obvious class activity. Look-

ing at the function call low, as shown in Fig.  5, the 

state starts with a call to GetFileType, but most of 

the functions in that state are called from 41 s to 45 s. 

One signiicant function that carries out mapping is 

NtReadFile, which reads data from a ile into a bufer, 

and is called 2333 times; just 43 times more than the 

number of iles encrypted. he NtResumeThread 
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function, which resumes a previously delayed thread, is 

called for the irst time at 472.43 s. Shortly after, a call 

to DeleteFileW starts the deleting state, followed 

by states of encrypting and propagating. At 429.28 s, 

TeslaCrypt deletes the shadow copy of Window’s back-

ups through a silent execution of the CreateProcess-

InternalW function with the following command line: 

“  C : \Windows\System32\vssadmin.exe”deleteshadows/

all/Quiet . he encrypting state shows the malware’s call 

to CryptAcquireContextW to get the handle to the 

cryptographic key shortly followed by MoveFileWith-
ProgressW, which signiies the replacement of original 
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iles with ones that are encrypted. he replacement of 

2290 iles takes 41.27 s, i.e. approximately 55 iles/s.

Cerber

Key indicators of Cerber’s maliciousness include inger-

printing, self-decryption, mapping the user environ-

ment, creating iles, attempting to access network shares, 

injecting itself into other processes, and attaching to a 

modiied DLL. he sandbox detected a network trojan 

going from the sandbox to 178.33.158.4 and 178.33.158.9 

on port 6893. he malware attempted to connect to a 

server with an IP range 178.33.158.0–178.33.163.255. 

Files were deleted, the background was changed showing 

the ransom note, and a notepad showed the threatening 

message as well as instructions how to pay and release 

the documents.

Key identifiers of cerber he parser gathered 22 signa-

tures from the analysis, which mainly involved evasion, 

ingerprinting, networking and ile handling function-

ality. Cerber tries to detect an analysis system through 

checks for the presence of Cuckoo Sandbox’s Python 

scripts agent.py and analyzer.py, whether 

there is any human activity, as well as the name, disk 

size, memory size, and other qualifying attributes of 

the machine. he ile handling functionality involved 

Cerber modifying 87 iles located in directories includ-

ing root, AppData, Desktop, Documents and custom 

ones spanning from root. he modiied iles involved 

the use of function calls to MoveFileWithPro-
gressW, where the names are scrambled and the 

extensions are changed to .85f0.

Control flow of cerber Looking at Fig. 6a, b, we see the 

low of Cerber between states that start in order of in-

gerprinting, mapping, propagating, communicating, 

encrypting, threatening, locking, and deleting. he irst 

six states occur over 310 s sooner than locking and delet-

ing. Figure 6b shows a zoomed-in section of the start of 

the process, and clearly shows the ordering of the irst six 

states.

his sequence of events contradicts the hypothesis of 

the Randep model, shown in "Randep model case distinc-

tion" section. Despite encryption activating after map-

ping, it appears signiicantly close to the other states in 

the stealth class of the Randep model. hreatening state 

also appears unusually close to the stealth class, and out-

of-order by coming before locking, which is in the suspi-

cious class of the model. Further analysis of the function 

calls related to encryption and threatening should reveal 

this discrepancy with the hypothesis of the Randep 

model, and Cerber’s expected behaviour.
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he encryption of iles begins with CryptEncrypt 

and CryptAcquireContextW at 329 s and ends with 

a call to MoveFileWithProgressW, which is called 

from 343 s to 427 s. his means the encryption of 87 iles 

took around 98 s, or 0.88 iles/s.

he function calls of the threatening state are spread 

out from just after the start and almost at the end of the 

sample’s behaviour analysis. Most of the function calls 

start within 40 s after the activation of the binary, where 

the ones closest include LoadStringW, DrawTex-
tExW and SendNotifyMessageW. Cerber uses Load-
StringW to read parts of the accompanying JSON ile 

that stores the coniguration settings of the attack vec-

tors. It also uses the function to feed strings into message 

windows, such as for social engineering a response from 

the victim, one example includes the following:

“No action needed. Windows found issues requiring 

your attention. Windows is actively checking your 

system for maintenance problems”.

