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Simple bespoke preservation of two conservation laws
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Conservation laws are among the most fundamental geometric properties of a partial differential equation

(PDE), but few known finite difference methods preserve more than one conservation law. All conser-

vation laws belong to the kernel of the Euler operator, an observation that was first used recently to

construct approximations symbolically that preserve two conservation laws of a given PDE. However,

the complexity of the symbolic computations has limited the effectiveness of this approach. The cur-

rent paper introduces some key simplifications that make the symbolic-numeric approach feasible. To

illustrate the simplified approach, we derive bespoke finite difference schemes that preserve two discrete

conservation laws for the Korteweg-de Vries (KdV) equation and for a nonlinear heat equation. Numeri-

cal tests show that these schemes are robust and highly accurate compared to others in the literature.

Keywords: Finite difference methods; discrete conservation laws; KdV equation; nonlinear heat equation;

porous medium equation.

1. Introduction

The main goal of geometric integration is to reproduce, in a numerical approximation, key geometric

properties of a given continuous differential problem (see Hairer et al., 2006; Budd, & Piggott, 2003).

For instance, Hamiltonian ordinary differential equations (ODEs) occur in applications from nano-

scale molecular dynamics to the macro-scale of celestial mechanics (see Hairer et al., 2006; Brugnano &

Iavernaro, 2016). They have two fundamental features: symplecticity of the flow in phase space and con-

stancy of the Hamiltonian function on solutions. Consequently, geometric integration of Hamiltonian

ODEs has followed two main approaches, preserving symplecticity and energy respectively. Symplectic

methods are obtained by requiring that the discrete map associated with a given numerical method is

symplectic (Leimkuhler & Reich, 2004; Hairer et al., 2006; Feng, 1985; Sanz Serna, 1998; Sanz Serna

& Calvo, 1994). Energy conservation has been achieved by using discrete line integral methods (see

Brugnano & Iavernaro, 2016; Brugnano et al., 2010, 2012, 2015), time finite element methods (Betsch

& Steinmann, 2000; Tang & Chen, 2007; Tang & Sun, 2012) and discrete gradient methods (Dahlby &

Owren, 2011; Gonzales, 1996; McLachlan et al., 1999) such as the Average Vector Field method (see

Celledoni et al., 2009; Quispel & McLaren, 2008; Hairer, 2010).

These structure-preserving approaches have been extended to Hamiltonian partial differential equa-

tions (PDEs) (Bridges & Reich, 2006; Bridges, 1997; Leimkuhler & Reich, 2004). A particularly pow-

erful approach uses a multisymplectic reformulation of the equations (Bridges & Reich, 2001; Islas &

Schober, 2004; Bridges, 1997; Bridges & Reich, 2006; Leimkuhler & Reich, 2004; Islas et al., 2001;

Chen et al., 2002; Ascher & McLachlan, 2005, 2004; Sun & Qin, 2004, 2003). Alternatively, the method

of lines is used to create a semidiscretization, and the resulting Hamiltonian ODEs (in time) are inte-
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grated by a symplectic method (Bridges & Reich, 2001; Cano, 2006; Oliver et al., 2004; Qin & Zhang,

1990; Ascher & McLachlan, 2005; Lu & Schmid, 1997; Bambusi, 2013; Guan et al., 2009) or energy-

conserving method (Barletti et al., 2016, 2017, 2018; Brugnano & Iavernaro, 2016; Brugnano et al.,

2015a,b,c; Dahlby & Owren, 2011; Frasca-Caccia, 2015; Guo & Xu, 2015; Furihata, 1999; Koide &

Furihata, 2009). For Hamiltonian PDEs, McLachlan & Quispel (2014) made the useful observation that

“if the semidiscretization has a semidiscrete energy conservation law, then a discrete gradient method

applied to this semidiscretization will have a fully discrete energy conservation law”.

The benefits of preserving global invariants have been examined for several Hamiltonian PDEs in

Frutos & Sanz-Serna (1997); Durán & López-Marcos (2003); Durán & Sanz-Serna (2000) and, in a

more general context, in Durán & Sanz-Serna (1998).

The current paper introduces a simple bespoke approach to constructing finite difference schemes

that preserve multiple conservation laws of a given PDE. Conservation laws are among the most fun-

damental features of the PDE, as their origin is topological. Our approach is a simplification of the

symbolic-numeric strategy introduced in Grant (2011) and Grant & Hydon (2013) and developed in

Grant (2015).

There are three advantages to this approach. First, it does not require the PDE to have any special

structure, so it is suitable for discretizing PDEs independently of whether or not they possess other ge-

ometric structures. Second, the discretizations obtained by using this strategy exactly preserve local

discrete conservation laws. Conserving local features of the continuous PDE gives, in general, a stricter

constraint than preserving the corresponding global features. Given suitable boundary conditions, the

preservation of local conservation laws also ensures the conservation of the corresponding global invari-

ants. Finally, our approach can be used to seek methods that preserve any number of conservation laws.

However, imposing the preservation of more than two conservation laws can considerably increase the

complexity of the scheme. For this reason, in this paper, we deal only with methods that preserve two

conservation laws, as a reasonable compromise between reliability and complexity of the schemes.

In Section 2 we review Grant’s symbolic-numeric approach and introduce the simplifications that

we will use to construct new conservative finite difference schemes. A different strategy, the multiplier

method, has been proposed in Wan et al. (2016) to construct conservative finite difference methods

for ODEs and PDEs. We briefly discuss the two different approaches. In Section 3, the simplified

symbolic-numeric approach is applied to the Korteweg-de Vries (KdV) equation. Several new schemes

are constructed and numerical tests are presented to show their effectiveness by comparison with some

known methods that preserve only one conservation law. In Section 4, we consider a nonlinear heat

equation as an example of a non-Hamiltonian PDE having two conservation laws. A family of two-

parameter methods preserving both conservation laws is introduced. (These are easily extended to the

more general porous medium equation.) At the end of the section, we present numerical tests that show

the conservative properties of the new schemes and comparisons with a standard second-order finite

difference method. Some concluding remarks are given in Section 5.

2. How to preserve multiple conservation laws

We begin this section with some basic results on conservation laws of partial differential equations

(PDEs). After reviewing the general symbolic-numeric strategy for preserving multiple conservation

laws of a given scalar PDE, we introduce some simplifications that enable accurate schemes to be derived

efficiently.

We restrict attention to scalar PDEs with two independent variables; the approach generalizes to

more variables, but more simplifications may be needed to make the symbolic computations tractable.
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Consider a PDE for u(x, t),
A(x, t, [u]) = 0, (2.1)

where [u] denotes u and finitely many of its derivatives. More generally, square brackets around a differ-

entiable expression denote the expression and finitely many of its derivatives. To simplify the exposition,

we will assume that A is at most quadratic in [u]; the generalization to PDEs that are polynomial in [u]
is obvious. For an application of our approach to a PDE that is cubic in [u], see Frasca-Caccia (2018).

A conservation law of (2.1) is a divergence expression,

DivF ≡ Dx{F(x, t, [u])}+Dt{G(x, t, [u])},

which is zero on all solutions of (2.1); that is,

DivF = 0 when [A= 0]. (2.2)

Here Dx and Dt are the total derivatives with respect to x and t respectively:

Dx ≡ ∂

∂x
+ux

∂

∂u
+uxx

∂

∂ux

+uxt

∂

∂ut

+ · · · ,

Dt ≡ ∂

∂ t
+ut

∂

∂u
+utt

∂

∂ut

+utx

∂

∂ux

+ · · · .

The components F and G are commonly referred to as the flux and density respectively. A conservation

law (2.2) is trivial of the first kind if F and G are zero on solutions of (2.1). It is trivial of the second

kind if the divergence in (2.2) is identically zero without any reference to the PDE. A conservation law

is trivial if and only if it is a linear superposition of the two types of trivial conservation laws. Two

conservation laws are equivalent if they differ by a trivial conservation law. If the conservation law (2.2)

amounts to

DivF =QA, (2.3)

it is said to be in characteristic form and the multiplier Q is called a characteristic of the conservation

law.

REMARK 2.1 If the PDE is in Kovalevskaya form, integrating any of its conservation laws by parts

yields an equivalent conservation law in characteristic form (see Olver, 1993). A characteristic, Q, is

trivial if it vanishes on solutions of (2.1); two characteristics are equivalent if they differ by a trivial

characteristic. If (2.1) is in Kovalevskaya form, there is a one-to-one correspondence between equiva-

lence classes of characteristics and equivalence classes of conservation laws (see Alonso, 1979; Olver,

1993). Therefore, characteristics can be used to test the equivalence of conservation laws.

A crucial result, for our purposes, is the characterization of the kernel of the Euler operator,

E = ∑
i, j

(−Dx)
i(−Dt)

j ∂

∂uxit j

, where uxit j = D i
xD

j
t (u),

as the space of total divergences. Consequently, if Q is a function such that

E(QA)≡ 0,

then there exists F such that QA = DivF and, therefore, Q is the characteristic of the corresponding

conservation law.
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Conservation laws, being defined as divergences (2.2), are local features of (2.1). Their integrals

over the spatial domain yield quantities that are globally conserved on solutions (provided that (2.1) is

coupled with suitable boundary conditions). However, although the local preservation of (2.2) implies

the preservation of the globally conserved quantities, the converse is not true. For this reason, we seek

finite difference schemes that preserve discrete analogues of continuous local conservation laws.

