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Abstract. Understanding how difficult a learning task is for a person allows 

teaching material to be appropriately designed to suit the person, especially for 

programming material. A first step for this would be to predict on the task diffi-

culty level. While this is possible through subjective questionnaire, it could lead 

to misleading outcome and it would be better to do this by tapping the actual 

thought process in the brain while the subject is performing the task, which can 

be done using electroencephalogram.  We set out on this objective and show that 

it is possible to predict easy and difficult levels of mental tasks when subjects are 

attempting to solve Java programming problems. Using a proposed confidence 

threshold, we obtained a classification performance of 87.05% thereby showing 

that it is possible to use brain data to determine the teaching material difficulty 

level which will be useful in educational environments. 

Keywords: Confidence threshold, Education, EEG, Java, Mental task level, 

NASA TLX, Programming task. 

1 Introduction  

Gerjets et al. [1] describes optimum learning conditions as providing learning at the 

appropriate level and pace for the learner. To be able to tailor the teaching material, it 

is first imperative to decide on the difficulty level of material as perceived by the 

learner. But assessment measures such as obtaining correct vs incorrect responses in 

the exams may not be a good indication to gauge the understanding of the students. 

Often, learners could miss-assume their level of understanding and therefore causing 

incorrect tailoring of the material, pace etc. 

Therefore, it becomes necessary to utilise measures that can correctly predict the 

difficulty level. Subjective and dual-task procedures can be used for this purpose but 



likely to interrupt the subjects in-between the experiments and it may annoy them 

though it could produce less noisy data and provide promising results [2]. 

Electroencephalogram (EEG) is a suitable approach for unobstructive and continu-

ous measure of the task level difficulty [3] as it can measure the brain’s response to the 

learning material presented and therefore offers a direct measure on the task difficulty 

level (TDL). Furthermore, EEG is non-invasive, portable and relatively cheap when 

compared to other measures of brain activity such as functional magnetic resonance 

imaging (fMRI).  

Klimesch [4] has proposed using event related desynchronisation (ERD) feature ex-

tracted from the EEG as a measure of task difficulty level. ERD measures the extent to 

which neuron populations no longer oscillate synchronously to process the given task 

[5]. Band energies in specific EEG bands such as delta, alpha and beta in frontal areas 

of the brain have also been used to predict the memory load [6-8]. Here, we set out to 

use more channels to cover more areas of the brain and additionally combine inter-

hemispheric asymmetry (ASR) features [9] as additional measure of cognitive load. We 

also use subjective measurement with NASA TLX index [10]. 

The band energies, ERD and ASR are used individually and in combination with six 

different classifiers: Quadratic Discriminant Analysis (QDA), Support Vector Machine 

(SVM), Naïve Bayes (NB), k-Nearest Neighbour (KNN), neural network (NN) and 

random forest decision tree (TREE) to classify the programming mental task into either 

the easy or the difficult levels. We also employ a confidence approach to further in-

crease the prediction performance. Java programming language was used here as it is 

popular in Computer Science programmes throughout the world but any coding lan-

guage could have been used instead. 

2 Methodology 

2.1 Experimental Paradigm 

Nine subjects were recruited from a pool of postgraduate students from School of Com-

puting, University of Kent, who had at least six months of Java experience or have 

taken Java programming module as a part of their postgraduate course. Out of nine 

subjects, seven were males and two females. Subjects age ranged between 20 and 37 

years (mean = 26±3.74). However, data from two male subjects could not be used as 

they did not complete a baseline task which was necessary to compute the ERD features 

(discussed later).  

Ethical approval was obtained from University of Kent Sciences Research Ethics 

Committee and subjects signed a voluntary consent form and were paid £15 each. The 

subjects were briefed on the tasks and the experiment was designed such that the sub-

jects would be able to understand the given program and perform the code execution 

mentally. Subjects have to give the final output of the program code as an answer and 

this method was chosen to avoid inductive bias. All codes were written in Java pro-

gramming language and initially, a total of 20 Java programs were developed into three 

categories (spatial relation, visual object grouping, mathematical execution), each from 

two different TDL (easy, difficult). From this, six Java programs as deemed easy and 



difficult by questionnaire responders were selected (three for easy and three for difficult 

categories).  

The easy and difficult TDL were pre-determined using questionaire responses from 

15 subjects who were not involved in the EEG data collection. The volunteers (age: 

28.8±4.63, 9 males and 6 females, all non-related to University of Kent, who have suf-

ficient experience in Java (currently working or proficient in Java - mean experience of 

30.53±3.56 months). This good Java experience ensures correct ‘ground truth’ of 

choosing different task difficulty level; there was no statistical difference in age range 

for these and the volunteers for EEG based study. These subjects completed a question-

naire on time-spent and task difficulty level rating for each task. The difficulty level 

ranged from 1 to 10 (where 1 is very easy task, 10 is impossible to solve mentally). 