Cerber then sends the message to the user via SendNo-
tifyMessageW as a pop-up notiication.

he DrawTextExW is called 53 times, 10 times at under 

17 s and 43 times at 471 s, being only 3 s before the end of 

the sample’s activity. For the initial 10 calls, Cerber gets 

the date and time information and writes it to a report 

for communicating with the C&C. he inal 43 calls are 

used to write the ile names of the dropped ransom notes, 

including “R_E_A_D___T_H_I_S___6MZZ6GL_-
Notepad”. Some function calls exhibited behaviour 

that might not it well with the Randep model’s predic-

tion, including CreateDirectoryW, LoadStringW 

and SendNotifyMessageW, and some earlier calls to 

DrawTextExW.

As shown in Fig.  7, the majority of the function calls 

for encryption are clustered from 329 s to 430 s, with the 

exception of CreateDirectoryW, which is not shown 

and is active from 1.6 s to 340.5 s. he function typically 

creates directories in the Windows user environment, 

and is not solely tied to the encryption process. Omission 

of this function from the Randep model would put the 

threatening state before encryption.

his analysis has discovered that Cerber uses function 

calls of LoadStringW and SendNotifyMessageW 

to trigger a response from the user to activate a pro-

cess, which explains their early activation at 2 s and 29 

s, respectively. Despite generating a warning to the user, 

and being obvious, they are not part of the ransom note. 

hese two could have been placed in a new state called 

social engineering.

he DrawTextExW function is part of the threatening 

class and generates the ransom note, but also wrote to 

Cerber’s JSON log. his happened in two stages; feeding 

the log at 16 s and writing the ransom notes from 415 to 

471 s.

WannaCry

Two samples of WannaCry were analysed. he main sig-

natures to identify the malware’s maliciousness include 

its ability to unpack itself, anti-sandbox strategies, in-

gerprinting, manipulation of iles and folders, and setup 

of the TOR router. Over 500 iles were encrypted, the 

desktop background was changed to the message of the 

ransom, and a graphical user interface popped-up in the 

foreground of the user’s screen.

Another variant of WannaCry, called mssecsvc.exe 

was also analysed. It carries out checks on the kill-switch 

domain name, and scans for open RDP connections. 

he sandbox was setup without modifying the hosts ile 

to make the HTTP GET request to the kill-switch time-

out, and without any open RDP connections. he sample 

scored 3.6 out of 10, and carried out four DNS lookups 

on: www.iuqerfsodp9ifjaposdfjhgosurijfae-
wrwergwea.com which is the domain name used for 

325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435
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Fig. 7 Cerber Ransomware start and end times of Windows API function calls within the encryption state of the Randep model
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the kill-switch. Since the address is still registered, the 

sample died.

he process mssecsvc.exe sends datagrams over 

UDP to the subnet mask of its IP block on ports 137 and 

138. hese ports are some of the default ones for Net-

BIOS, where 137 is used for the name resolution services 

and 138 for the datagram services. For Windows oper-

ating systems on Windows 2000 or later those ports act 

as a backup for the SMB service and should be blocked. 

Nevertheless, the malware attempts to establish a con-

nection with another computer using NetBIOS, which is 

known for ile and printer service sharing over an Inter-

net connection.

