
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Correa, Elon S. and Freitas, Alex A. and Johnson, Colin G. (2008) A New Discrete Particle Swarm
Algorithm Applied to Attribute Selection in a Bioinformatics Data Set. In: GECCO '06: Proceedings
of the 8th Annual Conference on Genetic and Evolutionary Computation. ACM, New York,
USA pp. 35-42. ISBN 1-59593-186-4.

DOI

https://doi.org/10.1145/1143997.1144003

Link to record in KAR

https://kar.kent.ac.uk/71009/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/189722739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A New Discrete Particle Swarm Algorithm Applied to
Attribute Selection in a Bioinformatics Data Set

Elon S. Correa
Computing Laboratory

University of Kent
Canterbury, CT2 7NF, UK

E.S.Correa@kent.ac.uk

Alex A. Freitas
Computing Laboratory

University of Kent
Canterbury, CT2 7NF, UK

A.A.Freitas@kent.ac.uk

Colin G. Johnson
Computing Laboratory

University of Kent
Canterbury, CT2 7NF, UK

C.G.Johnson@kent.ac.uk

ABSTRACT
Many data mining applications involve the task of build-
ing a model for predictive classification. The goal of such a
model is to classify examples (records or data instances) into
classes or categories of the same type. The use of variables
(attributes) not related to the classes can reduce the accu-
racy and reliability of a classification or prediction model.
Superfluous variables can also increase the costs of build-
ing a model - particularly on large data sets. We propose a
discrete Particle Swarm Optimization (PSO) algorithm de-
signed for attribute selection. The proposed algorithm deals
with discrete variables, and its population of candidate solu-
tions contains particles of different sizes. The performance
of this algorithm is compared with the performance of a
standard binary PSO algorithm on the task of selecting at-
tributes in a bioinformatics data set. The criteria used for
comparison are: (1) maximizing predictive accuracy; and
(2) finding the smallest subset of attributes.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning, induction

General Terms
Algorithms, performance

Keywords
Particle swarm, optimization, Data Mining, attribute selec-
tion, Naive Bayes classifier, bioinformatics.

1. INTRODUCTION
Most of the particle swarm algorithms present in the lit-

erature deal only with continuous variables [1, 5, 10]. This
is a significant limitation because many optimization prob-
lems are set in a space featuring discrete variables. Typical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1595931864/06/0007 ...$5.00.

examples include problems which require the ordering or ar-
ranging of discrete variables, such as scheduling or routing
problems [17]. Therefore, the design of particle swarm algo-
rithms that deal with discrete variables is pertinent to this
field of study.

We propose a discrete Particle Swarm Optimization (PSO)
algorithm applied to attribute selection in Data Mining. We
shall refer to this algorithm as the discrete Particle Swarm
Optimization (DPSO) algorithm. The DPSO deals with dis-
crete variables, and its population of candidate solutions
contains particles of different sizes. Although the algorithm
has been specifically designed for an attribute selection task,
it is by no means limited to this kind of application. The
DPSO algorithm may potentially be applied to other dis-
crete optimization problems, such as facility location prob-
lems [2], with a few minor modifications.

Many data mining applications involve the task of build-
ing a model for predictive classification. The goal of such a
model is to classify examples (records or data instances) into
classes or categories of the same type. The use of variables
(attributes) not related to the classes can reduce the accu-
racy and reliability of a classification or prediction model.
Superfluous variables can also increase the costs of building
a model - particularly on large data sets. The objective of
attribute selection is to simplify a data set by reducing its di-
mensionality and identifying relevant underlying attributes
without sacrificing predictive accuracy. By doing that, it
also reduces redundancy in the information provided by the
selected attributes. For a review of the attribute selection
task using genetic algorithms see [4].

The DPSO algorithm was designed to tackle the data min-
ing task of attribute selection. It differs from other tradi-
tional PSO algorithms because its particles do not represent
points inside an n-dimensional Euclidean space (continuous
case) or lattice (binary case) as in the standard PSO algo-
rithms [9]. Instead, they represent a combination of selected
attributes.

The paper is organized as follows. Section 2 briefly in-
troduces PSO algorithms. Section 3 describes the standard
binary PSO algorithm. Section 4 introduces the DPSO al-
gorithm proposed in this paper for the task of attribute se-
lection. Section 5 reports computational experiments, and
describes the postsynaptic data set - the data set used in
our experiments. It also includes a brief discussion of the
results obtained. Section 6 presents conclusions of the work
and points out future research directions. The next subsec-
tion specifies the notation used throughout this paper.

1.1 Notation
A lowercase letter, e.g., x, denotes a random variable.

An uppercase letter with an arrow over the letter, e.g.,
−→
X ,

denotes a vector of random variables.
−→
X = (x1, x2, ..., xn)

denotes an n-dimensional vector of random variables. Abus-
ing the mathematical notation, we use

−→
X = {x1, x2, ..., xn}

(note the braces “{}”) to represent a vector of random vari-

ables which is also a set of indices.
−→
X = {x1, x2, ..., xn} is a

set of indices in the mathematical sense of set. That is, there
are no duplicated indices and there is no ordering among the

indices x1, x2, ..., xn. Given a candidate solution, say
−→
X (i),

the symbol f(
−→
X (i)), called the fitness function, represents a

measurement of how well the solution
−→
X (i) solves the tar-

get problem. Subsection 5.2 describes how the measurement

f(
−→
X (i)) is computed in the present work.

