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Q2MnFe0.5Ru0.5O3: an above-room-temperature
antiferromagnetic semiconductor†

Xiaoyan Tan, ‡
a Emma E. McCabe,b Fabio Orlandi, c Pascal Manuel,c

Maria Batuk,d Joke Hadermann, d Zheng Deng,e Changqing Jin,e Israel Nowik,f

Rolfe Herber, f Carlo U. Segre, g Sizhan Liu,h Mark Croft,i Chang-Jong Kang, i

Saul Lapidus,j Corey E. Frank, a Haricharan Padmanabhan,k

Venkatraman Gopalan,k Meixia Wu,l Man-Rong Li, l Gabriel Kotliar,i David Walkerm

and Martha Greenblatt *a

A transition-metal-only MnFe0.5Ru0.5O3 polycrystalline oxide was prepared by a reaction of starting

materials MnO, MnO2, Fe2O3, RuO2 at 6 GPa and 1873 K for 30 minutes. A combination of X-ray and

neutron powder diffraction refinements indicated that MnFe0.5Ru0.5O3 adopts the corundum (a-Fe2O3)

structure type with space group R %3c, in which all metal ions are disordered. The centrosymmetric nature

of the MnFe0.5Ru0.5O3 structure is corroborated by transmission electron microscopy, lack of optical

second harmonic generation, X-ray absorption near edge spectroscopy, and Mössbauer spectroscopy.

X-ray absorption near edge spectroscopy of MnFe0.5Ru0.5O3 showed the oxidation states of Mn, Fe, and

Ru to be 2+/3+, 3+, and B4+, respectively. Resistivity measurements revealed that MnFe0.5Ru0.5O3 is a

semiconductor. Magnetic measurements and magnetic structure refinements indicated that

MnFe0.5Ru0.5O3 orders antiferromagnetically around 400 K, with magnetic moments slightly canted

away from the c axis. 57Fe Mössbauer confirmed the magnetic ordering and Fe3+ (S = 5/2) magnetic

hyperfine splitting. First principles calculations are provided to understand the electronic structure more

thoroughly. A comparison of synthesis and properties of MnFe0.5Ru0.5O3 and related corundum

Mn2BB0O6 derivatives is discussed.

Introduction

Spintronics (spin-based electronics or spin transport electro-
nics) is an emergent new technology that takes advantage of the
interaction between the charge and magnetic spins of the
electrons in materials. Compared to conventional

semiconductor charge-based electronics, devices based on
spintronics consume less electric power, provide faster data
processing speed and increased storage densities.1,2 Promising
spintronic materials are ferromagnetic/ferrimagnetic semicon-
ductors (FMS/FiMS) due to the possibility of spin-polarized
carriers and facile combination with semiconductor devices.1
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For practical application, the ideal FMS/FiMS should exhibit
magnetic ordering above room temperature (RT). Designing and
finding such materials is still challenging for scientists in materi-
als science, solid state chemistry, condensed matter physics, and
related areas.3 To date, there are few FMS/FiMS materials with an
ordering temperature near or above RT such as spinel
Fe0.5Cu0.5Cr2S4 (TC = 340 K),4 perovskite Sr0.8Y0.2CoO3�d (TC =
335 K, 310 K for thin films),5,6 and double perovskites (DP)
La2NiMnO6 (TC B 280 K) and Sr2CrOsO6 (TC B 700 K).7–9

Compared to ferromagnets, antiferromagnets are more com-
mon in nature. Recent studies indicate that antiferromagnetic
semiconductors (AFMS) could be alternatives to FMS in spin-
tronics, which motivates further research into the AFM spin-
tronics subfield.10–20 Several near/above RT candidates have
been discovered including LiMnAs (TN = 374 K),21 CuMnAs
(TN = 295 K),22,23 FeRh (TN B 373 K),24 MnTe (TN = 310 K),25 and
perovskite-type Sr2IrO4 (TN = 240 K).26,27 However, further
development of the AFM spintronics subfield requires the
discovery of more AFMS with TN above RT.

As mentioned above, DPs are promising spintronic materials
with high magnetic ordering temperatures. In particular, DP and
corundum related oxides, A2BB0O6, have demonstrated the
required properties. Besides La2NiMnO6 (TC B 280 K) and
Sr2CrOsO6 (TC B 700 K),7–9 we recently synthesized several
Mn2

2+Fe3+B05+O6 (B0 = Nb, Ta, Mo, Re) phases under high pressure
and temperature, where both the A and B sites are transition
metals.28–30 High pressure synthesis of Mn2FeNbO6 and Mn2Fe-
TaO6 at 1573 K under 7 GPa produced LiNbO3 (LN)-type polar AFM
insulators with weak FM magnetic ordering around 210 K.28 The
magnetic interactions of Mn2+ (high spin (HS), d5) and Fe3+ (HS, d5)
ions (alongside diamagnetic Nb5+ and Ta5+ ions) are responsible for
magnetic transition temperatures close to RT. The magnetic transi-
tion temperature of Mn2FeB0O6 are further increased by incorpor-
ating more dn (n 4 0) electrons at the B0 sites. When Nb5+ (d0) is
replaced by Mo5+ (d1), the polar Ni3TeO6 (NTO)-type Mn2

2+Fe3+-

Mo5+O6 obtained under 8 GPa is an FiMS with TC = 337 K.29 In the
case of B05+ = Re5+ (d2), the DP Mn2

2+Fe3+Re5+O6 formed at 5 GPa
displays giant magnetoresistance as a half-metallic ferrimagnet
with TC = 520 K.30 Following this trend, it was expected that Nb5+

(d0) could also be substituted by Ru5+ (d3) in MnFe0.5Ru0.5O3 for
possible magnetic ordering above RT.

Here, we report that MnFe0.5Ru0.5O3 can be synthesized under
high pressure and high temperature. The crystal structure, formal
oxidation states of cations, magnetic and electrical properties have
been investigated. Neutron diffraction and Mössbauer spectro-
scopy data were also measured to elucidate the magnetic ordering
in the structure. First principles calculations were undertaken to
understand the electronic structure more thoroughly. Good agree-
ment is found between the experiments and the DFT calculations.

Experimental section
Starting materials and synthesis

Polycrystalline MnFe0.5Ru0.5O3 was prepared by high-pressure
and high-temperature synthesis with a Walker-type Multi-Anvil

press as described in our previous work.28–31 A stoichiometric
mixture of MnO (wt 99.99%, Alfa Aesar), MnO2 (wt 99.996%,
Alfa Aesar), Fe2O3 (wt 99.999%, Sigma Aldrich) and RuO2 (wt
99.9%, Alfa Aesar) was first ground well at ambient pressure.
The oxide mixture was then packed into a Pt capsule inside a
MgO crucible, which was later assembled with other parts of
the high-pressure apparatus. The reaction was carried out at
1873 K under 6 GPa for 0.5 h and then quenched to room
temperature in a few minutes. After quenching, the pressure
was slowly released. The resulting sample was a black pellet,
with a total mass of B25 mg. To make enough sample (B100
mg) for neutron experiment, four experiments were carried out
with the same synthetic conditions, and the resulting samples
were checked by X-ray powder diffraction (XRPD).

