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Abstract—Go is a popular programming language renowned
for its good support for system programming and its channel-
based message passing concurrency mechanism. These strengths
have made it the language of choice of many platform software
such as Docker and Kubernetes. In this paper, we analyse
865 Go projects from GitHub in order to understand how
message passing concurrency is used in publicly available code.
Our results include the following findings: (1) message passing
primitives are used frequently and intensively, (2) concurrency-
related features are generally clustered in specific parts of a
Go project, (3) most projects use synchronous communication
channels over asynchronous ones, and (4) most Go projects use
simple concurrent thread topologies, which are however currently
unsupported by existing static verification frameworks.

Index Terms—Golang, message passing, static analysis, empir-
ical study

I. INTRODUCTION

Go is an open source programming language which was ini-

tiated by Google in 2009. Go is renowned for its good support

for system programming and its channel based concurrency

mechanism. It is advertised as “an open source programming

language that makes it easy to build simple, reliable, and

efficient software” [6]. These strengths have made it the

language of choice for many platform software such as Docker

and Kubernetes, which in turn are the most common software

for containerisation management. With the growing popularity

of containerisation technology in today’s software industry Go

has therefore become a key element of many modern software.

The native inter-thread synchronisation mechanisms in Go

differ from more traditional synchronisation mechanisms over

shared memory by promoting the motto “don’t communicate

by sharing memory, share memory by communicating” [21];

and encouraging communication via channels.

This emphasis on channel-based communication helps to

develop concurrent programs which are conceptually simpler

and better suited to be automatically verified to guarantee

the absence of communication errors such as deadlock and

thread starvation. However, beyond a rather standard type

system and a runtime global deadlock detector, the Go lan-

guage and its associated tooling do not offer any means

to detect concurrency errors. Several research groups have

recently worked towards filling this gap by developing a

range of theories and tools intended to support developers in

finding synchronisation bugs in Go programs, either statically

(compile-time) or dynamically (runtime). Ng and Yoshida [19]

first proposed a tool to statically detect global deadlock

in Go programs using choreography synthesis [13]. Later,

Stadtmüller et al. [25] proposed another static verification

approach, based on forkable regular expressions, to detect

global deadlocks. Lange et al. [11], [12] proposed two more

advanced static verification frameworks which approximate

Go programs with behavioural types [8] through their SSA

intermediate representation. Various safety and liveness prop-

erties can be checked on behavioural types using bounded

executions in [11] and exhaustive model checking in [12].

Midtgaard et al. [16] proposed a static verification approach

based on abstract interpretation for detecting global deadlocks

in a small subset of Go (without recursion). Sulzmann and

Stadtmüller [26], [27] addressed the dynamic verification of

Go programs. They proposed a trace-based method to analyse

Go programs which only use synchronous channels in [26];

and an improved approach, supporting asynchronous channels

and relying on vector clocks, is introduced in [27]. Both works

require the code to be instrumented before the analysis.

Unsurprisingly, the static approaches mentioned above only

provide partial support of the Go language. For instance, none

of the static verification frameworks in [12], [16], [19], [25]

can verify programs that spawn new threads within a for

loop. The work in [11] only provides an unsound approxima-

tion for such programs. Additionally, these approaches have

only been demonstrated on small Go programs or programs

with fairly low usage of message passing primitives. Dynamic

verification approaches instead may support a larger subset of

the language since supporting additional features only requires

further instrumentation. However, they are also impacted by

intensive usage of message passing primitives. For instance,

Sulzmann and Stadtmüller report up to 41% of tracing over-

head for programs with high level of concurrency [27].

Our goal is to obtain a better understanding of how the

message passing primitives of Go are used in practice by

analysing publicly available Go projects. These observations

can be used to guide research in the area of static or dynamic

verification of message passing programs. Our study will allow

researchers and practitioners to make well-informed decisions

on which direction to take their research in terms of the



scalability (towards larger programs) and the applicability

(towards a larger subset of Go) of their approaches.

We have implemented a tool-chain that analyses Go pro-

grams, which we have applied on 865 Go projects from

GitHub. This paper presents the results of our study, which

is structured around four research questions stemming from

the point of view of the static verification of message passing

concurrent programs.

RQ1: How often are messaging passing operations used in

Go projects? The Go language natively offers a wide range

of channel-based (message passing) primitives which dif-

fer significantly from traditional synchronisation mechanisms

based on shared memory. This research question is about how

frequently and intensively these primitives are used in practice.

This is relevant to both static and dynamic verification since

both are impacted by the number of message passing prim-

itives occurring in a program. Static verification frameworks

rely on checking properties of a model (e.g., behavioural type

or forkable expression) whose size grows with the number

of primitives used in the program. In dynamic verification

frameworks, the code need to be instrumented around each

primitive. Hence if more primitives are used, more data need

to be recorded and analysed.

We have found that most Go projects use message passing

mechanisms and use them intensively. However, the number

of message passing operations per channel is relatively low,

which suggests that programmers use simple protocols to

synchronise threads over channels.

RQ2: How is concurrency spread across Go projects? Go is

the main programming language of very large projects such

as Docker and Kubernetes, with hundreds of thousands lines

of code. Automatically verifying such projects (statically or

dynamically) as a whole is generally unfeasible. This research

question investigates whether Go projects may be divided into

sequential and concurrent parts, and how significant these

portions are. We have found that, even though most Go

projects use message passing concurrency, only a limited part

of their code-base contains concurrency-related primitives.