2. A BRIEF INTRODUCTION TO
PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) comprises a set of
search techniques, inspired by the behavior of natural swarms,
for solving optimization problems [9]. In PSO a poten-

tial solution to a problem is represented by a particle
−→
X (i)

= (x(i,1), x(i,2), ..., x(i,n)) in an n-dimensional search space.
The coordinates x(i,d) of these particles have a rate of change
(velocity) v(i,d), d = 1, 2, ..., n. Every particle keeps a record
of the best position that it has ever visited. Such a record
is called the particle’s previous best position and denoted

by
−→
B (i). The global best position attained by any particle

so far is also recorded and stored in a particle denoted by
−→
G . An iteration comprises evaluation of each particle, then
stochastic adjustment of v(i,d) in the direction of particle
−→
X (i)’s previous best position and the previous best position
of any particle in the neighborhood [8]. There is much va-
riety in the neighborhood topology used in PSO, but quite
often gbest or lbest topologies are used. In the gbest topol-

ogy every particle has only the global best particle
−→
G as its

neighbor. In the lbest topology, usually, each particle has a
number of other particles to its right and left as neighbors.
For a review of the neighborhood topologies used in PSO
the reader is referred to [7, 9].

Generally speaking, the set of rules that govern PSO are:
evaluate, compare and imitate. The evaluation phase mea-
sures how well each particle (candidate solution) solves the
problem at hand. The comparison phase identifies the best
particles. The imitation phase produces new particles based
on some of the best particles previously found. These three
phases are repeated until a given stopping criterion is met.
The objective is to find the particle that best solves the
target problem.

Important concepts in PSO are velocity and neighborhood

topology. Each particle,
−→
X (i), is associated with a velocity

vector. This velocity vector is updated at every genera-
tion. The updated velocity vector is then used to generate a

new particle
−→
X (i). The neighborhood topology defines how

other particles in the swarm, such as
−→
B (i) and

−→
G , inter-

act with
−→
X (i) to modify its respective velocity vector and,

consequently, its position as well.

3. THE STANDARD BINARY PSO
ALGORITHM

The standard binary version of the PSO algorithm [9]
works as follows. Potential solutions (particles) to the tar-
get problem are encoded as fixed length binary strings; i.e.,
−→
X (i) = (x(i,1), x(i,2), ..., x(i,n)), where x(i,j) ∈ {0, 1}, i =
1, 2,..., N and j = 1, 2, ..., n. Given a list of attributes

A = (A1, A2, ..., An), the first element of
−→
X (i), from the

left to the right hand side, corresponds to the first attribute
“A1”, the second to the second attribute “A2”, and so forth.
A value of 0 on the site associated to an attribute signifies
that the respective attribute is not selected. A value of 1
means that it is selected. For example, given the list of at-
tributes A = (A1, A2, A3, A4, A5) and N = 4, a swarm could
look like this:

−→
X (1) = (0, 1, 1, 0, 1)
−→
X (2) = (1, 0, 0, 1, 0)
−→
X (3) = (0, 1, 0, 1, 1)
−→
X (4) = (1, 1, 1, 0, 0)

In this example, particle
−→
X (1) = (0, 1, 1, 0, 1) represents a

candidate solution where attributes A2, A3 and A5 are the
only attributes selected.

3.1 The initial population for the standard
binary PSO algorithm

For the initial population, N binary strings of length n are

randomly generated. Each particle
−→
X (i) is independently

generated as follows. For every position x(i,d) of
−→
X (i) a

uniform random number ϕ is drawn on the interval (0, 1).
If ϕ < 0.5, then x(i,d) = 1, otherwise x(i,d) = 0.

3.2 Updating the records
At the beginning, the previous best position of

−→
X (i), de-

noted by
−→
B (i), is empty. Therefore, once the initial particle

−→
X (i) is generated,

−→
B (i) is set to

−→
B (i) =

−→
X (i). After that,

every time that
−→
X (i) is updated,

−→
B (i) is also updated if

f(
−→
X (i)) is better than f(

−→
B (i)). Otherwise,

−→
B (i) remains as

it is. A similar process is used to update the global best posi-

tion
−→
G . At the beginning,

−→
G is also empty. Therefore, once

all the
−→
B (i) have been determined,

−→
G is set to the fittest

−→
B (i) previously computed. After that,

−→
G is updated if the

fittest f(
−→
B (i)) in the swarm is better than f(

−→
G(i)). And,

in that case, f(
−→
G(i)) is set to f(

−→
G (i)) = fittest f(

−→
B (i)).

Otherwise,
−→
G remains as it is.

3.3 Updating the velocities for the standard
binary PSO algorithm

Every particle i is associated to a unique vector of veloc-
ities V (i) = (v(i,1), v(i,2), ..., v(i,n)). The elements v(i,d) in
V (i) determine the rate of change of each respective coordi-

nate x(i,d) in
−→
X (i), d = 1, 2, ..., n. Each element v(i,d) ∈ V (i)

is updated according to the equation:

v(i,d) = w v(i,d) + ϕ1(b(i,d) − x(i,d)) + ϕ2(g(d) − x(i,d)), (1)

where w (0 < w < 1), called the inertia weight, is a constant
value chosen by the user. Equation 1 is a standard equation
used in PSO algorithms to update the velocities [6, 14]. Note

that x(i,d) is the dth component of
−→
X (i); b(i,d) is the dth

component of
−→
B (i); g(d) is the dth component of

−→
G and

d = 1, 2, ..., n. The factors ϕ1 and ϕ2 are uniform random
numbers independently generated in the interval (0, 1).

