
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Pei, He and Lishan, Kang and Johnson, Colin G. and Shi, Ying (2011) Hoare Logic-based Genetic
Programming. Science China Information Sciences, 54 (3). pp. 623-637. ISSN 1674-733X.

DOI

https://doi.org/10.1007/s11432-011-4200-4

Link to record in KAR

https://kar.kent.ac.uk/70944/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/189722697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Hoare Logic-based Genetic Programming

He Pei
1, 2

 Kang Lishan
1
 Colin G. Johnson

3
 Ying Shi

1

1State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, P. R. China

 2School of Computer and Communication Engineering, Changsha University of Science and Technology

Changsha 410076, P. R. China

3Computing Laboratory, University of Kent, Canterbury, CT2 7NF, England

Abstract. Almost all existing genetic programming systems deal with fitness evaluation

solely by testing. In this paper, by contrast, we present an original approach that combines

genetic programming with Hoare logic with the aid of model checking and finite state

automata, henceby proposing a brand new verification-focused formal genetic

programming system that makes it possible to evolve reliable programs with

mathematically-verified properties.

Keywords. Genetic programming; program verification; Hoare logic; model checking; finite

state automata.

Charles Rich and Richard C. Waters [1] have classified automatic programming techniques into

four kinds: procedure, deduction, transformation, and inspection. Although deduction methods are the

most important for dealing with simple problems, they also claim that these deduction methods cannot

play an important role in more complex automatic programming challenges until they are combined

with other methods.

Genetic programming (GP) was one of the most important automatic programming approaches,

and was first studied in detail by John R. Koza [2] in 1992. It is based on John Holland�s idea of genetic

algorithms (GAs) [3-4]. Subsequently, a number of variants [5-6] have been developed, including

MEP(Multi-Expression Programming), GEP(Gene Expression Programming), ADF-GP(Automatic De-

fined Function Genetic Programming), STGP (Strongly Typed Genetic Programming), LGP (Linear

Genetic Programming), etc. Applications of GP are manifold: automatic design, pattern recognition,

circuit design, cognitive theory, robot control, to name just a few, as well as multi-objective optimiza-

tion problems [2, 5-15].

GP, it could be said, is an illogical method. Although there are many variants on GP, as far as the

core problem solving processes are concerned, these methods all base their fitness evaluation on testing

the programs in the population on a sample of test data [16-17]. If such methods are going to be devel-

oped further and be applied to safety-critical domains, then it is important to combine these approaches

with logic-based approaches for proving and verifying program properties.

This paper is dedicated to introducing a novel verification-focused GP method: Hoare Logic-based

Received: 2009-

*This work was supported by the National Natural Science Foundation of China under Grant No. 60473081 and the State Key Laboratory of

Software Engineering, Wuhan University under Grant No. SKLSE 20080701.

E-mail: bk_he@126.com

2

Genetic Programming (HGP). Very few previous GP systems have taken this approach, but it is begin-

ning to be recognised. The authors of this paper first noted the heavy dependence of GP upon test and

proposed alternative approaches [17-18]. Colin G. Johnson first introduced model checking into GP [17]

in 2007, and this approach has been taken further by Gal Katz and Doron A. Peled [19]. In the present

paper, we collaborate together to elaborate on our original studies on formal GP by linking GP with

formal approaches such as Hoare logic, model checking, and finite state automaton. This kind of formal

GP possesses good features of both deductive and evolutionary methods, and is therefore sharply dif-

ferent from traditional �illogical� GP systems [2, 7-9]. In addition, this new system also allows GP sys-

tems to incorporate concepts such as components, which are widely used in software specification.

Since the novel GP system, Hoare logic-based GP, is essentially a program generation method based on

Hoare�s semantics, we call it HGP for brevity in subsequent discussion.

1 Motivation and Related Works

GP is essentially a GA [13] which applies evolutionary operators to populations consisting of com-

puter programs; most typically, these programs are represented as parse trees. Papers [7-9, 11, 13] in-

troduce many human-competitive results from real-world applications of GP, and paper [7], specifically,

gives eight criteria deciding whether the product of a GP system should be regarded as hu-

man-competitive. With automatic programming, John Koza believes that search-based processes based

on evolution are more more effective and fruitful than logic-based approaches.

GP breeds computer programs to solve given problems as follows [8].

˄1˅ Generate an initial population of programs using random composition of the functions

and terminals drawn from a function set and terminal set.

˄2˅ Iteratively perform the following substeps until the terminal criterion has been satis-

fied:

˄A˅ Execute each program in the population and assign it a fitness value using the fitness

measure, which will depend on the problem at hand.

˄B˅ Create a new population of computer programs by applying the following operations.

The operations are applied to computer programs selected from the population with a

probability based on fitness (a number of different selection schemes are found in the

literature):

˄i˅ Reproduction: Copy an existing program to the new population.

˄ii˅ Crossover: Create new offspring program(s) for the new population by re-

combining randomly chosen parts of two existing programs.

˄iii˅ Mutation: Create one new offspring program for the new population by

randomly mutating a randomly chosen part of one existing program.

˄3˅ The program that has the highest fitness in the final population is designated as the re-

sult of the genetic programming system for the run. This result may be a solution (or

approximate solution) to the problem.

All other types of GPs such as MEP, GE, GEP, ADF-GP, STGP, LGP, etc. are derivations from this clas-

sical model. For instance, when expressing individual with concepts such as genotype and phenotype,

we get MEP, GE, GEP and LGP; and focusing on either functional reusability or the �closure property�

[16] of canonical GP, we naturally introduce ADF-GP or STGP.

To verify whether a program or an approximate solution obtained from evolutionary methods sat-

isfies some pre-given requirement, traditional GP relies on executing the programs in the population

using a set of test data, and then comparing the end results of that execution with a set of expected out-

puts for that given set of test data. From the point of view of software engineering, this is not verifica-

tion of the program, but rather software testing. So, evolving programs this way is unable to safeguard

 3

software reliability.

Software reliability [20] is an important issue of common concern among researchers all over the

world. The most common solutions to it include software testing, component oriented development, and

formalisation of the software engineering process. As E. W. Dijkstra [21] put it, program testing can be

used to show the presence of bugs, but never to show their absence. So safety-critical software systems

depend much more on mathematical proofs, i.e. formal verifications, to guarantee their soundness.

Generally speaking, computer aided proving approaches can be put into two kinds: the proof based

approaches and those based on model checking [22-24]. The strength of the latter is their high level of

automation. Since they have a close relationship with certain temporal logic languages [25], their

expressive power is weakened to some extent. For example, they are not suited to handling changes in

values [26]. Consequently, Willem Visser et al. has pointed out in [27] that model checking can be best

applied to the designs rather than the implementations.