Only those questionaire with correct answers to the questions were considered. The 

different task categories to be solved were:  

• Spatial relation tasks that test subject’s spatial reasoning skills like visualising shape 

of objects mentally. For example, visualising two rectangle objects mentally using 

parameters of x-axis and y-axis coordinates, width and height and to solve whether 

the two rectangles overlaps or not.   

• Visual object grouping tasks that utilises subject’s working memory to recall the 

swapped, mapped or sorted shape of objects group correctly. For example, given a 

number of shape objects mapped to variables and grouped in an array in different 

order, subject has to map the object variable name with the shape objects correctly 

and output those objects in order. 

• Mathematical execution where the subject had to perform arithmetic calculations 

mentally. For example, subject has to compute the mean of an array of integers. 

Prior to performing the tasks, subjects were asked to relax for one minute (EEG was 

also collected during this time as baseline). Table 1 shows the GUI steps in collecting 

the EEG data. Steps 3 and 4 will repeat until all six programs are shown (in random 

order). Figure 1 shows an example of the task screen. 

This GUI not only serves as a front-end, but also communicates with the EEG col-

lection device via COM port (emulated serial port) by sending different markers values 

for different user activities such as relax and task execution states. Table 2 gives the 

details of marker type and the sent value to EEG device during the experiment. This 

information can be used to segment the EEG into the different tasks. 

Subjects were demonstrated the working of the GUI and were asked to perform the 

practise tasks in order to familiarise with the tool. Before the experiment was started, 

subjects sat comfortably. They were discouraged to make physical movement (example 

avoid blinking where possible, excessive swallowing or any hand gestures etc during 

the task experiment and to focus on the presented task while solving the program code. 

Figures 2-4 show examples of the tested Java codes. 

 

 



Table 1. GUI Sequence for the Experiment  

Screen Description 

1. Welcome Displays general information on the research 

2. Instruction Displays instructions to be followed by the 

subjects during the experiment 

3. Relax During this screen, the subjects will relax or 

complete the NASA TLX feedback for the 

tasks they solved (no time limit). 

4. Task This screen contains the Java codes to solve 

and a text box for the subject to input their 

responses. 

5. Thank you This screen contains thank you message and 

indicates the end of the experiment. 

 

 

 

 

Fig. 1. Task Screen. 

 

Table 2. Marker Values Sent by GUI to EEG Device 

Marker Type Value 

Start of task 1 

End of task 2 

Start of relax state (to indicate baseline recording) 3 

 

 



Solve the Java program below. Note: Rectangle object 

is defined as drawRectangle (x-axis, y-axis, width, 

height) 

 

   class MyCanvas extends JComponent { 

      public void paint(Graphics g) { 

         g.drawRect (2, 2, 10, 10); 

         g.drawRect (5, 5, 10, 10); 

      } 

   } 

 

Will two rectangles overlap? 

Fig. 2. An example of the tested spatial relation Java code. 

 

Solve the Java program below 

public class Main { 

 public static void main(String[] args) { 

  ArrayList<Object> array = new ArrayList<Object> (); 

    String a = "Circle"; 

    String b = "Triangle"; 

    String c = "Square"; 

    String d = "Triangle"; 

    String e= "Circle"; 

    String f = "Triangle"; 

    array.add(b); 

    array.add(a); 

    array.add(d); 

    array.add(e); 

 

    for (int i = 1; i < 4; i++) { 

      System.out.print(array.get(i) + " "); 

    } 

 } 

} 

 

Last three shape objects are? 

Fig. 3. An example of the tested visual object grouping Java code. 

 

 



 

Solve the Java program below 
public class Main { 

 public static void main(String[] args) { 

  int [] vars = {4, 8, 10, 12, 16, 10, 18, 2, 3, 5}; 

  int value = 0; 

  int count = 0; 

 

  for(int i = 0; i< vars.length; i++){ 

    value += vars[i]; 

    count++; 

  } 

  int temp = value/count; 

  System.out.println(temp); 

 } 

} 

What is the output of the program?  

 

Fig. 4. An example of the tested mathematical Java code. 