3.4 Sampling new particles for the standard
binary PSO algorithm

New particles are then sampled as follows. For each par-
ticle i and each dimension d, the value of the new coordi-

nate x(i,d) ∈
−→
X (i) can be either 0 or 1. The decision of

whether x(i,d) will be 0 or 1 is based on its respective veloc-
ity v(i,d) ∈ V (i) and is given by the following equation:

x(i,d) =

1, if(rand < S(v(i,d)))
0, otherwise;

(2)

where 0 ≤ rand ≤ 1 is a uniform random number and

S(v(i,d)) =
1

1 + exp(−v(i,d))
is the sigmoid function. Equa-

tion 2 is a standard equation used to sample new particles
in the binary PSO algorithm [9]. Note that the lower the
value of v(i,d) the more likely the value of x(i,d) will be 0.
By contrast, the higher the value of v(i,d) the more likely
the value of x(i,d) will be 1. The next section presents the
DPSO algorithm prosed in this paper.

4. THE PROPOSED DISCRETE PSO
ALGORITHM

This algorithm deals with discrete variables (attributes)
and its population of candidate solutions contains particles
of different sizes. Potential solutions to the optimization
problem at hand are represented by a swarm of particles.
There are N particles in a swarm. The length of each parti-
cle may vary from 1 to n, where n is the number of attributes

of the problem. Each particle
−→
X (i) keeps a record of the best

position it has ever attained. This information is stored in

a separated particle labeled as
−→
B (i). The swarm also keeps

a record of the global best position ever attained by any
particle in the swarm. This information is also stored in a

separated particle labeled
−→
G . Note that

−→
G is equal to the

best
−→
B (i) present in the swarm.

4.1 Encoding of the particles for the proposed
DPSO algorithm

Each attribute is identified by a unique positive integer
number, or index. These numbers, indices, vary from 1 to
n. A particle is a subset of non-ordered indices without

repetition, e.g.,
−→
X (i) = {2, 4, 18, 1}. For example, given

the list of attributes (A1, A2, A3, A4, A5) and N = 4, a
swarm could look like this:

−→
X (1) = {4, 1, 2}
−→
X (2) = {5}
−→
X (3) = {2, 1}
−→
X (4) = {1, 3, 2, 5, 4}

Note that in the particle
−→
X (1) = {4, 1, 2}, 4 corresponds

to attribute A4, 1 to A1 and 2 to A2. Therefore,
−→
X (1) =

{4, 1, 2} represents a candidate solution where the attributes
A4, A1, and A2 have been selected.

4.2 The initial population for the proposed
DPSO algorithm

The initial population of particles is generated as follows.
At the beginning, an integer random number determines the
number of attribute indices, or length, that a particle will
have. This number is uniformly generated between 1 and
n, inclusive, individually for every single particle. Particles
bear their randomly chosen size throughout the execution
of the algorithm. Once the dimensionality is known, the
actual particle is generated with as many attribute indices
as the previously chosen random number that corresponds
to its size. For instance, if the uniform random number
k ∈ {1, 2, 3, ..., n} that determines the length of a particle is
drawn as k = 2, a particle that contains exactly 2 attribute
indices is generated. Those indices are also randomly cho-
sen from the sequence I = {1, 2, 3, ..., n}, one at a time,
and without replacement. It means that there will be no
repeated indices on the configuration of any single parti-
cle. Algorithm 1 shows a pseudocode for the encoding of a
discrete particle. Note that the particles are completely gen-
erated one-by-one. After the initial population is generated,

Algorithm 1 Encoding of a discrete particle

Require: i, j, ℓ, n, N ,
−→
X (i), I = {1, 2, ..., n} and

1 ≤ rand ≤ n, where rand is a uniform random num-
ber, rand ∈ {1, 2, ..., n}.

1: for i = 1 to N
2: ℓ = rand
3:

−→
X (i) = ∅

4: I = {1, 2, ..., n}
5: for j = 1 to ℓ
6: Randomly select an attribute (index) from I

7: Insert the selected attribute (index) in
−→
X (i)

8: I = I -
−→
X (i), (Recall that

−→
X (i) is also a set.)

9: end for
10: end for

the information in
−→
B (i) and

−→
G is then updated exactly as

described in Subsection 3.2.

4.3 Velocities = proportional likelihoods
The DPSO algorithm does not use a vector of velocities

as the standard PSO algorithm does. It works with pro-
portional likelihoods instead. Arguably, the notion of pro-
portional likelihood used in the DPSO algorithm and the
notion of velocity used in the standard PSO are somewhat
similar. Every particle is associated with a 2-by-n array of
proportional likelihoods, where 2 is the number of rows in
this array and n is the number of columns. A generic pro-
portional likelihood array looks like this:

V (i) =

„

proportional likelihood row

attribute index row

«

. Each of the n elements

in the first row of V (i) represents the proportional likelihood
that an attribute be selected. The second row of V (i) shows
the indices of the attributes associated with the respective
proportional likelihoods. There is a one-to-one correspon-
dence between the columns of this array and the attributes
of the problem domain. At the beginning, all elements in the

first row of V (i) are set to 1, e.g., V (i) =

„

1 1 1 1 1
1 2 3 4 5

«

.