Chemical analysis

The chemical composition of the samples was determined by
energy dispersive X-ray (EDX) analysis conducted on a JEOL
5510 scanning electron microscope equipped with an INCAx-
sight 6587 system (Oxford Instruments). Mn-K, Fe-K and Ru-L
lines were used for the composition quantification.

Thermogravimetric analysis (TGA) and differential scanning

calorimetry (DSC)

A powder sample of about 30 mg was loaded into an alumina
crucible and measured in an SDT Q600 TA Instrument. The
sample was tested from room temperature to 1000 1C at a
heating and cooling rate of 10 1C min�1 under Ar flow. The
remaining powder after the measurement was analyzed
by XRPD.

X-ray powder diffraction (XRPD)

Samples were measured in the 2y range from 101 to 801 and
collected for 1 h on a Bruker D8 Advance Diffractometer (Cu Ka,
l = 1.5418 Å) with a SOL-X solid state detector. RT synchrotron
powder X-ray diffraction (l = 0.4126 Å) was collected in the 2y
range from 0.51 to 501 at the 11-BM beam line at the Advanced
Photon Source (APS) of Argonne National Laboratory. High-
resolution powder X-ray diffraction data were also collected at
room temperature on a Rigaku SmartLab X-ray diffractometer
using a Ge220 monochromator to select the Cu Ka, l = 1.5418 Å
wavelength.

Neutron powder diffraction (NPD)

NPD data were collected on B100 mg MnFe0.5Ru0.5O3 powder
sample placed inside a 3 mm diameter thin-walled cylindrical
vanadium can at the ISIS neutron and muon source (Ruther-
ford Appleton Laboratory, U.K.) on the WISH diffractometer
located in the second target station.32 Multibank (1531, 1221,
901, 581, 271) data were collected at 450 K (B30 minutes) and
the sample was then cooled to 5 K in a closed-cycle refrigerator
(CCR) and a high quality dataset (B2 hours) was recorded.
Shorter scans were then collected on warming (B15 minutes
scans in 20 K increments to 75 K, and then at 25 K increments
to 300 K, with longer 60 minutes scans collected at 60 and 125
K). Rietveld refinements were carried out with Topas
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Academic33,34 and the magnetic symmetry analysis was carried
out with ISODISTORT.35

Transmission electron microscopy (TEM)

The samples for TEM analysis were prepared by mixing the
powders with ethanol in an ultrasonic bath and depositing a
few drops of the obtained suspension onto a holey TEM grid
covered with carbon. Electron diffraction (ED) patterns were
acquired with a Phillips CM20 microscope operated at 200 kV.
High angle annular dark field (HAADF) scanning transmission
electron microscopy (STEM) images were acquired with a FEI
Titan 80-300 ‘‘cubed’’ microscope operated at 300 kV. The
simulated HAADF-STEM images were calculated with the
QSTEM software.36

Second harmonic generation (SHG)

The measurements were done in far-field reflection geometry at
normal incidence inside a cryostat. A pulsed laser beam from a
Ti:sapphire femtosecond laser with a wavelength of 800 nm
(pulse width 80 fs, repetition rate 80 MHz) was focused on a
polished polycrystalline pellet sample with a 50� objective onto
a spot size of 0.5 mm. The reflected light was passed through a
filter to eliminate the 800 nm fundamental, and then collected
with a photomultiplier tube to detect any signal at the second
harmonic of 400 nm.

X-ray absorption near edge spectroscopy (XANES)

XANES was carried out to confirm the formal oxidation state of
the cations in MnFe0.5Ru0.5O3. Mn, Fe and Ru K-edge data were
collected at the 10-ID and 11-ID beam line at the APS of
Argonne National Laboratory and the 8-ID ISS beamline at
the National Synchrotron Light Source II (NSLS-II), at Brookha-
ven National Laboratory. The Ru L2,3-edge measurements were
performed at the NSLS-II TES, 8-BM beamline. Standard spectra
collected previously at X19A at (NSLS-I) are also included over
most of the energy ranges.

Magnetic measurements

Magnetic properties were measured on polycrystalline sample
with a Quantum Design SQUID MPMS-XL magnetometer. Field-
cooled (FC) and zero-field-cooled (ZFC) magnetizations were
measured between 1.8 and 300 K in a direct-current applied
field. Field dependence of isothermal magnetization was mea-
sured with the applied field varying from �6 to 6 T.

Mössbauer spectroscopy

The 57Fe Mössbauer studies were performed with a conven-
tional constant acceleration drive in transmission mode, in
conjunction with a 50 mCi 57Co:Rh source. The absorber,
MnFe0.5Ru0.5O3, was crushed to fine powder and put into a
Perspex absorber holder. Measurements were performed while
the absorber was in a cryostat with temperature stabilization (to
0.51) in the range of 90 to 400 K. The obtained spectra were
analyzed, in terms of a least square fit procedure, to simulated
model spectra.

Electrical resistivity

Resistivity measurements were conducted with a Quantum
Design Physical Property Measurement System (PPMS) with
standard four-probe technique.

DFT calculations

Density functional theory (DFT) was used to investigate the type
of crystal structure and magnetic order that give stable phases,
to confirm the experimental findings. To treat the structural
disorder observed in the experiments, the virtual crystal
approximation (VCA) method37 implemented in Quantum
Espresso code38,39 was employed within the Vanderbilt ultra-
soft-pseudopotential scheme.40 The kinetic energy cutoffs for
wave functions and charge density were set to be 50 and 400 Ry,
respectively in the VCA calculations. After the stable crystal
structure was found through the VCA calculations, the electro-
nic structures have been studied with two different magnetic
structures (antiferro- and ferro-magnetic ordering) using the
full-potential linearized augmented plane-wave method imple-
mented in WIEN2k.41 In the magnetic calculations, the struc-
tural disorder was ignored and the Fe occupancy was regarded
to be 100% at the disordered sites for simplicity. Generalized
gradient approximation (GGA) of Perdew–Burke–Ernzerhof
(PBE)42 was used for the exchange–correlation functional and
25 � 25 � 7 k points were used for the Brillouin zone sampling.
To obtain the correct ground state (including the magnetic
moment of Fe3+ and an insulating phase), GGA+U was adopted
within fully localized limit.43,44 The effective on-site Coulomb
interaction parameter Ueff = U � J = 4 eV was used.