RQ3: How common is the usage of asynchronous message

passing in Go projects? The communication channels in Go

are synchronous by default, which means that both send and

receive primitives are blocking by default. The language offers

the option of creating bounded asynchronous channels for

which send operations are not blocking as long as the channel

is not full. Bounded asynchrony is challenging for a static

verification point of view because (i) the channels bounds may

not be known statically and (ii) the state space of the model

grows exponentially with the capacity of the channel.

We have found that 61% of the channels in the projects

we have analysed are synchronous, while most asynchronous

channels are created with a bound of 1 (and 75% have a

bound under 5). This suggests that the maximal capacity of

asynchronous channels might often be reached in practice.

RQ4: What concurrent topologies are used in Go projects?

One of the main challenges of statically analysing message

passing programs is related to their concurrent topologies, e.g.,

the number of concurrent threads executing, the number of

channels over which they communicate, and whether these

numbers are known and finite. It is often impossible to

statically determine the (possibly infinite) number of threads

and/or channels a program may create. An infinite or complex

concurrent topology leads to an infinite state-space which

renders techniques such as model checking prohibitively costly

or impossible. This research question investigates whether

complex concurrent topologies, which are currently not sup-

ported by static verification techniques, are used in practice.

We found that most projects contain programs for which it

is not possible to determine the number of threads at compile-

time. However, most projects use a finite number of channels.

Synopsis. In Section II, we present the main features of the

message passing fragment of the Go programming language.

In Section III, we describe our methodology, including our

data selection and our Go program analyser. In Section IV,

we present the results of our study, answering our four

research questions. In Section V, we discuss the limitations

of our study. We discuss related work in Section VI and give

concluding remarks in Section VII. Our tool-chain [3] and

experimental data [4] are available online.

II. MESSAGE PASSING CONCURRENCY IN GO

Go is a statically typed imperative programming lan-

guage with a particular emphasis on concurrency. Its main

distinguishing features are lightweight threads (goroutines)

and communication channels. The synchronisation mechanism

over communication channels is inspired by theoretical models

of concurrency such as Hoare’s communicating sequential

processes (CSP) [7], and reminiscent of Milner’s calculus of

communicating systems (CCS) [17] and π-calculus [18].

Go programs consists of packages (i.e., folders) which con-

tain .go files. Each .go file contains a package declaration,

a list of imports, a list of (package-scoped) variables, a list of

type declarations, and a list of functions. We give a typical

example of a Go program in Listing 1 which consists of

two functions: worker and main. Function worker takes

three parameters: an integer and two channels. Channel x

is declared as a channel on which worker can only send

integers, while channel y can only be used to receive integers.

Channel direction annotations are enforced statically, but can

be omitted. The body of worker consists of an infinite for

loop containing a select statement offering two choices: either

send an integer j on channel x, or receive a message from

channel y. The function loops if it can send on x, or terminates

if it can receive on y. The semantics of select statements

is non-deterministic when more than one action is enabled.

Function main starts the program by creating two channels

(Lines 10-11). It then spawns 30 concurrent instances of the

worker function (or goroutine). The main thread then reads

(and prints) 10 messages from channel a, see Lines 17-18,

on which workers send messages. Once the main thread is

done reading and printing, it closes channel b (on which the

workers are listening). Closing a channel in Go has the effect



1 func worker(j int, x chan<- int, y <-chan int) {

2 for {

3 select {

4 case x <-j: // send

5 case <-y: return // receive

6 }

7 }

8 }

9 func main() {

10 a := make(chan int)

11 b := make(chan int)

12

13 for i := 0; i < 30; i++ {

14 go worker(i, a, b)

15 }

16 for i := 0; i < 10; i++ {

17 k := <-a // receive

18 fmt.Println(k)

19 }

20 close(b)

21 }

Listing 1. Concurrent workers.

of enabling any subsequent receive action on this channel (a

read operation on a closed channel returns a default value,

e.g., 0 for integers). Any attempt to invoke a close or send

primitive on a closed channel triggers an exception and crashes

the program. In the case of the program in Listing 1, closing

channel b has the effect of terminating all worker goroutines.

We describe further message passing oriented constructs

below. Communication channels are synchronous by default,

i.e., both send and receive actions are blocking. It is possible

to give a capacity at channel creation, e.g.,

ch := make(chan string, 256)

in which case send actions are not blocking until the (asyn-

chronous) channel has reached its capacity (256 here).

Channels may be ranged over using the range over channel

construct as in Listing 2. This program creates a buffered

1 msgs := make(chan int, 10)

2 msgs <- 1

3 msgs <- 3

4 close(msgs)

5 for m := range msgs { fmt.Println(m) }

Listing 2. Range over channel.

channel which can hold up to 10 messages, two messages are

enqueued, then the channel is closed. In this case, the body of

the for loop will execute twice as two messages were sent on

channel msgs before it was closed. Channels can only carry

objects of the type declared at creation time. These can be

simple (e.g., integer, boolean) or complex (e.g., structs) types,

channels can be transmitted over channels too.

Select statements may include a (single) default case which

is selected when no other case is enabled. Select statements

with a default case are not blocking, see the example below.

select { case <-x : fmt.Println("received")

case y <-42 : fmt.Println("sent")

default : fmt.Println("default") }

1 func generate(ch chan<- int) {

2 for i := 2; ; i++ {

3 ch <-i // send

4 }

5 }

6 func filter(in chan int, out chan int, p int) {

7 for {

8 i := <-in // receive

9 if i%p != 0 {

10 out <-i // send

11 }

12 }

13 }

14 func main() {

15 ch := make(chan int)

16 go generate(ch)

17 bound := readFromUser()

18 for i := 0; i < bound; i++ {

19 prime := <-ch // receive

20 fmt.Println(prime)

21 ch1 := make(chan int)

22 go filter(ch, ch1, prime)

23 ch = ch1

24 }

25 }

Listing 3. Concurrent prime sieve.