For simplicity, we consider only uniform discretizations of the PDE (2.1). Relative to a generic

lattice point n = (m,n), the grid points are

xi = x(m+ i) = x(m)+ i∆x, t j = t(n+ j) = t(n)+ j∆ t,

and the approximated values of the dependent variable u ∈ R at these points are

ui, j ≈ u(xi, t j), i, j ∈ Z.

The forward shift operators Sm and Sn are defined on the lattice by

Sm : (m,n) 7→ (m+1,n), Sn : (m,n) 7→ (m,n+1);

their action extends naturally to xi, t j and ui, j as follows:

Sm : (xi, t j,ui, j) 7→ (xi+1, t j,ui+1, j), Sn : (xi, t j,ui, j) 7→ (xi, t j+1,ui, j+1).

Combining Sm with the identity operator,

I : (m,n,xi, t j,ui, j)→ (m,n,xi, t j,ui, j),

yields the forward difference, Dm, and the forward average, µm, defined for all functions f by

Dm( f ) = 1
∆x

(Sm − I)( f ), µm( f ) = 1
2
(Sm + I)( f ).

To obtain backward versions of the above operators, compose each with S−1
m . Similarly,

Dn( f ) = 1
∆ t

(Sn − I)( f ), µn( f ) = 1
2
(Sn + I)( f ).

All of these operators commute with one another.

Discretizing (2.1) by means of a suitable finite difference approximation for the derivatives of the

dependent variable, one obtains a partial difference equation (P∆E),

Ã(m,n, [u]) = 0. (2.4)

Here [u] denotes u0,0 and a finite number of its shifts; more generally, square brackets around a difference

expression denote the expression and finitely many of its shifts.

We seek schemes with the following finite difference analogue of each preserved conservation law:

Div F̃ ≡ Dm

(
F̃(m,n, [u])

)
+Dn

(
G̃(m,n, [u])

)
= 0 when [Ã= 0 ], (2.5)

where tildes represent discretizations of the corresponding continuous terms. The functions F̃ and G̃ are

respectively the flux and the density of the conservation law (2.5).
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Just as in the continuous case, a conservation law of (2.4) is trivial of the first kind if F̃ and G̃ vanish

on solutions of (2.4) and trivial of the second kind if (2.5) is identically satisfied without any reference

to (2.4) and its shifts (see Hydon, 2014). A difference conservation law is trivial if and only if it is a

linear combination of trivial conservation laws of these two kinds. Two conservation laws are equivalent

if they differ by a trivial conservation law.

A conservation law of (2.4) is in characteristic form if

Div F̃ = Q̃(m,n, [u])Ã.

Here Q̃ is the characteristic, which is trivial if it is zero on all solutions of (2.4); two characteristics are

equivalent if their difference is a trivial characteristic.

REMARK 2.2 (Grant & Hydon, 2013; Hydon, 2014) P∆Es that can be solved for a highest shift in one

direction (such as explicit P∆Es) admit a one-to-one correspondence between equivalence classes of

characteristics and equivalence classes of conservation laws. Therefore, characteristics can be used to

test equivalence for conservation laws of such P∆Es.

The key result that underpins the symbolic-numeric approach is due to Kuperschmidt (1985): simi-

larly to the continuous case, the set of all divergence expressions (2.5) over Z2 is precisely the kernel of

the difference Euler operator,

E≡ ∑
i, j

S−i
m S− j

n

∂

∂ui, j
. (2.6)

(See Hydon & Mansfield, 2004, for the generalisation of this result.) Thus, if a function Q̃ satisfies

E(Q̃Ã)≡ 0,

there exists F̃ such that Q̃Ã = Div F̃; therefore Q̃ is the characteristic of this difference conservation

law. For consistency, restrict attention to discretizations Q̃ of Q; then the difference conservation law

Q̃Ã is automatically a discretization of the continuous conservation law QA.

Grant’s basic symbolic-numeric approach is straightforward. Choose a stencil of points and consider

the most general discretizations on the stencil, Ã of the PDE and Q̃ of the characteristic of the desired

conservation law. If the stencil is large enough, there will be some free parameters in the discretizations.

To preserve the conservation law, impose the condition E(Q̃Ã) = 0. This condition amounts to a system

of algebraic equations that express constraints on the parameters. The procedure can be iterated for

multiple characteristics, Ql , provided that the corresponding system of algebraic equations admits a

solution. Finally, consistency conditions are applied to ensure that Ã converges to A and each Q̃l

converges to Ql as the stepsizes ∆ t and ∆x tend to zero; these give further constraints on the free

parameters. In this way, bespoke finite difference schemes for a given PDE may be derived by symbolic

computation.

In more detail, the basic method is as follows. Having chosen a stencil, the most general discretiza-

tions of the PDE (2.1) and the characteristics are based on Taylor series expansions of the grid function

about the point (x(m), t(n))≡ (x0, t0):

ui, j ≈ u(xi, t j) = u(x0 + i∆x, t0 + j∆ t)

= u+ i∆xux + j∆ t ut +
(i∆x)2

2!
uxx +

( j∆ t)2

2!
utt + i∆x j∆ t uxt + · · ·

∣∣∣
(x0,t0)

. (2.7)
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For a rectangular stencil of points defined by i = A, . . . ,B and j =C, . . . ,D, linear terms in A and Q are

approximated by linear combinations, with undetermined coefficients, of terms of the form (2.7):

∂ r+s

∂xr∂ ts
u ≈ 1

∆xr

1

∆ ts

B

∑
i=A

D

∑
j=C

αi, jui, j, (2.8)

where the coefficients αi, j depend on r and s.

If quadratic terms appear in A or in Q (as happens in our examples), we need to look at products of

Taylor expansions:

ui, juk,l =u2 +(i+ k)∆xuux +( j+ l)∆ t uut + ik∆x2u2
x +( jk+ il)∆x∆ t uxut + jl∆ t2u2

t

+
∆x2(i2 + k2)

2!
uuxx +(i j+ kl)∆x∆ t uuxt +

∆ t2( j2 + l2)

2!
uutt + · · ·

∣∣∣
(x0,t0)

. (2.9)

Just as for the linear terms, quadratic quantities in A and Q are replaced by linear combinations, with

undetermined coefficients, of terms of the form (2.9):

∂ m+nu

∂xm∂ tn

∂ r+su

∂xr∂ ts
≈ 1

∆xm+r∆ tn+s

D

∑
j=C

B

∑
i=A

(
B

∑
k=i

βi, j,k, jui, juk, j +
D

∑
l= j+1

B

∑
k=A

βi, j,k,lui, juk,l

)
, (2.10)

with the coefficients βi, j,k,l depending on r and s.

For the right hand sides of (2.8) and (2.10) to approximate the corresponding left hand sides, we

also need to impose a number of consistency conditions on the coefficients αi, j and βi, j,k,l .

REMARK 2.3 Terms involving higher powers of ui, j may be added, provided that they vanish as ∆x and

∆ t tend to zero. For simplicity, such terms are not included here.

Having set Q̃ and Ã to be the discretizations of Q and A respectively, one must solve

E(Q̃Ã) = 0, (2.11)

where E is the difference Euler operator (2.6). In general, this is not easy. Typically, even for a PDE

(2.1) that is only quadratic in [u], (2.11) amounts to a large system of nonlinear algebraic equations (see

Grant, 2011, 2015). In principle, such systems can be solved by finding a Groebner basis (Buchberger,

& Kauers, 2010, 2011; Cox et al., 1992; Mansfield, 1992). However, the calculation of the Groebner

basis may take a huge amount of memory and a very long computation time. As the use of this approach

is limited mainly by the cost of the symbolic computation, it is helpful to impose some additional

assumptions. For instance, Grant (2015) describes some symmetry-based ansätze that can simplify the

Groebner basis calculation.

There is one other approach to constructing finite difference schemes that can preserve multiple

conservation laws for systems of PDEs. This is the multiplier method, introduced in Wan et al. (2016),

which is as follows. Given a scalar PDE,

A= 0, (2.12)

that has one conservation law in the form

DxF +DtG =QA, (2.13)
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let Q̃, F̃ and G̃ be finite difference approximations of Q, F and G, respectively. Then, provided that

Q̃−1 exists on the whole domain of definition of (2.12),

Ã ≡ Q̃−1
{

Dm

(
F̃
)
+Dn

(
G̃
)}

= 0, (2.14)

is a finite difference approximation of (2.12) that preserves the conservation law (2.13). This method

has been applied to find conservative schemes for the inviscid Burgers’ equation and momentum-

preserving schemes for the KdV equation. It has also been applied to systems of r PDEs, such as

the two-dimensional shallow-water equations, to preserve s conservation laws, with s 6 r.

The multiplier method has the advantage of being simple to use. However, there are two main

disadvantages. First, it cannot find schemes preserving s conservation laws for systems of r PDEs with

s > r; in particular, it cannot preserve multiple conservation laws for a scalar PDE. Second, it requires

the characteristic to be nonzero throughout the domain. For characteristics that involve the dependent

variable, one cannot identify points where the characteristic is zero a priori.

By contrast, Grant’s approach is in principle able to find all conservative finite difference methods

on the chosen stencil, provided that one is able to solve (2.11). The procedure can be iterated to select

discretizations that preserve further conservation laws, provided that the corresponding condition (2.11)

admits a solution for each characteristic. Moreover, there is no need to choose a particular and arbitrary

discretization of densities and fluxes, as these can be reconstructed from the characteristics (see Hydon,

2001).