 

2.2 NASA TLX Survey 

After solving each task, the subjects were instructed to fill a paper based NASA TLX 

rating sheet based on their perception on task difficulty level. NASA TLX index is a 

six dimensional subjective measurement method developed NASA to measure cogni-

tive loads [10]. The six dimensional sub scales are mental demand, physical demand, 

temporal demand, performance, effort and frustration level. The workload is evaluated 

in two procedures for each task: first, subjects have to give their perspective in a sub-

scale rating range from 0-100 (divided into 20 equal intervals) and second is the sub-

scale weights created by forming 15 possible pair from six dimensional elements and 

subjects choose the most important dimension or factor contributing to the workload.  

Here, after marking the six dimension ratings, the subject were instructed to circle 

the most important dimension that contributes to the task which is given in pairs as 

mentioned above. The overall Weighted Workload Score (WWS) is computed from the 

subjects rating and weight that contribute to the cognitive workload. This procedure is 

similar to the usage of NASA TLX Index form in the study done by Fritz et al. [11]. 

2.3 EEG Data 

The EEG data was obtained from Emotiv Epoc 14 channels (configuration as shown in 

Figure 5) wireless EEG device sampled at 128 Hz. During the experiment, the signal 

strength was continually checked and adjusted to ensure all the electrodes had good 

contact with the scalp through the use of saline solution.  

The EEG data was segmented to one second lengths. Elliptic IIR filters were used to 

filter the segmented EEG signals in delta (1-4) Hz), theta (4-8 Hz), alpha (8-12 Hz), 

beta (12-30 Hz), gamma (30-50 Hz) bands [12] and feature extraction techniques were 

performed on these segments. Eighty such segments were obtained for each category 

and as such there were 480 patterns from six tasks altogether (easy and difficult tasks 

from three categories). 



 

Fig. 5. Emotive electrode locations 

2.4 EEG Analysis 

ERD was computed by band pass filtering the EEG signal within the specified fre-

quency band and percentage band power change was computed between the relaxed 

state and task execution state using (1):  

 ERDb = (BEr  - BEtaskb) / BEr (1) 

where band energy during resting was computed using 
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with x is EEG data from each channel with length n from either the rest or task execu-

tion state and  �̅ is the mean of each channel. Given 14 channels and 5 bands, there 

were 70 ERD features for each one second EEG. 

 
The ASR of each spectral band was computed using (2) and as in [9]: 
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where ASR is the asymmetric ratio between left and right hemispheres, BEleft is the 

spectral energy from one channel in left hemisphere (computed using (3)) and BEright is 

spectral energy from opposite channel in right hemisphere. Since there were 14 chan-

nels (7 on each hemisphere) and 5 spectral bands, ASR resulted in a total of 35 features.  

In addition, band energies (EN) for each channel in the five bands were also com-

puted using (3) giving 70 features. Finally, all the available features were combined 

giving all feature (AF) set of 175 features. 

2.5 Classification  

These features were used by six different classifiers: QDA, SVM, NB, KNN, NN and 

TREE. For KNN, Euclidean distance was used whereas for QDA, the covariance ma-

trices could vary among classes. TREE approach used an ensemble of 100 decision 

trees. For NN, the two output layer nodes values were set as either [1 0] or [0 1] with 

10 hidden units (size chosen randomly) and trained using Matlab’s trainlm. For the rest, 

classifier default parameters as available in Matlab’s fitcsvm, fitcnb, fitcensemble, 

fitcdicsr, patternnet and fitcknn were used [13]. The two easy and difficult TDL were 

predicted with randomly split 40 fold cross validation. 

Classifier confidence. The classifier confidence (CC) approach used here worked by 

computing the output of the classifier for the test data. From the results, it was found 

that NN gave the best performance for most subjects, so only the output of this classifier 

was used. Also, all the features gave the best performance for majority of the subjects, 

so these features were used. The two classifier outputs for each test pattern were 

checked and the predicted class was seen as confident only if the two outputs differed 

by at least 0.1. With perfect classification, the best outputs would differ by 1 since one 

output would have a value of 1 and the other value of 0. Hence, having a 10% threshold 

value of 0.1 is appropriate though this value would need to be experimented in future 

to obtain the best threshold. It should be noted that some data will be discarded where 

classification outputs have lower confidence than the threshold. Figure 6 shows the 

flow of the experimental design. 

 

 



 

Fig. 6. Experimental flow design 

3 Results and Discussion  

Figure 7 shows the overall WWS from NASA TLX for the different task difficulty 

levels. Non-parametric Kruskal-Wallis test (as normality was not assumed) showed that 

there is significant difference between TDL (p < 0.01). Comparing each sub-scale (refer 

to Table 3), there were significant differences (using sign rank tests, p < 0.01) between 

TDL for mental demand, temporal demand, frustration and effort. Performance and 

physical demand did not indicate any difference. The latter is not surprising since there 

is no physical effort required in the tasks, though it is somewhat surprising there was 

no difference in performance measure. This clearly indicates the necessity of utilising 

measures such as EEG as subjects are unable to differentiate different levels of perfor-

mance required to complete the tasks. 

