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Listening and grouping: an online autoregressive

approach for monaural speech separation
Zeng-Xi Li, Yan Song, Li-Rong Dai and Ian McLoughlin

Abstract—This paper proposes an autoregressive approach to
harness the power of deep learning for multi-speaker monaural
speech separation. It exploits a causal temporal context in both
mixture and past estimated separated signals and performs online
separation that is compatible with real-time applications. The
approach adopts a learned listening and grouping architecture
motivated by computational auditory scene analysis, with a
grouping stage that effectively addresses the label permutation
problem at both frame and segment levels. Experimental results
on the WSJ0-2mix benchmark show that the new approach can
achieve better signal-to-distortion ratio (SDR) and perceptual
evaluation of speech quality (PESQ) scores than most state-of-
the-art methods for both closed-set and open-set evaluations; even
methods that exploit whole-utterance statistics for separation. It
achieves this while requiring fewer model parameters.

Index Terms—Speech separation, deep learning, label permu-
tation problem, computational auditory scene analysis

I. INTRODUCTION

Despite recent progress in robust Automatic Speech Recog-

nition [1], performance is still far from satisfactory for real-

world applications like multi-speaker meeting transcription,

audio/video captioning and hearing impairment assistants. The

presence of multi-speaker interference is widely recognized as

one of the main constraints. By contrast, humans can follow

speech of interest in the presence of overlapping sources

using innate listening and grouping [2] capabilities. These

abilities have inspired research into computational auditory

scene analysis (CASA) [3]–[6] for over half a century.

Prior to the emergence of deep learning, traditional CASA-

based approaches, as shown in Fig. 1(a), followed listening

and grouping rules that were typically hand-engineered or

heuristic in nature, and utilized to group Time-Frequency (T-

F) units belonging to the same speaker [3], [4]. Meanwhile,

in [7]–[9], different grouping rules that utilize non-negative

matrix factorization (NMF) and factorial Gaussian mixture

model-hidden Markov models (GMM-HMM) were proposed.

While approaches differ greatly, these techniques tend to

suffer from similar issues relating to performance with unseen

speakers, limitations on the exploitation of temporal or spectral
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Fig. 1. The architecture of (a) a traditional CASA system from [4] and (b)
the proposed listening and grouping method. The dotted line with label t− 1

feeds back previously separated sources for the next time step. More details
on the listening and grouping stages are described in Section IV.

dynamics, and high complexity – particularly when scaling to

additional sources [10], [11].

Many recent methods have exploited the power of deep

learning to formulate separation as a multi-class regression

problem and learn an effective mapping from mixture to source

T-F masks [12]–[14]. The improved listening ability performs

well for dissimilar sources, but overlapping unseen speakers

with similar characteristics are extremely difficult to separate.

This is exacerbated by the label permutation problem [4], [11],

[15], which will be detailed in Section III-A.

More recently, different grouping methods based on deep

learning such as deep clustering (DPCL) [16]–[19], deep

attractor network (DANet) [20], [21] and permutation invariant

training (PIT) [15], [22], [23], were proposed to address the

label permutation problem. The main idea of such methods

is to determine source assignment based on a similarity

measurement in embedding space or in original spectral space

(e.g., distance of embeddings in DPCL and DANet, mean

square error (MSE) between estimated and target magnitude

spectra in PIT).

Thanks to powerful listening network structures and effec-

tive grouping strategies, DPCL, DANet and PIT have achieved

significant progress in speech separation [11], [19]. State-of-

the-art methods usually operate in an offline manner; a long

segment or a whole utterance mixture is fed into a network

and processed together to yield a separation result. However

in online scenarios, where current separated sources are gener-

ated without reference to future mixture inputs, state-of-the-art

performance has a significant gap compared to offline methods

which exploit both past and future context [15], [24]. But these

are unlike the human auditory system – we can follow target
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speech in babble with low latency, using past context only.

In this paper, we propose an online autoregressive approach

in an explicit listening and grouping architecture, which can

address the label permutation problem and meet online re-

quirements, as shown in Fig. 1(b). Working in the spectral

domain, the listening stage simultaneously and independently

extracts mid-level representations [3], [4] of past estimated

source frames and current mixture frames. The grouping stage

then jointly consumes those representations to estimate current

separated sources by modeling the dependency and interaction

of mixture and sources. In strict observance of causality,

the grouping outputs are fed back as input sources to the

listening stage only for the following time step. Compared with

traditional CASA systems shown in Fig. 1(a), the listening

and grouping blocks are themselves neural networks trained

jointly to exploit not only the temporal context of the mixture

signal, but also enforce a temporal context constraint on the

estimated sources, which is very effective in reducing mid-

utterance speaker switching.

The proposed approach represents another class of deep

learning based monaural speaker-independent speech sepa-

ration. The main novelties are (i) its autoregressive nature,

allowing output source order to be determined without addi-

tional operations (it is just the same as the input sources) and

(ii) online processing of current and past frames, making it

inherently suitable for low-latency online applications.

Listening and grouping could be implemented with recur-

rent neural networks (RNN) like long-short term memory

(LSTM) [25], but in Section IV-A and IV-B we will intro-

duce a specific structure to take full advantage of temporal

context information in mixture and sources, which can exploit

dependency and continuity of the same source. We evaluate the

online approach on the WSJ0-2mix [16] dataset, showing that

this approach can outperform state-of-the-art online methods

and even achieve comparable or higher separation performance

than the majority of state-of-the-art offline methods.

The remainder of this paper is organized as follows: after

Section II discusses related work, Section III presents more

detail on monaural speech separation and the label permutation

problem. Section IV introduces listening and grouping and

details the proposed network structure. Section V reports

experimental results and Section VI concludes the paper.

II. RELATED WORK

The CASA-based monaural speech separation

approaches [3], [5], [26] are inspired by auditory scene

analysis (ASA) [2], which perform listening and grouping in

different ways. A traditional CASA system [3] is shown in

Fig.1(a). In the listening stage, peripheral analysis is applied

on the mixture signal for acquiring acoustic features such as

periodicity and onsets/offsets. The grouping stage then uses

these features to form mid-level representations for scene

organization and speech separation based on source models

and grouping cues. However, the listening and grouping

rules are generally heuristically designed, leading to limited

success for complex monaural speech separation tasks.