After the initial population of particles is generated, this ar-
ray is always updated before a new configuration for the

particle associated to it is generated. The updating pro-

cess is based on
−→
X (i),

−→
B (i) and

−→
G and works as follows.

In addition to
−→
X (i),

−→
B (i) and

−→
G , three constant updating

factors, namely, α, β and γ, are also used to update the
proportional likelihoods v(i,d). These factors determine the

strength of the contribution of
−→
X (i),

−→
B (i) and

−→
G to the

adjustment of every coordinate v(i,d) ∈ V (i). Note that α,
β and γ are parameters chosen by the user. The contri-
bution of these parameters to the updating of v(i,d) is as

follows. All indices present in
−→
X (i) have their correspon-

dent proportional likelihood increased by α. In addition

to that, all indices present in
−→
B (i) have their correspon-

dent proportional likelihood increased by β. The same for
−→
G for which the proportional likelihoods are increased by
γ. For instance, given n = 5, α = 0.10, β = 0.12, γ =

0.14,
−→
X (i) = {2, 3, 4},

−→
B (i) = {3, 5, 2},

−→
G = {5, 2}

and V (i) =

„

1 1 1 1 1
1 2 3 4 5

«

, the updated V (i) would be:

V (i) =

„

1 1 + α + β + γ 1 + α + β 1 + α 1 + β + γ
1 2 3 4 5

«

.

Note that index 1 is not present in
−→
X (i),

−→
B (i) or

−→
G . There-

fore, the proportional likelihood of attribute 1 in V (i) re-
mains as it is. This new updated array replaces the old
one and will be used to generate a new configuration to the
particle associated to it as follows.

4.4 Sampling new particles for the proposed
DPSO algorithm

The proportional likelihood array V (i) is then used to

sample a new instance of particle
−→
X (i) - that is, the parti-

cle associated to it. First, every element of the first row of
the array V (i) is multiplied by a uniform random number
between 0 and 1. A new random number is drawn for every
single multiplication performed. To illustrate, suppose that

V (i) =

„

1 1.36 1.22 1.1 1.26
1 2 3 4 5

«

. The multiplied propor-

tional likelihood array would be:

V (i) =

„

1 × ϕ1 1.36 × ϕ2 1.22 × ϕ3 1.1 × ϕ4 1.26 × ϕ5

1 2 3 4 5

«

,

where ϕ1, ..., ϕ5 are uniform random numbers independently
drawn on the interval (0, 1). Suppose that the multiplied
array V (i) looks like this:

V (i) =

„

0.11 0.86 0.57 0.62 1.09
1 2 3 4 5

«

. The new particle

is then defined by ranking the columns in V (i) by the values
in its first row. That is, the elements in the first row of the
array are ranked in a decreasing order of value and the in-
dices of the attributes (in the second row of V (i)) follow their
respective proportional likelihoods. For example, ranking

V (i) =

„

0.11 0.86 0.57 0.62 1.09
1 2 3 4 5

«

, we would obtain

V (i) =

„

1.09 0.86 0.62 0.57 0.11
5 2 4 3 1

«

. After ranking the

array V (i), the first k indices (in the second row of V (i)),
from left to right, are selected to compose the new particle.

The constant k represents the length of the particle
−→
X (i),

the particle associated to the ranked array V (i). Thus, if
particle i, the particle associated to the array

V (i) =

„

1.09 0.86 0.62 0.57 0.11
5 2 4 3 1

«

, has length 3, the

first 3 indices from the second row of V (i) would be selected
to compose the particle. Based on the array V (i) given

above, if k = 3 (that is,
−→
X (i) = {*, *, *}) the indices (at-

tributes) 5, 2 and 4 would be selected to compose the new

particle, i.e.,
−→
X (i) = {5, 2, 4}. Note that indices that have

a higher proportional likelihood are, on average, more likely
to be selected.

The updating of
−→
X (i),

−→
B (i) and

−→
G is identical to what is

described in Subsection 3.2.

5. EXPERIMENTS
In this section, we report and discuss computational ex-

periments. The quality of a candidate solution (fitness) is
computed by the well-known Naive Bayes classifier [11]. The
Naive Bayes classifier uses a probabilistic approach to assign
each example (record) of the data set to a possible class. In
our application, it assigns a record (protein) of the data set
to one of the classes, negative or positive. A Naive Bayes
classifier assumes that all attributes are probabilistic inde-
pendent of one another.

5.1 Postsynaptic data set
This section presents the bioinformatics data set used in

the present work for attribute selection. A synapse is a con-
nection between two neurons: presynaptic and postsynap-
tic. The first is usually the sender of a “signal”, such as the
release of chemicals, while the second is the receiver. A post-
synaptic receptor is a sensor on the surface of a neuron. It
captures messenger molecules from the nervous system, neu-
rotransmitters, and thereby functions in transmitting infor-
mation from one neuron to another [15]. The data set used
in this paper is called the postsynaptic data set. It has been
recently created and mined for the first time in [13]. The
data set contains 4303 records of proteins. These proteins
belong to either one of the following two classes: positive
or negative. Proteins that belong to the positive class have
postsynaptic activity. Proteins that belong to the negative
class do not have postsynaptic activity. From the 4303 pro-
teins on the data set, 260 belong to the positive class and
4043 to the negative class.