Key identifiers of WannaCry WannaCry has similar 

attributes to most ransomware, with the exception of its 

propagation ability across local networks and the Inter-

net. he report parser gathered 23 signatures, most of 

which are similar to those found with Cerber, with the 

addition of an anti-sandbox sleep mechanism, getting 

the network adapter’s name, installing TOR, and bind-

ing the machine’s localhost network address to listen 

and accept connections. he malware enforced a sleep of 

an average 18 min 47 s, which delayed the analysis until 

that time had lapsed. Afterwards, WannaCry encrypted 

the user’s iles by mapping generic user account fold-

ers, the recycle bin, AppData and the root folder. It used 

RSA-AES encryption on 3129 iles, appending a .WNCRY  
to every locked ile, where the function used to replace 

the encrypted with originals was MoveFileWithPro-
gressW. he malware also used WMIC.exe to get and 

delete the shadow copy of the user’s iles.

Control flow of WannaCry Due to the modular 

approach of WannaCry’s implementation, and the use 

of threads to carry out processes, we see all states apart 

from deleting starting before a second has passed. Look-

ing at the low of states, mapping and threatening are the 

irst to start; both begin at 32 ms, shortly followed by 

encryption at 94 ms. hereafter it follows: communicat-

ing, ingerprinting, propagating, and locking, inishing 

with deleting at 2.84 s.

Fingerprinting starts much later than predicted by 

the hypothesis, which said it would start irst. he ini-

tial part of ingerprinting would be the check to the 

kill-switch domain, however; the function calls involved 

with that process are considered communication states. 

Accordingly, communication passes the domain name 

as a parameter and calls InternetOpenA and WSAS-
tartup as the irst function call in the mssecsvc.
exe’s analysis; see the graph in Fig. 8c. Prior to starting 

encryption, WannaCry ingerprints the system infor-

mation with calls to GetNativeSystemInfo, it also 

gets the system time, and memory status. he memory 

check could be a requirements check for starting the 

encryption process, or just to detect the presence of a 

sandboxed environment.

he communication state creates a server and binds 

it to 127.0.0.1 after 87 s, which WannaCry uses to send 

and receive packets over the TOR network. he mal-

ware uses TOR in an attempt to anonymize its network 

data, and to avoid detection. At 106.59 s, the malware 

makes a call to LookupPrivilegeValueW, which 

gets the privilege value and name of the logged-on 

user’s locally unique identiier (LUID). In the propa-

gation state we see the use of OpenSCManager after 

107 s, which opens a connection and the service control 

manager database on a given computer. hen after 17 s 

the local server is shutdown.

WannaCry starts encryption early with a call to 

SetFileTime, it then sets up a new handle for the 

Cryptographic API functions, and decrypts a 16-byte 

string. he encryption of iles begins at 2.84 s with 

a call to CryptGenKey, CryptExportKey and 

CryptEncrypt (see Fig.  9). CryptEncrypt car-

ries out the encryption of the iles from 2.84 to 60.83 

s. he encrypted contents are temporarily stored in the 

system’s default temporary folder, and the encrypted 

iles replace the originals with a call to MoveFile-
WithProgressW at 3.68 s. he encryption ends when 

the original ile has been replaced, which is noted by 

the end of MoveFileWithProgressW at 143.88 s. 

Hence the 3129 iles encrypted took around 141 s, i.e. 

22 iles/s.

he malware spawns a cmd.exe process with-

out showing the window to quietly delete the 

shadow copy of the ile system, as follows:  

cmd.exe /c vssadmin delete shadows /all /quiet &

wmic shadowcopy delete &

bcdedit /set {default} bootstatuspolicy ignoreallfailures &

bcdedit /set {default} recoveryenabled no &

wbadmin delete catalog -quiet
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he command is executed at 104.69 s, but the process 

is created later at 116.55 s.

he irst time that the user becomes aware of the 

threat is when the malware makes a call to DrawTex-
tExW 86.87 s, with a bufer containing Wana Decryp-

tor 2.0, which is the window title of the GUI shown to 

the victim. Later calls show that the left hand side of 

the GUI is populated irst with two countdown timers 

and call to actions including “Time Left” and “Payment 

will be raised on”. his technique attempts to create a 

sense of urgency in the victim meeting the attacker’s 

demands.
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Comparing the three ransomware samples in the Randep 

model

To compare the behaviour of these three ransomware 

strains (TeslaCrypt, Cerber and WannaCry), we pro-

duce a graph mapping a sequence of events (from 0 

to 7) for these strains according to the Randep model. 