To simplify Grant’s approach, we adopt a strategy that reduces the number of variables and the

computational cost of solving the system of nonlinear equations. This is achieved by first looking for

second-order accurate approximations only, building in consistency from the outset. If the stencil is as

compact as possible, this immediately determines the discretizations of the highest order derivatives.

The problem can be further simplified by restricting the approximations of some terms in Ã and Q̃ to

use only points in a sub-stencil that is as compact as possible. In particular, by approximating nonlinear

terms using as few points as possible, the number of variables may be considerably reduced to the point

of being able to solve (2.11) with a fast symbolic computation that does not need a Groebner basis.

REMARK 2.4 Conservation laws of a given PDE are evaluated on hypersurfaces. In the discrete case, the

smallest “surface” on which a conservation law can be evaluated locally is the convex hull of the stencil

(Hydon, 2014). Therefore, for all conservative schemes that are presented in this paper, the consistency

conditions are imposed so as to approximate the conservation laws (and their characteristics) to second-

order accuracy at the centre of the rectangular stencil.

REMARK 2.5 Obtaining second-order accurate approximations of the conservation laws at the centre

(x, t) of the stencil is equivalent to finding second-order accurate approximations of the corresponding

densities and fluxes at the points (x, t −∆ t/2) and (x−∆x/2, t) respectively (see (2.5)). Figure 1 shows

an example of a rectangular stencil. The circle denotes the centre, i.e. the point where we require second

order approximations of the PDE and of the characteristics (and hence of the conservation laws). The

crosses denote the points where we require second order approximations of the corresponding densities

and fluxes. These are not necessarily lattice points.

In the next two sections, we use the above simplifications to derive approximations that preserve

two conservation laws of some well-known nonlinear wave equations, and show that these conservative

methods can generate robust, highly-accurate schemes.
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(x, t−∆ t/2)

(x, t)(x−∆x/2, t)

FIG. 1. Example of a rectangular stencil. Conservation laws are preserved to second-order accuracy at the central point (x, t)
(circle), densities and fluxes respectively at (x, t −∆ t/2) and (x−∆x/2, t) (crosses).

3. KdV equation

In this section we exploit the strategy introduced in Section 2 to develop conservative schemes for the

KdV equation,

A≡ ut +uux +uxxx = 0, (x, t) ∈ Ω ≡ [a,b]× [0,∞). (3.1)

These schemes are tested for two benchmark problems; they compare favourably with two well-known

schemes that each preserve only one conservation law.

Equation (3.1) has an infinite number of conservation laws. The first three, in increasing order, are

Dt(G1)+Dx(F1)≡ Dt(u)+Dx

(
1

2
u2 +uxx

)
= 0, (3.2)

Dt(G2)+Dx(F2)≡ Dt

(
1

2
u2

)
+Dx

(
1

3
u3 +uuxx −

1

2
u2

x

)
= 0, (3.3)

Dt(G3)+Dx(F3)≡ Dt

(
u3

3
+uuxx

)
+Dx

(
u4

4
+uxut −uuxt +u2uxx +u2

xx

)
= 0, (3.4)

which can be written in characteristic form (2.3) with characteristics

Q1 = 1, Q2 = u, Q3 = u2 +2uxx, (3.5)

respectively. For a water wave problem, conservation laws (3.2)-(3.4) describe the local conservation of

mass, momentum and energy, respectively (see Drazin & Johnson, 1989). As these conservation laws

have a physical meaning, it seems particularly desirable to preserve them.

When (3.1) is coupled with suitable (e.g. periodic or zero) boundary conditions, integrating (3.2)–

(3.4) over the spatial domain gives the global conservation of, respectively,

∫
G1 dx =

∫
udx,

∫
G2 dx =

∫
1

2
u2 dx,

∫
G3 dx =

∫
1

3
u3 +uuxx dx. (3.6)

It is well-known that (3.1) possesses the Hamiltonian structure

ut = Dx

δ

δu
H1,
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where δ/δu is the variational derivative and

H1 =
∫

−1

2

(
1

3
u3 −u2

x

)
dx, (3.7)

is the Hamiltonian functional. Equivalently, one can use the alternative Hamiltonian functional

H1 =
∫

−1

2

(
1

3
u3 +uuxx

)
dx =−1

2

∫
G3 dx. (3.8)

With this choice of functional, the conservation law (3.4) implies the preservation of H1.

The KdV equation (3.1) can also be written in another Hamiltonian form (see Olver, 1993),

ut =

(
D3

x +
2

3
uDx +

1

3
ux

)
δ

δu
H2,

with the Hamiltonian

H2 =
∫

−1

2
u2 dx =−

∫
G2 dx. (3.9)

The conservation law (3.3) implies that H2 is preserved.

These are special instances of the following well-known general result. Given a scalar Hamiltonian

evolution equation for u(x, t),

ut =D δ

δu
H, H=

∫
H([u])dx, (3.10)

where D is a skew-adjoint differential operator (with respect to the L2 inner product), the Hamiltonian

H is constant (provided that some technical conditions are satisfied).

To discretize the KdV equation (3.1), one first needs to set the stencil. Having done this, we will use

our simplified version of Grant’s approach to construct two types of scheme: our energy-conserving

schemes preserve discrete versions of the conservation laws (3.2) and (3.4), while our momentum-

conserving schemes preserve discrete versions of (3.2) and (3.3).

3.1 Conservative methods for the KdV equation

8-point schemes

The most compact rectangular stencil consists of 8 points, as shown in Fig. 2. Here and henceforth,

grid points are labelled with respect to the lattice point denoted with a square. From Remark 2.5, we

seek second-order approximations of characteristics, densities and fluxes at (−1/2,1/2), (−1/2,0) and

(−1,1/2), respectively.

Energy-conserving schemes

To simplify the symbolic computations for energy-conserving schemes on the 8-point stencil, we

use the approximations

uxx ≈ µn

(
D2

mu−2,0

)
, uxx ≈ µm

(
µn

(
D2

mu−2,0

))
,
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(−1/2,0)

(−1/2,1/2)(−1,1/2)

(0,0)

FIG. 2. The most compact rectangular stencil for (3.1). Conservation laws are preserved to second-order accuracy at the central

point (−1/2,1/2) (circle), densities and fluxes respectively at (−1/2,0) and (−1,1/2) (crosses).

in F̃1 and Q̃3, respectively. The remaining terms in the approximations of G1 at (−1/2,0), F1 at

(−1,1/2) and Q3 at (−1/2,1/2) are obtained from (2.8) and (2.10) by requiring that the coefficients

αi, j and βi, j,k,l satisfy all consistency conditions for second-order accuracy. This yields families of

approximations that depend on just a few undetermined coefficients.

The discretizations of the conservation laws (3.2) and (3.4) at (−1/2,1/2) are taken to be of the

following form (setting Q̃1 = 1):

Ã= Dm

(
F̃1

)
+Dn

(
G̃1

)
= 0, Q̃3Ã= 0.

As Ã is defined to be a discrete conservation law, the condition E(Ã) ≡ 0 holds for any choice of the

remaining coefficients in G̃1, F̃1 and Q̃3. We then find these undetermined coefficients by solving

E(Q̃3Ã)≡ 0.

This constraint determines all remaining coefficients. So only one scheme of this form preserves (3.2)

and (3.4) to second-order accuracy at the centre of the stencil:

EC8 ≡ Ã= Dm

(
F̃1

)
+Dn

(
G̃1

)
= 0, (3.11)

where

F̃1 =
1

3
µn

((
µ2

mu−2,0

)2
)
+

1

6

(
µ2

mu−2,0

)(
µ2

mu−2,1

)
+µnD2

mu−2,0, G̃1 = µmu−1,0. (3.12)

The scheme EC8 preserves the following discrete version of the conservation law (3.4):

Q̃3Ã=DmF̃3 +DnG̃3 = 0, (3.13)

where

Q̃3 =2µmF̃1,

F̃3 = F̃1
2
+(µnDmµmu−2,0)

(
Dnµ2

mu−2,0

)
−
(
µnµ2

mu−2,0

)
(DnDmu−2,0)

+
∆x2

6
(µnµ2

mu−2,0){(2µmDnu−1,0)(µnDmµmu−2,0)−Dn(µmu−1,0Dmµmu−2,0)} ,

G̃3 =
1

3
(µmu−1,0)µm

((
µ2

mu−2,0

)2
)
+(µmu−1,0)(µmD2

mu−2,0).
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The last term in the flux F̃3 vanishes as the spatial stepsize tends to zero, and does not correspond to an

expression in the continuous flux. The scheme EC8 is equivalent to one introduced in Grant (2015).

When (3.1) is coupled with zero or periodic boundary conditions, the scheme EC8 preserves at each

time step the following discretization of the Hamiltonian (3.8):

H̃1( j) =−∆x

2
∑

i

(
1

3
(µmui−1, j)µm

((
µ2

mui−2, j

)2
)
+(µmui−1, j)(µmD2

mui−2, j)

)
. (3.14)

In general, EC8 fails to preserve the conservation law (3.3), even to first order: given any approximation,

Q̃2 =
1

∑
i=−2

1

∑
j=0

ηi, jui, j, Q̃2 =Q2 +O(∆x,∆ t),

the condition E(Q̃2Ã) = 0 cannot be satisfied when Ã is given by (3.11).