This block can either synchronise with a send action on x,

synchronise with a receive action on y, or, if none of these

actions are available, it can take the default branch.

Listing 3, adapted from [5], gives an example of a more

complex concurrent program implementing a concurrent ver-

sion of the Sieve of Eratosthenes (an algorithm to compute

all prime numbers under a bound). The program consists

of three functions. Function generate iteratively sends an

integer on channel ch. Function filter iteratively reads

an integer from channel in and, if it is not divisible by

p, sends it over channel out. Function main is the entry

point of the program. It spawns an instance of function

generate, then reads a bound given by the user (the

definition of readFromUser() is elided). Next, the function

loops bound times, spawning new instances of filter

which are linked together by freshly created channels (ch1).

The concurrent prime sieve program contains several com-

plex concurrency patterns which are generally not supported

by existing static verification techniques, e.g., a goroutine

(resp. a channel) is spawned within a for loop, see Line 22

(resp. Line 21). In particular, bound is not known at compile

time. Hence, for any statically computed abstraction to be

sound, one needs to assume that the number of goroutines and

channels created by the program is potentially infinite. Addi-

tionally, because of the channel aliasing occurring in Line 23,

these goroutines and channels form a complex topology by

linking each pair of threads with a distinct channel.

III. METHODOLOGY

In this section, we describe the GitHub projects that we

have collected and the approach we have used to answer the

research questions we set out in the introduction. Table I gives

an overview of the total number of projects we have analysed.



TABLE I
GENERAL INFORMATION ABOUT THE PROJECTS

Total number of visited projects 900
Number of analysed projects 865
Number of message passing projects 661
Number of median-sized projects 32

We have visited 900 projects in total and thoroughly analysed

865 of them, totalling 35 million (physical) lines of code. Part

of our analysis focuses on two sub-groups: 661 projects which

contain at least one channel and 32 of similar sizes.

A. Data selection

The goal of our study is to investigate how and how much

developers use the message passing concurrency features of

Go in all application domains, hence we have selected a wide

range of projects that do not necessarily feature concurrency-

related aspects. Figure 1 gives an overview of the selection

procedure. First, we have selected the 900 most popular Go

projects on GitHub, according to the number of stars associ-

ated with these projects. The number of stars generally reflects

how many people appreciate or are interested in a project [1].

The selection was made in August 2018 when the star counts

of the selected projects ranged from 822 to 49765 stars. The

list was retrieved using a Python script which connects to

GitHub’s REST API and returns a list of project identifiers.

Next, we manually filtered the list of projects to remove

repositories which do not contain human-made applications,

e.g., tutorials, textbooks, generated code, etc. 35 such projects

were removed. For each of these remaining projects, we have

executed a git clone command to retrieve the source code

locally. Then we automatically removed the top-level test

and vendor directories, to reduce potential noise due to, e.g.,

usage of third party libraries exposing channels. We note that

we preserved unit tests, as they provide insights on, e.g., how

an API exposing channels is used. Unit tests related to a given

<file>.go file are located in the same directory (in a file

called <file>_test.go).

B. Program analysis

In the next step our analyser traverses the abstract syntax

tree of all .go files in each cloned repository. The analyser is

written in Go and relies on Go’s internal parser (the go/ast

and go/parser libraries) to compute our main metrics based

on the number of occurrences of several concurrency-related

features. We count the occurrences of the following features:

• The channel creation primitive, make(chan T), with

or without a capacity, e.g., Lines 10 and 11 of Listing 1.

We also record the capacity and the type T of each

channel to determine whether it is asynchronous and/or

whether the channel is used to carry other channels.

• The basic channel-based primitives: send, receive, and

select. As well as the close primitive (e.g., Line 20 of

Listing 1) and the range-over-channel statement (e.g.,

Line 5 of Listing 2).

900
projects

Manual

filter

865
app.

projects

35
other

projects

Git

clone

Parsing

& Metric

extraction

CSV

files
HTML

files

Fig. 1. Process of the empirical study.

• The spawning of a goroutine (e.g., Line 16 of Listing 3).

We consider occurrences of goroutine and channel cre-

ations in for loops as special cases (e.g., Lines 22 and 21

of Listing 3).

• The aliasing (or assignment) of a channel within a for

loop, as in Line 23 of Listing 3.

• The usage of channel direction annotations in formal

parameters, as in Line 1 of Listing 1.

We expand on some of these features and how they help us

answer our research questions in Section IV.

The analyser generates a set of CSV files storing the number

of occurrences of concurrency-related features, as well as other

metrics related to the size of the projects (number of lines

of code, files, and packages etc). The analyser additionally

generates HTML files. Each HTML file contains the list of

features occurring in a given project as well as hyperlinks to

their locations on the associated GitHub repository (the links

point to a specific line of code and commit snapshot), see [4].

C. Project sizes

To compare the level of intensity of message passing

concurrency in projects of significantly different size and

structure, we present some of our measurements relative to

the number of physical lines of code (PLOC) using the CLOC

command [2] (v1.80) which discards, e.g., blank and comment

lines. Given a project P , we write |P | for its concurrent size,

i.e., the sum of physical lines of code in all .go files which

contain at least one of the concurrency features described

in Section III-B. Mathematically, |P | =
∑

f∈F (P ) kPLOC(f)
where F (P ) is the set of files in P which have at least

one concurrency-related feature. Focusing on the files with a

concurrency aspect allows us to compare the message passing

intensity of projects which may have significantly different

sizes but a comparable use of concurrency.