This data set is a particularly interesting case study for
evaluating the proposed DPSO algorithm for two reasons.
First, postsynaptic proteins are involved in the nervous sys-
tem. Predicting postsynaptic activity is potentially useful
for understanding several diseases of the nervous system.
Second, this data set has many attributes what makes the
attribute selection task challenging. More precisely, each
protein has 443 PROSITE patterns, or attributes.

PROSITE is a database of protein families and domains.
It is based on the observation that, while there is a huge
number of different proteins, most of them can be grouped,
on the basis of similarities in their sequences, into a lim-
ited number of families (a protein consists of a sequence of
amino acids). PROSITE patterns are small regions within
a protein that present a high sequence similarity when com-
pared to other proteins. In our data set the absence of a
given PROSITE pattern is indicated by a value of 0 for
the attribute corresponding to that PROSITE pattern. The
presence of it is indicated by a value of 1 for that same
attribute.

5.2 Experimental Methodology
The fitness function f(

−→
X (i)) of a any particle i is com-

puted as follows. f(
−→
X (i)) is equal to the predictive accuracy

achieved by a Naive Bayes classifier on the postsynaptic data

set and using only the attributes present in
−→
X (i). The ob-

jective is to find the smallest subset of attributes (PROSITE
patterns) with which it is possible to classify the proteins on
the data set as belonging to one of the classes (positive or
negative) with an acceptable accuracy. We define the accu-
racy as acceptable if it is equal to or better than the one ob-
tained by the classification performed considering all the 443
original attributes. Note that this is a naive and particular
definition of acceptable accuracy. We chose this definition
because it suits the purpose of our experiments - to com-
pare the performance of the standard binary PSO and the
DPSO algorithms in the postsynaptic data set. As a rule,
the definition of acceptable accuracy is problem dependent
and should take into account prior knowledge of the target
problem - when available. In fact, in many real-world appli-
cations, minimizing the number of selected attributes while
maximizing classification accuracy are conflicting tasks.

The measurement of f(
−→
X (i)) in this paper follows what

in Data Mining is called a wrapper approach. The wrapper
approach searches for an optimal attribute subset tailored
to a particular algorithm, such as the Naive Bayes classi-
fier. For more information on wrapper and other attribute
selection approaches see [18].

The computational experiments involved a 10-fold cross-
validation method [18]. First, the 4303 records in the post-
synaptic data set were divided into 10 almost equally sized
folds. There are three folds containing 431 records each one
and seven folds containing 430 records each one. The folds
were randomly generated but under the following regulation.
The proportion of positive and negative classes in every sin-
gle fold must be similar to the one found in the original data
set containing all the 4303 records. This is known as strat-
ified cross-validation. Each of the 10 folds is used once as
test set and the remaining of the data set is used as training
set. Out of the 9 folds in the training set, one is reserved
to be used as a validation set. The Naive Bayes classifier
uses the remaining 8 folds to compute the probabilities re-
quired to classify new examples. Once those probabilities
have been computed, the Naive Bayes classifier classifies the
examples in the validation set. The accuracy of this classifi-
cation on the validation set is the value of the fitness function
f(

−→
X (i)). After the run of the PSO algorithm is completed,

the 9 folds are merged into a full training set. The Naive
Bayes classifier is then trained again on this full training
set (9 merged folds), and the probabilities computed in this
final, full training set are used to classify examples in the
test set (the 10th reserved fold), which was never accessed
during the run of the PSO algorithm.

In each of the 10 iterations of the cross-validation proce-
dure, the predictive accuracy of the classification is assessed
by 3 different methods:

(1) Using all the 443 original attributes: all possible
attributes are used by the Naive Bayes classifier.

(2) Standard binary PSO algorithm: only the at-
tributes selected by the best particle found by the
binary PSO algorithm are used by the Naive Bayes
classifier.

(3) Proposed DPSO algorithm: only the attributes se-
lected by the best particle found by the DPSO algo-
rithm are used by the Naive Bayes classifier.

As the standard binary PSO and the DPSO algorithms are
stochastic algorithms, 30 independent runs for each algo-
rithm were performed for every single fold. The results ob-
tained, averaged over 30 runs, are reported in Table 1. Since
the Naive Bayes classifier is deterministic, only one run is
performed for the classification using all the 443 original
attributes. The average number of attributes selected by
the attribute selection algorithms has always been rounded
to the nearest integer. The population size used for both
algorithms is 200 and the search stops after 20,000 fitness
evaluations (or 100 iterations). The binary PSO algorithm
uses a inertia weight value of 0.8 (i.e., w = 0.8). The choice
of the value of this parameter was based on the work pre-
sented in [16]. Other choices of parameter values were α =
0.10, β = 0.12 and γ = 0.14. These values were empirically
determined in our preliminary experiments; but we make no
claim that these are optimal values. Parameter optimization
is a topic for future research.