Momentum-conserving schemes

Grant (2015) introduced several momentum-conserving schemes, including a one-parameter family

obtained by using the most compact second-order approximation of ut in (3.1). This amounts to

MC8(α)≡ Ã= Dm

(
F̃1

)
+Dn

(
G̃1

)
= 0,

where

F̃1 =
1

6
(µnu−1,0)µn(u−2,0 +u−1,0 +u0,0)+µnD2

mu−2,0

+α∆x2
{
(µnu0,0)(D

2
mµnu−2,0)+Dm((µnu−2,0)(Dmµnu−2,0))

}
,

G̃1 =µmu−1,0.

For any value of α , these methods preserve the discrete momentum conservation law

Q̃2Ã= Dm

(
F̃2

)
+Dn

(
G̃2

)
= 0,

with

Q̃2 =µmµnu−1,0 ,

F̃2 =
1

3
(µmµnu−2,0)(µmµnu−1,0)µn(u−1,0 +2α∆x2D2

mu−2,0)

+(µnµ2
mu−2,0)(µnD2

mu−2,0)−
1

2
µm

(
(µnDmu−2,0)

2
)
,

G̃2 =
1

2
(µmu−1,0)

2.

For zero or periodic boundary conditions, these schemes preserve the following discretization of the

Hamiltonian (3.9) at each time step:

H̃2( j) =−∆x

2
∑

i

(
µmui−1, j

)2
. (3.15)
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(0,1/2)(−1/2,1/2)

(0,0)

FIG. 3. The 10-point rectangular stencil for (3.1). Conservation laws are preserved with higher order at the central point (0,1/2)
(circle), densities and fluxes respectively at (0,0) and (−1/2,1/2) (crosses).

The local truncation error of the scheme MC8(α) is O(∆x2)+O(∆ t2). Restricting attention to the case

∆ t ≪ ∆x, the truncation error can be reduced considerably by choosing α optimally. No choice of α
eliminates the second-order terms identically, so the optimal value will depend on the particular problem.

10-point schemes

To find new schemes that preserve two conservation laws, one must use a wider stencil. This is

beyond what can be tackled in full generality, but the symbolic computations are made tractable (indeed,

fast) by the simplifications that we have introduced. Adding one further pair of nodes in the spatial

direction gives the 10-point stencil in Fig. 3. Hence, according to Remark 2.5, our goal is to find

second-order approximations of characteristics, densities and fluxes at (0,1/2), (0,0) and (−1/2,1/2),
respectively.

Energy-conserving schemes

Just as for the 8-point schemes, let

Ã= Dm

(
F̃1

)
+Dn

(
G̃1

)
,

so that (3.2) is preserved for any choice of the undetermined coefficients. The preservation of (3.4),

obtained by requiring that

E

(
Q̃3Ã

)
≡ 0, (3.16)

is simplified by setting the sub-stencils for G̃1 and the quadratic term in Q̃3 to be as compact as possible,

given that the approximations must be second-order:

G̃1 = u0,0, (3.17)

Q̃3 = ξ (u2
0,0 +u2

0,1)+(1−2ξ )u0,0u0,1 +
1

∆x2

2

∑
i=−2

1

∑
j=0

γi, jui, j, ξ ∈ R.

The undetermined coefficients in F̃1 and Q̃3 are obtained by solving (3.16). This yields a one-parameter

family of schemes,

Ã(λ ) = Dm

(
F̃1

)
+Dn

(
G̃1

)
= 0,

with

F̃1 = µmϕ−1,0, G̃1 = u0,0,
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where

ϕ−1,0 =
u2
−1,1 +u2

−1,0 +u−1,0u−1,1

6
+D2

mµnu−2,0 +λDnDmµmu−2,0,

and λ =O(∆x2,∆ t2). These schemes preserve

Q̃3Ã=DmF̃3 +DnG̃3 = 0,

where

Q̃3 =2ϕ0,0 ,

F̃3 =ϕ0,0ϕ−1,0 +(Dmµnu−1,0)(Dnµmu−1,0)− (µmµnu−1,0)(DnDmu−1,0)

+λ (Dnu0,0)(Dnu−1,0),

G̃3 =
1

3
u3

0,0 +u0,0D2
mu−1,0 .

For zero or periodic boundary conditions, these schemes preserve at each time step

H̃1( j) =−∆x

2
∑

i

(
1

3
u3

i, j +ui, j D2
mui−1, j

)
, (3.18)

but none of them preserves the conservation law (3.3).

Assuming for simplicity that ∆ t ≪ ∆x, the leading term in the local truncation error amounts to

O(∆x2). This suggests that by setting λ = α∆x2, one may be able to remove at least part of this error

by choosing α ∈ R optimally. However, Taylor expansion shows that no choice of α will give a higher

order method. Indeed, the optimal value depends on the initial conditions. In the results section, we

write the one-parameter family of schemes as

EC10(α)≡ Ã(α∆x2).

The scheme EC10(0) was originally found by the Discrete Variational Derivative method (see Fu-

rihata, 1999). Dahlby & Owren (2011) proved that the Furihata scheme can also be derived by the

Average Vector Field method, which approximates (3.10) by Dnu0,0 = D̃(δ̃Ĥ), where the operator D̃ is

skew-adjoint with respect to the ℓ2 inner product. In this case,

D̃ = DmµmS−1
m , δ̃Ĥ=−1

6

{
u2

0,1 +u0,1u0,0 +u2
0,0

}
−D2

mµnu−1,0 .

None of the other EC10(α) schemes can be derived in this way.

Momentum-conserving schemes

To simplify the derivation of momentum-conserving schemes on the 10-point stencil in Fig. 3, use
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the following approximations in which G̃1, Q̃2, and the quadratic term in F̃1 are compact1:

G̃1 = u0,0, (3.19)

Q̃2 = µnu0,0, (3.20)

F̃1 =
1

∑
j=0

0

∑
i=−1

0

∑
k=i

βi, j,k, jui, juk, j +
0

∑
i=−1

0

∑
k=−1

βi,0,k,1ui,0uk,1 +
1

∆x2

1

∑
i=−2

1

∑
j=0

αi, jui, j,

Proceeding as before, one obtains a two-parameter family of momentum-conserving methods:

Ã(λ ,ν) = Dm

(
F̃1

)
+Dn

(
G̃1

)
= 0,

with G̃1 as defined in (3.19) and

F̃1 =
(µnu−1,0)

2 +(µnu0,0)
2 +(µnu−1,0)(µnu0,0)

6
+µnD2

mµmu−2,0 +DnDm(λu−1,0 +νD2
mu−2,0);

here λ =O(∆x2,∆ t2) and ν =O(∆x2,∆ t2). These schemes preserve

Q̃2Ã= DmF̃2 +DnG̃2 = 0,

with Q̃2 as given in (3.20) and

F̃2 =
1

3
(µnu0,0)(µnu−1,0)(µnµmu−1,0)+

1

2

{
(µnu0,0)(D

2
mµnu−2,0)+(µnu−1,0)(D

2
mµnu−1,0)

}

− 1

2
(Dmµnu−1,0)

2 +λ

{
(µmµnu−1,0)(DnDmu−1,0)−

1

2
Dn(µmu−1,0Dmu−1,0)

}

+ν
{
(µnu0,0)(DnD3

mu−2,0)− (Dmµnu−1,0)(DnD2
mu−1,0)+

1

2
Dn[Dmu−1,0D2

mu−1,0 −u0,0D3
mu−2,0]

}
,

G̃2 =
1

2
u2

0,0 +
1

2
u0,0D2

m(λu−1,0 +νD2
mu−2,0).

For suitable boundary conditions, the Ã(λ ,ν) scheme preserves at each time step

H̃2( j) =−∆x

2
∑

i

(
u2

i, j +ui, jD
2
m(λui−1, j +νD2

mui−2, j)
)
. (3.21)

To simplify the main sources of local truncation error, we will consider only ∆ t ≪ ∆x; then the leading

term is O(∆x2), so we define the two-parameter family of schemes

MC10(α,β )≡ Ã(α∆x2,β∆x2).

Again, it is not possible to obtain higher order methods for any choice of the free parameters; the optimal

values depend on the particular problem.

1A family of second-order schemes depending on 8 free parameters can be found by removing the compactness assumption on

the quadratic term in F̃1.
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It turns out that all of the MC10(α,β ) schemes can also be derived by the Average Vector Field

Method, approximating the right-hand side of (3.10) by

D̃δ̃Ĥ= D3
mS−2

m µm(δ̃Ĥ)+
2

3
S−1

m µm

{
(µmµnu0,0)Dm(δ̃Ĥ)

}
+

1

3
Dm(µmµnu−1,0) δ̃Ĥ,

where

δ̃Ĥ=−µn

{
u0,0 +α∆x2D2

mu−1,0 +β∆x2D4
mu−2,0

}
.

In this case, the skew-adjoint operator D̃ is not constant.

3.2 Numerical tests

In this subsection, two benchmark solutions are used to illustrate the effectiveness of the schemes devel-

oped in Section 3.1 by comparison with two well-known schemes that each preserve a single conserva-

tion law. These are the multisymplectic scheme proposed in Ascher & McLachlan (2004, 2005), which

we rewrite as

Dm

(
1

2
µm(µmµnu−2,0)

2 +D2
mµnu−2,0

)
+Dn

(
µ3

mu−2,0

)
= 0, (3.22)

and the narrow box scheme, defined in the same references, which amounts to

Dm

(
1

2
(µnu−1,0)

2 +D2
mµnu−2,0

)
+Dn (µmu−1,0) = 0. (3.23)

Both the multisymplectic scheme (3.22) and the narrow box scheme (3.23) are defined on the 8-point

stencil in Fig. 2, and preserve a discrete version of the mass conservation law (3.2).