Results and discussion
Crystal structure and thermal stability

Similar to the synthesis of Mn2FeMO6 (M = Nb, Ta, Mo, W, Re),
MnFe0.5Ru0.5O3 was prepared at 1873 K under 6 GPa with a
Walker-type Multi-Anvil press. Incident illumination, plane-
polarized optical micrographs shows the target phase with
B100 mm grain size, and trace of RuO2 and FeMnOx impurities
(Fig. S2, ESI†). The XRPD pattern (Fig. S2, ESI†) indicates either
a disordered a-Fe2O3-type (Fig. 1a, corundum, R%3c) or LN-type
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Fig. 1 Crystal structures of MnFe0.5Ru0.5O3 with a-Fe2O3 type (a, corun-
dum, R %3c), and LN-type (b, R3c) viewed along the [110] direction. Color
code: (Mn/Fe/Ru)O6 = orange in (a), MnO6/(Fe/Ru)O6 = gray/orange in (b),
O = red spheres.
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(Fig. 1b, R3c) as the main phase with a small amount RuO2

impurity (Bwt 2%). Both structures give the same allowed
reflections in diffraction experiments due to Friedel’s law.

Both corundum and LN crystal structures have the same 3-
dimensional (3D) construction based on distorted MO6 (M = Mn,
Fe, or Ru) octahedra. The centrosymmetric corundum crystal struc-
ture consists of symmetric dimers of MO6 octahedra connected via

face-sharing along the [001] direction and edge-sharing in (001)
planes. All metal sites are disordered, and eachMO6 (M =Mn/Fe/Ru)
is distorted with M cations displaced from the centers of octahedra,
resulting in three long and three short M–O bond distances (Fig. 1a).
The cation-ordered non-centrosymmetric LN structure is derived
from this corundum structure, but with two cation sites, allowing
ordering of Mn, Fe and Ru over these sites (e.g. a Mn site, and a
mixed Fe/Ru site). This would give a LNmodel with distorted dimers
of MnO6 and MO6 (M = Fe, Ru) octahedra face-sharing along [001]
(Fig. 1b). Besides LN, other corundum derivatives are centrosym-
metric ilmenite (IL, R%3), noncentrosymmetric ordered ilmenite (OIL,
R3), and NTO (R3), which have the same 3D network of MO6

octahedra but with different cation arrangements.45

The chemical composition of MnFe0.5Ru0.5O3 was confirmed
by EDX with the formula Mn2.01(8)Fe1.00(6)Ru1.00(12)Ox and the
thermal stability of this sample was measured by TGA-DSC.
Above 800 1C, the sample starts decomposing into MnFe2O4, or
FeMn2O4 and RuO2 (Fig. S3, ESI†).

X-ray and neutron powder diffraction

Because Rietveld refinements with XRPD data gave similar fits
to corundum (R%3c) or LN-type (R3c) structure (Fig. S2, ESI†), and
Fe and Mn are indistinguishable to Cu Ka radiation, RT XRPD
data were used to determine only the distribution of Ru over
the two cation sites in the LN model. Refinements suggested a
statistical distribution of Ru over the two sites, with Ru occu-
pancies of 0.27(2) at (0 0 z), and 0.23(2) at (0 0 0), respectively.
The Rwp from this model is 7.12%, which is slightly smaller
than that (7.15%) of a disordered LN model with Ru occupan-
cies of 0.25 on both sites (Fig. S4 and Tables S1, S2, ESI†)
analogous to the corundum model due to cation disorder.
Therefore, a statistical distribution of Ru seems most likely in
MnFe0.5Ru0.5O3 based on XRPD data analysis.

The Ru distribution was then fixed (Ru occupancies of 0.25
on both sites) in a starting LN model for multibank refinement
using 450 K NPD data to refine the distribution of Fe and Mn
over the two sites. NPD is expected to be very sensitive to this
distribution, given the strong contrast in neutron scattering
lengths (Mn = �3.73 fm, Fe = 9.54 fm, Ru = 7.21 fm).46 A fully
disordered LN model (analogous to corundum) gave a good fit
to the data (Rwp = 3.192%). Allowing the Fe and Mn distribution
to refine resulted in a marginal improvement in fit (Rwp =
3.179%) but suggested an almost statistical distribution of Fe
and Mn over the two sites, Ru/Fe/Mn occupancy of 0.25/
0.227(3)/0.523(3) at (0 0 z), and 0.25/0.275(3)/0.477(3) at (0 0
0) (Fig. S5 and Table S3, ESI†). This analysis suggests that a fully
disordered corundum model is most appropriate to describe
the crystal structure of MnFe0.5Ru0.5O3, at least at the length
scale probed by diffraction techniques.

The disordered corundum model was then used for multi-
bank (1531, 1221, 901, 581, 271 banks of data) Rietveld refine-
ment of 450 K NPD data, and the results are shown in Fig. 2
(1221 bank data fit profile), Tables 1, 2, and Fig. S6 (ESI†) (all
bank data fit profiles). Several small impurity phases were also
included in the refinements, including RuO2 (wt 3.2(1)%),
FeMn2O4 (wt 2.1(1)%) and Mn3O4 (wt 4(1)%).

The refined unit cell parameters are a = 5.0870 (1) Å, c =
13.9306(3) Å, V = 360.5(8) Å3 (Table 1). The unit cell parameter a
of MnFe0.5Ru0.5O3 is much smaller than those of LN-type
Mn2FeMO6 (M = Nb, Ta, a B 5.27 Å), while the c-axis is slightly
larger than that of Mn2FeTaO6 (c = 13.8892(3) Å), but smaller
than that of Mn2FeNbO6 (c = 13.9338(2) Å). The average M–O
bond lengths are about 2.05 Å (Table 2), which is much shorter
than those of Mn–O in Mn2

2+Fe3+NbO6 (2.16 Å) and Mn2
2+Fe3+-

TaO6 (2.22 Å). These values are also smaller than those (B2.2 Å)
in other corundum derivative analogs such as Mn2

2+Fe3+M5+O6

(M = Mo, Sb) and Mn2
2+Fe2+W6+O6. The M–O bond length

analysis indicates that Mn is likely not purely Mn2+ in the
structure. The average M–O bond length (B2.05 Å) is compar-
able with those in Mn2

2+Fe3+Nb5+O6 (2.035 Å), Mn2
2+Fe3+Ta5+O6
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Fig. 2 Refinement profiles for MnFe0.5Ru0.5O3 in corundum (R %3c) model,
using 450 K NPD 1221 bank data. Observed, calculated, Bragg position, and
difference profiles are shown in red, black, green, and blue, respectively.