Hoare logic [28] is the most important representative of proof based approaches. It describes pro-

gram properties in the first-order predicate logic, relying strongly on automated theorem proving (ATP)

techniques, and therefore is inferior to model checking in terms of automation. The major reasons for

choosing Hoare logic as our work basis are its strong expressiveness, deducibility, and applicability

[29-30].

In Hoare logic, a Hoare formula or triple is of the form {P}S{Q}. Where P, Q are first-order

predicates, called pre- and post-conditions; S stands for a program segment. {P}S{Q} means: given that

P holds before execution of S, and that the execution of S can terminate, then Q will hold. Hoare logic

[28, 31] (figure 1) includes six proof rules from which program verifications can be carried out. In

practical applications, however, we often use proof tableaux [25] in place of the tree-like style of proofs.

Figure 2 gives an example of proof tableaux.

 Skip Statement: {P} Skip {P} { y=1 ∧ 5 = 5 }

Assignment˖ { z := 5; }{:]}/[PtxxtP =

If-statement˖
}{ 2 else 1 then if }{

}{2}{ },{1}{

QSSeP

QSePQSeP ¬∧∧
 { y=1 ∧ z=5 }

Repetition˖
}~{ do while}{

}{ }{

ePSeP

PSeP

∧
∧

 { y+z =6 }

Composition˖
}{ 2;1 }{

}{ 2 }{ },{ 1}{

QSSP

QSRRSP
 y := y+z;

Rewriting˖
}{ }{

1 1},{ 1}{ ,1

QSP

QQQSPPP →→
 { y=6 }

Figure 1. Proof rules of Hoare logic. Where skip, Figure 2. Sample of proof tableaux
also denoted ε , stands for empty statement.

A major task for automatic programming is reusability [1]. As a key technology in the develop-

ment of software industry and economies of scale [32], component approaches are no doubt important

practical activities in this aspect. HGP also considers components and reuse [33]. As proof and verifica-

tion are so complicated, it is unwise to prove everything from scratch. Consequently, HGP is based on

the principle that code should be reused, and more importantly, so should the proofs.

 In recent papers [17,18] we have explored the use of various approaches (Hoare logic, model

checking, and the theory of automata [34,35]) as a way of formalising the process of fitness evaluation

in GP. In this paper we extend the work introduced in [18] that uses Hoare logic as the basis of fitness

evaluation. Here we weaken some of its restrictions to obtain, on one hand, scalability, and on the other

to present a distributed parallel algorithm for fitness evaluation. All of these are original. In fact, all

4

traditional GPs whose fitness calculations are based on the principle of executions cannot do this. In

terms of fitness evaluation, HGP uses verification: this is its essential difference when compared to tra-

ditional GP. HGP first accepts pre- and post-conditions, then evolves Hoare formulae based on re-

quirements specifications. Once an evolved result like {P1, P2, ... , Pn} {f}s {Q1, Q2, ... , Qm} is found in

the search space, it can tell us with certainty that { nPPP ∧∧∧ L
21

} f { mQQQ ∧∧∧ L21 } is a Hoare

triple, i.e. f is correct with respect to its pre-condition { } and post-condition

{ }. As for fitness evaluation, it relies directly on relation calculations, supporting

distributed parallel evaluation of fitness at an arbitrarily fine granularity. HGP will now be introduced:

first the language, then the verification framework, followed by the GP concepts.

nPPP ∧∧∧ L21

mQQQ ∧∧∧ L21

2 The Language of Components

The language of components used in HGP, denoted by LC(F), is a language of while programs [28]

restricted to a given set of components F ={ fi| i =1, 2, ..., n}. Its grammar is as follows. Note that the

components in F can be regarded as either a while program, a program in some other language, or even

an executable code. In short, they are transparent.

 P→ f1 | f2 | ... | fn | if C {P} else {P} | while C {P } | P ; P

Where C stands for Boolean expression.

3 Search Space

In the following, we will define the search space or verification task, denoted STP*, under a closed

environment for the component language given above. What we have done here is to weaken the re-

striction in [18]; the result, nevertheless, is scalable. This extension to Hoare�s convention by introduc-

ing the so called generalized concept is done only for proof reuse and evolutionary generation of pro-

grams. For convenience, the discussion proceeds in functional form rather than assignments.

Definition 3.1 (Scalable formula) A formula of the form P {f}S Q is a scalable (Hoare) formula,

if f is a program segment, and P, Q sets of logic formulas satisfying the following: there exist some q in

Q, and at least a p in P such that {p} f {q} forms a Hoare triple. In this case, P, Q are called the gener-

alized pre- and post-conditions respectively; {p} f {q} an instance of P {f}S Q.

Definition 3.2 (Instance) Let H be a set of Hoare triples, and X∧ mean a conjunction of all ele-

ments (logic formulas) in X. A Hoare triple }{}{ KfR ∧∧ is an instance of some scalable formula P {f}S

Q under H, if R, K are nonempty subsets of P and Q satisfying that for any ,there exists a Kk∈

Rr ∈ such that {r} f {k}ęH.

Definition 3.3 (Scalable representation) Let H be a set of Hoare triples. A set SH of scalable for-

mulas is a scalable representation of H, if each hęH is an instance of some sęSH under H and no two

distinct elements in SH share the same program segment.

Obviously, the scalable representation for a given set H of Hoare triples is not unique, but is

uniquely defined with respect to a given program segment.

Definition 3.4 (Search space) Given a set H of Hoare triples and its scalable representation SH,

the search space STP* is a set constructed by applying the following rules a finite number of times.

1) {/\ M}İ {/\ M }ęSTP* for P {f}S Q in SH with or ; PM ⊆ QM ⊆

2) Instances of some scalable formula in SH under H are all in STP* ;

3) {/\P} f ; g {/\W} ({/\P} fg {/\W} for short) in STP*, if {/\P} f {/\Q}, {/\R} g {/\W} in STP* satisfy

that for each r∈R, there exists a q∈Q such that rq→−| .

In this case, elements in STP* are either called the generalized results of H or provable under SH , a gen-

 5

eralized closed environment with scalability.

Theorem 1 Given H, a set of Hoare triples, and its scalable representation SH, STP* under H is a

set of Hoare triples.

This is easy to demonstrate. In fact, for case 1 of definition 3.4, the proof is trivial; for cases 2 and

3, we can consult definition 3.2, and apply both composition and rewriting rules of figure 1.

4 Model of Search Space

In this section we will introduce a model based approach to verification and generation of reliable

programs in STP*. In order, the topics are the modeling principle, method, proof, parallel verification,

and scalability.

4.1 Modeling Approach

4.1.1 Principle

As discussed [25] by Michael Huth and Mark Ryan, verification techniques can be thought of as

comprising three parts:

” A framework for modeling systems, typically a description language of some sort;

” A specification language for describing the properties to be verified;

” A verification method to establish whether the description of a system satisfies the specification.