Each scheme considered in this section is solved by using the Newton method, simplified by using

a “frozen” Jacobian. This procedure is computationally attractive because the inversion of the Jacobian

is performed just once for a single instance of the iterative method. The iterations are run until the error

reaches full machine accuracy (up to rounding errors) in double precision. For each of our numerical

experiments, the computational cost is approximately the same for all of the schemes.

In the following, we consider (3.1) subject to periodic boundary conditions. We evaluate the error

in the solution at the final time t = T as

‖u−uexact‖
‖uexact‖

∣∣∣∣
t=T

. (3.24)

For a grid with M points in space and N points in time, the errors in the invariants (3.6) are

Errℓ = ∆x max
j=1,...,N

∣∣∣∣∣
M

∑
i=1

(
G̃ℓ(xi, t j)− G̃ℓ(xi, t1)

)∣∣∣∣∣ , ℓ= 1,2,3. (3.25)

Where some of the discrete densities G̃1, G̃2 and G̃3 are undefined because the considered scheme does
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not preserve the corresponding conservation laws, we instead evaluate the corresponding errors as

Err1 =∆x max
j=1,...,N

∣∣∣∣∣
M

∑
i=1

(vi, j − vi,1)

∣∣∣∣∣ ,

Err2 =∆x max
j=1,...,N

∣∣∣∣∣
1

2

M

∑
i=1

(v2
i, j − v2

i,1)

∣∣∣∣∣ , (3.26)

Err3 =∆x max
j=1,...,N

∣∣∣∣∣
M

∑
i=1

(
v3

i, j

3
+ vi, jD

2
m(vi−1, j)−

v3
i,1

3
− vi,1D2

m(vi−1,1)

)∣∣∣∣∣ .

Here vi, j = ui, j for the 10-point stencil in Fig. 3 and vi, j = µmui−1, j for the 8-point stencil in Fig. 2,

where ui, j ≃ u(a+ i∆x, j∆ t); subscripts denote shifts from the point (x, t) = (a,0). Note that Err2 shows

how well each scheme preserves the corresponding discretization of the Hamiltonian H2, because

max
j

|H̃2( j)−H̃2(1)|= Err2.

Similarly, Err3 shows how well H1 is preserved, because

max
j

|H̃1( j)−H̃1(1)|= Err3/2.

As a first numerical test, we consider equation (3.1) for t ∈ [0,2], with periodic boundary conditions

over the interval [−20,20] and the initial condition

u(x,0) = 3csech2

(√
c

2
(x+d)

)
. (3.27)

The exact solution of (3.1) with initial condition (3.27) on an infinite domain is a single soliton,

uexact(x, t) = 3csech2

(√
c

2
(x− ct +d)

)
. (3.28)

Each scheme is solved for the parameters c = d = 5 with stepsizes ∆x = 0.1 and ∆ t = 0.01. For

this problem, the the solution errors for MC8(α1), MC10(α2,β2) and EC10(α3) are minimised when

α1 = −0.069, (α2,β2) = (0.39,0.04) and α3 = 0.12. When the solution error cannot be evaluated

because the exact solution is unknown, another criterion is needed to optimise the free parameters. For

instance, to minimize the error in the non-preserved conservation law, the approximate parameter values

are α1 =−0.073, (α2,β2) = (0.21,0.03) and α3 = 0.17.

Table 1 shows that the MC and EC schemes described in Section 3.1 preserve two conservation

laws to machine accuracy. The most accurate of these schemes is EC10(0.12). Minimizing the error

in the non-preserved conservation law does not optimise the numerical solution, but nevertheless yields

a solution error that is comparable to (for MC10) or smaller than (for MC8 and EC10) the errors in the

Furihata, multisymplectic and narrow box schemes.

The upper part of Fig. 4 shows the initial condition and the numerical solution EC10(0.12) at the final

time T = 2. The lower plot shows only the top of the soliton, comparing the exact solution (3.28) with

the numerical solutions given by EC10(0.12), the multisymplectic, narrow box and Furihata (EC10(0))
schemes. The EC10(0.12) solution is the closest to the exact solution, reflecting the results in Table 1.
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FIG. 4. One-soliton solution for the KdV equation (3.1) with initial condition (3.27) and c = d = 5; the stepsizes are ∆x = 0.1 and

∆ t = 0.01. Top: Initial condition (dashed curve) and numerical solution EC10(0.12) at T = 2 (solid curve). Bottom: Top of the

soliton at T = 2; exact solution and numerical solutions from EC10(0.12), EC10(0), multisymplectic and narrow box schemes.
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TABLE 1. Errors in conservation laws and solution at the final time T = 2, when solving (3.1)

with initial condition (3.27) (for c = d = 5) and periodic boundary conditions over [−20,20], using

various schemes with ∆x = 0.1, ∆ t = 0.01. The non-zero values of the free parameter minimize the

error indicated by a star.

Method Err1 Err2 Err3 Solution error

EC8 9.24e-14 0.0019 6.71e-12 0.0964
MC8(0) 1.24e-13 6.82e-13 0.0308 0.0584

MC8(−0.069) 1.24e-13 1.05e-12 0.0028 0.0052∗

MC8(−0.073) 8.17e-14 6.25e-13 0.0014∗ 0.0063
Furihata; EC10(0) 8.17e-14 9.93e-04 2.16e-12 0.0217

EC10(0.12) 7.46e-14 3.40e-04 2.61e-12 0.0020∗

EC10(0.17) 7.46e-14 7.29e-05∗ 2.27e-12 0.0095
MC10(0,0) 6.75e-14 3.69e-13 0.0033 0.0335

MC10(0.39,0.04) 7.46e-14 3.41e-13 0.0127 0.0033∗

MC10(0.21,0.03) 6.39e-14 4.26e-13 6.07e-04∗ 0.0224
Multisymplectic 1.24e-13 7.03e-04 0.0436 0.0385

Narrow box 1.24e-13 0.0033 0.0325 0.0235

The second benchmark test is the interaction between two solitons. The exact solution on the infinite

line is

uexact(x, t) =
12(c1 − c2)

(
c1 cosh2 ξ2 + c2 sinh2 ξ1

)
(
(
√

c1 −
√

c2)cosh(ξ1 +ξ2)+(
√

c1 +
√

c2)cosh(ξ1 −ξ2)
)2
, (3.29)

where

ξ1 =

√
c1

2
(x+d1 − c1t), ξ2 =

√
c2

2
(x+d2 − c2t). (3.30)

Again, we use step sizes ∆x = 0.1 and ∆ t = 0.01 over the spatial domain [−20,20] with periodic bound-

ary conditions, on the temporal interval [0,2]. The initial condition is obtained by evaluating (3.29)–

(3.30) at t = 0, using the parameters

c1 = 10, c2 = 5, d1 = 12, d2 = 10. (3.31)

For this problem, the values α1 = −0.099, (α2,β2) = (−0.011,−0.031) and α3 = 0.23 minimize

the solution error for MC8(α1), MC10(α2,β2) and EC10(α3), respectively. The values α1 =−0.084 and

α3 = 0.26, which minimize the error in the non-preserved conservation law, both produce fairly accurate

solutions. The error in the energy conservation law for MC10(α2,β2) is minimized (but remains large)

for each tested β2 by a large negative value of α2; this produces a large solution error. So minimising

the remaining conservation law is a poor criterion for selecting between the schemes MC10(α2,β2).
Table 2 shows the solution error (3.24) and the error in the three conservation laws according to

(3.25) or, for non-preserved conservation laws, (3.26). The table includes the error in the phase shift for

the fastest soliton at the final time,

Errφ = (xmax − x̃max)|t=2,

where xmax and x̃max denote the location of the peak of the fastest soliton in the exact and numerical

solution respectively.
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TABLE 2. Errors in conservation laws, solution and phase shift at the final time T = 2 for the two-soliton problem

with parameters (3.31) over [−20,20] with periodic boundary conditions using different methods with ∆x = 0.1,

∆ t = 0.01. The non-zero values of the free parameter minimize the error indicated by a star.

Method Err1 Err2 Err3 Solution error Errφ

EC8 2.27e-13 0.0201 5.64e-11 0.4561 0.36
MC8(0) 3.69e-13 5.17e-12 30.3753 0.3338 0.26

MC8(−0.099) 2.56e-13 3.87e-12 4.9224 0.0301∗ -0.04
MC8(−0.084) 2.70e-13 5.00e-12 0.3785∗ 0.0625 0.06

Furihata; EC10(0) 1.71e-13 1.3595 2.18e-11 0.1706 0.16
EC10(0.23) 1.99e-13 0.1725 2.00e-11 0.0213∗ -0.04
EC10(0.26) 1.85e-13 0.0187∗ 2.55e-11 0.0301 -0.04
MC10(0,0) 1.42e-13 1.36e-12 27.7429 0.2391 0.16

MC10(−0.011,−0.031) 1.85e-13 1.71e-12 28.6356 0.0253∗ -0.04
Multisymplectic 1.85e-13 0.4373 28.1328 0.2557 0.26

Narrow box 1.71e-13 0.8633 17.9549 0.0255 0.06

TABLE 3. Errors in conservation laws, solution and phase shift at the final time T = 2, for the two-soliton KdV

problem with parameters (3.31) over [−20,20] with periodic boundary conditions, using different methods with

∆x = 0.1, ∆ t = 0.02. The non-zero values of the free parameter minimize the error indicated by a star.