Table 1 Refinement details of corundum (R %3c) model of MnFe0.5Ru0.5O3

using 450 K NPD data with a = 5.0870(1) Å, c = 13.9306(3) Å; Rwp = 3.19%,
Rp = 3.04% and w2 = 2.27

Atom Site x y z
Factional
occupancy

Uiso �
100 (Å2)

Mn/Ru/Fe 12c 0 0 0.3497(1) 0.5/0.25/0.25 2.55(9)
O 18e 0.3073(1) 0 0.25 1 2.54(7)

Table 2 Selected bond lengths and angles from Rietveld refinement of
corundum (R %3c) model of MnFe0.5Ru0.5O3 using 450 K NPD data

Bond Length (Å) Angle (1)

M–O 3 � 1.997(1) M–O(1)–M (within open face) 99.93(5)
M–O 3 � 2.090(1) M–O(1)–M (from open to shared face) 91.01(1)
M–M 1 � 2.777(3) M–O(1)–M (within shared face) 80.71(5)
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(2.01 Å), Mn2
2+Fe3+Mo5+O6 (2.033 Å), and Mn2

2+Fe3+Sb5+O6

(2.006 Å). However, they are shorter than those in Mn2
2+-

Fe2+W6+O6 (2.154 Å), which support Fe3+ in MnFe0.5Ru0.5O3.
The detailed cation oxidation states will be discussed in the
XANES results.

Transmission electron microscopy

To distinguish between LN-type R3c and corundum R%3c models
for MnFe0.5Ru0.5O3, as shown in Fig. 1, TEM experiments were
also carried out. Electron diffraction patterns of MnFe0.5Ru0.5O3

are shown in Fig. 3 and Fig. S7 (ESI†), respectively. The patterns
agree with the reflection conditions of the R3c and R%3c space
groups: hkl:�h + k + l = 3n; hk0:�h + k = 3n; h %hl: h + l = 3n, l = 2n;
hhl: l = 3n; 00l: l = 6n. In Fig. S6 (ESI†), reflection 0%11 and its
symmetrically equivalent reflections in the [211] zone and 00l:
l = 3n in the [210] zone are due to double diffraction. Based only
on selected area ED patterns, it is impossible to distinguish
between R3c and R%3c space groups. Therefore, we tested the
models for the two space groups against experimental HAADF-
STEM images.

In the LN R3cmodels, there are distinct columns of A and B/
B0 sites of different stoichiometry, while in the corundum R%3c
model, all three atomic species are intermixed. There are two
projections that allow separate visualization of the A and B/B0

columns in the R3c structure: [100] and [2%21]. On HAADF-STEM
images, the brightness of the dots is proportional to the average
atomic number of the projected column: I B Z2. In MnFe0.5-
Ru0.5O3, ZMn = 25, ZFe = 26, ZRu = 44 and therefore in case of
ordering, columns with on average heavier cations should
appear brighter.

HAADF-STEM images were taken along both those [100]
and [2%21] directions (Fig. 3c and d). There is no systematic

difference in the intensity of the different atomic columns. The
ratio between the summed intensity of A and B/B0 sites, from
profiles of 10 different rows of either A or B/B 0, is very close to 1.
Moreover, intensity profiles for ten rows with pairs of A and
B/B0 columns (Fig. S8, ESI†) do not show any systematic
difference in the intensities. The differences between the A
and B/B0 peaks are random and can be explained by a statistical
difference in the occupation of one column to the next. There-
fore, there is no ordering between Mn, Fe and Ru cations in
MnFe0.5Ru0.5O3 and the results agree with an R%3c (and not an
R3c) model, which is consistent with the results from XRPD and
NPD analysis above, and with the disorder suggested by SHG,
XANES and Mössbauer data below.

Second harmonic generation

SHG is a sensitive probe of inversion symmetry breaking in
single crystal and polycrystalline materials. The SHG response
of polycrystalline MnFe0.5Ru0.5O3 was probed with SHG micro-
scopy. Similar techniques have been used by the authors in the
past to study inversion symmetry breaking in single crystal and
polycrystalline complex oxides.47 Measurements were carried
out at 300 and 25 K. There is no SHG signal above the back-
ground noise level at either temperature, which indicates that
the material is centrosymmetric in this temperature range.

X-ray absorption near edge spectroscopy

XANES measurements were performed to probe the Mn, Fe, Ru
oxidation state in MnFe0.5Ru0.5O3. The Fe-K main-edge in
MnFe0.5Ru0.5O3 appears to correspond toBFe3+ with somewhat
broad main edge features bearing some similarity to the LN
structure standard spectra for Mn2FeMO6 (M = Ta and Nb)
(Fig. 4).

Interestingly, compared to Mn2FeMO6 spectra, the
MnFe0.5Ru0.5O3 spectrum manifests two features, an additional
shoulder on the initial rising portion of the main edge (labeled
‘‘1’’ in Fig. 4a), and a prominent absolute-peak shifted to higher
energy (labeled ‘‘2’’ in Fig. 4a). These two features are however
present (albeit being more sharply defined) in the corundum
(a-Fe2O3) standard spectrum. Thus, the Fe-K main-edge
appears to support a corundum (a-Fe2O3) structure for
MnFe0.5Ru0.5O3.

The Mn-K main-edge in MnFe0.5Ru0.5O3 is dramatically
different from those of the LN structure standard spectra for
Mn2FeMO6 (M = Ta and Nb) (Fig. 5), thereby precluding a
MnB2+, LN structure in this compound. In terms of chemical
shift, the Mn-K main edge appears to be consistent with a
substantial MnB3+ component, which is similar to that of its
Fe-K edge in Fig. 4a. A comparison of the near-edge and post-
edge fine structure features (Fig. S9, ESI†) emphasize the
similar features over the entire energy range, which suggests
that the Mn and Fe sites in MnFe0.5Ru0.5O3 are the same and
are essentially the same as that in the corundum a-Fe2O3

compound. The notably larger shoulder (on the leading main-
edge rise), and decreased intensity in the peak-region of spec-
trum (relative to the shifted Fe spectrum) indicates a greater
admixture of Mn2+ character at the Mn sites.
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and d) of MnFe0.5Ru0.5O3 along [100] and [2 %21] directions.
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The Mn-K pre-edge of MnFe0.5Ru0.5O3 is substantially broa-
dened compared to the pre-edges of the LN structure standards
(Fig. 5b). Moreover, the pre-edges of the LN structures stan-
dards are significantly different from the MnFe0.5Ru0.5O3 pre-
edge, yet again arguing for a corundum structure and against a
LN structure.