From this point of view, we can compare the two commonly used formal approaches like Hoare

logic and model checking in columns 2 and 3 of table 1. As we know, to conduct proofs for some as-

sertions often requires sophisticated guidance and expertise from the user. Since model checking is de-

cidable, we consider it advantageous to functionally employ these two approaches to give us the ad-

vantages of both. Based on these ideas, the formal basis for the HGP system uses the three ideas out-

lined in column 4 of table 1. Now let�s illustrate how HGP is developed in the context of them.

Table 1 Comparison of relevant formal approaches

 Hoare Logic Model Checking Formal basis of HGP

The formal framework Hoare triples Finite state transition system Finite state automaton

The specification language Hoare triple Temporal logic Hoare triple

The verification method A calculus Model checking algorithm Verification algorithm

First of all, we must clarify what are transition system and model checking. As far as transition

system is concerned, we mean a finite state automaton depicted by a mathematical model (or a labeled

directed graph called a transition diagram) that consists of [34, 35]: 1) a set of states S; 2) a set of input

symbols; 3) transitions among states in response to inputs; 4) a start state Ss ∈0 , and 5) a set of final

states in S. Transition systems are useful for compiler implementations and protocol verifications, etc.

In general, model checking is a model-based approach to program verification in which the system

and the property of concern are represented by a model and a statement φ of some specification lan-

guage; and the task is to compute whether a model M satisfies φ (written M |= φ). When a transition

system is chosen for M, this can more explicitly be restated as the following proposition [25]: model

checking is the process of computing an answer to the question of whether M, s |= φ holds, where φ is a

formula of some logics, M is an appropriate model of the system under consideration, s is a state of that

model and |= is the underlying satisfaction relation. So substituting some temporal logic for φ , we will

get the commonly used model checking of table 1.

Similarly, we can obtain another kind of model checking approach (column 4 of table 1) if we link

together the ideas of a transition system M, Hoare triple {P} f {Q}, and some appropriate model

6

checker which checks the satisfaction of M, s |= {P} f {Q} with respect to theorem 2 for some state s in

M. To this end, we must do the following things:

a) Model the before mentioned search space STP* using transition system or finite state automaton,

arriving at a scalable model SM(H) as shown in subsection 4.1.2 and section 6;

b) Describe the property of a program system f of concern using some Hoare triple h: {P} f {Q}.

c) Design a model checker (or verification algorithm) to check whether SM(H), s |= h holds

(i.e. STP*) . ∈h

Regarding these problems, one can refer to subsections 4.1.2, 4.2, and section 6. Notice that a

scalable model SM(H) is a common model of all program systems involved in STP*. As for the usage of

the idea of finite state automaton, consider SM(H). Treating all states of SM(H), e.g. figure 5 of section

6, as final states and choosing one from them, e.g. GC1 of figure 5, as a start state, we will obtain a fi-

nite state automaton on which the well defined model checker or verification algorithm (see subsection

4.2) computes, with inputs SM(H), GC1 and h, say { P1 /\ P2 /\ P3} f1 ; f3 ; f2 ; f4 { P1 /\ P5 /\ P7},

whether SM(H), GC1 |= h holds. This computation process is also reflected in generation 9 of figure 6

where it means a proof of SM(H), GC1|= { /\ {P1, P2, P3}} f1; f3; f2; f4 { /\ {P1, P5, P7}}. In short, solv-

ing of the maximum expansion ePost for some program, say f, over a given generalized pre-condition

Gpre is essentially a Hoare logic approach to the verification of SM(H), s |= { /\ Gpre } f { /\ ePost } for

state s in SM(H).

4.1.2 Method

Definition 4.1 (Passage) Let H be a set of Hoare triples, SH its scalable representation. Again let

G =<V, E> be a finite transition graph whose vertices represent sets (generalized pre-/post-conditions)

of logic formulas, and edges are labelled either by an �f �, a program segment of some scalable formula

in SH , or a � ε � symbol. A path V1 f1 V2 f2 ... fn-1 Vn in G is a passage, if it defines the following maxi-

mum expansion function for some nonempty subset :)(iVm)(1VP ⊆

1) ; ∅≠= PVm)(1

2) for
⎩
⎨
⎧

∅≠∈∈∃∈
∅≠→∈∃∈

=
−−

−−

 by linked are and)}}{})({(|{

by linked are and)})((|{
)(

11

11

fVVHxfpVmpVx

VVxpVmpVx
Vm

iiii

iiii
i

ε
ni ≤≤2

where Vi stands for vertex of G; the stringα (= f1 f2 � fn-1) concatenated from edge labels along the pas-

sage is called a generalized body; is the maximum expansion of f)(iVm 1 f2 ... fi-1 on P.

Definition 4.2 (Scalable model) Given H, SH , G =<V, E> as above, G is a scalable model for

verification of STP* under H , denoted by SM(H), if for any program segment f and nonempty subsets P,

Q of some two vertices, we have: there exists a passage in G with f as its gen-

eralized body and Q a subset of the maximum expansion of f on P.

⇔∈ *}{/\}{/\ STPQfP

Definition 4.3 (Generalized p-implication) Given two sets P, Q of logic formulas, they have

generalized p-implication relationship, denoted , if there exist two nonempty sets

, such that

QP
p
⎯→⎯−|

)(1 PS ⊆)(2 QS ⊆ ∅≠→∈∃∈=)}(|{ 12 qpSpQqS .

Theorem 2 Given H, SH as above, there exists a scalable model SM(H) for STP*.

Proof. Without loss of generality, assuming the predicates involved in H are in {P1 , P2, ..., Pn, Q1,

Q2, ..., Qn}, and SH = { Ri { fi }S Wi | mi ≤≤1 }. We first construct the model and then providing the

proof.

Step 1: Construction of SM(H).

1) Constructing matrices of predicate relation and generalized relation in tables 2 and 3;

2) Drawing a node for each set of predicates in ; }1|{}1|{ miWmiR ii ≤≤∪≤≤

3) Drawing an arrow which is labelled as �f� from R to W, if HS SWfR ∈}{ ;

 7

Table 2 Predicate relation Table 3 Generalized relation
⎯→⎯
S

 P1 ... Pn Q1 ... Qn ⎯→⎯
g R1 ... Rm W1 ... Wm

P1

...

Pn

Q1

...

Qn

⎩
⎨
⎧ →−

=⎯→⎯
othersF

YXT
YX ji

jSi

|

Where X, Y are P or Q, and

. Technically, the

calculation of table 3 relies on

table 2.

nji ≤≤ ,1

R1

...

Rm

W1

...

Wm

⎩
⎨
⎧ ⎯→⎯−

=⎯→⎯
othersF

YXifT
YX jPi

jgi

|

Where X , Y are generalized pre- or

post- conditions R or W ˈ and

mji ≤≤ ,1 .