IV. QUANTITATIVE ANALYSIS

In this section, we report and discuss the quantitative results

of our study for each research question. To answer our research

questions, we use our tool-chain to collect occurrences of

the different features described in Section II. We present our

results through descriptive statistics (box plots and numerical

tables) and summaries of several manual investigations of a

few remarkable projects.



Occurrences in 661 projects Occurrences in 32 core projects

Occurrences wrt. concurrent size Occurrences wrt. number of channel

Fig. 2. Box plots for RQ1: How often are messaging passing operations used in Go projects?

TABLE II
PROJECTS USING MESSAGE PASSING (OUT OF 865 PROJECTS)

Feature projects proportion

chan 661 76%
send 617 71%
receive 674 78%
select 576 66%
close 402 46%
range 228 26%

RQ1: How often are messaging passing operations used in Go

projects?

Our tool-chain is used to collect occurrences of Go’s native

message passing primitives. Table II summarises our findings

wrt. occurrences of message passing operations in the 865

projects we have analysed. We note that 204 projects out of

865 (∼24%) do not create any communication channels. We

observe that send, receive, and select constructs appear in more

than 66% of the projects. The receive primitive is the most

frequently used message passing operation, with 78% of the

projects containing at least one instance. This primitive is also

used to model delays and timeouts, which explains why the

number of projects with receive primitives is greater than the

number of projects with channel creations. For instance, the

program below waits 2 seconds then prints “Done.”.

<-time.After(2 * time.Second) // receive

fmt.Println("Done.")

In the rest of this section, we focus on those 661 projects

which contain at least one channel creation primitive. We

present both absolute and relative measurements. To give two

distinct perspectives on the relative occurrences of message

passing primitives, we present results with respect to the

concurrent size of projects (see Section III-C) and the number

of occurrences of the channel creation primitive.

Absolute measurements: Figure 2 (top left) and Table III

give the average, standard deviation and five-number summary

of the number of occurrences of message passing primitives in

the 661 projects which contain at least one channel creation.

On average, the projects we have analysed contained 33.62

occurrences of a channel creation primitive (with a median of

9). The average number of occurrences of send (resp. receive)

primitives is 36.37 (resp. 69.44) with a median of 10 (resp.

14). Select statements are the third most used synchronisation

construct with an average of 20.25 selects (and a median of

3). This is followed by the close primitive with an average

of 9.21 (and a median of 0.55). Table III also shows that

the range over channel construct is not used intensively. On

average, the projects we have analysed contained only 1.45

such constructs (with a median of 0). Table IV studies the

size of select statements in terms of the number of cases

they contain (including a possible default branch). We observe

that select statements have ∼2 branches on average. Over

the 13403 select statements we have analysed, 4116 (30%)

included a default branch.



TABLE III
ABSOLUTE OCCURRENCES IN 661 PROJECTS.

Features mean std min 25% 50% 75% max

chan 33.62 86.17 1 3 9 27 1225
send 36.37 90.79 0 2 10 31 1229
receive 69.44 198.76 0 4 14 48 2183
select 20.25 63.94 0 1 3 14 901
close 8.98 26.13 0 0 1 5 275
range 1.44 4.81 0 0 0 1 72

TABLE IV
NUMBER OF BRANCHES IN SELECT STATEMENTS

mean std min 25% 50% 75% max

branches 2.15 0.82 0.00 2.00 2.00 2.00 41.00

The top 3 projects in terms of absolute numbers of channel-

oriented features are juju (concurrent size = 86 kPLOC),

cockroach (concurrent size = 146 kPLOC), and go (con-

current size = 122 kPLOC). The juju project holds the

well-known cloud infrastructure management framework. This

project contains the highest number of receive primitives

(2183). It contains 820 channel creations, 876 send primitives,

and 901 select statements. It has a ratio of receive to channel

creation primitives of 2.67 and a ratio of receive to send

primitives of 2.50. These high ratios can be explained in

part by the fact that juju has the highest number of select

statements amongst the projects we have analysed. Select

cases are generally guarded by receive primitives. This project

contains 17 select statements with 5 or more branches (with

one select having 19 branches). Given the nature of the

software, it is not too surprising that it relies heavily on

concurrency-related features, e.g., to monitor applications and

respond to events. The go project contains the Go compiler,

standard library, and runtime. This project includes a large

number of concurrency-related features, i.e., 1225 channel

creations, 1229 send primitives, 1719 receive primitives, and

340 select statements. It has the largest number of channel

creation and send primitives. Finally, cockroach, a cloud-

native SQL database, has 564 channel creation, 591 send, 1355

receive primitives, and 364 select statements. It is larger in

terms of concurrent size than juju and go, but smaller in

terms of overall number of physical lines of code (620k PLOC

for cockroach, 635k for juju, and 1340k for go).

To visualise the usage of message passing primitives in

absolute terms over similarly sized projects, we selected the

projects whose size falls within 10% of the median concurrent

size |P | of all 661 projects. The median concurrent size of

our sample is 1.8 kPLOC, hence the core projects consists of

projects whose size is between 1.7 and 2.1 kPLOC. Figure 2

(top right) and Table V summarise our results. We observe that

there are generally more receive primitives than channel cre-

ation and send primitives. Secondary constructs such as close

and range over channels occur less frequently, on average.

Within these 32 core projects, RxGo (an API that provides

support for reactive programming) is the project with the most

TABLE V
ABSOLUTE OCCURRENCES IN 32 CORE PROJECTS.