Method Err1 Err2 Err3 Solution error Errφ

EC8 2.13e-13 1.2732 6.37e-11 0.6704 0.66
MC8(0) 1.99e-13 1.99e-12 55.4259 0.6281 0.56

MC8(−0.22) 3.98e-13 5.97e-12 15.8171 0.1065∗ 0.06
MC8(−0.16) 2.27e-13 4.21e-12 5.997∗ 0.2176 0.16

Furihata; EC10(0) 1.99e-13 2.7234 2.82e-11 0.4501 0.36
EC10(0.66) 1.42e-13 0.5161 2.00e-11 0.0749∗ 0.06
EC10(0.53) 1.14e-13 0.1326∗ 2.73e-11 0.1245 0.06
MC10(0,0) 1.56e-13 1.82e-12 54.2290 0.5621 0.46

MC10(0.815,−0.001) 1.56e-13 1.25e-12 59.5767 0.0947∗ 0.06
Multisymplectic 2.27e-13 0.4306 53.2081 0.5678 0.46

Narrow box 2.13e-13 0.8481 10.3316 0.3860 0.36

Table 2 shows that MC8(−0.099), EC10(0.23), MC10(−0.011,−0.031) and the narrow box scheme

give the most accurate solutions. The schemes obtained by choosing the free parameter in MC8 and

EC10 to minimize the error in the non-preserved conservation law are more accurate than the Furihata

and multisymplectic schemes.

The upper part of Figure 5 shows the initial condition (dashed line) and the numerical solution

EC10(0.23) at time T = 2 (solid line). The lower plot shows the exact solution (3.29) and the numerical

solutions from EC10(0.23), the Furihata (EC10(0)), multisymplectic and narrow box schemes. The

narrow box and EC10(0.23) schemes are the most accurate and give similar results.

As a last numerical test, we solve the two-soliton problem on a coarser time grid, setting ∆x = 0.1
and ∆ t = 0.02. For these stepsizes, the values α1 = −0.22, (α2,β2) = (0.815,−0.001) and α3 = 0.66

minimise the solution error for MC8(α1), MC10(α2,β2) and EC10(α3). The values α1 = −0.16 and

α3 = 0.53 yield the minimal error in the non-preserved conservation law.
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FIG. 5. Two-soliton solutions of KdV with the parameters (3.31) and stepsizes ∆x = 0.1 and ∆ t = 0.01. Top: Initial condition

(dashed curve) and numerical solution given by EC10(0.23) at T = 2 (solid curve). Bottom: The top of the fastest soliton at T = 2;

exact solution and numerical solutions from the EC10(0.23), EC10(0), multisymplectic and narrow box schemes.
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FIG. 6. Two-soliton solutions for (3.1) with the parameters (3.31) and stepsizes ∆x = 0.1 and ∆ t = 0.02. Top of the fastest soliton

at time T = 2: Exact solution and numerical solutions from the EC10(0.66), EC10(0), multisymplectic and narrow box schemes.

Most results in Table 3 are qualitatively similar to their counterparts in Table 2, though with larger

solution and phase errors. However, the narrow box scheme is far less accurate for the larger time

step. The solution error in the most accurate scheme, EC10(0.66), is around 3.5 times that of the most

accurate EC10 scheme for the smaller time step ∆ t = 0.01. This growth in solution error is slightly

greater that those of the Furihata (EC10(0)) and multisymplectic schemes (whose phase errors also

grow more slowly). Even so, EC10(0.66) is by far the most accurate of the schemes (see Fig. 6).

4. A nonlinear heat equation

In this section we consider the nonlinear heat equation,

A≡ ut −u2
x −uuxx = 0, (x, t) ∈ Ω ≡ [a,b]× [0,∞), (4.1)

coupled with suitable initial and boundary conditions:

u(x,0) = ψ(x), u(a, t) = ϕ1(t), u(b, t) = ϕ2(t). (4.2)

Equation (4.1) has only two independent (equivalence classes of) conservation laws:

A = Dt(G1)+Dx(F1)≡ Dt(u)+Dx(−uux), (4.3)

xA = Dt(G2)+Dx(F2)≡ Dt(xu)+Dx

(
u2/2− xuux

)
, (4.4)

with characteristics

Q1 = 1, Q2 = x, (4.5)
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respectively (see Ibragimov, 1994). To construct finite difference schemes that preserve a discrete ver-

sion of (4.3) and (4.4), we use the following general results.

THEOREM 4.1 Any partial differential equation of the form

Dt (g[u])+Dk
x ( f [u]) = 0, k ∈ N, (4.6)

where g[u] and f [u] are smooth functions of u and its derivatives, has k conservation laws whose char-

acteristics are Qi = xi−1, i = 1, . . . ,k. Any scheme of the form

Dn

(
g̃[u]
)
+Dk

m

(
f̃ [u]
)
= 0, (4.7)

where g̃[u] and f̃ [u] are finite difference approximations to g[u] and f [u] respectively, has k conservation

laws whose characteristics are Q̃i = xi−1
0 , i = 1, . . . ,k.

Proof. On solutions of (4.6), using integration by parts,

xi−1
(

Dt(g[u])+Dk
x ( f [u])

)
= Dt

(
xi−1g[u]

)
+(−1)kDk

x (x
i−1) f [u]+Dx(h[u]),

for some function h of u and its derivatives. As i−1 < k, this simplifies to

xi−1
(

Dt(g[u])+Dk
x ( f [u])

)
= Dt

(
xi−1g[u]

)
+Dx(h[u]),

which is a divergence and, therefore, a conservation law with characteristic Qi = xi−1.
The proof for the discrete case is similar. Summation by parts gives

xi−1
0

(
Dn

(
g̃[u]
)
+Dk

m

(
f̃ [u]
))

= Dn

(
xi−1

0 g̃[u]
)
+
(
S−1

m Dm

)k
(xi−1

0 ) f̃ [u]+Dm

(
h̃[u]
)

on solutions of (4.7), for some function h̃[u] of u and its shifts. Again i−1 < k, so

xi−1
0

(
Dn

(
g̃[u]
)
+Dk

m

(
f̃ [u]
))

= Dn

(
xi−1

0 g̃[u]
)
+Dm

(
h̃[u]
)
,

which is a discrete conservation law with characteristic Q̃i = xi−1
0 .

�

4.1 Conservative methods for the nonlinear heat equation

The nonlinear heat equation (4.1) is of the form (4.6), with k = 2. Therefore, according to Theorem 4.1,

both conservation laws can be preserved by finding suitable finite difference approximations of g[u] = u

and f [u] = −u2/2. This can be achieved to second order on the most compact rectangular stencil for

(4.1), which consists of six points (see Fig. 7).

This results in a two-parameter family of schemes,

CS(α,β )≡ Ã ≡ DmF̃1 +DnG̃1 = 0, (4.8)

with

F̃1 = Dm

(
f̃ [u]
)
, where f̃ [u] =−1

2
u−1,0u−1,1 +∆ t2β (Dnu−1,0)

2, (4.9)

G̃1 = g̃[u] = u0,0 +α∆x2D2
mu−1,0 . (4.10)



SIMPLE BESPOKE PRESERVATION OF TWO CONSERVATION LAWS 23 of 35

(0,1/2)(−1/2,1/2)

(0,0)

FIG. 7. The 6-point rectangular stencil for (4.1). Conservation laws are preserved to second-order at the central point (0,1/2)
(circle), densities and fluxes respectively at (0,0) and (−1/2,1/2) (crosses).

These schemes preserve a discrete version of (4.3) with Q̃1 = 1 and of (4.4), namely

Q̃2Ã= DmF̃2 +DnG̃2, (4.11)

where

Q̃2 = x0 , F̃2 = µm(x−1)F̃1 −µm

(
f̃ [u]
)
, G̃2 = x0G̃1 .

Except for CS(0,0), the approximated densities and fluxes include derivative terms that do not appear

in the corresponding continuous quantities. However, these vanish as the stepsizes approach zero. The

following schemes are particularly straightforward.

The scheme CS(0,−1/4) has perhaps the most obvious discretization of F̃1 and G̃1, namely

F̃1 = Dm

(
− 1

2
µnu2

−1,0

)
, G̃1 = u0,0 .

The components of the second conservation law are

F̃2 = µm(x−1)F̃1 +
1
2

µm

(
µnu2

−1,0

)
, G̃2 = x0u0,0 .

The scheme CS(0,−1/8) amounts to

Dn(u0,0)+D2
m

(
− 1

2
(µnu−1,0)

2
)
= 0,

which is obtained by applying the implicit midpoint rule to the following simple semidiscretization of

(4.1), with Ui(t) approximating u(xi, t):

U ′
0 +D2

m

(
− 1

2
(U−1)

2
)
= 0.

The densities and fluxes of the discrete conservation laws preserved by CS(0,−1/8) are

F̃1 = Dm

(
− 1

2
(µnu−1,0)

2
)
, G̃1 = u0,0 ;

F̃2 = µm(x−1)F̃1 +
1
2

µm

(
(µnu−1,0)

2
)
, G̃2 = x0u0,0 .