Recently, with the advance of deep learning techniques,

the performance of speech separation has been significantly

improved. For most deep learning-based methods, a listening

stage uses neural networks to extract mid-level representations.

These are used in a grouping stage along with additional

information [27], [28] or operations to generate ordered es-

timated sources. In DPCL [16]–[19], the T-F bin similarity

is measured in an embedding space. The key to DPCL is

a deep network to generate embeddings for T-F bins in the

mixture spectrogram. During grouping, a clustering algorithm

for all embeddings is used to build segments of each source.

DANet [20], [21] extends DPCL by creating an attractor point

for each source in the embedding space. Unlike DPCL and

DANet, PIT [15], [22], [23] measures similarity in the original

spectral space, and determines the best label assignment by

comparing separation errors of all possible orders.

In the latest research, several methods have been proposed

to improve or extend DPCL, DANet and PIT frameworks.

One main aspect is to focus on improved listening network

structures, such as grid-LSTM [23] and gated convolutional

networks [29]. Another is to explore better objective functions

and training schemes. For example, in [30], speaker identifica-

tion loss is added to the final loss function to reduce separation

and permutation error. And in [31] adversarial training was

introduced along with a sophisticated network to improve

separation performance, while [18] takes a different approach

where alternative objective functions such as whitened k-

means loss are explored for DPCL.

Some other works further combine DPCL, DANet and PIT

to acquire better separation results. For instance, Liu and

Wang [32] decomposed the separation task into simultaneous

and sequential grouping stages from a CASA perspective.

The two grouping stages were implemented with individual

bi-directional LSTM (BLSTM) networks, which are trained

following PIT and DPCL frameworks respectively. Among the

methods discussed above, the best separation performance is

currently achieved by Wang et al. [19], using an unfolded iter-

ative phase reconstruction algorithm, originating from multiple

input spectrogram inverse (MISI) [33], applied in an end-to-

end training structure.

Few of the recent separation architectures are compatible

with online processing, but one example is TasNet [24], [34],

[35], a network able to directly model a mixture waveform

using an encoder-decoder framework based on PIT.

Unlike the methods mentioned above, this paper proposes

an online autoregressive approach, which is an extension of

our previous source-aware context network [36]. As shown

in Fig.1(b), our approach first inputs the mixture and previ-

ously separated source frames, then directly outputs estimated

sources, which are in turn fed back as inputs during the next

time step. Moreover, a MISI-inspired (but online-compatible)

algorithm is incorporated for waveform reconstruction.

III. MONAURAL SPEECH SEPARATION

The task of monaural speech separation is to estimate S
individual source signals xs,n, s = 1, . . . , S from a single-

channel mixture of speech yn, given only the observed input

yn. In real-world situations, sources may be degraded by

reverberation, but in this paper we only focus on the condition

that yn is linearly mixed, i.e., yn =
∑S

s=1
xs,n.
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Apart from a few systems that perform separation directly in

the waveform domain, waveforms are usually first transformed

into time-frequency domain spectra by short-time Fourier

transformation (STFT), using an analysis window wn with

FFT length N and frame shift R. The relationship between

mixture and source spectra can then be formulated as,

Yt,f =
S∑

s=1

Xs,t,f (1)

Yt,f =

∞∑

n=−∞

wn−tRyne
−j2πfn/N (2)

Xs,t,f =
∞∑

n=−∞

wn−tRxs,ne
−j2πfn/N (3)

where t and f are frame and frequency indices respectively.

When estimated sources spectra X̂s,t,f are obtained, separated

waveforms can be reconstructed by inverse STFT [37]:

x̂s,n =

∑
∞

t=−∞
wn−tR

1

N

∑N−1

f=0
X̂s,t,fe

j2πfn/N

∑
∞

t=−∞
w2

n−tR

(4)

There are several ways to acquire X̂s,t,f in deep learning

based techniques. One idea is to focus on the complex domain,

for example estimating a complex ideal ratio mask [38] that

jointly enhances both real and imaginary components. Another

typical way is to only estimate magnitude spectra |Xs,t,f |,
while the phase of X̂s,t,f is either obtained directly from

mixture phase ∠Yt,f or from a phase retrieval algorithm given

|X̂s,t,f | and Yt,f , such as the Griffin-Lim algorithm [37] or

MISI [33]. An online version of MISI is developed for the

experiments in this paper.

A. Label Permutation Problem

Most deep learning approaches cast speech separation as a

multi-class regression problem, i.e., source magnitude spectra

|Xs,t,f | are recovered by a neural network, given mixture

magnitude spectra |Yt,f |. For ease of description, we will focus

on two-source notation. Generally, the separation model H can

be formulated as,

x̂1,t, x̂2,t = H(yt+Q, . . . ,yt−P ) (5)

where x̂s,t = [|X̂s,t,1|, . . . , |X̂s,t,F |] and s = 1, 2 are the

positive frequency parts of the estimated source magnitude

spectra. yt = [|Yt,1|, . . . , |Yt,F |] is the corresponding mixture

magnitude spectra, and F = ⌊N/2⌋ + 1 , Q and P are

receptive field length of future and past spectra respectively.

In order to estimate target source spectra xs,t, the model H
has to learn interaction and dependency between mixture and

corresponding sources from a representative training data set.

During training, at each time step t, the error between targets

[x1,t,x2,t] and outputs [x̂1,t, x̂2,t] needs to be computed for

back-propagation. When x1,t and x2,t have very different time

and frequency domain characteristics, e.g., x1,t is the spectra

of a speech signal and x2,t is from background noise or music,

then the ordering of corresponding output sources usually

remains unchanged. However, for multi-speaker separation

using only input y, it is unknown in advance whether the

correct output ordering should be [x̂1,t, x̂2,t] or [x̂2,t, x̂1,t]. As

a result, conflicting gradients produced by incorrect ordering

will prevent the network from converging, especially when

sources come from the same gender speakers. This is referred

to as the label permutation problem [4], [11], [15]. DPCL,

DANet and PIT can also be represented by Eqn. (5). As

described in Section II, the final output ordering (and label

permutation) is determined by additional similarity measures.