Based on the chemical shift of the Ru-K edge as compared with
Ru and RuO2 standards (Fig. 6a), the Ru valence state is close-to, or
somewhat-less-than the Ru4+ state in RuO2. The L2,3-edges of 4d
transition metals are sensitive to the electron configuration both
through the chemical shift and the structure of the intense near
edge ‘‘white line’’ (WL) features.48–54 The chemical shift of the Ru-
L2,3 edge spectra in MnFe0.5Ru0.5O3, compared to the Sr2YRuO6

(Ru5+, d3), and Y2CoRuO6 (Ru
4+, d4) standards (Fig. 6b), are clearly

consistent with aBd4 Ru+4 configuration. The intenseWL-features
at the L2,3 edges of 4d transition metal sites in compounds with
octahedral O-ligand coordination manifest a distinctly bimodal A/
B feature structure due to transitions into empty t2g/eg d-states. The
filling of the t2g-states with increasing d-electron count is reflected

in the L2,3 edge spectra by a systematic decrease in the A-feature
intensity (relative to the B-feature) as illustrated in Fig. S10 (ESI†)
for L3 edge spectra for a series of d0 to d4 compounds.

In Fig. 6b, the dramatic decrease in relative A-feature intensity
between the Sr2YRuO6 (Ru5+, d3) and Y2CoRuO6 (Ru4+, d4)
standards should be noted. For the MnFe0.5Ru0.5O3 L2.3 edge
spectra, the A-feature intensity appears as an unresolved
shoulder on the B-feature. In view of the multiple local environ-
ments in the Mn/Fe/Ru site distribution, the inhomogeneity
broadening of the ligand field splitting (and the A/B-feature) is
reasonable. The amplitude of the A-feature is consistent with a
Bd4 Ru4+ configuration. Therefore, both the spectral chemical
shift and WLA/B-feature are suggestive of a somewhat reduced
Ru4+ valence. These observations are consistent with the Fe3+

and mixed Mn2+/3+ suggested by XANES results.

Magnetic properties

FC and ZFC magnetic susceptibilities of polycrystalline samples
indicate a transition around 375 K (Fig. 7). As the temperature
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Fig. 4 The Fe-K main-edge (a) and pre-edge (b) spectra for MnFe0.5Ru0.5O3 and other Fe compounds with varying formal valences: the B2+ standards
FeO and LiFePO4; the B3+ perovskite standard La2FeVO6, the B3+ corundum a-Fe2O3, and the B3+ LiNbO3-type standards Mn2FeMO6 (M = Ta and
Nb); and the B4+ standard SrFeO3, all of which have octahedral Fe–O coordination.

Fig. 5 The Mn-K main edge (a) and pre-edge spectra (b) for MnFe0.5Ru0.5O3 and other Mn compounds with varying formal valences: theB2+ standards
MnO, the LN structure Mn2FeMO6 (M = Ta and Nb) standards; the perovskite based B3+ LaMnO3; and B4+ CaMnO3 standards. Note the Fe-shifted
curve in which the Fe-K edge for the compound (from Fig. 4a) has been shifted down energy by 0.57397 keV, the difference in the peak energies of MnO
and FeO.
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decreases, the FC magnetic susceptibility keeps increasing, and
two slight transitions occur near 80 and 45 K, respectively.
These two transitions are more obvious when the sample is
measured with lower magnetic field (Fig. S11, ESI†). The
observed divergence between ZFC-FC curves is due to the
anisotropy in the sample, which decreases as the magnetic
field increases (Fig. S11, ESI†).

Based on the above NPD analysis, the sample contains a
small amount of FeMn2O4 (TC = 373, 50 K),55 and Mn3O4 (TN =
42 K)56 impurities. Temperature dependent NPD (Fig. 9)
indicates that the sample orders AFM around 400 K. There
are no additional magnetic transitions; no additional reflec-
tions or changes in the temperature behavior of the magnetic
Bragg peaks were observed below 80 K, Fig. S12 (ESI†). There-
fore, the high transition temperature near 375 K may stem from
both the sample and possible impurity FeMn2O4 or isostruc-
tural Fe1+xMn2�xO4 (0 o x o 1). The small low temperature
transitions can be attributed to impurities Fe1+xMn2�xO4 and
Mn3O4. The above RT magnetic transition feature is

reminiscent of those of Mn2FeMoO6 (TC = 337 K),29 and
Mn2FeReO6 (TC = 520 K).30

The isothermal magnetization measured at 370 K (Fig. 7b)
shows almost linear behavior above 50 Oe, and there is almost
no hysteresis at this temperature. However, the magnetization
measured at 300 and 5 K increased more abruptly at low field
(below 2000 Oe) and hysteresis loops were observed at both
temperatures. As the temperature decreases, the hysteresis
loops enlarge, with larger remnant magnetization and coerciv-
ity (Fig. S13, ESI†). The overall maximum moment at 6 T is very
small, which confirms the AFM ordering and possible FiM
ordering from impurity FexMn3�xO4.

Magnetic structure

To understand the nature of the magnetic ordering, neutron
diffraction data were recorded from 5 to 450 K. Compared to
the data collected at 450 K, additional magnetic Bragg reflec-
tions 021 at B2.2 Å, 101 at B4.2 Å, and 003 at B3.6 Å were
observed in NPD data collected at 5 K (Fig. 8 and Fig. S12, ESI†).
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Fig. 6 (a) A comparison of the Ru-K edge spectra for MnFe0.5Ru0.5O3 to the Ru and RuO2 standards. (b) A comparison of the Ru-L3 edge spectra for
MnFe0.5Ru0.5O3 to the Sr2YRuO6 and Y2CoRuO6 standards (lower left) along with the Ru-L2 edge spectra for the same compounds (inset upper right).
Note the A- and B-features related respectively to transitions into empty t2g and eg final states.

Fig. 7 (a) FC and ZFC magnetic susceptibilities of MnFe0.5Ru0.5O3 as a function of temperature with the applied magnetic field of 0.1 T. (b) Isothermal
magnetization as a function of field measured at 5, 300, 370 K. Inset in (b) shows the magnetization between �1 and 1 T.
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These were indexed by a magnetic unit cell with the same
dimensions as the nuclear unit cell. Magnetic intensity is
observed for 00l reflections, indicating a significant component
of the moments within the ab plane.

ISODISTORT35 was used to explore possible magnetic struc-
tures (Table S6, ESI†), and those with mG3 modes predicted
some intensity in the positions of the magnetic Bragg reflec-
tions. The data is best fit with the cation disordered (R%3c)
nuclear structure and a P%1 magnetic unit cell (Fig. S14, amag =
bmagan; cmag E 5.48 Å; amag = bmag E 62.41; gmag = 601, ESI†)
with magnetic moments in-plane described mG3+ modes, and
an additional out-of-plane (AFM) component described by a
mG1+ mode. This low symmetry magnetic model allows four
independent in-plane magnetic mG3+ modes that are highly
correlated in analysis using powder diffraction data, since
powder data are not sensitive to the in-plane spin direction.