Figure  10 shows that out of the eight states, none of 

the three ransomware strains match completely, six 

have pairings, and two have no matches across the 

board, which backs up the Case Distinction discussed 

in "Randep model case distinction" section. TeslaCrypt 

and Cerber both put ingerprinting at stage 0 and 

encrypting at stage 4, which its with the null hypothe-

sis. All three put communicating and mapping between 

stage 0 and 3, which its with the hypothesis of the 

higher level of the Randep model. All that showed signs 

of locking put it between stage 6 and 7, itting in the 

obvious class of the Randep model. Additionally, all 

carried out mapping prior to encryption. herefore, 

early warning signs of crypto-ransomware is through 

the use of mapping API functions. 

Results and analysis from the user study

Out of 1090 potential respondents contacted, 147 

acknowledged our request, 72 agreed to participate, 

although only 46 gave a response in the questionnaire in 

the end. Out of these 46 respondents, 28 said that they 

had experienced at least one ransomware attack.

From the respondents, eight volunteered to participate 

in an interview; four universities, three SME compa-

nies and one student. In the following sub-sections, the 

results from the questionnaire are presented in the form 

of graphs, and the highlights from the interviews are 

summarised.

Analysis of the data from the user study

he irst questions in the questionnaire were to do with 

the approximate date of the attack, the operating sys-

tem of the infected device and the way ransomware was 
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suspected to have entered the network. In 27 out of 48 

cases, a device with Windows 7 operating system was 

involved (Fig.  11). Some responses included more than 

one operating system, hence the number of answers in 

this graph exceed the number of total responses (those 

attacked) for the questionnaire.

he ransomware entry method was enquired only in 

the questionnaires for universities and companies. A total 

of 28 responses were received for this question (compul-

sory question), of which 6 chose unknown. As Fig.  12 

presents, the majority (64.3%) stated that the ransom-

ware entered from a malicious email message; malicious 

attachment (35.7%) being more common than a mali-

cious link (28.6%).

In 63% of the cases reported in our study, the ransom-

ware did not propagate; infection was limited to only one 

device within the organisations (Table 1). Nearly 77% of 

respondents could access their iles after the attack. In 

69.7% of the cases, the means to recover iles was from 

backup, only one respondent having paid the ransom 

(Fig. 13).

he most common irst signs of infection reported 

were the desktop being locked, iles going missing and 

Microsoft Oice software crashing or failing to open iles 

(see Table 2 for the full list of infection signs).

Students were asked an additional question on whether 

the term “ransomware” was familiar to them. Out of 50 

respondents, 28 (56%) answered “no”.

Interviews

We had the chance to interview four security experts 

from universities and three from SMEs. Also, one stu-

dent agreed to give an interview. In the student interview, 

the questions focused on gaining a deeper understand-

ing of how the attack occurred and what, if any, were the 

Table 1 Number of infected devices

Number of devices Number 
of occurrences

0 1

1 17

2 3

3 2

5 1

10+ 3

Linux Android IOS MacOS Windows XP Windows 10 Windows 8 Windows 7

Operating Systems

0

5

10

15

20

25

30

1 1 1

3 3

6 6

27

Fig. 11 Breakdown of operating systems affected by ransomware
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lessons learned. he questions for the experts were more 

technical (e.g. also querying the organisations’ defences 

against malicious attacks), given the level of experience 

they had.

he student’s ransomware incident was a case 

where the device got locked after attempting to watch 

videos online. he ransom message included a loud noise 

demanding attention, stating that device has been locked, 

accompanied by a phone number for technical support 

to unlock the device. he “technical support” posed as a 

Microsoft team and demanded a payment for their ser-

vices. he person on the phone got remote access on the 

device and seemingly unlocked it. he victim felt the loud 

noise made the situation more threatening and caused 

a panic reaction making them call the number immedi-

ately. he message did not include a demand for a ran-

som payment, the money was only asked on the phone. 