4) Drawing a ε arrow from Xi to Yj , if . Here X, Y stands for either R or W. TYX jgi =⎯→⎯

The graph obtained above is SM(H).

Step 2: Showing that for nonempty subsets K, L of two generalized conditions,

 there exists a passage in SM(H) taking f as its generalized body and L the sub-

set of its maximum expansion on K.

⇔∈ *}{/\}{/\ STPLfK

=>: By induction on the composition.

1) Base: it is trivial for rules 1) and 2) in definition 3.4.

2) Induction step: assuming , , by induction hypothesis, there

exist two passages, say and , which take ,

 as their generalized body on the one hand,

}{/\}{/\ 1 PfK *}{/\}{/\ 2 STPLfQ ∈

uu ReeReR 12211 −L nn WggWgW 12211 −L 1211 −= ueeef L

1212 −= ngggf L iii RRmRm ⊆≠∅)(()(,)1 ui ≤≤

and jjj WWmWm ⊆≠∅)('()(' , the maximum expansion of and

 on K and Q on the other. As such,

)1 nj ≤≤ 121 −ieee L

121 −jggg L)(
1

RmK = , and

, . Thus

, if the two Hoare formulas can be combined into

, i.e. for each

)('
1

WmQ =

)(uRmP ⊆)(' nWmL ⊆ |{)(' 11 WwWmQ ∈⊆=≠∅)}(wpPp →∈∃ ⊆ |{ 1Ww∈

)()})((1WmwpRmp u =→∈∃

*}{/\}{/\ 21 STPLffK ∈ Qq∈ , there is a Pp∈ such that qp →−| . Again by defi-

nition 4.3 and the drawing method of SM(H), we have , which means there exists

a

1WR
pu ⎯→⎯

ε arrow between Ru and W1. Consequently, we can construct a new maximum expansion

for on such that)(jWm 121 −jggg L)(1Wm)()(' jj WmWm ⊆≠∅ (nj ≤≤1). Hence combining

them with all of those maximum expansions related to f1, say m (Ri) s, we will get from induction

hypothesis the proof for uu ReeReR 12211 −L ε nn WggWgW 12211 −L being a passage satisfying

and . The composition of two passages is shown in figure 3. KRm =)(1)(nWmL ⊆

∅≠∅≠

⊇→∈∃∈∅≠∅≠

=→∈∃∈

−

−

−−

LggQ

WmWmwpPpWwPeeK

WmWmwpRmpWwRmRm

WggWReeR

n

nu

nuu

nnuu

11

1111

111

111111

|||

)(')(')}(|{

||||||

)()()})((|{)()(

||||

L

UL

LL

ULUUUL

LL

ULUULU

LL ε

Figure 3. Composition of Two Passages

<=: By induction on the number of edges in a passage.

1) Base: when the passage contains only one edge, the proof is trivial.

2) Induction step: suppose that V1 e1V2 e2...en-1Vn xVn+1 is a passage in SM(H) taking

8

xeeef n 121 −= L as its generalized body such that ∅≠= KVm)(1
,)(1+⊆≠∅ nVmL . Where Vi

stands for the vertex or generalized condition, ei and x for edges. By induction hypothesis, we have

{/\ K} e1 e2 ...en-1{/\ m(Vn)},{/\ m(Vn)}x {/\ L}∈STP*. Again by the definition of STP*, it follows

easily {/\ K}f{/\ L}∈STP*. This completes the proof.

4.2 Parallel Verification Algorithm
A parallel verification algorithm carried out on the concerned model is given below. For the se-

quential algorithm, one can refer to [18].

Algorithm 4.1 Given H = , S}1|}{}{{ kjYfX jjj ≤≤ H ={Zi{fi}SWi |1≤ i ≤q}, SM(H) as above,

the algorithm for parallel verification of *}{}{ STPQP ∈α () is as fol-

lows.

nff L1=α *
21 },,,{ qfff L∈

1) Solving for }|{)(11 xPZxZm →∈= HS SWfZ ∈111 }{ . Because there is only one edge in SM(H)

annotated by �f�;

2) Solving R[fi]= {(t,et)|t∈Zi , et is the maximum expansion of fi on {t}⊆Zi }for fi },...,,{ 21 qfff∈

3) Solving R[] for (|α|≥1) of the form (is the maximum expansion of

on {t}) in parallel with the algorithm of figure 4.

α nff L1=α U
1

)} ,{(
Zt

tet
∈

te

α

CalculateExpansion(, H, SM(H)) α

begin

 Let |α | be the length of ; α

 if then return(R[]) α },,,{ 21 qfff L∈ α

else

begin

divide into 2 halves: lHalf= fα 1 ... f ⎣|α|/2⎦ and rHalf= f ⎣|α|/2⎦+1 ... fn;

if there is no ε arrow linking W ⎣|α|/2⎦ and Z ⎣|α|/2⎦ +1

 then return({�No�})

 else

 begin

 Solve R1 and R2 in parallel for lHalf and rHalf as follows:

 R1= CalculateExpansion(lHalf, H, SM(H)),

R2= CalculateExpansion(rHalf, H, SM(H));

 R[α]:= {};

for each (t, et) ∈ R1 do

 if there are e∈ e t and (u, v) ∈ R2 such that e → u

 then R[α]:=R[] ∪ {(t,)} ; α U
2') ,'()'(:

'
Retteee

t
tt

e
∈∧→∈∃

return(R[]) α

end

end

 end;

Figure 4. Parallel algorithm for calculation of the maximum expansion

 9

4) Interpreting the returned result as follows. If the result is {No}, then the goal to be verified is

wrong with respect to SH; if the result is R[] and Q�= satisfying

, then is correct; otherwise, the goal to be verified is unprovable under S

α U
]R[)e u,(u)(t:)(u1 α∈∧→∈∃ Zmt

ue

QQ →− '/\| }{}{ QP α H.

4.3 Verification of LC(F)

The principle for adapting the linear model to verify both the branch and iteration statements in

LC(F) is the multilayer strategy. That is, we verify program segments layer by layer: first proving some

inner segments, and then their immediate outsides. Algorithm 4.2 is based on this principle. Of course,

we should treat �if� and �while� statements as the same control structure when dealing with such con-

cepts as layer number and nested depth.

Algorithm 4.2 Given SM(H), to verify an arbitrary program P composed of components from H,

we proceed in the following way:

(1) Initialize k (nested depth) as 1, and gathering all iterations and branch statements involved in P,

denoted IB(P), based on the following formula;

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∪
∪∪

∪
=

2121

212121

111

 is)()(

}{ else } { if is)()({ } }{ else } { if{

} { whileis)(} } { {

 in statement branch nor iteration {}

)(

PPPPIBPIB

PPCPPIBPIBPPC

PCPPIBPCwhile

Pneither

PIB

˗

(2) Verify all program segments of depth k in IB(P) based on the algorithm given in the previous

subsection under the current SM(H);

(3) Maintain SM(H)by adding what were achieved in step (2) either as scalable formulas or proper-

ties into the current SM(H).