IV. LISTENING AND GROUPING

As mentioned, unlike most deep learning approaches for-

mulated as Eqn. (5), the proposed approach aims to implicitly

model the conditional distribution of current source spectra,

given past source and mixture spectra, i.e.,

x̂1,t ∼ p(x1,t|x1,t−1, . . . ,x1,t−P ;x2,t−1, . . . ,x2,t−P ;

yt, . . . ,yt−P−1)
(6)

x̂2,t ∼ p(x2,t|x2,t−1, . . . ,x2,t−P ;x1,t−1, . . . ,x1,t−P ;

yt, . . . ,yt−P−1)
(7)

To implement Eqns. (6-7), our approach consists of two main

stages of listening and grouping, as indicated in Fig. 1(b). In

the listening stage, sequences of source and mixture magnitude

spectra are individually and simultaneously transformed into

mid-level representations, which can be formulated as

ut = L(x̃1,t−1, . . . , x̃1,t−P1
) (8)

wt = L(x̃2,t−1, . . . , x̃2,t−P1
) (9)

vt = L(yt, . . . ,yt−P1−1) (10)

where x̃s,t is the input spectrum of source s, during inference

x̃s,t′ = x̂s,t′ , ∀t′ = t − 1, . . . , t − P1, P1 is the receptive

field length of past spectra in the listening stage, u, w and v

are mid-level representations of sources and mixture respec-

tively, and L(·) is the operator performing the listening stage.

Considering that all positions of each speaker are equivalent

and exchangeable for multi-speaker speech separation, in our

proposed structure the parameters of L(·) in Eqns. (8-10)

are shared between all sources and the mixture. However, it

is worth noting that using independent parameters for each

source is also feasible, especially for tasks where sources

are dissimilar and have different characteristics, e.g. speech

enhancement (clean speech vs. noise). Conceptually, Eqns. (8-

10) share some similarities with a summary vector [40].

In the grouping stage, estimated source spectra x̂1,t and

x̂2,t are generated simultaneously given sequences of mid-

level representations u, w, v from the listening stage, i.e.,

x̂1,t, x̂2,t = G(ut, . . . ,ut−P2−1;wt, . . . ,wt−P2−1;

vt, . . . ,vt−P2−1)
(11)

where P2 is the receptive field length of past spectra in the

grouping stage, u and w can be considered as CASA-like

grouping cues or source models [3], [4], and G(·) is the

operator performing the grouping stage. After this stage, x̂1,t

and x̂2,t will be fed back as inputs to the listening stage for

the next time step.
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Fig. 2. The architecture of the proposed network for a two-speaker separation task. The listening stage is implemented with three local encoders and three stacks
of L1 temporal encoders, while grouping is performed by a cascade of L2 grouping blocks and an output block. GAU, FC, MLP, sigm, c©, s©, ⊗ and ⊕ represent
Gated Activation Unit [39], full connection, multi layer perceptron, sigmoid activation, concatenation, equally slicing operation, element-wise multiplication
and addition respectively. r© denotes element-wise masking with routing vector r. z0t represents x̃1,t, x̃2,t or yt, while zlt, l = 1, . . . , L1 +L2 +1 denotes
ut, vt or wt respectively, l denotes the layer index of mid-level representations.

Considering the autoregressive nature of our approach,

when implementing Eqns. (8-11) with non-causal structures,

all previously generated mid-level representations and other

intermediate products can be reused during training and infer-

ence to greatly reduce the amount of computation while also

adapting to online processing conditions.

Conventional RNN structures like LSTM could also be

employed as listening and grouping operators, however in

Sections IV-A and IV-B we will introduce a novel network

structure for our approach which has been designed directly

with a CASA motivation in mind. The effectiveness of those

structures will be evaluated in Section V-C.

A. Listening

In the experiments presented in this paper, the sampling rate

for all waveforms is 8 kHz, from which magnitude spectra

of dimension 129 are computed over 32 ms frames with an

8 ms shift between overlapping frames. The network inputs

and outputs are µ-law companded [41] magnitude spectra1 of

mixture and estimated source speech.

1We performed a number of initial experiments with smaller models
which demonstrated that this setting slightly improved performance; perhaps
because µ-law companded magnitude spectra, unlike log magnitude spectra,
lie in the range of [0, 1], which may be more benign for a feedback-structure
model.

As described in Eqns. (8-10), in the listening stage, source

and mixture spectra x̃1, x̃2 and y are individually transformed

into mid-level representations u, w and v respectively. This

paper proposes a structure for an effective listening stage,

which consists of two types of module: local encoder and

temporal encoder.

1) Local encoder: Local encoders extract T-F features as

shown in Fig. 1(b). Represented towards the bottom of Fig. 2,

they are designed to capture ASA acoustic cues, which func-

tion similarly to feature extraction in a CASA system [3]. The

local encoder consists of 2D convolutional layers followed by

PReLUs [42] and a fully connected layer2, which are detailed

in Table I. Specifically, two convolutional layers CONV1

and CONV2 focus on local temporal-spectral features, while

the concatenation operation and the following fully connected

layer FCLE enable the local encoder to pay attention to full

band spectral features.

2) Temporal encoder: As shown in the centre of Fig. 2,

mid-level representations u, v and w are respectively extracted

by three stacks of L1 temporal encoders, i.e.,

z
l+1
t = f(zlt, z

l
t−dl), l = 1, . . . , L1 (12)

2In our initial experiments, this was found to perform better than other
local encoder structures.
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TABLE I
DETAILS OF LOCAL ENCODER. FEATURE MAP SHAPES ARE DENOTED AS

(CHANNEL, HEIGHT, WIDTH), D IS THE MID-LEVEL REPRESENTATION

DIMENSION. CONVOLUTIONS ARE KERNEL–STRIDE–PAD–CHANNEL.

Operator Setting Output feature shape

Input inputs z0t−1
and z0t in Fig. 2 (1,2,129)

CONV1 (2,2)–(1,1)–(0,0)–24 (24,1,128)
CONV2 (1,5)–(1,3)–(0,0)–48 (48,1,42)
c© reshape and concatenate (2145,1)
FCLE fully connected layer (D,1)

where z
l
t represents u

l
t, v

l
t or w

l
t, l denotes the layer index

of mid-level representations, L1 represents the number of

temporal encoders in each stack, and dl is the dilation factor

for temporal encoder l. Inspired by WaveNet [43], the temporal

encoder comprises dilated convolution and gated activation

unit (GAU) [39] to model the temporal context of each source

and mixture. As long as L1 and dl of all temporal encoders

are known, the receptive field length in the listening stage can

be determined by P1 =
∑L1

l=1
dl + 2.