The measurement of the predictive accuracy rate of a
model should be a reliable estimate of how well that model
classifies the test examples (unseen during the training phase)
on the target problem. In Data Mining, typically, the equa-
tion:

Standard accuracy rate =
TP + TN

TP + FP + FN + TN
(3)

is used to assess the accuracy rate of a classifier (see the
definition of TP , TN , etc. below). Nevertheless, if the class
distribution is highly unbalanced, which is the case with
the postsynaptic data set, Equation 3 is an ineffective way
of measuring the accuracy rate of a model. For instance,
on a data set in which 90% of the examples belong to the
positive class and 10% to the negative class, it would be
easy to maximize Equation 3 by simply predicting always
the majority class. Therefore, on our experiments we use
a more demanding measurement for the accuracy rate of a
classification model. It has also been used before in [13], the
paper in which the postsynaptic data set was used for the
first time. This measurement is given by the equation:

Predictive accuracy rate = TPR × TNR, (4)

where, TPR =
TP

TP + FN
and TNR =

TN

TN + FP
.

Note that if any of the quantities TPR or TNR is zero,
the value returned by Equation 4 is also zero. Also note
that TP (true positives) is the number of records correctly
classified as positive class and FP (false positives) is the
number of records incorrectly classified as positive class. TN

(true negatives) is the number of records correctly classified
as negative class and FN (false negatives) is the number of
records incorrectly classified as negative class.

5.3 Discussion
Analyzing the predictive accuracy values (TPR × TNR)

shown in Table 1 we see that, on average, the binary PSO
and the DPSO algorithms obtained a higher predictive ac-
curacy value than the classification performed using all the
443 original attributes. The only exception being for fold
number 7. The results obtained for the average predictive
accuracy values suggest that the predictive accuracy of the

Table 1: The postsynaptic data set. Results of the classification performed by a Naive Bayes classifier
using: (1) all possible attributes; (2) only the attributes given by the best solution found by the binary PSO
algorithm and (3) only the attributes given by the best solution found by the DPSO algorithm. The results
shown for the binary PSO and DPSO algorithms are averaged over 30 independent runs. The average number
of attributes selected has always been rounded to the nearest integer.

Using all the 443
original attributes

Binary PSO algorithm Proposed DPSO algorithm

Fold
No. of

instances
TPR TNR

TPR

×

TNR

TPR TNR
TPR

×

TNR

No. of

attributes
selected

TPR TNR
TPR

×

TNR

No. of

attributes
selected

1 431 0.73 0.99 0.72 0.73 0.99 0.72 32 0.73 1.00 0.73 14
2 431 0.85 0.99 0.84 0.88 0.99 0.87 17 0.90 1.00 0.90 10
3 431 0.75 0.99 0.74 0.75 0.99 0.74 24 0.75 0.99 0.74 11
4 430 0.00 1.00 0.00 0.71 0.98 0.70 29 0.75 0.99 0.74 12
5 430 0.52 0.99 0.51 0.52 1.00 0.52 25 0.52 1.00 0.52 13
6 430 0.80 0.99 0.79 0.80 0.99 0.79 35 0.80 1.00 0.80 17
7 430 0.72 0.99 0.71 0.69 0.99 0.68 34 0.68 1.00 0.68 15
8 430 0.81 0.99 0.80 0.81 0.99 0.80 28 0.81 0.99 0.80 11
9 430 0.69 0.99 0.68 0.69 0.99 0.68 31 0.69 0.99 0.68 14
10 430 0.75 0.99 0.74 0.77 0.99 0.76 16 0.79 1.00 0.79 10

Average 0.66 0.99 0.66 0.74 0.99 0.73 27.10 0.74 1.00 0.74 12.70
Std. error 0.08 0.00 0.08 0.03 0.00 0.03 2.09 0.03 0.00 0.03 0.73

classification of the proteins on the data set analyzed im-
proves when using not all but only a small subset of relevant
attributes to perform the classification.

To assess the performance of the binary PSO algorithm
and the DPSO algorithm we have considered two criteria:
(1) maximizing predictive accuracy; and (2) finding the small-
est subset of attributes. Comparing the first criterion, accu-
racy, we note that the DPSO algorithm did slightly better
than the binary PSO algorithm. However, the difference
is negligible (the average predictive accuracy value for the
binary PSO algorithm was equal to 0.73, whereas for the
DPSO algorithm it was equal to 0.74). The discriminating
factor between the performance of these algorithms seems
to be on the second criteria, finding the smallest subset of
attributes. For all the 10 folds the DPSO algorithm selected
a smaller subset of attributes. The difference between the
average number of attributes selected by the binary PSO
algorithm, which was equal to 27.10, and by the DPSO al-
gorithm, which was equal to 12.70, clearly indicates that
the second algorithm tends to finding a smaller subset of
attributes than the first one does. One of the reasons for
that seems to be the way in which the initial population
of particles is generated for each algorithm. For the binary
PSO algorithm the average number of attributes selected
(which is the number of ones in the particle’s configuration)
on the particles of the initial population follows a binomial
distribution [3]. The binomial distribution is given by:

P (k|n) =
n!

k!(n − k)!
p

k (1 − p)n−k
, (5)

where P (k|n) represents the probability of obtaining exactly
k successes out of n Bernoulli trials. Translating it to the
binary PSO algorithm, n represents the total number of at-
tributes (n = 443) of the problem and k the number of se-
lected attributes (the number of ones in the particle’s config-
uration). The result of each Bernoulli trial is true with prob-
ability p and false with probability q = (1 − p) [12]. Note
that for the initial particles generated by the binary PSO al-
gorithm, the probability that an attribute be selected (suc-

cess) is p = 0.5 and the probability of it not be selected is
q = (1 - 0.5) = 0.5. Therefore, the probability of a particle
with k attributes being generated is equal to:

P (k|443) =
443!

k!(443 − k)!
0.5k (1 − 0.5)443−k

=
443!

k!(443 − k)!
0.5443

. (6)

From Equation 6 we conclude that particles that have nearly
221 attributes selected (k ≈ 221) are more likely to be gen-
erated than particles with any other number of selected at-
tributes. The more the value k distances from 221 towards 1
or towards 443, the less likely a particle with length equal to
k will be generated. Therefore, the length of the particles in
the initial population of the binary PSO algorithm will be,

on average, concentrated around
n

2
. Recall that in our ap-

plication
n

2
≈ 221. We carried out an experiment that seems

to corroborate what has been said. We generated an initial
population of particles for the problem addressed in this pa-
per exactly as described in Subsection 3.1. Recall that in
this case n = 443 and 1 ≤ k ≤ 443. This population contains
10,000 randomly generated particles. We then recorded the
length of every particle generated. Figure 1 shows the num-
ber of occurrences of every particle’s size (from 1 to 443)
observed on those 10,000 randomly generated particles. For
the DPSO algorithm the average number of attributes se-
lected on the particles of the initial population is given by
the equation:

P (k) =
1

n
, ∀ k ∈ {1, 2, ..., n}, (7)

where n represents the total number of attributes (n = 443)
of the problem and k the number of selected attributes, or
the length of the particle. From Equation 7 we conclude
that the probability of a particle of length k being gener-

ated is equal to
1

n
for all k ∈ {1, 2, ..., n}. Therefore, the

length of the particles in the initial population of the DPSO

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

300

350

400

Number of selected attributes (length of the particle) k

N
um

be
r

of
 o

cc
ur

re
nc

es
 o

bs
er

ve
d

in
 1

0,
00

0
ra

nd
om

 s
am

pl
es

Figure 1: Binary PSO algorithm: an initial popula-
tion generated at random. The population contains
10,000 particles which were generated as described
in Subsection 3.1 for n = 443 and 1 ≤ k ≤ 443.

algorithm tends to be uniformly distributed between 1 and
n. We also generated an initial population of particles for
the problem addressed in this paper exactly as described in
Section 4. This population contains 10,000 randomly gener-
ated particles. We then recorded the length of every particle
generated. Figure 2 shows the number of occurrences of ev-
ery particle’s size (from 1 to 443) observed on those 10,000
randomly generated particles. The fact that the DPSO al-
gorithm has many more small sized particles in the initial
population, by comparison with the standard binary PSO
algorithm, seems to help the former to obtain smaller sets
of selected attributes than the latter - as shown in the re-
sults of Table 1. Another trend observed in the results was

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

30

35

40

Number of selected attributes (length of the particle) k

N
um

be
r

of
 o

cc
ur

re
nc

es
 o

bs
er

ve
d

in
 1

0,
00

0
ra

nd
om

 s
am

pl
es

Figure 2: DPSO algorithm: an initial population
generated at random. The population contains
10,000 particles which were generated as described
in section 4 for n = 443 and 1 ≤ k ≤ 443.

the high frequency of some attributes on the best particles

found at each run of the attribute selection algorithms. We
recorded the best particle found by each algorithm (i.e., the
binary PSO and the DPSO algorithms) on each of the 30
runs and for every one of the 10 folds. We then computed
the frequency of the attributes selected on the 10 × 30 = 300
best particles found by the standard binary PSO algorithm.
The same was done for the proposed DPSO algorithm. The
following 10 attributes have been selected, by both algo-
rithms, in more than 85% of their respective 300 best parti-
cles found: A134, A162, A186, A320, A321, A333, A342, A351,
A352 and A353. The names of the PROSITE patterns that
correspond to these attributes are shown in Table 2. The
information was obtained from the web site of the European
Bioinformatics Institute, UniProtKB/Swiss-Prot. Address:
http://www.ebi.ac.uk/swissprot/.

Table 2: PROSITE patterns selected in more than
85% of the runs performed by the attribute selection
algorithms.

Attribute/
PROSITE
pattern ID

Name

A134/ps00086 Cytochrome P450
A162/ps00904 Protein prenyltransferase, alpha subunit
A186/ps00856 Guanylate kinase
A320/ps00713 Sodium: dicarboxylate symporter
A321/ps00714 Sodium: dicarboxylate symporter
A333/ps00405 43 kDa postsynaptic protein
A342/ps00410 Dynamin
A351/ps00232 Cadherin
A352/ps00236 Neurotransmitter-gated ion-channel
A353/ps00237 Rhodopsin-like GPCR superfamily

This information may be useful for a biologist. It suggests
that those 10 PROSITE patterns are the most relevant ones
for the classification of the proteins in the given data set.