(4) k:= k+1; if there still remains some program segment of depth k in IB(P) untouched, go back to

step (2).

(5) Verify the original program in SM(H)

4.4 Scalability

From what was discussed above, it follows that a model may contain many states or ε arrows. To

overcome this shortcoming, we can apply the following property.

Definition 4.4 (Subformula) Given two scalable formulas F1: and FQfP S}{ 1 2: , FWfR S}{ 2 1 is

a subformula of F2, denoted F1 ⊆ F2, if , , and . RP⊆ WQ⊆ 21 ff =

Definition 4.5 (Subrepresentation) Let H be a set of Hoare triples and SHˈS’H its scalable rep-

resentations. SH is a subrepresentation of S’H , denoted SH⊆S’H , if for each HSS∈ there exists a S�∈

S’H such that S S’. ⊆

Similarly, we can define the concept submodel. Furthermore, according to these definitions, we

have:

Theorem 3 Given H such that SH S’⊆ H, if STP*, STP’* are the search spaces of SH and S’H ,

then STP* STP’*. ⊆

5 HGP: A Novel Formal GP

By the model�s existence theorem that given a set H of Hoare triples and its scalable representation

SH , there must exists a scalable model SM(H) for STP*, we can infer that the formal model obtained

10

from the use of the multilayer principle can not only be used to verify, but also to generate numerous

reliable programs in the well defined search space. As we know, to automatically generate the desired

programs is far more difficult than to verify them. Since the longest path problem (ND29 [36], i.e.

whether for two given points and an integer k there will exist a simple path of edge number over k in a

directed graph) is a NP-Complete problem, we can search the most suitable solution or approximate

program in the formal model through the use of GA. In this case, the string concatenated from edge la-

bels along a passage is just a correct program with respect to its pre-/post-conditions.

HGP as a member of the GP family naturally shares with its brethren many general characteristics.

Because section 1 has given an overview of GP, in the following we will introduce the novel GP in

terms of its distinctive features. For other related aspects, the reader can refer to [13].

The representation is one of the major differences between classical GP and HGP. Since edge la-

bels in the formal model stand for the names of components, a string concatenated from edge labels

along a path naturally forms a program. Furthermore, if the path is a passage with respect to its in-

put/output conditions, this string must be a correct program with respect to its pre-/post-conditions. So

given a set H of (verified) Hoare triples and its scalable model SM(H), populations can be defined as

sets of programs comprised of only components in H. This certainly tells them apart.

In regard to fitness, HGP first calculates the maximum expansion for a randomly generated pro-

gram (passage) on some given pre-condition, then checking the similarity between the target condition

(as the post-condition) and the evolved maximum expansion. This leads to the following fitness func-

tion:

)),,((),,(GposGpreSmnGposSGpref =

where meanings of the symbols are:

S: a program segment or a sequence of components.

Gpre: generalized pre-condition.

Gpos: target requirement as generalized post-condition. HGP first accept Gpre, Gpos as inputs, then

automatically search reliable programs in search space.

n(P, Q): n is a function of sets P, Q of predicates calculating the order of)}(|{ qpPpQq →∈∃∈ .

m(S, Gpre): m is a function solving the maximum expansion of generalized body S on a generalized

 pre-condition Gpre based on a given scalable model.

Note that the case of breakpoint calculation in [18] can technically be avoided by using valid genetic

operation based on SM(H). The efficiency, however, is raised dramatically using this method.

Clearly, when evaluating the randomly generated programs, the greater the returned value the bet-

ter. Ideally, the returned value should be n(m(S, Gpre), Gpos)=|Gpos|.
So, another major difference between HGP and GP lies in their fitness evaluation. The latter ap-

plies such a strategy as firstly executing the randomly generated programs on a sample data set, then

checking the approximation between the returned value and the target requirement. From the viewpoint

of software engineering, this method can only be categorized as testing rather than verification. Besides

the advantages of being a verification-based method, the method used here also brings with it such new

properties such as closure, sufficiency, etc. [13]

HGP solves the fitness based only on property relations rather than execution or test. Worth notic-

ing is that the formal framework discussed above can also support distributed parallel evaluation at ar-

bitrarily fine granularity. Additionally, HGP also differs from the formal GP of paper [17]. The latter

has paved the way for introducing formal method into GP, focusing on the combination of model

checking and GP � in this system we use Hoare logic instead of the temporal logic of model checking

as a specification language. This can help to extend the expressiveness of the system.

Genetic operators are integral part of evolutionary computation. HGP has such operators as repro-

duction, crossover, mutation, etc. They are not applied to tree-like individuals but to sequences of

components. The genetic strategy involved in the evolutionary process is similar to that of classical GA.

 11

What follows is the comparison between classical GP and HGP (table 4). As for the pseudo-algorithmic

description of HGP, one can refer to the GP framework of section 1. They are similar in principle.
Table 4 Classical GP and HGP

 Classical GP HGP

Representation Parse tree Sequence of justified components

Fitness evaluation Execution and comparison Direct computation

Based on Logic No Yes

Soundness Software test Software verification

Underlying search space
Sets of terminals and

functions
Hoare triples

Operators Similar to GA Similar to GA

Application areas Expression, Lisp Arbitrary programming language

Solution and result Approximation Both accuracy and approximation

To facilitate the understanding of why HGP works effectively, we will go into more detail about

genetic operations.

Definition 5.1 (Context) Given that H is a set of Hoare triples, is its

scalable representation, SM(H) represents the corresponding scalable model, and is

all the program components involved in S

}1|}{{ niQfPS iSiiH ≤≤=

}1|{ nifS i ≤≤=

H , a context for f in S with respect to SM(H), denoted

C(SM(H), f), is a 2-tuple C(SM(H), f) = (front, rear) such that front, rear are subsets of S ; and that

front = { there exists a |Sg∈ ε arrow in SM(H) linking g (i.e. the generalized post-condition of g) to

f (i.e. the generalized pre-condition of f) } and rear= |{ Sh∈ there exists a ε arrow in SM(H) linking f

(i.e. the generalized post-condition of f) to h (i.e. the generalized pre-condition of h) }.

Definition 5.2 (Crossable space) Given H, SH , SM(H) and S as above, the crossable space for

two strings , denoted*, S∈βα),(βαCS , is defined as } and both in appears |{),(βαβα fSfCS ∈= .

Now, it is time to algorithmically depict the semantic-based genetic operations in terms of defini-

tions 5.1 and 5.2. As for the initialization step, individuals (or sequences of program components) con-

sistent with the concerned scalable model SM(H) for STP* can incrementally be generated through the

use of context. For example, having figured out the ith component f i of some individual along with

C(SM(H), f i) = (front, rear) , HGP will proceed to generate f i+1 based on the set rear.