B. Grouping

To implement Eqn. (11) and perform the conditional group-

ing shown in Fig. 1(b), the proposed structure for the grouping

stage includes an output block and a stack of L2 grouping

blocks, which are illustrated in Fig. 2.

1) Grouping block: As shown towards the top of the

network in Fig. 2, with details provided in the bottom left

of the figure, each grouping block l, imports mid-level repre-

sentations ul, vl and w
l from the previous layer and generates

u
l+1, v

l+1 and w
l+1 for the next layer. Grouping blocks

are designed with the main consideration that the separation

of mixtures will benefit from the estimation of sources, and

vice versa. Using a conditioning method similar to [43], ul+1
t ,

v
l+1
t and w

l+1
t can be considered as outputs given conditions

{vl
t,v

l
t−dl}, {ul

t,u
l
t−dl ,w

l
t,w

l
t−dl} and {vl

t,v
l
t−dl} respec-

tively, i.e.,

u
l+1
t = g(ul

t,u
l
t−dl |v

l
t,v

l
t−dl) (13)

w
l+1
t = g(wl

t,w
l
t−dl |v

l
t,v

l
t−dl) (14)

v
l+1
t = h(vl

t,v
l
t−dl |u

l
t,u

l
t−dl ,w

l
t,w

l
t−dl) (15)

where dl is the temporal dilation factor for grouping block l.
As with the temporal encoder, the receptive field length in the

grouping stage can be determined by P2 =
∑L2

l=L1+1
dl + 1,

where L2 denotes the number of grouping blocks. Therefore,

the total receptive field length in listening and grouping stages

is P = P1 + P2 − 1 =
∑L2

l=1
dl + 2.

As we can see in Fig. 2, the structure of grouping blocks can

be considered as the combination of three parallel temporal

encoders with two cross conditioning connections. In this

paper, a routing strategy is adopted to control the conditioning

effect in Eqns. (13-14). The original condition vector clt for u

and w activations, which are generated by FCl
v , are masked

by two routing vectors r
l
u,t and r

l
w,t respectively. Specifically,

masked condition vectors clu,t and c
l
w,t are obtained according

to Eqns. (16-23). At each time step t in grouping block l,

ūt = GRU(uL1+1

t , ūt−1) (16)

w̄t = GRU(wL1+1

t , w̄t−1) (17)

s
l
u,t = α · tanh(W l

r[c
l
t, ūt]/α) (18)

s
l
w,t = α · tanh(W l

r[c
l
t, w̄t]/α) (19)

r
l
u,t =

exp(slu,t)

exp(slu,t) + exp(slw,t)
(20)

r
l
w,t =

exp(slw,t)

exp(slu,t) + exp(slw,t)
(21)

c
l
u,t = c

l
t ⊗ r

l
u,t (22)

c
l
w,t = c

l
t ⊗ r

l
w,t (23)

where ūt and w̄t are outputs of gated recurrent unit

(GRU) [44] for mid-level representations u
L1+1 and w

L1+1

in the listening stage. slu,t and s
l
w,t are corresponding routing

scores (or energy) computed by weight matrix W l
r, [·] and

⊗ represent concatenation and element-wise multiplication

respectively, α is a scalar defining the range of elements in s
l
u,t

and s
l
w,t as (−α, α), empirically set to 5 in our experiments.

From the attention mechanism perspective, this routing

strategy performs additive attention [44] to every dimension

of c
l
t at each time step t, with c

l
t as value, and ūt, w̄t as

queries. Considering the fact that the corresponding elements

of r
l
u,t and r

l
w,t lie in the range of (0, 1) and they sum up

to 1, routing vector rlu,t can be regarded as a dimension-wise

probability distribution of the u component in c
l
t, while r

l
w,t

corresponds to the w component.

2) Output block: Given outputs of the final grouping block

u
L1+L2+1

t , vL1+L2+1

t and w
L1+L2+1

t , the output block gen-

erates estimated source spectra x̂1,t and x̂2,t using a multi

layer perceptron (MLP) structure equipped with PReLUs, as

shown near the top of Fig. 2. In experiments, the MLP

structure is used to generate amplitude masks for estimation.

The computation of x̂1,t and x̂2,t is defined as follows;

x̂1,t = yt ⊗MLPo([u
L1+L2+1

t ,vL1+L2+1

t ]) (24)

x̂2,t = yt ⊗MLPo([w
L1+L2+1

t ,vL1+L2+1

t ]) (25)

where MLPo(·) denotes the function of the MLP structure.

It is worth mentioning that, with respect to sources x1

and x2, the structure is completely symmetric and network

parameters are all shared. This characteristic conforms to the

common sense that all positions of each source are equivalent

and exchangeable. Moreover, this design avoids model size

growth when source number increases.
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Fig. 3. The MPT strategy, showing only source s for clarity. Each circle
represents one target or estimated source spectrum frame. Ms is a queue of
fixed length P that stores source s inputs for each time step. (a) to (d) show
two time steps t and t+1 during training. (a) Ms is initialized with all target
spectra, and estimated spectrum x̂s,t is generated by the network. (b) The
last item xs,t−P is popped out from Ms, and x̂s,t is pushed to the front of
Ms. (c) x̂s,t+1 is generated from the updated Ms. (d) xs,t−P+1 is popped
out from Ms, and x̂s,t+1 is pushed to the front of Ms, and the process
continues. The mixture input and other source are handled similarly.

C. Multi-time-step prediction training

Using a conventional training method such as [43], a

mismatch problem would arise between training and inference

stages. During training, source inputs x̃s,<t in Eqns. (6-7)

are target spectra xs,<t, whereas in the inference stage, they

change to estimated spectra x̂s,<t. The error between the two

spectra leads to a mismatch.