At the time, the victim did not have an external backup, 

but as a lesson learned, they are now more aware of the 

importance of basic security hygiene, including having a 

regular external backup.

Based on the interviews, universities seem more likely 

to be targeted by ransomware than companies. Univer-

sity staf contact details, including email addresses, are 

commonly available online, making targeted attacks eas-

ier. An IT expert from one university stated that emails 

represent approximately three quarters of the attack 

vectors. hey mentioned that some attackers even used 

email address spooing in their attack.

Among the interviewed organisations, a pattern could 

be observed. In most cases, the organisations had had 

only basic defences in place prior to them being infected 

by ransomware. hese defences include a irewall and 

anti-virus software. Most had implemented or were in 

the process of implementing more advanced systems. 

A new tool that was brought up in the interviews was 

Sophos InterceptX, including CryptoGuard capabilities. 

Also, in addition to systems and software, the organisa-

tions were putting emphasis on enhancing processes and 

user education on security issues.

In respect of technical solutions, the common opin-

ion among experts was that endpoint security should be 

prioritised. Many attacks are successfully stopped at the 

network level. With current tools, malicious attachments 

are mostly captured before they reach the end user. Due 

to this, when it comes to phishing, attackers are focus-

ing increasingly on email links rather than attachments. 

his trend also highlights the importance of user educa-

tion to prevent clicking of malicious links. It was also said 

that global headlines on ransomware attacks have helped 

bring awareness and raise interest in the topic among 

users. he majority of the contacted organisations were 

planning to improve staf/student training further.

During one interview, an important viewpoint was 

brought to our attention regarding admin policies. Run-

ning everyday operations with admin privileges gives 

ransomware more capabilities to operate on the device 

if infected. Lower privileges can limit, if not stop, the 

damage a ransomware attack can cause. Many of the 
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6.1%

15.2%

69.7%

Paid Ransom

Reverse engineered

Contacted relevant authorities

Other

Recovered data from backup

Fig. 13 Recovery after ransomware incident

Table 2 First signs of ransomware infection

Sign of infection Number 
of occurrences

Desktop was locked 10

Some files went missing 10

Office software such as MS Word and Excel crashed or 
failed to open file

9

Starting up took much longer than usual 5

Computer crashed 4

Computer started to overheat and became very slow 4

Antivirus software was disabled or took longer to start 
up

2

Screen or display started to jitter 2

Computer restarted without my consent 1

Noticed files starting to encrypt on network share 1

Browser window popups appeared 1

Intrusion detection system sent alerts about connec-
tions to blacklisted IP addresses, vulnerable ports, or 
suspicious DNS queries

1

User reported system performance issue 1
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interviewed organisations were in the middle of restrict-

ing the policies for giving out admin policies.

Conclusion
In this work, we analysed 18 families of ransomware in 

order to come up with a model for ransomware deploy-

ment we call Randep. he model was developed from 

background knowledge of Windows APIs, common ran-

somware traits, and threat intelligence of ransomware 

authors’ evolving strategies. At the higher level, there 

are three phases in ransomware execution, starting from 

stealth operations, to suspicious activities, and inally 

obvious actions. Each of these higher level stages may be 

composed of several lower level stages, which are proba-

bilistic in nature (by this we mean not all ransomware will 

exhibit all of them, and the sequence of actions involving 

these stages may difer). he stealth stage includes in-

gerprinting, propagating, communicating, and mapping. 

he suspicious stage includes encrypting and locking 

activities, while the obvious stage involves deleting and 

threatening actions.