 Mutation: 1) Let be an individual to be mutated; mfffP L21=

 2) Choose a position, say i (i.e. fi), in the sequence P for mutation;

 3) Define mutation_space for the position i as follows:

 case i of

 1: let C(SM(H), f2) = (front, rear) in

 mutation_space:= front
 end; //all possible program components which can be linked to f2

 m: let C(SM(H), fm -1) = (front, rear) in

 mutation_space:= rear
 end; // all possible program components to which fm -1 can be linked

 : let C(SM(H), fmi <<1 i -1) = (front, rear) and

 C(SM(H), fi +1) = (front2, rear2) in

 mutation_space:= 2frontrear∩

 end

 end;

12

 4) Replace fi of P with some randomly chosen program component, say f, in muta-

tion_space � {fi} if mutation_space �{fi} ∅≠ .

Crossover: 1) Let , mfffP L211 = nhhhP L212 = with ∅≠),(21 PPCS be two individuals to

crossover;

 2) Determine the crossover positions in with substeps a) to b): 21 , PP

 a) Randomly choose some program component, say g, from ;),(21 PPCS

 b) Randomly choose some positions, say i and j, in with as

the crossover positions.

21 , PP ji hfg ==

 3) Conduct crossover on through constructing such semantic-allowed indi-

viduals as and for further use.

21 , PP

nji hhfff LL 121 + mij ffhhh LL 121 +

Consequently, combining these techniques with the algorithm of HGP can give birth to an effec-

tive approach to reliable program generation. In fact, if the parents reflect some paths in SM(H), so do

the results obtained from either the crossover or the mutation. Of course, it is permissible to make the

genetic operators more complicated, but for the sake of the fact that these studies do not benefit the

framework of HGP fundamentally, we wouldn�t like to discuss it deeply.

6 Experiment and Analysis

In this section we will elaborate on parallel evaluation, simulation experiments, and scalability

through the use of the example of [18].

Problem. Given a set of Hoare triples H (table 5) and a predicate relation matrix (table 6), gener-

ating a program which is correct with respect to the pre-condition (P1 /\ P5 /\ P7) and the post-condition

(P1 /\ P5 /\ P7 /\ (u=0 \/ r < z)).

6.1 Theoretical Analysis

Thought: from Hoare logic, if there exists a program X which together with (P1 /\ P5 /\ P7) /\

() and (Pzru ≥≠ /\0 1 /\ P5 /\ P7) forms a Hoare triple { (P1 /\ P5 /\ P7) /\ (zru ≥≠ /\0) } X {P1 /\ P5 /\

P7 }, then:

 {P1 /\ P5 /\ P7 } while () { X } {Pzru ≥≠ /\0 1 /\ P5 /\ P7 /\ (u=0 \/ r < z)}.

So the desired program is : while (zru ≥≠ /\0) { X }. Now we solve to find the value for X.

Method:

1) According to table 5 we have a scalable representation SH ={{P1, P2, P3}{f1}S{ P2, P3, P4}, { P2, P4,

P6}{ f2}S{P1, P5, P6}, {P2, P3, P4}{ f3}S{ P2, P4, P6}, {P1, P5, P6}{ f4}S{P1, P5, P7}} for H.

2) Constructing the generalized relation matrix (table 7) and the scalable mode SM(H) (figure 5) from

SH and predicate relation matrix (table 6) in the same way as that of theorem 2.

3) By theorem 2, searching for a desired passage in SM(H).

Because there is a passage in SM(H) with f1 f3 f2 f4 as the generalized body, {P1, P5, P7} as its

maximum expansion on {P1: xzuzy =+ , P2: , P0>u 3 : 0>∧≥∧+= zzrqzrx } verifying { P1 /\ P2

/\ P3} f1 ; f3 ; f2 ; f4 { P1 /\ P5 /\ P7}∈STP*, and satisfying −| (P1 /\ P5 /\ P7 /\ 0≠u /\ zr ≥) (P→ 1 /\ P2

/\ P3), we have{(P1 /\ P5 /\ P7) /\ ()} fzru ≥≠ /\0 1 ; f3 ; f2 ; f4 { P1 /\ P5 /\ P7 }, i.e. { P1 /\ P5 /\ P7 }

while () { fzru ≥≠ /\0 1 ; f3 ; f2 ; f4} { P1 /\ P5 /\ P7 /\ (zru <∨= 0)}.

 13

Table 5 Set of Hoare triples. Each row stands for a Hoare formula

Pre-condition Function Post-condition

P1 xzuzy =+ f1 xzzuy =−+)1(P4

P2 0>u f1 0>u P2

P3 0>∧≥∧+= zzrqzrx f1 0>∧≥∧+= zzrqzrx P3

P4 xzzuy =−+)1(f2
xzuzy =+ P1

P2 0>u f2 0≥u P5

P6 00)1(>∧≥∧++= zrzqrx f2 00)1(>∧≥∧++= zrzqrx P6

P3 0>∧≥∧+= zzrqzrx f3 00)1(>∧≥∧++= zrzqrx P6

P4 xzzuy =−+)1(f3 xzzuy =−+)1(P4

P2 0>u f3 0>u P2

P6 00)1(>∧≥∧++= zrzqrx f4 00 >∧≥∧+= zrqzrx P7

P1 xzuzy =+ f4
xzuzy =+ P1

P5 0≥u f4 0≥u P5

Table 6 Predicate relation Table 7 Generalized relation

⎯→⎯
S

 P1 P2 P3 P4 P5 P6 P7
⎯→⎯

g GC1 GC2 GC3 GC4 GC5

P1 T GC1

P2 T T GC2

P3 T T GC3

P4 T GC4 F F

P5 T GC5 F

P6 T

P7 T

 f4 f2

 f3

 f1

GC4:

P1 P5 P7

GC5:

P1 P5 P6

GC3:

P2 P4 P6

GC1:

P1 P2 P3

GC2:

P2 P3 P4

Figure 5 The scalable model SM(H) of STP* under H. Here each GCi stands
for a generalized condition, and edges without labels areε arrows.

Formal principle: The verification process of f1 ; f3 ; f2 ; f4 in SM(H) is as follows.

Step 1: solving m(GC1)= (P|{ 1GCx∈ 1 /\ P5 /\ P7) /\ (zru ≥≠ /\0)→ x }={P1, P2, P3 }

14

Step 2: solving R[f1]={(P1,{P4}), (P2,{P2}),(P3,{P3})), R[f2]= {(P2,{P5}), (P4,{P1}),(P6,{P6})},

R[f3]= {(P2,{P2}), (P3,{P6}), (P4,{P4})} and R[f4]= {(P1,{P1}), (P5,{P5}), (P6,{P7})};

Step 3: invoking CalculateExpansion(f1 ; f3 ; f2 ; f4 , H, SM(H)), we have R[]={(Pα 1,{P1}), (P2,

{P5}), (P3, {P7})} ;

 Step 4: solving Q�= = {PU
]R[)ue u,(u)(t:)1(α∈∧→∈∃ Zmt

ue 1, P5, P7} from R[] above. This means { Pα 1 /\

P2 /\ P3} f1 ; f3 ; f2 ; f4 { P1 /\ P5 /\ P7}∈STP*. By what was analyzed in 3), we get the desired result.