The best fit was obtained with P%1 magnetic model, with two
in-plane mG3+ modes (with constraints to give modes of oppo-

site sign) and one mode (mG3+ E* 2(a)) constrained to be 1
� ffiffiffi

2
p

in magnitude smaller than the other (mG3+ E* 1(a)). This gives a
collinear AFM magnetic model with moments antiparallel and
oriented along [120]. This constrained model gives an equiva-
lent fit to the unconstrained model (Rwp values for the two
models are identical to two decimal places), and gives equal
moments on each site as expected for this cation-disordered
semiconducting oxide (and avoids high levels of correlation for
the unconstrained models). The fit is improved noticeably (Rwp

decreased byB1%) if the out-of-plane (AFM) mG1+ mode is also
included, allowing the moments to cant out of the ab plane.
The combination of in-plane AFM mG3+ modes (Fig. S15a, ESI†)
and an out-of-plane AFM mG1+ mode (Fig. S15b, ESI†) give the
resulting AFM structure (Fig. 9a).

The components of the moments along the P%1 magnetic unit
cell are a = �1.256(5) mB, b = �1.256(5) mB, c = �1.59(1) mB. This
is equivalent to components along Cartesian axes of mx =
�2.618(5) mB, my = �1.512(3) mB, mz = �1.340(8) mB, giving overall

an in-plane moment mxy = 3.023(6) mB and an overall moment of
3.307(7) mB per site at 5 K. The resulting ordered moment (3.3
mB at 5 K) in MnFe0.5Ru0.5O3 is very close to that expected for a
mixed Mn2+/Mn3+/Fe3+/Ru4+ site (3.28 mB). We note that this
combination of the two AFM irreducible representations
(irreps) G3+ and G1+ also allows the G2+ irrep, which describes
a FM component along [001]. Although analysis of our diffrac-
tion data does not indicate the presence of this out-of-plane FM
component, we cannot exclude its presence as a secondary
order parameter. However, we note that the hysteresis loop
measured for MnFe0.5Ru0.5O3 (Fig. 7b) suggests that any such
component must be very small. Details from the multibank
refinement at 5 K are given in Tables S4, S5 and refinement
profiles are shown in Fig. 8 and Fig. S16 (ESI†).

The collinear AFM magnetic structure described here for
MnFe0.5Ru0.5O3 (Fig. 9) is similar to the collinear FiM structure
reported for Mn2FeSbO6 (IL-type, R%3) at 150 K, in which Mn and
Fe sublattices are coupled AFM in the ab plane.57 The absence
of FiM in corundum MnFe0.5Ru0.5O3 is due to cation disorder
and the absence of two AF-coupled sublattices. AFM interac-
tions also exist in related NTO-type (R3) materials such as
Ni3TeO6, Mn2FeWO6, Mn2FeMoO6 and Mn2MnWO6, which
show more complicated magnetic structures as a result of three
ordered metal sites leading to competition between the differ-
ent magnetic sublattices.29,58–60 Ni3TeO6 exhibits a collinear
AFM structure with all Ni moments along the c axis with FM
honeycomb planes.58,59 The magnetic structure of Mn2FeWO6

is a collinear spin arrangement with Mn2 spins antiparallel to
both Mn1 and Fe spins. In Mn2FeMoO6, a more complicated
FiM is revealed with all spins parallel to the c axis but
antiparallel between sub-lattices Fe, Mn1, and Mo, Mn2.29

Mn2MnWO6, however, adopts a non-collinear AFM magnetic
structure due to frustration.60 The canting of spins arrange-
ment in MnFe0.5Ru0.5O3 is also observed in the double perovs-
kite Mn2FeReO6, where an AFM Mn lattice and a FiM Fe and Re
lattice are canted away from the c axis.30

The magnetic ordering temperature of MnFe0.5Ru0.5O3 is
tracked by the intensity of the magnetic-only reflections 021,
101 and 003, which smoothly decreases (Fig. S12, ESI†) as the
temperature is warmed up from 5 to 445 K. Magnetic Bragg
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Fig. 8 NPD refinement profiles for MnFe0.5Ru0.5O3 in corundum (R %3c)
model at 5 K (1221 bank data). Observed, calculated and difference profiles
are shown in red, black and blue, respectively. Green ticks show reflection
positions for the magnetic ordering in MnFe0.5Ru0.5O3, RuO2, Mn3O4, and
FeMn2O4 Pawley phase in order.

Fig. 9 (a) Magnetic structure of MnFe0.5Ru0.5O3 at 5 K (color code: Mn/
Fe/Ru = orange, O = red, magnetic moment = blue arrow). (b) Refined
magnetic moment per site as a function of temperature.
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reflections are clearly observed in data collected at 395 K, but
are absent at 420 K, which indicates that the transition tem-
perature of the sample is around 400 K. Sequential refinements
were then carried out with the 1221 bank data which show that
the moment per cation site decreases smoothly from 3.46(2) mB
per site at 5 K to 0.70(3) mB per site at 395 K (Fig. 9b). The
refined magnetic moments are close to zero at 425 and 445 K, at
which no magnetic Bragg reflections are observed (Fig. S12a,
ESI†). The slight change of slope in parameters derived from
sequential Rietveld refinements (magnetic moment as a func-
tion of temperature, Fig. 9b; relative intensities of magnetic-
only reflections, Fig. S12, ESI†) reflects the change in heating
sequence and sample environment: NPD data were first col-
lected on heating the sample from 300 K to 450 K in vacuum
before the sample was cooled down to 2 K, with 150 mBar at RT
of He as exchange gas, and further data collected on heating
back up to 300 K.

Mössbauer spectroscopy

The experimental Mössbauer spectra of the MnFe0.5Ru0.5O3

absorber, show that at 97 K all Fe ions are equivalent, since
all are in magnetic saturation (Fig. 10). The high field in
saturation (490 KGauss) proves that the Fe ions are all trivalent
(S = 5/2), which is in agreement with XANES results. The low
temperature spectra (T o 250 K) were fitted with absorption
lines of Lorentzian lineshape, the absorption lines are slightly
broadened as the temperature increases.