To alleviate this, we develop a multi-time-step prediction

training (MPT) strategy. During training, in each mini batch

the network does look-ahead prediction over T sequential time

steps. After each spectrum is predicted, it is fed back as the

next estimated source input. Fig. 3 illustrates the procedure

at time steps t and t + 1. At the first time step t, the input

source spectra are initialized with all target spectra. These

will gradually be replaced by estimated spectra as prediction

proceeds. When multi-time-step prediction has finished, and

T estimated spectra of each source have been generated, the

loss gradients across all time steps are back-propagated as a

batch. This enforces the network to exploit temporal context

constraints on the estimated sources. The loss function is de-

fined as the averaged MSE between targets and corresponding

estimated source spectra:

Ot =
1

TF

T−1∑

t′=0

S∑

s=1

‖xs,t+t′ − x̂s,t+t′‖
2
2 (26)

where S and F are source number and the dimension of

spectrum, ‖ · ‖2 is the L2 norm.

V. EXPERIMENTS

We evaluate separation performance with various settings

in terms of average signal-to-distortion ratio (SDR) [45] im-

provement between separated speech and mixture – a widely

adopted metric in multi-speaker speech separation research.

A. Experimental Settings

The WSJ0-2mix dataset, introduced in [16] and derived

from the WSJ0 corpus [46], is adopted for our evaluations.

It comprises a 30-hour training set and a 10-hour validation

set of two-speaker mixtures generated by utterances randomly

selected from the WSJ0 training set si_tr_s, mixed at

various signal-to-noise ratios (SNR) between 0 dB and 10 dB.

A 5-hour test set is similarly generated using utterances from

16 unseen speakers in the WSJ0 development set si_dt_05

and evaluation set si_et_05. The validation set and the test

set are used to evaluate separation performance for closed

condition (CC) and open condition (OC) tests respectively,

which is similar to [15], [16], [21].

Both conventional LSTM and the proposed network struc-

tures for listening and grouping (LG) stages are evaluated in

our experiments. The structure details are as follows:

• LG-Listen is the proposed listening structure introduced

in Section IV-A, comprising three local encoders and

three stacks of L1 = 5 temporal encoders. The di-

mension D of mid-level representations u, v and w

is 256, and dilation factors for temporal encoders are

[d1, . . . , d5] = [1, 2, 4, 8, 16], giving P1 = 33.

• LSTM-Listen is composed of three stacks of LSTM

layers, which are used to implement the listening stage

described in Eqns. (8-10) respectively, i.e. L(·) =
LSTM(·). Each stack has 2 LSTM layers with 352
hidden units in each layer, and the output linearly

transformed to D = 256 dimensions.

• LG-Group is the proposed grouping structure described

in Section IV-B, comprising L2 = 5 stacked grouping

blocks and an output block. The dimension D of mid-

level representations and the dilation factors are the same

as those in LG-Listen and P2 = 32.

• LSTM-Group comprises 2 LSTM layers with 480 hid-

den units in each layer, and a fully-connected layer

to generate estimated source spectra x̂1 and x̂2. It is

designed to implement the grouping stage described in

Eqn. (11), given the concatenation of current mid-level

representations ut, vt and wt from the listening stage

as input, i.e. G(u;w;v) = LSTM([ut,wt,vt]), where

[·] represents concatenation.

For fair comparison, the number of parameters in LG-

Listen and LSTM-Listen are matched at approximately

2.6 million each, while LG-Group and LSTM-Group are

matched with about 5.6 million parameters each.

All networks are implemented using MXNet [47] and are

optimized within 100 epochs using the Adam algorithm [48]

with fixed batch size 256 and initial learning rate 0.001.

Learning rate adjustment and early stopping strategies are

adopted by observing SDR results on the validation set. No

further regularization or training strategies are used.

Separated waveforms can be reconstructed from estimated

sources spectra, using either original mixture phase, or the
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Fig. 4. Training stage MSE and inference stage SDR improvements (dB) in
CC and OC conditions for the proposed structures with different step number
T in MPT strategy. T=1 denotes a conventional training method.

phase retrieved using the MISI algorithm [33] for better perfor-

mance. However, MISI requires the whole mixture utterance

to be used as input for reconstruction, which is incompatible

with low-latency or online implementation. We therefore refor-

mulate MISI into a real-time (RT) algorithm which we denote

RTMISI. This is inspired by RTISI [49], and retrieves source

phase in time sequential order (frame-by-frame) without the

need for future mixture information. However the use of some

future information is beneficial to performance, and so we

enable RTMISI to trade-off between latency and separation

performance by allowing a limited number look-ahead frames.

With a short frame overlap, processing is still online, but

benefits from the increased temporal scope.

In the following sections, first we investigate the effect

of MPT introduced in Section IV-C. We next compare be-

tween LSTM and the proposed structures before separately

investigating the effects of listening to sources and grouping.

Finally, our proposed approach with different phase retrieval

algorithms is compared to other state-of-the-art approaches.

B. Effect of MPT strategy

We first investigate the effect of MPT strategy for the

proposed structure LG-Listen+LG-Group in terms of training

stage MSE and inference stage SDR improvements (dB) for

both CC and OC. Separate waveforms are reconstructed with

estimated sources spectra and original mixture phase. From

Section IV-B, we can see that the total receptive field length

of LG-Listen+LG-Group is P=64. The results of conven-

tional training and MPT with different step numbers T in

Section IV-C are compared in Fig. 4.

We can see immediately that although conventional training

(T=1) obtains the lowest training stage MSE (about 0.0006),

the inference stage SDR improvements in both CC and OC

conditions are poor (i.e. approximately −4 dB in both CC and

OC conditions), indicating a large mismatch between training

and inference stages. When T increases, due to the MPT

strategy, the training MSE rises moderately. This is reasonable

since estimating a sequence of source spectra requires the

network to learn the continuities and dependencies within

estimated sources, which is more difficult than estimating

an individual frame. However, inference SDRs in both CC

TABLE II
SDR IMPROVEMENT (dB) IN CC AND OC CONDITIONS AND

APPROXIMATE MODEL SIZES (NUMBER OF PARAMETERS) FOR VARIOUS

METHODS, INCLUDING CONVENTIONAL LSTM, THE PROPOSED

APPROACH AND OTHER STATE-OF-THE-ART ONLINE METHODS.