 Kruskal-Wallis test showed that there is a statistically significant difference be-

tween easy and difficult tasks of EEG features (p < 0.05). Table 4 shows the classifica-

tion results for EN, ERD, ASR and combined features for the five different classifiers 

for subject 1. 



 

Fig. 7. Boxplot of overall NASA TLX index mean weighted workload for different task difficulty 

levels. 

 

Table 3. NASA TLX – subscale  

Sub scale  Mean (tasks) p value 

Easy  Difficult  

Mental Demand 7.52 15.36 7.1e-5 

Physical Demand 0.14 0.30 5.9e-1 

Temporal Demand 5.82 10.41 3.7e-3 

Performance 4.84 6.23 3.4e-1 

Effort 7.27 13.00 5.5e-3 

Frustration 0.80 4.68 7.3e-3 

 
 

Similarly, Tables 5-10 show the results for rest of the subjects. To decide on the best 
classifier, all the features were combined and statistical test revealed significant differ-
ence between the classifier performances (p<0.05). The mean rank comparison showed 
that NN classifier gave the best performance. It also gave the best performance for five 
out of seven subjects. 

 

 



Table 4. Subject 1 Results 

Classification method and accuracy % (mean±std) 

 TREE SVM QDA KNN NB NN 

EN 69.17±12.26 73.54±14.48 73.33±11.66 63.54±14.94 69.17±12.26 72.86±10.95 

ERD 67.50±11.75 73.75±10.77 73.33±13.63 59.79±15.89 67.50±11.75 70.00±13.84 

ASR 68.12±11.31 68.33±13.10 65.00±8.48 62.50±12.66 68.12±11.31 73.75±6.77 

AF 70.42±14.24 71.25±12.65 75.21±13.14 61.46±13.30 70.42±14.24 82.50±6.57 

 

Table 5. Subject 2 Results 

Classification method and accuracy % (mean±std) 

 TREE SVM QDA KNN NB NN 

EN 63.33±13.84 67.08±15.09 76.25±14.81 51.67±5.06 63.33±13.84 68.33±7.78 

ERD 64.17±15.58 66.87±14.68 76.46±11.15 51.46±4.58 64.17±15.58 65.42±12.16 

ASR 67.71±13.76 67.92±12.31 66.88±15.15 63.54±10.79 67.71±13.76 74.58±10.57 

AF 72.50±11.35 73.54±11.77 74.37±9.69 51.46±3.72 72.50±11.35 77.92±7.88 

 

Table 6. Subject 3 Results 

Classification method and accuracy % (mean±std) 

 TREE SVM QDA KNN NB NN 

EN 76.04±14.02 70.63±11.16 75.21±12.30 50.83±5.91 76.04±14.02 72.62±11.36 

ERD 75.21±10.42 68.96±12.66 75.83±13.58 51.04±5.72 75.21±10.42 65.83±13.18 

ASR 73.13±15.50 72.50±14.52 74.58±8.43 67.92±11.72 73.13±15.50 77.08±5.13 

AF 73.13±12.59 74.79±13.80 77.92±10.93 50.83±4.92 73.13±12.59 79.58±6.33 

 

Table 7. Subject 4 Results 

Classification method and accuracy % (mean±std) 

 TREE SVM QDA KNN NB NN 

EN 73.75±12.02 75.21±12.59 75.42±13.07 51.46±4.95 73.75±12.02 73.54±12.07 

ERD 72.29±11.23 75.00±12.52 74.38±15.14 51.67±4.70 72.29±11.23 70.63±14.12 

ASR 69.17±13.63 67.92±12.31 75.83±12.63 64.79±12.30 69.17±13.63 73.13±12.59 

AF 75.63±11.07 75.21±15.27 78.54±11.62 52.50±5.72 75.63±11.07 73.75±7.88 



 

Table 8. Subject 5 Results 

Classification method and accuracy % (mean±std) 

 TREE SVM QDA KNN NB NN 

EN 70.63±12.94 72.50±14.40 74.79±12.87 52.29±5.66 70.63±12.94 75.48±9.89 

ERD 71.04±10.67 71.46±11.77 74.17±11.75 52.92±6.69 71.04±10.67 72.50±11.51 

ASR 68.54±12.87 68.33±13.10 71.67±13.84 67.29±14.42 68.54±12.87 77.08±7.09 

AF 75.21±13.41 71.25±14.85 76.04±11.51 53.33±5.60 75.21±13.41 80.42±6.77 

 