However, when the temperature is raised to above 250 K, the
absorption line widths start to broaden to a large extent, as in
the spectrum at 300 K (Fig. 10), and are most evident at 350 K
(Fig. S17, ESI†). The 373 K spectrum contains a mixture of a

sharp paramagnetic quadrupole doublet and a smeared mag-
netic subspectrum, which indicates that the magnetic phase
transition is not sharp (Fig. 10). At 386 K, an almost pure
quadrupole doublet with a tiny magnetic field (4 KGauss) is still
present. These results indicate that the Fe sublattice is already
paramagnetic above TC (Fe) = 390 K, consistent with the
appearance of magnetic Bragg peaks in NPD data collected
below 395 K.

The spectra at 300 and 350 K require the presence of large
hyperfine field distribution, indicating that the Fe ions are not
all equivalent magnetically, and the spectra resemble the
features of a spin glass structure, or spin fluctuation rates in
the magnetic hyperfine splitting window. The temperature
dependence of the average hyperfine field (HF) is displayed in
Fig. 11, in terms of HF(T/TC)/HF(0), where TC = 390 K and
HF (0) = 490 KGauss. The fact that the temperature dependence
of the experimental magnetic hyperfine field is quite different
from a pure magnetic Fe3+ sublattice, indicates that Fe ions
interact also with the Mn sublattice and possibly also with the
magnetic Ru, present also in the Fe sublattice. The broadening
phenomena in the Mössbauer spectra strongly support the
disordered model of Fe/Mn/Ru in corundum MnFe0.5Ru0.5O3.

Electrical conductivity

The resistivity was measured on a pellet as a function of
temperature between 5–300 K without applying a magnetic
field (Fig. 12). Above 40 K, the resistivity decreases as the
temperature increases, indicating semiconducting behavior.
The high temperature data between 300 and 107 K can be
linearly fitted with ln r versus 1/T1/4, which agrees with the
Mott’s variable range hopping (VRH) conduction mechanism
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Fig. 10 The MnFe0.5Ru0.5O3 MössbauerQ4 spectra at various temperatures.
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r ¼ r0 exp
T0

T

� �

1
4

2

4

3

5.61 The fitting yields the parameters r0 and

T0 equal to 4.14 � 10�9 O cm and 2.03 � 106 K, respectively. The
high temperature resistivity behavior and the fitting results are
similar to those of MnFe0.5Ru0.5O3, a FM VRH semiconductor.29

The abnormal feature around 40 K may be related to the
magnetic anomaly seen in Fig. 7.

DFT calculations

Two possible crystal structures with a-Fe2O3 type, or LN-type
were discussed in the diffraction analysis. To investigate which
type of crystal structure is more stable energetically, DFT was
utilized. The VCA method was employed to take into account
the structural disorder. In the VCA calculations, Ru disorder
was assumed not to be critical to determine the stable crystal
structure. Hence, Ru disorder was not considered and was
simply replaced by Fe and only the Mn/Fe disorder was taken
into account in the calculations. As a result, the crystal structure

with a-Fe2O3-type has lower energy than that with LN-type with an
energy difference of 10.58 eV per atom. Therefore, even if Ru
disorder would be considered in the VCA calculations, it would
be unlikely to reverse the energy order, due to the significant energy
difference, in agreement with experimental results.

Fig. 13 shows the density of states for antiferromagnetic
ordering in the a-Fe2O3 type crystal structure obtained from
GGA+U calculations. The AFM order was adopted from Fig. 9.
The GGA+U calculation with AFM order clearly shows a band gap
of 1.91 eV, which supports the semiconducting behavior observed
in the experiments. The magnetic structure with a-Fe2O3-type
possesses two symmetrically different Fe sites and the local
moments of each Fe site are 4.06, �4.07 mB per Fe, respectively.
A weak ferromagnetic component with the magnitude of 0.004 mB

per Fe is observed in the DFT calculation, which is consistent with
the experiment. In Fig. 13, the red broken line corresponds to the
partial DOS for Fe-I 3d orbital. The partial DOS for Fe-I spin up is
completely filled, because there is no DOS for Fe-I spin up above
the Fermi level. Fe-II has the opposite occupancy. Therefore, both
Fe-I and Fe-II show Fe3+ (d5) with high spin configuration. In
comparing the total energies of AFM and FM states in the GGA+U
calculations, the AFM state has a lower energy by 0.098 eV per
atom from that of the FM state.

Comparison of MnFe0.5Ru0.5O3 and related Mn2BB
0O6

To date, eight transition-metal-only A2BB0O6 (A = Mn, B = Fe,
Mn, B0 = Nb, Ta, W, Re) oxides have been successfully prepared
under high pressure (5–8 GPa) and high temperature (1573–
1875 K) (Table 3). While Mn2MnReO6 and Mn2FeReO6 form
highly distorted DP (AO8 with rock salt ordering of corner-
linked BO6 and B0O6), other A2BB0O6 oxides form cation-
ordered, noncentrosymmetric corundum derivatives, such as
the LN and NTO phases (with face- and corner-linked six-
coordinated AO6, BO6 and B0O6 octahedra). In Mn2FeNbO6

and Mn2FeTaO6, the B and B0 sites disorder due to the small
size difference between Fe3+ and Nb5+ ions (0.005 Å), but the
overall structure, with ordering of large Mn2+ ions on the A
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Fig. 11 The temperature dependence (TC = 390 K) of the magnetic
hyperfine field in MnFe0.5Ru0.5O3. The solid line represents a Brillouin
function of S = 5/2.

Fig. 12 Resistivity (r) as a function of temperature (T). The inset is the
linear fit to the plot of ln r versus 1/T1/4.

Fig. 13 Density of states (DOS) in a-Fe2O3 type crystal structure with
antiferromagnetism (AFM) obtained from GGA+U (= 4 eV) calculation. The
magnetic structure possesses two symmetrically different Fe sites: Fe-I
and Fe-II. Black line corresponds to the total DOS. Red, blue, and green
lines represent Fe-I 3d, Fe-II 3d, and O 2p partial DOS, respectively. The
positive and negative values in DOS correspond to spin up and down,
respectively.
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sites, is still polar LN-type which is stabilized by the second-
order Jahn–Teller effect of d0 Nb5+/Ta5+ ions. Mn2FeWO6 and
Mn2MnWO6 crystallize in the NTO-type structure with ordered
B and B0’ sites due to the large charge difference (4) and size
difference (0.23 Å) between Fe2+ and W6+ ions. Although the
charge difference (2) and size difference (0.035 Å) between Fe3+

and Mo5+ are small, Mn2FeMoO6 surprisingly also stabilizes in
the NTO-type structure, which is attributed to FiM magnetic
configuration that leads to the lowest energy state.