Network structure
Model size SDR Imp.
(million) CC OC

LSTM-Listen + LSTM-Group 8.2 7.9 8.0
LG-Listen + LSTM-Group 8.2 8.0 8.2
LSTM-Listen + LG-Group 8.2 9.6 9.8
LG-Listen + LG-Group 8.2 10.3 10.4

uPIT-LSTM-PSM [15] 65.7 7.0 7.0
TasNet-LSTM [24] 31.0 – 8.0

TasNet-LSTM-50% [34]3 32.0 – 11.2

Conv-TasNet-BN [35]3 8.8 – 11.2

and OC conditions are significantly improved and gradually

converge to approximately 10 dB, suggesting that MPT mit-

igates the mismatch between training and inference stages.

Moreover, the best SDR results can be observed at T=64,

which is equal to P . Under this condition, input source spectra

consist of 50% of target spectra and 50% of estimated spectra.

This result suggests that an appropriate ratio of target and

estimated source inputs may be essential for training. Finally,

comparable or higher SDRs for OC compared to CC indicate

the approach generalizes well for unseen speakers.

In summary, the MPT strategy is successful at alleviating

the mismatch between training and inference stages. We set

T=64 for the following experiments.

C. Comparison of Different Structures

In this section, conventional LSTM (LSTM-Listen, LSTM-

Group) and the proposed structures (LG-Listen, LG-Group)

are evaluated. By combining different structures in listening

and grouping stages separately, there are four settings in total

for comparison. The SDR improvements of all settings in CC

and OC conditions are shown in Table II, where separate

waveforms are reconstructed with estimated source spectra and

original mixture phase. Other state-of-the-art online methods3

are also included in Table II.

Firstly, it can be seen that even with conventional LSTM

structures, our approach achieves comparable or higher SDRs

(e.g., 8.0 dB SDR in OC conditions for LSTM-Listen +

LSTM-Group) than other previously reported state-of-the-

art networks uPIT-LSTM-PSM [15] and TasNet-LSTM [24],

demonstrating the effectiveness of the approach. In addition,

we can compare results for different grouping structures with

the same listening structure, e.g., LG-Listen. The SDR gaps

between LSTM-Group and LG-Group, e.g., from 8.2 dB

to 10.4 dB in OC conditions with LG-Listen, indicate that

our proposed grouping structure performs the grouping task

better than LSTM-Group. Meanwhile, a similar trend can

be observed by comparing different listening structures with

the same grouping structure. It is worth noting that the pro-

posed grouping structure yields more significant improvements

3TasNet-LSTM-50% [34] and Conv-TasNet-BN [35] are post-submission
revisions of [24]. We include these results for fair comparison.
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compared to LSTM than the proposed listening structure.

For example, in OC conditions, the averaged SDR difference

between LG-Group and LSTM-Group is 2.0 dB, higher than

that between LG-Listen and LSTM-Listen, which is 0.4 dB.

This may be due to the fact that the grouping stage is more

important to overall performance than the listening stage, so it

demands more powerful structures. Finally, it can be seen that

using both the proposed structures in listening and grouping

stages achieves the highest SDR improvements among other

previously reported online methods.

In summary, these results demonstrate the effectiveness

of our approach compared with other state-of-the-art online

methods. Meanwhile, results demonstrate the proposed struc-

tures in listening and grouping stages may both outperform

conventional LSTMs for a limited number of parameters,

particularly when operating in conjunction with each other.

Therefore, in the following experiments we focus on the

proposed listening and grouping structures, denoted as LG.

D. Effect of Listening to Sources

In our approach, listening to the mixture is obviously

necessary for separation, but the effect of listening to sources

still needs further justification. Therefore, we construct an

experiment on three different arrangements for comparison:

1) Listening with sources represents the proposed listen-

ing and grouping approach, where the network LG lis-

tens to not only the mixture, but also separated sources.

2) Listening without sources sets the former network to

listen only to the mixture but not sources; no separate

source feedback is provided in the grouping stage. The

loss function for training is conventional MSE.

3) Listening without sources + PIT originates from Lis-

tening without sources, but the difference is that a

PIT modified MSE following utterance level PIT [15]

is adopted in place of conventional MSE.

Each arrangement has the same batch size and initial

learning rate, with step numbers T = 64 for MPT. The training

progress of each setting, measured by MSE (or PIT modified

MSE) on training and validation sets, is presented in Fig. 5.

We can clearly see that Listening without sources barely

reduces either training or validation MSE (by about 0.106),

which is mainly due to the label permutation problem men-

tioned in Section III-A. By contrast, incorporating the PIT

technique, Listening without sources + PIT enables training

and validation MSE to converge to a relatively low level,

around 0.0030 and 0.0033 respectively. This observation is

consistent with [15]. Meanwhile, by listening to separated

sources, both the training and validation MSE in Listen-

ing with sources steadily decrease through training epochs,

with final results of about 0.0011 for the training set and

0.0013 for the validation set. This implies that listening to

sources can effectively address the label permutation problem.

Moreover, by comparing Listening without sources + PIT

and Listening with sources, we can see that listening to

sources converges faster and finally achieves considerably

lower training and validation MSEs than the PIT technique.

This may derive from the fact that PIT attempts to obtain a

constant output permutation based on separation error [15],

but listening to sources enforces output permutation to be

the same as the input sources, which encourages the network

to exploit the temporal context of the source signal in an

autoregressive manner. This allows listening to sources to

provide a more effective constraint than the PIT technique.

Moreover, as training gradually converges, listening to sources

will provide more precise and useful information from sources

for the grouping stage, in addition to that from the original

mixture signal, which is beneficial for grouping to model the

interaction of mixture and source signals. This is an important

advantage of our listening and grouping approach, compared to

most existing deep learning approaches formulated as Eqn. (5).

In summary, listening to sources is essential for our ap-

proach to address the label permutation problem and exploit

the temporal context of source signals.

E. Effect of Grouping

In our approach, the grouping stage is designed to generate

estimated sources spectra given mid-level representations from

the listening stage. In this section, to investigate the effect of

grouping, we visualize the corresponding spectra and mid-

level representations from network LG using t-distributed

stochastic neighbor embedding (t-SNE) [50]. Fig. 6 shows

the corresponding two-dimensional t-SNE results of mixture

spectra y, sources spectra x1, x2 and mid-level representations

u, v, w in listening and grouping stages from one male-female

mixture utterance in the test set. The perplexity for t-SNE is

set to 30, and in Fig. 6 each point represents one frame of

spectrum or mid-level representation respectively.