Apparently, the graph SM(H) is rather complicated. For this, we can use theorem 3 for the simpli-

fication. For example, solving the problem based on such a scalable representation SH ={{P1, P2,

P3}{f1}S { P2, P3, P4, P6 }, { P2, P3, P4, P6 }{ f2}S{P1, P5, P6},{ P2, P3, P4, P6 }{ f3}S { P2, P3, P4, P6 },

{P1, P5, P6}{ f4}S{P1, P5, P7}} for H , the result is still correct.

6.2 Experimental Analysis

The simulation includes 2 steps.

1) For each randomly generated programs, using {x∈GC1| (P1 /\ P5 /\ P7 /\) x }=

{ P

zru ≥≠ /\0 →

1, P2 , P3 }= GC1 and tPost ={P1, P5 , P7 } as the generalized pre-condition Gpre and the target

requirement Gpos to invocate the fitness function;

2) Let the population size be 8. Then pressing the button �Run�, we will get Figure 6, a screenshot of

the HGP. With the progress in solution evolution, the result approaches gradually to our target, say

157 in figure 6, in terms of fitness. HGP must terminate some time under the case of either the

maximum number of generations or the given requirement being reached. Thus it is effective for

generation of solutions of both precision and approximation. With precision, we mean Hoare for-

mulas can be obtained through evolutionary approaches; with approximation, search methods are

employed.

Figure 6 Screenshot of result

To better understand HGP, we annotate figure 6 as follows. Each line in figure 6 reflects the best

solution of the population of programs at that moment. The data under the names Pre (Precondition),

ePost (the maximum expansion of a program on the pre-condition) and tPost (the target requirement or

post-condition) represent properties of programs. For example, the data under the name Pre �123�

stands for {P1, P2, P3}. Similarly, the data under the name Program like �132� stands for �f1; f3; f2�, a

sequence of components, i.e. a program. As for the fitness value 0 of the first generation in figure 6, we

can deduce it from the fact that the corresponding maximum expansion is an empty set, therefore im-

plying no element of { P1, P5, P7}, denoted tPost = 157. The fitness values of generation 3 through 8

are consistent, i.e. 2, because 15 shares two digits, i.e. the �1� and the �5� with 157; and so does 57

with 157. Obviously, the desired result {/\ {P1, P2, P3}} f1; f3; f2; f4 { /\ {P1, P5, P7}} appears in genera-

tion 9. This is shown by the value for ePost and tPost being the same, i.e. 157. By (1), we have (P−| 1

 15

/\ P5 /\ P7 /\ /\ 0≠u zr ≥) (P→ 1 /\ P2 /\ P3). Consequently, the desired program is:

while () { fzru ≥≠ /\0 1 ; f3 ; f2 ; f4 }.

which agrees with the result from the theoretical analysis in the previous section.

7 Discussion

It is really hard to make a precise comparison between search techniques of different natures.

Apart from the objective factors, we are subjectively dedicated to the establishment of HGP recently,

therefore having not explored the efficient issues comprehensively and deeply. However HGP along

with its search technique has the following characteristics.

a) Usefulness

Verification and testing are two major kinds of approaches to software reliability. A very funda-

mental problem with software testing is that testing under all combinations of inputs and preconditions

(initial state) is not feasible, even for simple examples [37]. Consequently, classical GP cannot establish

that its result functions properly under all conditions, because it works according to executions of

members of the population over some limited sample dataset.

However this is not the case for HGP. This approach searches the desired computer programs

through the use of Hoare logic style reasoning. Once the result, say the Hoare formula {P1 /\ P5 /\ P7 }

while {X}{P)0(zru ≥∧≠ 1 /\ P5 /\ P7 /\ (zru <∨= 0)}in subsection 6.1, is obtained, we can say with

certainty that the program while { X } is correct with respect to P)0(zru ≥∧≠ 1 /\ P5 /\ P7 and P1 /\ P5

/\ P7 /\ (u=0 \/ r < z). This means for any values of x, y, z, u, r, q such that P1 /\ P5 /\ P7 holds before the

program runs, so will the post condition P1 /\ P5 /\ P7 /\ (zru <∨= 0) after that program�s termination

for their returned values. As such, it is in this sense that HGP is superior to classical GP. Of course,

each method has its own strong points, and so we maintain that both of them merit deep study. Indeed,

one interesting area for future study is hybridizing logic-based and testing-based approaches to GP.

b) Scope

Whether a probabilistic approach is useful should depend, first, on its effectiveness, and then its

technical efficiency. In view of the following analysis, we have reason to claim that HGP gives more

scope to us than the standard search.

Without loss of generality, assuming g is an element of some GP function set which takes the form

of repeat f ; y:= y-4 until y=5 (where f stands for a program whose execution has no effect on y and par-

ticularly can terminate), it follows that g cannot work or contribute the search process effectively unless

its loop control variable y satisfies 5*4 += ky (1). In other words, since GP relies on executions of

programs (for the fitness values) to guide the evolution of populations, its probabilistic search must

suffer from the endless loops for which y has been assigned values such that

≥k

5*4 +≠ ky by the previ-

ous computation steps of g, thus resulting in failures in evaluating programs as well as further searches.

This makes the standard search vulnerable. Solving of this problem must seek help from the semantic

measures. Also, GP search still faces the challenge of addressing the closure problem [13]. This prob-

lem, to put it simply, concerns type consistency. As such, it is necessary to introduce some mechanisms

to ensure this type consistency into the standard search for program evaluations. Fortunately, HGP pro-

vides a means for these issues on the basis of Hoare triples. For instance, it can cope with these cases on

the condition that the execution terminations have been deliberately provided for the concerned com-

ponents (say g), and reflected in the pre-/post-conditions. In summary, SM(H) based search may not

appear to be very efficient in all situations, but often is effective. In fact, its effort toward working out

the problem is evident. Since HGP evaluates programs in light of the computation of properties of pro-

grams instead of program executions, its running, unlike that of standard GP which may fail in execu-

tions, will succeed all the time. Consequently, we see from the above mentioned facts that not only is

16

semantic-based HGP a search method more effective than the standard search, but rather it has a

broader scope than traditional GP.