Features mean std min 25% 50% 75% max

chan 13.62 10.35 1 5.75 11.00 17.25 41
send 14.06 12.49 0 6.00 9.00 18.00 45
receive 23.22 16.19 1 9.75 18.50 32.50 64
select 7.25 6.74 0 3.00 5.00 9.25 28
close 3.62 7.83 0 0.00 1.00 3.25 38
range 0.34 0.75 0 0.00 0.00 0.00 3

channel creation and close primitives (41 and 38, respectively).

It contains the second largest number of receive primitives

(41). The project with the second highest number of channel

creation and close primitives is surgemq. The surgemq

project provides a high performance implementation of a

messaging protocol (MQTT) for IoT devices. This project

contains 2 send primitives, 64 receive primitives, and 34

channel creation primitives. It also contains the highest number

of select statements (28), all of which have 2 branches.

Measurements relative to concurrent size: Our first rel-

ative measurements are given with respect to the concurrent

size of projects, i.e., |P |, the PLOC in the files which contain at

least one concurrency features. For each project P , we divide

the number of occurrences of each message passing feature

by |P |. Figure 2 (bottom left) and Table VI summarise our

findings (the box plot is capped at y=80 for readability). On

average, we observe that message passing primitives are used

intensively in concurrency-related files. We find 6.34 channels

for every 1000 physical lines of code (with a median of

4.69). The relative average number of occurrences for send and

receive primitives is 6.65 and 10.31, respectively. The other

primitives are used significantly less intensively.

Disregarding the small projects which contain very few

features, the three projects with the highest number of channel-

oriented primitives relative to their concurrent size are:

doozerd (a consistent distributed data store), go-memdb

(an in-memory database), and anaconda (a Go client library

for the Twitter API). The doozerd project has the largest

number of send primitives relative to its concurrent size

(75.3 per kPLOC in concurrency-related files). The go-memdb

project has the largest number of receive (123.7) and close

(21.50) primitives relative to its concurrent size. Therefore, on

average a receive (resp. close) primitive occurs almost every 8

(resp. 46) physical lines of code in concurrency-related files.

Finally, the anaconda project contains the highest number

of channel creation primitives relative to its concurrent size

(56.4), i.e., a channel creation every 18 physical lines of code

in concurrency-related files, on average. Theses numbers can

be explained by the frequent occurrence of functions similar

to the one below:

func (a TwitterApi) GetFriendships() (...) {

responseCh := make(chan response)

a.queryQueue <-query{...,responseCh}

return <-responseCh }

which sends a query to the Twitter API together with a channel

on which the response should be sent.

http://github.com/juju/juju
http://github.com/cockroachdb/cockroach
https://github.com/golang/go
http://github.com/juju/juju
http://github.com/juju/juju
https://github.com/golang/go
http://github.com/cockroachdb/cockroach
http://github.com/juju/juju
https://github.com/golang/go
http://github.com/cockroachdb/cockroach
http://github.com/juju/juju
https://github.com/golang/go
https://github.com/ReactiveX/RxGo
https://github.com/zentures/surgemq
https://github.com/zentures/surgemq
https://github.com/ha/doozerd
http://github.com/hashicorp/go-memdb
https://github.com/ChimeraCoder/anaconda
https://github.com/ha/doozerd
http://github.com/hashicorp/go-memdb
https://github.com/ChimeraCoder/anaconda


TABLE VI
RELATIVE OCCURRENCES WRT. CONCURRENT SIZE IN 661 PROJECTS.

Features mean std min 25% 50% 75% max

chan 6.34 6.43 0.23 2.78 4.69 7.83 71.43
send 6.65 7.86 0.00 2.33 4.63 7.84 75.28
receive 10.31 10.28 0.00 4.26 7.95 12.95 123.66
select 2.67 3.09 0.00 0.52 1.92 3.70 34.41
close 1.54 2.99 0.00 0.00 0.51 1.79 34.48
range 0.44 2.60 0.00 0.00 0.00 0.20 58.82

TABLE VII
RELATIVE OCCURRENCES WRT. CHANNELS IN 661 PROJECTS.

Features mean std min 25% 50% 75% max

send 1.26 2.92 0.00 0.67 1.00 1.36 71.40
receive 2.08 3.36 0.00 1.00 1.56 2.28 66.50
select 0.57 1.33 0.00 0.12 0.44 0.71 30.50
close 0.22 0.28 0.00 0.00 0.13 0.36 1.62
range 0.06 0.15 0.00 0.00 0.00 0.04 1.00

Measurements relative to number of channels: Our sec-

ond relative measurements are made relative to the number

of occurrences of channel creation primitives in each project.

Hence, we divide the number of occurrences of each primitive

such as send, receive, etc. by the number of occurrences of

make(chan T). This measurement gives us an approxima-

tion of the number of operations invoked on each channel.

Figure 2 (bottom right) and Table VII summarise our results

(the box plot is capped at y=20 for readability). On average,

there are 1.26 send primitives per channel creation (with a

median of 1); while there are 2.08 receive primitives per

channel creation (with a median of 1.56). The slightly higher

number of receive primitives can be explained by the fact

that on average there is approximately a select for every

other channel. In turn, select statements have more than two

branches on average, see Table IV, and they are generally

guarded by receive primitives.

Two projects stand out with respect to the num-

ber of channel-oriented primitives per channel creation:

grpc-gateway and node_exporter, which we have

manually analysed. In the grpc-gateway project (a gRPC

to JSON proxy generator) most channel usages are con-

tained in examples showing how to use the gRPC API.