Firstly, from Fig. 6(a), we can see that the t-SNE distri-

butions of mixture y and two target sources spectra x1, x2

substantially overlap, suggesting similarity between mixture

and sources in original spectral space. Meanwhile, in Fig. 6(b)

the final output mid-level representations v, u and w in the

listening stage, which correspond to mixture y and two sources

x̃1, x̃2 respectively and are formulated in Eqns. (8-10), are still

mixed together, indicating that the listening stage does not per-

form a separation operation on the mixture. However, as shown
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Fig. 6. Visualizations of two-dimensional t-SNE [50] results of mixture
spectra y, sources spectra x1, x2 and intermediate representations u, v,
w in listening and grouping stages from one utterance in the test set. Each
point represents one frame. (a) Mixture and target sources spectra. (b) Final
output mid-level representations from the listening stage. (c) Intermediate
representations from the middle of the grouping stage. (d) Mixture and output
sources spectra.

in Fig. 6(c), the mid-level representations u, v and w from the

third grouping block have significantly different distributions

– three well-separated and well-grouped sets. Moreover, it

can be clearly seen that the interval between mixture and

sources representations are much greater than that between two

sources, suggesting that the mixture representations are more

dissimilar than the source representations. Finally, estimated

sources spectra are reconstructed given well separated and

grouped representations from grouping blocks, but in Fig. 6(d),

it can be observed that mixture and estimated sources spectra

overlap again – a similar distribution to that of mixture and

target source spectra.

In addition to the autoregressive and online processing

nature of our approach described in Section I, in Fig. 6 we can

find another important difference between our approach and

other state-of-the-art deep learning methods, in the grouping

stage. DPCL and DANet perform grouping by clustering T-F

bin embeddings for each speaker category according to the

distance in embedding space, which encourages embeddings

to focus on speaker difference. On the other hand, PIT usually

focuses on the spectral structure difference between target and

estimated sources. However, compared to those methods, our

approach has two characteristics – it not only pays attention

to the differences between mixture and sources implicitly,

it also preserves spectral information in mixture and source

signals. The first characteristic can be observed from the

distribution of three well-separated sets of representations in

Fig. 6(c). Meanwhile, the second characteristic allows the

network to successfully reconstruct estimated source spectra,

indicated from the short curves formed by several u or w

points, corresponding to continuous spectral structures in the

signals. In summary, Fig. 6 reveals that the grouping stage

TABLE III
SDR IMPROVEMENTS (dB) AND APPROXIMATE MODEL SIZES (IN TERMS

OF PARAMETER NUMBER ESTIMATED ACCORDING TO THE PAPERS) OF

VARIOUS SYSTEMS IN OC AND CC CONDITIONS ON WSJ0-2MIX DATASET.

Method
Model Size SDR Imp.

Comments
(million) CC OC

Oracle NMF [16] – 5.1 – Conventional
approachesCASA [16] – 2.9 3.1

DPCL+ [17] 10.6 – 9.4

Offline
approaches

DPCL++ [17] 16.9 – 10.8
DANet-6 anchor-BLSTM [21] 8.3 – 10.8
PIT-CNN-51\51 [15] – 7.6 7.5
uPIT-BLSTM-PSM [15] 46.4 9.4 9.4
uPIT-BLSTM-PSM-ST [15] 94.6 10.0 10.0
CASA-E2E [32] 54.3 – 11.0
DC+MI+MISI [18] 29.6 11.4 11.5
WA-MISI-5 [19] 29.6 13.2 13.1
TasNet-BLSTM [24] 22.5 – 11.1

TasNet-BLSTM-50% [34]?? 23.6 – 13.6

Conv-TasNet-gLN [35]?? 8.8 – 15.0

LG MISI4 8.2 13.1 13.0

uPIT-LSTM-PSM [15] 65.7 7.0 7.0

Online
approaches

TasNet-LSTM [24] 31.0 – 8.0

TasNet-LSTM-50% [34]?? 32.0 – 11.2

Conv-TasNet-BN [35]?? 8.8 – 11.2
Source-Aware network [36] 7.2 9.3 9.5
LG mixture phase 8.2 10.3 10.4
LG RTMISI look-ahead 0ms 8.2 11.1 11.0
LG RTMISI look-ahead 8ms 8.2 12.5 12.4
LG RTMISI look-ahead 16ms 8.2 13.0 12.9
LG RTMISI look-ahead 24ms 8.2 13.1 13.0

firstly separates and groups mixture and sources represen-

tations respectively, then reconstructs sources spectra using

well separated and grouped representations, which is similar to

simultaneous and sequential grouping in CASA systems [3].

F. Performance Comparison of Various Approaches

Table III summarizes SDR improvements (dB) in CC and

OC conditions and approximate model size (in terms of

estimated number of parameters according to the papers) for

different approaches with similar or comparable experimental

settings on WSJ0-2mix dataset. As described in Section II, we

can divide approaches into three categories for comparison:

conventional, offline and online deep learning approaches.

Firstly, we can see that offline deep learning approaches

outperform conventional approaches in terms of SDR im-

provements. For instance, WA-MISI-5 [19] combines DPCL,

PIT and MISI techniques and achieves 13.2 and 13.1 dB

SDR in CC and OC conditions with an end-to-end training

structure. However, the performance of online deep learn-

ing approaches still have a large gap compared to offline

approaches. For example, TasNet-LSTM-50% [34] directly

models the waveform domain using LSTM and PIT techniques

and achieves 11.2 dB SDR in the OC condition, which is

2.4 dB lower than TasNet-BLSTM-50% [34]. As described in

Section V-A, mixture phase, MISI and RTMISI algorithms are

applied respectively for our approach. Using original mixture

4LG MISI uses the same magnitude spectra estimated online from LG
mixture phase, and the whole mixture utterance is only used for phase
retrieval, which is different from those offline approaches listed above.
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TABLE IV
SDR IMPROVEMENTS (dB), PESQS AND STOIS WITH RESPECT TO

DIFFERENT GENDER COMBINATIONS AND OVERALL PERFORMANCE IN OC
CONDITIONS FOR LG RTMISI LOOK-AHEAD 24MS ON WSJ0-2MIX.