The scheme with the fewest terms is CS(0,0), whose densities and fluxes are

F̃1 = Dm

(
− 1

2
u−1,0u−1,1

)
, G̃1 = u0,0 ;

F̃2 = µm(x−1)F̃1 +
1
2

µm (u−1,0u−1,1) , G̃2 = x0u0,0 .
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This scheme can be solved explicitly at the kth integration step, provided that the matrix

1

∆ t
I − 1

2∆x2
M ◦Vk−1

is invertible; here I is the identity matrix, ◦ is the Hadamard product,2

M =




−2 1

1 −2 1

1 −2 1

. . .
. . .

. . .


 , Vk−1 = euk−1 ,

where e is the column vector whose entries are all 1, and uk−1 is the row vector whose entries are the

approximation (from the previous step) of u at the spatial grid points.

REMARK 4.1 The nonlinear heat equation (4.1) is a special case of the porous medium equation,

Dt(u)+D2
x

(
− us

s

)
= 0, (x, t) ∈ Ω ≡ [a,b]× [0,∞), (4.12)

where s ∈ N\{1}. For each s, this equation has only two conservation laws, with characteristics 1 and

x. The approach that we have used for the nonlinear heat equation can be used to obtain conservative

schemes for (4.12) with s > 2. On the six-point stencil in Fig. 7, this yields an s-parameter family of

second-order methods.

4.2 Numerical tests

In this section, three benchmark numerical tests for the problem (4.1)-(4.2) are used to show the ef-

fectiveness of the methods developed in Section 4.1. We compare the results from several CS(α,β )
schemes, which preserve both conservation laws, with those from the following second-order scheme

that, in general, does not preserve either conservation law:

Dnu0,0 − (Dmµmµnu−1,0)
2 −µn(u0,0)D

2
m(µnu−1,0) = 0. (4.13)

We call the scheme ML/IM, as it is obtained by applying the implicit midpoint method to the following

standard second-order method-of-lines semidiscretization of (4.1):

U ′
0 − (DmµmU−1)

2 −U0D2
mU−1 = 0.

Again, implicit methods are solved by a simplified Newton method with frozen Jacobian, run until

the error reaches machine accuracy. The (relative) solution error at the final time t = T is evaluated as

‖u−uexact‖
‖uexact‖

∣∣∣∣
t=T

. (4.14)

2The Hadamard product gives (A◦B)i, j = Ai, jBi, j, for each i, j.
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The errors in the discrete conservation laws (4.8) and (4.11) are evaluated respectively as3

Err1 = ∆x max
j=1,...,N−1

∣∣∣∣∣
M−1

∑
i=2

Dn

(
ui, j +α∆x2D2

mui−1, j

)
−Dm

{[
ur, jur, j+1 +2β∆ t2(Dnur, j)

2

2∆x

]M−1

r=1

}∣∣∣∣∣ ,

(4.15)

Err2 = ∆x max
j=1,...,N−1

∣∣∣∣∣
M−1

∑
i=2

xi Dn

(
ui, j +α∆x2D2

mui−1, j

)
−
[

µm(xr)Dm(ur, jur, j+1)−µm(ur, jur, j+1)

2∆x

]M−1

r=1

+β∆ t2

[
µm(xr)Dm

(
(Dnur, j)

2
)
−µm

(
(Dnur, j)

2
)

∆x

]M−1

r=1

∣∣∣∣∣∣
, (4.16)

where ui, j ≃ u(a+ i∆x, j∆ t), so that subscripts denote shifts with respect to (x, t) = (a,0). To evaluate

the error in the conservation laws resulting from ML/IM we use (4.15) and (4.16), setting α = β = 0.

The first benchmark problem is (4.1) with the initial and boundary conditions

u(x,0) =

(
1− x2

6

)

+

, −6 6 x 6 6, u(−6, t) = u(6, t) = 0, t ∈ [0,4], (4.17)

where f+ = max( f ,0). These conditions yield the Barenblatt solution of the porous medium equation

(4.12) with s = 2, which is

uexact(x, t) = (t +1)−1/3

(
1− x2

6(t +1)2/3

)

+

.

For all t > 0, this solution has compact support with the interface moving outward at a finite speed.

The Barenblatt solution is a (weak) energy solution, but not a classical solution as it is not differen-

tiable at the interface points. Such solutions cause difficulties in numerical simulation. Standard finite

element methods can create oscillations close to the interface, but negative values have no meaning

physically (see Zhang & Wu, 2009). Here we show that, by contrast, various conservative finite differ-

ence schemes CS(α,β ) are effective for non-smooth solutions. For simplicity, we will consider only

the one-parameter family obtained by setting α = 0.

Table 4 shows the errors in the conservation laws for various CS(0,β ) given the stepsizes ∆x = 0.25

and ∆ t = 0.333. These schemes locally preserve both conservation laws to machine accuracy. The

solution error at the final time T = 4, evaluated according to (4.14), is minimised by setting β = 0.21.

Nevertheless, the explicitly-solved scheme CS(0,0), though slightly less accurate, is a better option

because of its low computation time.

3If periodic or zero boundary conditions apply, (4.15) and (4.16) can be replaced with

∆x max
j=1,...,N−1

M

∑
i=1

Dn(ui,1 +α∆x2D2
mui−1, j), ∆x max

j=1,...,N−1

M

∑
i=1

xiDn

(
ui, j +α∆x2D2

mui−1, j

)
,

which measure the error in the conservation of the global invariants

∫
G1 dx =

∫
udx and

∫
G2 dx =

∫
xudx.
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TABLE 4. Errors in solution and conservation laws at the final time T = 4, when solving (4.1) with

the conditions (4.17), using CS(0,β ) schemes with ∆x = 0.25, ∆ t = 0.333 and the scheme ML/IM

with ∆x = 0.25, ∆ t = 0.0267.

Method Err1 Err2 Solution error Computational time

CS(0,−1/4) 8.11e-16 5.66e-16 0.0038 0.032
CS(0,−1/8) 4.55e-16 3.92e-16 0.0035 0.026

CS(0,0) 5.95e-15 5.41e-15 0.0032 0.002
CS(0,0.21) 8.61e-16 1.03e-15 0.0028 0.030

ML/IM 0.0671 5.30e-15 0.0307 0.221

TABLE 5. Errors in solution and conservation laws at the final time T = 4, when solving (4.1) with

the conditions in (4.17), using CS(0,β ) methods with ∆x = 0.1, ∆ t = 0.133 and the scheme ML/IM

with ∆x = 0.1, ∆ t = 0.005.

Method Err1 Err2 Solution error Computational time

CS(0,−1/4) 1.66e-15 2.57e-15 0.0013 0.15
CS(0,−1/8) 1.58e-15 1.83e-15 0.0012 0.10

CS(0,0) 4.88e-14 4.67e-14 0.0011 0.014
CS(0,0.07) 3.70e-15 3.36e-15 9.77e-04 0.09

ML/IM 0.0232 2.37e-14 0.0126 6.48

TABLE 6. Errors in solution and conservation laws at the final time T = 4, when solving (4.1) with

the conditions in (4.17), using CS(0,β ) methods with ∆x = 0.025, ∆ t = 0.03 and the scheme ML/IM

with ∆x = 0.025, ∆ t = 0.000267.

Method Err1 Err2 Solution error Computational time

CS(0,−1/4) 3.16e-14 1.78e-14 6.51e-05 14.35
CS(0,−1/8) 2.18e-14 1.50e-14 5.87e-05 8.99

CS(0,0) 3.22e-14 2.69e-14 5.48e-05 0.38
CS(0,0.05) 3.20e-14 4.49e-14 5.42e-05 6.71

ML/IM 0.0095 2.50e-13 0.0035 1612.61

ML/IM does not converge on such a coarse grid. Only by reducing the time step so that ∆ t < ∆x2

can this scheme be made to converge. Reducing the time step to ∆ t = 0.0267, the solution error is

still larger than those of the CS(0,β ) methods, which converge even when ∆ t > ∆x. Note that ML/IM

preserves the conservation law (4.4); this is a consequence of the reflectional symmetry of the scheme

and the boundary conditions.

Tables 5 and 6 show the outcomes of solving the same problem with various CS(0,β ) on the finer

grids ∆x= 0.1, ∆ t = 0.133 and ∆x= 0.025, ∆ t = 0.03. On these grids the values β = 0.07 and β = 0.05

respectively minimize the solution error. The explicit scheme CS(0,0) is by far the most efficient and

has a low solution error. Of the implicit schemes, the optimised scheme is the fastest in each case.

The errors in the conservation laws are tiny, but grow as the grid is refined due to the accumulation

of rounding errors. Again, ML/IM requires smaller timesteps for convergence; even then, the solution

error is still far greater than those of the conservative methods.
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TABLE 7. Errors in solution and conservation laws at the final time T = 10, when solving (4.1)

with conditions in (4.18), using CS(0,β ) schemes with ∆x = 0.375, ∆ t = 0.333 and ML/IM with

∆x = 0.375, ∆ t = 0.00667.