The node_exporter project contains several instances of

send primitives sending several (53) hard-coded variations

of a struct. These two examples are extreme cases of the

operation to channel ratio. However, as Figure 2 (bottom right)

and Table VII show, the interquartile range is very close to

the mean. Therefore, our results suggest that the number of

syntactical occurrences of features over a given channel is

fairly low, which further suggests that channels are used to

support simple synchronisation protocols.

RQ2: How is concurrency spread across Go projects?

Go is renowned for its support for concurrent programming,

but is it the case that most of the source code is concurrent? In

this question, we study the proportion of a Go project which is

related to concurrency. We consider three different measures

RQ1: We found that 76% of the projects we have anal-

ysed use communication channels. The receive primitive

is the most commonly used operation. On average, the

number of primitives per channel is low, suggesting that

channels are used for simple synchronisation protocols.

TABLE VIII
PROPORTION OF CONCURRENCY IN 661 PROJECTS

Measure mean std min 25% 50% 75% max

size 31.05 23.83 0.03 11.97 25.20 45.32 100
package 44.22 28.67 0.93 21.92 37.50 55.56 100
file 20.11 17.67 0.34 8.00 15.33 26.32 100

for project sizes: the number of physical lines of code, the

number of packages, and the number of files. Figure 3 (left)

and Table VIII summarise our results for the 661 projects

which contain at least one channel creation primitive. The

first line of the table gives the ratio of concurrent size |P |
to the total number of physical lines of code in projects. The

table shows that, on average 31.05% of the size of projects

is dedicated to concurrency (with a median of 25.20%). The

second line of the table gives the ratio of number of packages

featuring concurrency to the total number of packages. On

average, 44.22% percent of a project’s packages contain at

least one concurrency feature (with a median of 37.50%).

The third line of the table gives the ratio of number of files

containing some concurrency features to the total number of

files. On average, 20.11% percent of a project’s files contain

at least one concurrency feature (with a median of 15.33%).

Figure 3 (right) and Table IX give the results of the same

analysis on the 32 core projects described above. We note that

both populations give similar results.

RQ2: We observed that, on average, just under half

of the packages of the Go projects we analysed con-

tain concurrency features, while around 20% of files

contain concurrency-related features. We observed that

concurrency-related files are generally larger than files

containing only sequential code.

Tables VIII and IX suggest that files which contain

concurrency-related features tend to be larger (wrt. PLOC) than

files containing sequential code only. For instance, the RxGo

project (included in the 32 core projects) has a concurrent size

to overall project size ratio of 85%, while its ratio of number

of concurrency-related files to overall number of files is 45%

TABLE IX
PROPORTION OF CONCURRENCY IN 32 CORE PROJECTS

Measure mean std min 25% 50% 75% max

size 36.57 26.03 2.69 14.30 31.38 50.85 99.70
package 45.16 28.51 6.41 24.79 40.03 51.14 100
file 23.29 18.63 2.23 9.01 18.38 32.59 77.78

https://github.com/grpc-ecosystem/grpc-gateway
https://github.com/prometheus/node_exporter
https://github.com/grpc-ecosystem/grpc-gateway
https://github.com/prometheus/node_exporter
https://github.com/ReactiveX/RxGo
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Fig. 3. Box plots for RQ2: How is concurrency spread across Go projects?

(9/20 files). This trend can be explained by the fact that files

containing only sequential code are often used for declarative

purposes only (e.g., to declare constants, global variables, and

structs). Overall, our study suggests that concurrency-related

code is usually clustered in a subset of the source code.

Tables VIII and IX show that the percentage of files containing

at least one concurrency-related feature over all files is close

to 20%. For instance, the concurrency-related files to overall

files ratio is 13% for juju (5730 features overall) and 9.1%

for go (6772 features overall).

RQ3: How common is the usage of asynchronous message

passing in Go projects?

Go offers two types of channels: synchronous (default) and

asynchronous. Both send and receive operations are block-

ing on synchronous channels, while send operations are not

blocking on asynchronous channels, as long as the channel

has not reached its maximal capacity. In this section, we

study how frequently programmers use asynchronous channels

compared to synchronous ones. For asynchronous channels,

we investigate how often their bounds can be determined

statically and give statistics on their sizes. We use the frame-

work described in Section III to collect occurrences of chan-

nel creation primitives and record channel bounds, whenever

possible. Because the capacity of a channel might only be

known at runtime, we consider that some channels have an

“unknown bound”. Table X lists the number of occurrences of

each type of channels. The projects we have analysed contain

more than 22k channels. For a large majority (94%) of the

channels, we were able to determine their bounds statically:

either synchronous (61%) or a non-zero capacity known at

compile time (33%), i.e., a hard-coded integer or a constant.

Table XI gives our results concerning the sizes of asyn-

chronous channels whose bounds are statically known. We

observe that most asynchronous channels are set to hold at

most one message, while a capacity of over 5 is uncommon.

We note that out of the 7229 asynchronous channels with

statically known bounds, 3237 channels were located in test

files (45%). A few projects use channels with very large

capacity to simulate unbounded asynchrony. For instance, the

TABLE X
COMMUNICATION CHANNELS IN 661 PROJECTS

Type occurrences proportion

All channels 22226 100%
Channels with known bounds 20868 94%
Synchronous channels 13639 61%
Asynchronous channels (known) 7229 33%
Channels with unknown bounds 1358 6%

TABLE XI
KNOWN SIZES OF ASYNCHRONOUS CHANNELS

mean std min 25% 50% 75% max

size 1193.62 29838.20 1 1 1 5 106

project gometalinter contains four channels of size 106

to implement a channel which is used to receive a statically

unknown number of requests without blocking. Similar uses-

cases can be found in the netstack and gonet projects.