We have identiied the mapping stage as an early warn-

ing sign prior to encryption, hence for a more efective 

solution, we recommend to put in place countermeasures 

that can be activated before the mapping activities are 

completed. Surprisingly, most of the ransomware families 

exhibited some form of ingerprinting, and this could be 

local or remote diagnosis of the machine.

his paper also presents a user study into ransom-

ware deployment through questionnaire and in-depth 

interview involving stakeholders from universities and 

SMEs. Ransomware developers have numerous ways to 

execute attacks. Based on our research, in the past few 

years the most common attack vector has been via email, 

more speciically through email attachments. However, 

the experts interviewed in this research suggested that 

attackers are moving more into using email links due to 

the increased use of tools iltering out suspicious attach-

ments from emails. In the interviews, experts pointed out 

that user education and endpoint security are the most 

important focus points in ighting ransomware, due to 

email still being highly used in ransomware distribution. 

Another matter to consider in organisations is the pro-

cess of handing out admin privileges.

Also worth noting is the proportionally high number of 

cases where the ransomware entry method was unknown 

to the user. his phenomenon came up in many of the 

interviews as well: ransomware often resembles normal 

user activity and does not announce itself until iles have 

been encrypted and a ransom note is displayed. Also, 

some variants may sleep before activating, making the 

efort to trace back to the entry point challenging. One 

of the most common irst signs of infection was that the 

desktop was locked. In many cases, when the irst sign is 

observed, it is already too late. Other common signs were 

missing iles and being unable to open iles. hese signs 

can be viewed as red lags and should lead to an immedi-

ate reaction. If noticed in time, damage may be limited.

he results validate the importance of extensive 

backup. Having an of-line backup in a separate loca-

tion is one of the best ways to ensure the safety of data. 

In most cases post infection, the afected device needs to 

be wiped clean and rebuilt. A promising trend observed 

from our user study is that only in one case was the ran-

som demand being paid. Paying the ransom does not 

guarantee decryption of iles and only inances criminals 

for further attacks.

One of the goals of conducting this research was 

spreading the knowledge of the threat that ransomware 

imposes, especially to younger people such as university 

students. his proved to be a sensible goal as 56% of stu-

dents who took part in our study were not familiar with 

the term prior to the questionnaire. However, the ques-

tionnaire was delivered to the students before the Wan-

naCry ransomware incident afecting the UK National 

Health Service became a headline news. Were the 

responses given after the attack, the results would likely 

have been quite diferent.

hreat intelligence predicts ransomware attacks will 

continue to rise. However, with insight and analysis into 

the behaviour of ransomware, we should be able to iden-

tify key areas to thwart any incoming attack. he Randep 

model can act as a template to illustrate the stages of 

deployment of ransomware, and it can be used as an 

agent for detecting early warning signs of variants of 

ransomware.

Future work

We will conduct a detailed analysis of the timing and the 

sequence pattern of the stages of ransomware deploy-

ment in order to come up with efective countermeasures 

for the characteristics exhibited.

he Randep model could be further validated with 

more ransomware samples, as well as testing the detec-

tion of early warning signs when submitting benign pro-

grams that carry out encryption, such as WinZip.

Furthermore, other threat intelligence modelling such 

as Cyber Kill Chain [which has been shown by Kiwia 

et al. (2017) to be useful for creating a taxonomy that can 

be used for detecting and mitigating banking trojans] can 

be integrated into the Randep model to improve its accu-

racy. his will also require more ransomware samples to 

be collected and analysed, in order to develop a more up-

to-date ransomware taxonomy.

he API scraper decreased the load for classifying APIs 

into stages for the Randep model, which was carried out 
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manually, but could also be done automatically through 

machine learning. A text classiier could parse the 

description generated by the API scraper to place it into a 

suitable stage. his would further increase the autonomy 

of the system, enabling classiication on the ly.
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