Gender info. Male-male Male-female Female-female Overall

SDR Imp. 12.889 14.840 12.753 13.003
PESQ 3.282 3.457 3.212 3.324
STOI 0.954 0.968 0.938 0.956

TABLE V
SDR IMPROVEMENTS (dB), PESQS AND STOIS WITH RESPECT TO

DIFFERENT INPUT MIXTURE SNR LEVELS (dB) IN OC CONDITIONS FOR

LG RTMISI LOOK-AHEAD 24MS ON WSJ0-2MIX.

SNR levels 0∼2.5 2.5∼5.0 5.0∼7.5 7.5∼ ∞

SDR Imp. 12.633 12.969 13.404 14.970
PESQ 3.238 3.291 3.328 3.411
STOI 0.945 0.953 0.956 0.960

phase, our network LG obtains 10.3 and 10.4 dB SDR in

CC and OC conditions. Furthermore, when using various

MISI and RTMISI settings, LG achieves up to 13.1 and

13.0 dB SDR in CC and OC conditions given the same output

spectra, which is a significant boost (about 2.6 dB) compared

with mixture phase. Meanwhile, these results reveal that our

approach has achieved the highest SDRs over state-of-the-art

online approaches, even outperforming the majority of offline

deep learning approaches, and is only beaten by WA-MISI-

5 [19] and the most recently reported results from TasNet-

BLSTM-50% [34] and Conv-TasNet-gLN [35]. Finally, due

to the symmetric structure and shared parameters settings, our

network has the fewest parameters (about 8.2 million) among

the compared models, apart from our previously proposed

source-aware context network [36].

To further investigate the separation performance of our

approach, we report SDR improvement (dB), perceptual eval-

uation of speech quality (PESQ) [51] and short-time objective

intelligibility (STOI) [52] with respect to different gender com-

binations and input SNR levels respectively in OC conditions

for model LG RTMISI look-ahead 24ms. Firstly, separation

performance with respect to different gender combination and

overall performance across all combinations are reported in

Table IV. From this table, we can clearly see that our approach

achieves much better SDR, PESQ and STOI on male-female

combinations than same gender conditions. For example, the

SDR of male-female speech is approximately 2 dB higher than

male-male or female-female combinations. These results agree

with the observation from some other works [15], [16], [28],

[32], and indicate that same gender mixed speech separation

is often a harder task. Secondly, Table V reports these metrics

with respect to different input mixture SNR levels (dB), which

are divided into four categories: 0≤SNR<2.5, 2.5≤SNR<5.0,

5.0≤SNR<7.5 and 7.5≤SNR. From Table V, we can clearly

observe that SDR improvements, PESQ and STOI all increase

steadily with the increase in SNR. These results indicate that,

for our approach, input mixtures with higher SNR levels may

be easier to separate than low SNR levels, which is similar to

some other works [28], [53], [54].

TABLE VI
SDR IMPROVEMENTS (dB) AND PESQ IN OC CONDITIONS FOR VARIOUS

SYSTEMS EVALUATED ON THE WSJ0-2MIX DATASET.

Methods SDR Imp. PESQ Comments

uPIT-BLSTM-PSM [15] 9.4 2.63
Offline
approaches

DANet-6 anchor-BLSTM [21] 10.8 2.82
WA-MISI-5 [19] 13.1 –
TasNet-BLSTM-50% [34], [35] 13.6 3.04
Conv-TasNet-gLN [35] 15.0 3.25

TasNet-LSTM-50% [34], [35] 11.2 2.84
Online
approaches

Conv-TasNet-BN [35] 11.2 2.86
LG RTMISI look-ahead 24ms 13.0 3.32

Mixture 0.0 2.01

Finally, reported SDR improvements (dB) and PESQs in OC

conditions for various systems are summarized in Table VI.

From this table, we can see that the proposed approach

achieves highest SDR improvement among state-of-the-art

online approaches, only lower than WA-MISI-5 [19] and most

recently reported offline models TasNet-BLSTM-50% [34]

and Conv-TasNet-gLN [35]. Moreover, our model outperforms

reported state-of-the-art offline model Conv-TasNet-gLN in

terms of PESQ (about 0.07 absolute improvement). Compared

to TasNet models [24], [34], [35], our approach focuses on the

magnitude spectral domain, in which PESQ is measured, while

TasNet models use SI-SNR or sample-level MSE as training

objectives in the sample domain, both closely related to the

SDR metric. This may explain the different SDR and PESQ

trends in Table VI. In the future, it would be interesting to

explore sample domain modeling, which is likely to provide

better performance in terms of SDR.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an online autoregressive

approach for monaural multi-speaker speech separation in

an explicit listening and grouping architecture. Our approach

jointly exploits causal temporal context information in both

mixture and past estimated sources signals, which can address

the label permutation problem and meet online requirements.

Meanwhile, we have proposed a specific network structure

to take full advantage of dependency and interaction of

mixture and sources. An MPT strategy is also developed to

alleviate mismatch between training and inference stages, and

the RTMISI algorithm is implemented for phase retrieval to

improve waveform reconstruction. Experimental results on the

benchmark WSJ0-2mix dataset reveal that the MPT strategy

and the RTMISI algorithm enable the proposed approach to

outperform the majority of online and offline state-of-the-art

methods in terms of SDR improvement and PESQ in both

CC and OC conditions, while having relatively fewer model

parameters.

This approach can be extended to non-causal configuration,

where future mixture information is utilized to improve sepa-

ration performance. One possibility is to make the “listening

to mixture” stage (formulated in Eq. (10)) non-causal, while

keeping other stages unchanged. To make use of future mixture

information, in this “listening to mixture” stage, mixture mid-

level representations can be extracted from a sequence of past,
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current and future mixture spectra using a non-causal struc-

ture, e.g., BLSTM, non-causal convolutional layer or other

CNN-RNN hybrids. Our approach can also be generalized

to more than two sources; more local encoders and temporal

encoders could be employed to extract mid-level representa-

tions independently for additional sources. Meanwhile, since

source representations are only directly connected to mixture

representations in the grouping block, more connections be-

tween source and mixture representations could be established

according to the number of sources. The output block could

be extended similarly. Finally, the performance boost by using

MISI and RTMISI indicates a potential improvement from

more powerful network structures that can directly model the

complex relationship between mixture and source waveforms.
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