Method Err1 Err2 Solution error Computational time

CS(0,−1/4) 2.13e-14 3.73e-14 0.0013 0.06
CS(0,−1/8) 2.40e-14 2.13e-14 9.26e-04 0.04

CS(0,0) 3.60e-14 5.86e-14 0.0035 0.002
CS(0,−0.14) 2.40e-14 2.66e-14 9.13e-04 0.04

ML/IM 0.0845 0.7938 0.0114 1.76

The upper part of Fig. 8 shows the initial condition (dashed line) and the numerical solution given

by CS(0,0) for equation (4.1), with conditions in (4.17), setting ∆x = 0.025 and ∆ t = 0.03. The method

does not produce any spurious oscillations close to the interface. Magnifying the left interface, as shown

at bottom of Fig. 8, one can see that the solution of CS(0,0) is closer to the exact solution at time T = 4

than the solution given by ML/IM, even though the time step used to advance ML/IM is much smaller.

Furthermore, the interface of the numerical solution has moved at the correct speed and overlaps the

interface of the exact solution. The solutions given by CS(0,β ) for the optimal value of β overlap the

CS(0,0) solution, so we omit the corresponding figures.

The second benchmark problem is (4.1) with (x, t) ∈ Ω = [0,15]× [0,10] and the following initial

and boundary conditions:

u(x,0) = 0, x ∈ [0,15],

u(0, t) = t, t ∈ [0,10], u(15, t) = 0, t ∈ [0,10]. (4.18)

The exact solution of this problem (see Ibragimov, 1994) is again not smooth:

uexact(x, t) =

{
t − x, 0 6 x 6 t,

0, x > t;

this is a wave travelling with unit speed into an undisturbed medium.

Table 7 shows the errors for various CS(0,β ) with ∆x= 0.375 and ∆ t = 0.333. The value β =−0.14

gives the minimum solution error. As ML/IM does not converge on this grid, we use the finer timestep

∆ t = 0.00667 for this method; the problem is not reflectionally symmetric, so neither conservation law

is preserved. The results are similar to those for the first benchmark problem. Again, the sub-optimal

scheme CS(0,0), solved explicitly, is convenient because of its low computation time.

Similar results are obtained in Table 8 by solving the same problem using CS(0,β ) schemes on

the finer grid ∆x = 0.05, ∆ t = 0.025, for which the value β = 0.34 minimizes the solution error. As

ML/IM does not converge on these grids, we reduce the timestep to ∆ t = 8e-05. Again, the conservative

methods are more accurate.

Figure 9 compares numerical solutions of problem (4.1) with (4.18) on the finer grid, which has a

meshpoint at the interface x = 10. Although ML/IM is qualitatively correct, it produces a slight lag near

to the interface. The scheme CS(0,0) is very accurate except at the interface and does not produce spu-

rious oscillations in the solution. The most accurate scheme, CS(0,0.34), models the moving interface

extremely well, but produces a very small oscillation in the error at nearby points.
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FIG. 8. Results for (4.1) with conditions in (4.17). Top: Initial condition (dashed curve) and numerical solution from CS(0,0)
(solid curve), setting ∆x = 0.025 and ∆ t = 0.03 over [−6,6] at time T = 4. Bottom: Left interface: exact solution (solid curve),

numerical solutions CS(0,0) with ∆x = 0.025 and ∆ t = 0.03 (crosses), and ML/IM with ∆x = 0.025 and ∆ t = 0.000267 (dia-

monds).
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FIG. 9. Results at T = 10 for equation (4.1) subject to (4.18), setting ∆x = 0.05. Exact solution (solid curve), CS(0,β ) with

∆ t = 0.025 (crosses), and ML/IM with ∆ t = 8e-05 (diamonds). Top: β = 0. Bottom: β = 0.34.
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TABLE 8. Errors in solution and conservation laws at the final time T = 10, when solving (4.1) with

conditions in (4.18), using CS(0,β ) methods with ∆x= 0.05, ∆ t = 0.025 and ML/IM with ∆x= 0.05,

∆ t = 8e-05.

Method Err1 Err2 Solution error Computational time

CS(0,−1/4) 9.55e-13 1.79e-12 1.16e-04 4.92
CS(0,−1/8) 7.92e-13 1.34e-12 9.99e-05 3.67

CS(0,0) 9.96e-13 2.06e-12 8.16e-05 0.19
CS(0,0.34) 2.60e-12 5.37e-12 2.94e-05 6.90

ML/IM 0.0114 0.1131 0.0017 1400.70

TABLE 9. Errors in solution and conservation laws at the final time T = 10, when solving (4.1) with

conditions in (4.19), using CS(0,β ) methods with ∆x= 0.25, ∆ t = 0.333 and ML/IM with ∆x= 0.25,

∆ t = 0.04.

Method Err1 Err2 Solution error Computational time

CS(0,−1/4) 3.05e-16 1.39e-17 0.0162 0.013
CS(0,−1/8) 8.33e-17 1.39e-17 0.0099 0.013

CS(0,0) 2.78e-17 1.39e-17 0.0036 0.002
CS(0,0.06) 5.55e-17 2.08e-17 0.0017 0.011

ML/IM 0.0099 0.0117 0.0165 0.076

The final benchmark problem is (4.1) with the initial and boundary conditions

u(x,0) = 0, 0 6 x 6 5,

u(0, t) = (t̃ − t)−1
[
1− (1− t/t̃ )2/3

]
, u(5, t) = 0, t ∈ [0,T ]⊂ [0, t̃ ), (4.19)

where t̃ is a positive constant (the time of existence of the solution). The exact solution of this problem

is (see Galaktionov & Posashkov, 1988; Ibragimov, 1994)

uexact(x, t) =




(t̃ − t)−1

[(
1− x/

√
6
)2

− (1− t/t̃ )2/3

]
, 0 6 x 6 x̃(t),

0, x̃(t)< x 6 5,

where

x̃(t) =
√

6(1− (1− t/t̃ )1/3), 0 6 t 6 T < t̃.

This is another non-smooth solution of equation (4.1); it exists on the finite time interval [0, t̃ ), blowing

up when t approaches t̃.

Tables 9 and 10 summarise the numerical solutions of the nonlinear heat equation over the time

interval [0,10], with the initial and boundary conditions in (4.19) for t̃ = 11. For the coarser grid with

∆x = 0.25, the optimal value of β is 0.06; for the finer grid, ∆x = 0.1, β = 0.05 is optimal. On both

grids, we have chosen ∆ t > ∆x for the CS(0,β ) schemes, to show that this does not produce instability.

This contrasts markedly with ML/IM, which requires ∆ t < ∆x2 for convergence. Once again, CS(0,0)
shows itself to be a highly-efficient, reasonably-accurate scheme.
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FIG. 10. Results for equation (4.1) with conditions in (4.19). Top: Numerical solution given by method CS(0,0), setting ∆x = 0.1
and ∆ t = 0.133 over [0,5] at time T = 10. Bottom: Exact solution (solid curve), numerical solutions close to the interface from

CS(0,0) with ∆x = 0.1 and ∆ t = 0.133 (crosses), and ML/IM with ∆x = 0.1 and ∆ t = 0.00667 (diamonds).
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TABLE 10. Errors in solution and conservation laws at the final time T = 10, when solving (4.1) with

conditions in (4.19), using CS(0,β ) methods with ∆x = 0.1, ∆ t = 0.133 and ML/IM with ∆x = 0.1,

∆ t = 0.00667.

Method Err1 Err2 Solution error Computational time

CS(0,−1/4) 1.78e-16 6.66e-17 0.0030 0.05
CS(0,−1/8) 2.22e-16 4.44e-17 0.0018 0.04

CS(0,0) 1.33e-16 1.33e-16 7.01e-04 0.01
CS(0,0.05) 5.33e-16 4.44e-17 5.23e-04 0.04

ML/IM 0.0036 0.0044 0.0088 0.91

Figure 10 compares the numerical solutions from CS(0,0) and ML/IM on the finer grid. Again,

CS(0,0) is very close to the true solution (as are the other CS schemes in the tables), whereas ML/IM

has a small lag close to the interface.

5. Conclusions and discussion

Motivated by the basic principle of geometric integration that numerical schemes should preserve key

structural features of the approximated problem to the extent that is possible, we have presented a

strategy for developing finite difference methods that preserve two local conservation laws. This new

strategy simplifies the approach introduced in Grant & Hydon (2013) and developed in Grant (2015).

Depending on the stencil, Grant’s method can have a very long symbolic computation time (typically

several days on a fast PC for a 10-point stencil), which is a strong limitation. However, this difficulty

can be overcome by restricting attention to schemes that are second-order, with key terms that are as

compact as possible. Such schemes can be determined by hand, or by a short symbolic computation (of

no more than a few minutes), even for larger stencils.

We have developed new parametrized families of conservative numerical schemes for the solution

of the KdV equation and a nonlinear heat equation. These schemes seem to be more robust and efficient

than other well-known methods that do not preserve multiple conservation laws, perhaps due to topo-

logical and analytic advantages. Conservation laws have a topological origin as cohomology classes

in the restricted variational bicomplex; schemes that preserve these retain discrete analogues of what

may be essential topological features. Furthermore, parameters typically multiply terms that regularize

the approximation of A in some way. By using benchmark problems and optimising the parameters

with respect to the solution error, we have found members of each family that are highly accurate. In

practice, the exact solution to a given problem is not usually known. Nevertheless, one can optimise the

parameters numerically in order to achieve the best regularization for a given problem. Depending on

the problem being approximated, it may be advantageous to choose the parameters in a way that best

preserves other geometric structures, such as symplecticity, symmetries, or further conservation laws.
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