RQ3: We observed that synchronous channels are the

most commonly used channels (61%). Whenever asyn-

chronous channels are used, they are generally created

with a statically known bound, which is less than or equal

to 5 in 75% of the cases.

RQ4: What concurrent topologies are used in Go projects?

In this section, we investigate whether programs containing

complex concurrent topologies are common in practice. We

measure the complexity of a concurrent topology by counting

the occurrences of programming patterns which may (i) create

one or more goroutines, (ii) create one or more channels, or

(iii) store channels in complex data structures.

For instance, the concurrent prime sieve program from

Section II (Listing 3) has a complex concurrent topology

because it creates an unknown number of goroutines which

are linked by distinct channels.

a) Goroutine creation: The first part of Table XII sum-

marises our analysis on the frequency of different patterns

of goroutine creations in the 865 projects. The table shows

http://github.com/juju/juju
https://github.com/golang/go
https://github.com/alecthomas/gometalinter
https://github.com/google/netstack
https://github.com/xtaci/gonet


TABLE XII
FREQUENCY OF CONCURRENCY PATTERNS IN 865 PROJECTS

Feature projects proportion

go 711 82%
go in (any) for 500 58%
go in bounded for 172 20%
go in unknown for 474 55%

chan in (any) for 111 13%
chan in bounded for 19 2%
chan in unknown for 103 12%
channel aliasing in for 14 2%

channel in slice 31 4%
channel in map 8 1%
channel of channels 49 6%

TABLE XIII
KNOWN BOUNDS OF FOR LOOPS CONTAINING GO

mean std min 25% 50% 75% max

bound 280.53 1957.50 1 5 10 100 50000

that 82% of the projects we have analysed contain at least

one thread creation (i.e., the keyword go) and 58% contain at

least one occurrence of a thread creation within a for loop

(i.e., go in (any) for). We distinguish between thread creation

within a bounded for loop, as in Line 13 of Listing 1 and

unknown for loop, as in Line 18 of Listing 3. A for loop is

bounded if our analyser found a constant limiting the number

of iterations. For the purpose of static verification, a for loop

with a known bound could be unfolded. However, out of 918

occurrences of a creation of a goroutine within a bounded

for, 788 of them were located in a <file>_test.go file

(86%). Table XIII summarises the size of the bounds we have

encountered and the top of Table XIV summarises the relative

occurrences of patterns in projects which contain at least one

occurrence of such a pattern.

b) Channel creation: The second part of Table XII gives

the proportion of projects where channels are created within

a for loop. The second part of Table XIV summarises the

relative number of occurrences of these patterns (for which

there are at least 30 occurrences) in projects which contain at

least one occurrence of such a pattern. Observe that channel

creation within a for loop is much less common that tread

spawning. Again, we distinguish between channel creations

within bounded for loops as these could be unfolded as

part of a static analysis. Only 13% of the projects that we

have analysed included a for loop containing a channel

creation. The usage of channel creation within a bounded for

loop is less common (2%). A pattern of specific interest is

“channel aliasing in for” which corresponds to for loops

where a channel variable is assigned to another channel (as

in Line 23 of Listing 3). Channel aliasing can be used to

create a potentially unbounded chain of linked threads as in the

concurrent prime sieve program (Listing 3). We have manually

analysed all occurrences of “channel aliasing in for” in

our sample and found no occurrence resembling the pattern

in Listing 3. In fact, our investigation revealed that most

TABLE XIV
RELATIVE OCCURRENCES WRT. CONCURRENT SIZE.

Patterns mean std min 25% 50% 75% max

go 9.08 7.76 0.16 4.4 9 7.14 11.32 71.43
go in (any) for 2.51 4.72 0.03 0.64 1.24 2.43 67.51
go in unknown for 2.29 4.74 0.03 0.53 1.11 2.11 67.51
go in bounded for 1.00 1.76 0.01 0.15 0.41 0.99 10.81

chan in (any) for 0.60 1.68 0.02 0.08 0.19 0.46 14.71
chan in unknown for 0.61 1.73 0.01 0.08 0.20 0.46 14.71

occurrences of channel aliasing or creation within a for loop

are used to initialise dynamic structures containing channels

(e.g., an array of struct whose records contain channels).

c) Channel storage: Another challenge for static verifi-

cation is related to the usage of dynamic structures (arrays,

lists, etc.) to store channels because, e.g., static analyses

generally cannot determine at compile time which index of

an array is being accessed. The last part of Table XII shows

that only 4% (resp. 1%) of the projects we have analysed use

slices (resp. maps) to directly store channels. The last line of

Table XII shows that very few projects (6%) use channels to

carry other channels, i.e., make(chan chan T). Channel

passing is a remarkable feature as it allows channel references

to be passed around, as in the π-calculus [18].

Finally, we have analysed the occurrences of channels as

formal parameters of Go functions, which may be specified

as send or receive only, as in Line 1 of Listing 1. Channel

direction annotations restrict the concurrent topologies: they

enforce channels to be unidirectional. We found that in 45% of

the cases channel formal parameters had a specified direction.

RQ4: 58% of the projects we have analysed include

thread creations within for loops, a pattern which is

not (soundly) supported by existing static verification

frameworks. Most projects (87%) use a bounded number

of communication channels.

V. LIMITATIONS OF THE STUDY

The main limitations of our study are related to data

selection and metric extraction. Extracting data from GitHub

involves the risks of including repositories which contain

personal or inactive projects, or are used as free storage [9].