Table 9. Subject 6 Results 

Classification method and accuracy % (mean±std) 

 TREE SVM QDA KNN NB NN 

EN 66.25±14.12 76.25±12.16 82.71±9.69 56.46±7.66 66.25±14.12 72.08±13.68 

ERD 67.08±15.33 75.83±11.45 82.92±9.61 56.67±8.89 67.08±15.33 72.71±12.94 

ASR 73.33±15.58 68.54±14.31 77.71±11.38 62.29±13.21 73.33±15.58 71.67±6.33 

AF 72.29±12.14 73.96±13.24 83.54±10.92 58.33±11.79 72.29±12.14 73.75±6.77 

 

Table 10. Subject 7 Results 

Classification method and accuracy % (mean±std) 

 TREE SVM QDA KNN NB NN 

EN 70.63±12.08 74.58±14.12 73.75±12.88 55.21±6.45 70.63±12.08 74.52±12.77 

ERD 67.29±11.54 75.63±12.43 73.54±10.66 55.42±7.20 67.29±11.54 73.96±14.15 

ASR 70.63±11.32 70.00±11.45 71.04±12.66 68.75±14.09 70.63±11.32 75.83±5.98 

AF 69.79±12.33 74.37±12.14 73.33±12.83 55.83±9.66 69.79±12.33 83.75±7.39 

 

 

Next, using NN classification results (as it gave the best significant performance over-

all), significant difference was obtained in the classification accuracies between the 

different feature extraction approaches, H(3)=26.33, p=8.12e-6. Comparing the mean 

rank values (EN: 581.03, ERD: 576.88, ASR: 478.44, AF:605.66) showed that ERD 

features had the highest discriminatory information to separate the two mental tasks 

with combination of all features giving the best results. Using all the features also gave 

the best accuracy for six out of seven subjects with the remaining subject having ERD 

giving the best accuracy.  



Using CC approach revealed further improvement in the classification performance. 

As NN gave the best performance, it was decided to use this classifier with the best 

performing all feature combination. Figure 8 shows the performance for the seven sub-

jects and it can be seen that performances were higher when CC was used. The im-

provements were statistically significant for all subjects (sign rank test, p < 0.05) except 

subject 6. This is as expected since only the classification outputs that have slightly 

more confident predictions are being used (the experiment revealed that about 10% of 

patterns were dropped).   

Table 11 shows the average response time (i.e. the time taken to complete the tasks). 

It can be seen that the difficult tasks take longer to complete as compared to easy tasks 

as expected.   

This research was limited by significant noise in experiment design procedure with 

some subjects verbalising, flicking pens, nodding etc. Eye blinks occurred in the EEG 

data as shown in Figure 9 (example shown for one subject but similar artifacts were 

observed for other subjects too). While these could have been removed in the pre-pro-

cessing stage (for example using independent component analysis), we chose not to in 

order to simulate actual classroom settings where it will be difficult to force students to 

adhere to strict no-movement instruction. 

 

Table 11. Average completion time (secs) for different task levels. 

Subject Average time (in seconds) 

Easy Difficult 

1 35.43 87.94 

2 92.74 180.08 

3 38.47 97.46 

4 35.78 210.12 

5 31.51 75.45 

6 93.60 174.22 

7 88.34 143.59 

Mean 59.41 138.41 

 

 



 

Fig. 8. Classification (%) comparing the improvement with confidence approach (blue: with con-

fidence, red: without confidence). 

 

Fig. 9. EEG segment with artifacts.  

 



4 Conclusion 

Both NASA TLX and task completion time showed significant differences between 

TDL. NASA TLX has been used as a non-physiological measure to discriminate dif-

ferent cognitive load for different programming language [14]. However, based on the 

lack of statistical difference in the performance measure in TLX sub scale, we can infer 

that it is difficult for subjects to estimate the TDL, hence showing the necessity to have 

measures that directly measure the ability.   

In this report, we have shown that it is possible to differentiate the task difficulty of 

Java programming code using EEG signals. Though the subject pool is small and the 

performance needs improvement for real-life implementation, there is sufficient prom-

ise in the method to be studied further. The combination of proposed ASR with ERD 

and EN features improves the classification performance and among the tested classi-

fiers, NN gave the best performance. The use of CC approach further improved the 

performance to give a maximum accuracy of 87.05%. It is possible that with proper 

feature selection and tuning of classifier parameters could further improve the accuracy.  

In conclusion, the findings here will hopefully pave the way for future research stud-

ies on tailoring learning material with appropriate level of difficulty, which will be es-

pecially useful for those with independent learning plans. 
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