6. CONCLUSIONS
The computational results indicate that the use of vari-

ables apparently unrelated to the class attribute tends to
reduce the accuracy and reliability of a classification model
on the postsynaptic data set. Using fewer attributes, the bi-
nary PSO and the DPSO algorithms obtained, on average, a
better predictive accuracy than the classification performed
using all the 443 original attributes. The overall results also
indicate that, in the data set used in this paper, the DPSO
algorithm performed as well as or better than the binary
PSO algorithm. These two algorithms obtained a similar
level of predictive accuracy. However, the DPSO algorithm
clearly tends to find smaller subsets of attributes than the
standard binary PSO algorithm does - as shown in Table
1. Perhaps, a partial reason for this difference is the way in
which the initial population is generated for each algorithm.
For the standard binary PSO algorithm the average num-
ber of attributes in the particles at the initial population is

roughly
n

2
, where n is the number of attributes of the data

set being mined. For the DPSO algorithm the length of
the particles in the initial population tends to be uniformly
distributed between 1 and n.

In future research we intend to investigate to what extent
the apparent advantage in the performance of the DPSO

algorithm over the binary PSO algorithm is because of the
way in which the initial populations are generated. This
investigation will require the application of the algorithms
to a variety of different test problems. We also intend to
improve the DPSO algorithm by allowing the particles to
vary in length during the execution of the algorithm. Per-
haps, a mutation-like operator can be implemented so that
the length of a particle may increase or decrease at random.
Another idea is to generated the initial population such that
it contains one instance of particle of every possible size for
a particle from 1 to n, where n is the number of variables of
the target problem. Parameter optimization is also a topic
for future research.

7. ACKNOWLEDGMENTS
Thanks to Gisele L. Pappa for kindly providing us with

the postsynaptic data set.

8. REFERENCES
[1] T. Blackwell and J. Branke. Multi-swarm optimization

in dynamic environments. In Lecture Notes in

Computer Science, volume 3005, pages 489–500.
Springer-Verlag, 2004.

[2] E. S. Correa, M. T. Steiner, A. A. Freitas, and
C. Carnieri. Using a genetic algorithm for solving a
capacity p-median problem. Numerical Algorithms,
35:373–388, 2004.

[3] D. Freedman, R. Pisani, and R. Purves. Statistics. W.
W. Norton & Company, 3rd edition, September 1997.

[4] A. A. Freitas. Data Mining and Knowledge Discovery

with Evolutionary Algorithms. Springer-Verlag,
October 2002.

[5] S. Janson and M. Middendorf. A hierarchical particle
swarm optimizer for dynamic optimization problems.
In Evoworkshops 2004: 1st European Workshop on

Evolutionary Algorithms in Stochastic and Dynamic

Environments, pages 513–524, Coimbra, Portugal,
2004. Springer-Verlag.

[6] G. Kendall and Y. Su. A particle swarm optimisation
approach in the construction of optimal risky
portfolios. In Proceedings of the 23rd IASTED

International Multi-Conference on Applied

Informatics, pages 140–145, 2005. Artificial
intelligence and applications.

[7] J. Kennedy. Small worlds and mega-minds: effects of
neighborhood topology on particle swarm
performance. In P. J. Angeline, Z. Michalewicz,
M. Schoenauer, X. Yao, and A. Zalzala, editors,
Proceedings of the Congress of Evolutionary

Computation, pages 1931–1938, Piscataway, NJ, USA,
1999. IEEE Press.

[8] J. Kennedy and R. C. Eberhart. A discrete binary
version of the particle swarm algorithm. In
Proceedings of the 1997 Conference on Systems, Man,

and Cybernetics, pages 4104–4109, Piscataway, NJ,
USA, 1997. IEEE.

[9] J. Kennedy and R. C. Eberhart. Swarm Intelligence.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2001.

[10] M. Løvbjerg and T. Krink. Extending particle swarm
optimisers with self-organized criticality. In D. B.
Fogel, M. A. El-Sharkawi, X. Yao, G. Greenwood,
H. Iba, P. Marrow, and M. Shackleton, editors,
Proceedings of the 2002 Congress on Evolutionary

Computation CEC2002, pages 1588–1593. IEEE Press,
2002.

[11] T. M. Mitchell. Machine Learning. McGraw-Hill,
August 1997.

[12] A. Papoulis and S. U. Pillai. Probability, Random

Variables and Stochastic Processes With Errata Sheet.
McGraw-Hill, 1st edition, December 2001.

[13] G. L. Pappa, A. J. Baines, and A. A. Freitas.
Predicting post-synaptic activity in proteins with data
mining. Bioinformatics, 21(2):ii19–ii25, 2005.

[14] R. Poli, C. D. Chio, and W. B. Langdon. Exploring
extended particle swarms: a genetic programming
approach. In GECCO’05: Proceedings of the 2005

Conference on Genetic and Evolutionary

Computation, pages 169–176, New York, NY, USA,
2005. ACM Press.

[15] R. Rapport. Nerve Endings: the Discovery of the

Synapse. W. W. Norton & Company, May 2005.

[16] Y. Shi and R. C. Eberhart. Parameter selection in
particle swarm optimization. In EP’98: Proceedings of

the 7th International Conference on Evolutionary

Programming, pages 591–600, London, UK, 1998.
Springer-Verlag.

[17] M. M. Solomon. Algorithms for the vehicle routing
and scheduling problems with time window
constraints. Operations Research, 35(2):254–265, 1987.

[18] I. H. Witten and E. Frank. Data Mining: Practical

Machine Learning Tools and Techniques. Morgan
Kaufmann, 2nd edition, 2005.