For this study, we are interested in any code written as part

of a Go program, hence inactive or personal projects do no

pose a particular problem. Repositories used as free storage

are unlikely to attract more than 800 GitHub stars.

Our analysis relies on a traversal of the abstract syntax tree

of Go files in which we count the syntactical occurrences of

different concurrency features. All of the projects we have

analysed parsed successfully. We do not conduct an inter-

procedural analysis. This implies that we under-approximate

the number of goroutines and channels created in for loops

if these are created within a (non-anonymous) function itself

called within the for loop. Also, we may fail to recognise

channels that are send over channels if they are packaged into



a struct. It is also possible that some programmers may wrap

Go primitives such as send and receive in ad-hoc functions

in which case the number of such primitives will be under-

approximated by our approach. To count the number of occur-

rences of channel aliasing in for loops, our tool records which

identifier refers to channels with respect to syntactic equality.

Hence, we may fail to identify channels which are referred to

by two equivalent, but syntactically different, identifiers, e.g.,

arrayChan[2] and arrayChan[1+1]. This implies that

we may under-approximate the number occurrences of channel

aliasing within a for loop. The analysis of concurrent topolo-

gies considers for loops as the only iterative construct from

which complex topologies can be created. This assumption

rules out complex topology constructions based on recursive

functions. However, we note that Go being an imperative

programming language, for loops are more common. We note

that while loops do not exist in Go.

We have chosen two metrics to study the relative occur-

rences of message passing primitives: the size |P | of a project

and the number of channels. It is possible that choosing

different measurements would be a better choice to study the

intensity at which message passing is used in Go projects.

Concerning the applicability of our study, we note that our

experimental data and analyser are available online [3], [4].

VI. RELATED WORK

To the best of our knowledge, this paper is the first

empirical study of programming in Go, consequently we

consider a wider context of related work. Several studies have

investigated the usage of concurrency constructs in different

programming languages, using publicly available source code.

Marinescu [15] studied the usage of Message Passing Interface

(MPI) in open source applications, where the usage of MPI

functions were extracted using a string matching algorithm

rather than traversing the abstract syntax tree. Wu et al. [30],

[31] studied the usage of concurrency in C++ through an

analysis of nearly 500 open-source applications and a develop-

ers’ survey. Their analysis focuses on traditional concurrency

mechanisms such as thread-based and lock-based constructs.

Pinto et al. [23], [29] have conducted a study of more than

2000 Java projects from Sourceforge and a survey of 164

programmers. Their findings show that traditional concurrent

programming constructs (e.g., threads and synchronized

methods) are used often (contained in more than 75% projects)

and intensively. These results echo the frequency and intensity

at which message passing is used in Go projects. Okur and

Dig [20] analysed 655 open-source applications which use

Microsoft’s libraries for parallel programming. They notably

show that 37% of their data-set of C♯ applications use multi-

threading and that 90% of library usage was focused on a

small fraction of API methods. Tasharofi et al. [28] studied

Scala programs that mix actor-based concurrency and other

concurrency models. They found that 80% of them mix

the actor model with another concurrency model. Whether

Go programmers mix channel-based concurrency with other

concurrency models is currently an unanswered question.

The applicability of static analyses in real world programs

is the focus of other related works. Landam et al. [10] study

the usage of Java reflection in a wide range of open source

applications. They focus on understanding the limits of a large

corpus of static analysis approaches due to the usage of Java

reflection. They found that most projects include parts that are

hard to analyse. Our findings lead to a similar conclusion for

Go projects, most of which include code that is hard to verify

statically. We note that the current literature on verification

of Go programming is much more limited than that of Java

programming. Saboury et al. [24] study the presence of code

smells in JavaScript projects and their relationship to faulty

software. Our work may be a starting point for a similar study

on code smells and message passing-related errors in Go.

Other studies have investigated the concurrency-related

problems programmers face and how they address them. Lu

et al. [14] study the characteristics of real-world concurrency

bugs. They analysed a set of randomly selected bugs from

the bug tracking databases of MySQL, Apache, Mozilla, and

OpenOffice. All the bugs analysed concern traditional shared

memory concurrency. Pinto et al. [22] study the top 250

most popular questions about concurrent programming on

StackOverflow. They have found that most common ques-

tions concern threading and synchronisation in mainstream

programming languages such as Java. It would be interesting

to conduct similar studies with a focus on message passing

programming languages, to understand the concurrency bugs

that are specific to such languages.

VII. CONCLUSIONS & FUTURE WORK

Through a syntactic analysis of Go projects on GitHub, we

have discovered that most projects do use message passing

concurrency, but most use simple synchronisation patterns

involving a few send and receive primitives for each (generally

synchronous) channel. We have discovered that concurrency-

related features are generally located in a limited parts of Go

projects, which contrasts with existing verification approaches

which consider programs as a whole. This suggests that static

analyses dedicated to concurrency may be done in a modular

way on smaller parts of projects. The most important challenge

for future static verification of message passing Go programs

concerns functions which spawn a statically unknown number

of goroutines. We have shown that this patterns appears fre-

quently in Go projects, and therefore should be supported by

future verification frameworks. Other potentially un-tractable

topologies involving an unbounded number of channels or

channels carrying other channels are much less common.

We plan to extend our survey to compare the usage of

message passing in languages such as Go, Rust, and Erlang

which all natively provide message passing facilities. Addi-

tionally, we would like to study whether programming with

message passing concurrency is more or less error-prone than

programming with, e.g., locks or barriers.
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