8 Conclusion

The work in this paper represents the first attempt to explore the use of various approaches (Hoare

logic, model checking, and the theory of automata) as a way of formalising the process of fitness

evaluation in GP; it has the following characteristics. Firstly, HGP has not only the capability for gen-

eration and verification of programs in the search space, but supports fitness evaluation at fine granu-

larity. Secondly, HGP takes ideas from earlier work on GP search using model checking, but differs

from it in working style. The former is a common model of Hoare semantics for verification of numer-

ous program objects, the latter nevertheless is a solution peculiar to a concrete problem. Thirdly, HGP

generates programs on demand, using a mixture of accuracy and approximation. These surely make it

different from existing GPs. So, if extended with modern automated theorem proving techniques, this

method may become an alternative approach to software reliability and program generations.

Our future studies will focus on such related topics as schema theory, the definition of new tasks,

efficient search algorithms, the unified theory of various kinds of GPs, service applications, and im-

proved implementations.

Acknowledgements
We are grateful to the reviewers for their helpful suggestions. In addition, He Pei would like to

give special thanks to the late Prof. Tang Zhisong for introducing him to the area of formal methods.

References

1 Charles Rich, Richard C. Waters. Automatic programming: myths and prospects. Computer, 1988, 21(8): 40-51

2 John R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection, Cambridge, MA: The

MIT Press, 1992.

3 John Holland. Adaptation in Natural and Artificial Systems, Michigan: The University of Michigan Press, 1975.

4 M. Mitchell. An Introduction to Genetic Algorithms, Cambridge: MIT Press, 1976.

5 Mihai Oltean, Crina Grosan. A comparison of several linear genetic programming techniques. Complex Systems. 2004, 14(4):

1-29.

6 Ajith Abraham, Nadia Nedjah, and Luiza de Macedo Mourelle. Evolutionary computation: from genetic algorithms to genetic

programming. In: Nadia Nedjah et al. eds. Studies in Computational Intelligence, Springer-Verlag, 2006: 1-20.

7 John R. Koza. Human-competitive machine intelligence by means of genetic algorithms. In Lashon Booker, Stephanie Forrest,

Melanie Mitchell and Rick Riolo Eds. Perspectives on Adaptation in Natural and Artificial System. Oxford University Press,

2005: 33-55

8 John R. Koza, Forrest H Bennett III, David Andre, and Martin A. Keane. Four problems for which a computer program evolved

by genetic programming is competitive with human performance. In: Proceedings of IEEE International Confer. On Evolutionary

Computation, 1996: 1-10.

9 John R. Koza, Martin A. Keane, Jessen Yu, Forrest H Bennett III, William Mydlowec. Automatic creation of human-competitive

programs and controllers by means of genetic programming, Genetic Programming and Evolvable Machines, 2000, 1(1-2):

121-164.

10 Franck Binard, Amy Felty. An abstraction-based genetic programming system, GECCO�2007, July 7, 2007: 2415-2422.

11 Enrique Frias-Martinez, Fernand.Gobet. Automatic generation of cognitive theories using genetic programming, Minds and Ma-

chines, 2007, 17(3): 287-309..

12 Michael O�Neill, Conor Ryan. Grammatical evolution. IEEE Transactions on Evolutionary Computation. 2001, 5(4): 349-358.

13 S. Sette, L. Boullart. Genetic programming: principles and applications, Engineering Applications of Artificial Intelligence, 2001,

14(6): 727-736.

14 D. J. Montana. Strongly typed genetic programming. Evolutionary Computation, 1995, 3(2): 199-230

15 J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. Cambridge, MA: MIT Press, 1994.

16 Man Leung Wang, Kwong Sak Leung. Data Mining Using Grammar Based Genetic Programming and Applications. Kluwer

 17

Academic Publishers, 2002: 27-99.

17 Colin G. Johnson. Genetic programming with fitness based on model checking. EuroGP 2007. In Marc Ebner et al. Eds. Genetic

Programming, LNCS 4445, Springer-Verlag, 2007: 114-124.

18 Pei He, Lishan Kang, Ming Fu. Formality based genetic programming. Proc. of IEEE Congress on Evolutionary Computation.

Hong Kong. 2008: 4081-4088

19 Gal Katz, Doron Peled. Model checking-based genetic programming with an application to mutual exclusion. In: C. R. Rama-

krishnan, J. Rebof, Eds. TACAS2008, LNCS 4963, 2008: 141-156.

20 Chen Huo-wangˈWang JiˈDong WeiǄHigh confidence software engineering technologiesˈActa Electronica Sinica, 2003,

31(12A): 1933-1938 (in Chinese)

21 E. W. Dijkstra. A Discipline of Programming. Englewood Cliffs, NJ: Prentice-Hall, 1976.

22 Ed Brinksma. Verification is experimentation!, Int J STTT. 2001, 3(2): 107-111

23 Ralf Kneuper. Limits of formal methods. Formal Aspects of Computing. 1997, 9(4): 379-394

24 Edmund M. Clarke, Jeannette M. Wing. et.al. Formal methods: state of the art and future directions. ACM Computing Surveys.

1996, 28(4): 626-643.

25 Michael Huth, Mark Ryan. Logic in Computer Science: Modelling and Reasoning about System. Cambridge University Press,

England, 2004.

26 Lin Hui-min, Zhang Wen-hui. Model checking: theories, techniques, and applications. Acta Electronica Sinica, 2002, 30(12A):

1907-1912. (In Chinese)

27 Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, Flavio Lerda. Model checking programs. Automated Software

Engineering, 2003, 10(2): 203-232.

28 C. A. R. Hoare, An axiomatic basis for computer programming, CACM, 1969, 12(10):576-583.

29 Zohar Manna. Mathematical Theory of Partial Correctness. Journal of Computer and System Sciences (JCSS), June, 1971, 5(3):

239-253

30 Awadhesh Kumar Singh, Umesh Ghanekar, Anup Kumar Bandyopadhyay. Specifying mobile network using a wp-like formal

approach. Revista Colombiana de Computacion, 2005, 6(2): 59-77.

31 Glynn Winskel. The Formal Semantics of Programming Language: A Introduction. The Mit Press, 1993.

32 Yang Fuqing, Wang Qianxiang, Mei Hong, Chen zhaoliang. Reuse-based software production technology. Science in China Se-

ries E. 2001, 31(4): 363-371 (In Chinese)

33 Xiong Huiming, Ying shi, Yu Lijuan, Zhang Tao. A composite reuse of architectural connectors using reflection. Journal of

Software, 2006, 17(6): 1298-1306. (In Chinese)

34 John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and Computation. 3
rd

 edi-

tion, Pearson Education Inc. 2007: 1-170.

35 Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools. 2
nd

 Edition

Addison Wesley, 2007

36 Michael Garey and David S. Johnson. Computers and Intractability - A Guide to the Theory of NP-completeness. San Francisco:

Freeman, 1979: 213.

37 Cem Kaner, Jack Falk, Hung Q. Nguyen. Testing Computer Software. 2
nd

 Edition, New York: John Wiley and Sons, Inc, 1999:

480