MnFe0.5Ru0.5O3 is the first example of transition-metal-only
A2BB0O6 phase that adopts the corundum structure with totally
disordered A, B, and B0 sites (Table 3). This lack of cation order is
thought to arise due to the small size and charge difference between
Mn2+/3+, Fe3+ and Ru3+/4+. The mixed-valence of Mn2+/3+ and disorder
in MnFe0.5Ru0.5O3 is also likely related to the strong Jahn–Teller
effect of Mn3+ (3d4), which is not favorable for face, or edge-sharing
octahedra in corundum-related structures. The failure to oxidize
Ru4+ to Ru5+ with MnO2 during the synthesis causes MnFe0.5Ru0.5O3

to stabilize in the non-polar corundum phase instead of DP, polar
LN, or NTO phases. Ru5+ in this phase may be achieved by
optimizing synthetic conditions e.g., with use of an oxidizing agent
as KClO3 or KClO4, which converts to a KCl byproduct that can be
easily washed away by water after the reaction.

The magnetic properties of MnFe0.5Ru0.5O3 are different from
those reported for Mn2FeB0O6. Mn2FeB0O6 (B0 = Nb5+, Ta5+, W5+)
shows clear AFM ordering between 75–90 K, with weak FMB 210 K
for B0 = Nb5+, Ta5+ (Table 3) while Mn2FeMoO6 and Mn2FeReO6

exhibit FiM ordering above RT. The introduction ofmore dn (n4 0)
electrons at the B0-sites of Mn2FeB0O6 (B0 = Mo5+, Re5+) changes the
AFM to FiM ordering and also increases the ordering temperature
dramatically. The ideal Mn2

2+Fe3+Ru5+O6 with an ordered polar
structure is expected to show FM.

Conclusions

MnFe0.5Ru0.5O3 is the first example of a cation-disordered
corundum-derived oxide in the transition-metal-only A2BB0O6

series, which is synthesized by high pressure and high tem-
perature. X-ray absorption K- and L-near edge spectroscopies
establish mixed-valent Mn2+/3+, Fe3+ and RuB4+ formal oxida-
tion states. The similar cation sizes and charges of metal ions
provide a smaller driving force for ordering than in related
systems containing small and highly charged B/B0 ions along
with a high content of the large A-site Mn2+ ion. This is
reflected in the unit cell parameters and bond lengths, with a
much smaller in-plane parameter (and unit cell volume) and
shorter M–O bond lengths for MnFe0.5Ru0.5O3 compared with
ordered analogues such as Mn2FeB0O6 (B0 = Nb5+, Ta5+, W6+)
and Mn2Mn2+W6+O6, which all possess a much higher content
of the large Mn2+ ion. This suggests that to design new cation-
ordered corundum-derived materials, care must be taken to
ensure the redox chemistry of the system to allow for a large A
cation (such as Mn2+, Zn2+) with much smaller and more highly
charged B/B0 cations.

Analysis of the cation distribution in MnFe0.5Ru0.5O3 high-
lights the importance of using several complementary struc-
tural characterization methods to confirm the symmetry and
structure; neither XRPD nor NPD alone allowed the unambig-
uous determination of the disordered distribution of Mn, Fe
and Ru ions. However, the similar X-ray scattering lengths of
Mn and Fe, in contrast to the much heavier Ru combined with
the very different neutron scattering lengths of Mn and Fe lead
to the establishment of the cation-disordered R%3c nuclear
structure. This disordered model is consistent with transmis-
sion electron microscopy, XANES, and Mössbauer spectra
results. The centrosymmetric nature is also confirmed by the
absence of SHG signal.

NPD analysis confirms a collinear AFM magnetic structure
(with moments in general direction) with TN B 400 K, which is
in agreement with temperature-dependent magnetic and Möss-
bauer spectra results. The corundum structure and AFM
ground state are supported by theoretical calculations. As a
semiconductor with an ordering temperature above RT,
MnFe0.5Ru0.5O3 may be a potential candidate for spintronic
applications.
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Table 3 Comparison of transition-metal-only A2BB0O6

Compound Synthesis A, dn, r62 B, dn, r B0, dn, r Structure TC/TN, K

Mn2FeNbO6
28 MnO + Fe2O3 + Nb2O5,

1573 K, 7 GPa
Mn2+, 3d5 0.83 Å Fe3+, 3d5 0.645 Å Nb5+, 4d0 0.64 Å LN, R3c TN = 90,

TC B 200
Mn2FeTaO6

28 MnO + Fe2O3 + Ta2O5,
1573 K, 7 GPa

Mn2+, 3d5 0.83 Å Fe3+, 3d5 0.645 Å Ta5+, 5d0 0.64 Å LN, R3c TN = 80,
TC B200

Mn2FeWO6
31 MnO + Fe2O3 + Fe + WO3,

1673 K, 8 GPa
Mn2+, 3d5 0.83 Å Fe2+, 3d6 0.78 Å W6+, 5d0 0.60 Å NTO, R3 TN = 75

Mn2FeMoO6
29 MnO + Fe2O3 + Fe + MoO3,

1623 K, 8 GPa
Mn2+, 3d5 0.83 Å Fe3+, 3d5 0.645 Å Mo5+, 4d1 0.61 Å NTO, R3 TC = 337

Mn2(Fe0.8Mo0.2)MoO6
63 MnO + Fe2O3 + Fe + MoO3

1623 K, 8 GPa
Mn2+, 3d5 0.83 Å Fe3+, 3d5 0.645 Å Mo4/5+, 4d2/1

0.65/0.61 Å
DP, P21/n TC = 194

Mn2FeReO6
30 MnO + Fe2O3 + Fe + ReO3,

1873 K, 5 GPa
Mn2+, 3d5 0.83 Å Fe3+, 3d5 0.645 Å Re5+, 5d2 0.58 Å DP, P21/n TC = 520

MnFe0.5Ru0.5O3 MnO + MnO2 + Fe2O3 +
RuO2, 1623 K, 5 GPa

Mn2+/3+, 3d5/4

0.83/0.645 Å
Fe3+, 3d5 0.645 Å Ru3/4+, 4d5/4

0.562/0.62 Å
a-Fe2O3, R%3c TN B 400

Mn2MnWO6
60 MnO + WO3, 1673 K,

8 GPa
Mn2+, 3d5 0.83 Å Mn2+, 3d5 0.83 Å W6+, 5d1 0.60 Å NTO, R3 TN = 58

Mn2MnReO6
64 MnO + ReO3, 1673 K,

5 GPa
Mn2+, 3d5 0.83 Å Mn2+/3+, 3d5/4

0.83/0.645 Å
Re5+/6+, 5d2/1

0.58/0.55 Å
DP, P21/n TN = 110

This journal is �c The Royal Society of Chemistry 2018 J. Mater. Chem. C, 2018, 00, 1�14 | 11
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