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AN ANALOGUE OF ROW REMOVAL FOR

DIAGRAMMATIC CHEREDNIK ALGEBRAS

C. BOWMAN AND L. SPEYER

Abstract. We prove an analogue of James–Donkin row removal theorems for diagrammatic
Cherednik algebras. This is one of the first results concerning the (graded) decomposition numbers
of these algebras over fields of arbitrary characteristic. As a special case, our results yield a new
reduction theorem for graded decomposition numbers and extension groups for cyclotomic q-Schur
algebras.

1. Introduction

Cyclotomic quiver Hecke algebras and (diagrammatic) Cherednik algebras are of central inter-
est in Khovanov homology, knot theory, group theory, and higher representation theory. Over
the complex numbers, these algebras has been extensively studied by the great and the good of
(geometric) representation theory [Los16, RSVV16, Web17b].

Over fields of positive characteristic, the waters become muddier. The quiver Hecke algebras and
diagrammatic Cherednik algebras continue to be intimately related through Schur–Weyl duality
[Web17b] and to be of fundamental interest to representation theorists [BK09a, BK09b, Mat14,
BCS17, BS18, EL] (whereas the Cherednik algebras themselves diverge from this picture and
become less mainstream). In the case of the symmetric groups, our understanding of the quiver
Hecke and diagrammatic Cherednik algebras has recently ballooned thanks to geometric insights
of Williamson [Wil17] and others. In this paper and [BS18], the authors initiate the uniform study
of all diagrammatic Cherednik algebras over arbitrary fields.

While the (quiver) Hecke algebras should be familiar to many readers (having enjoyed much
direct study since the 1980s), the diagrammatic Cherednik algebras might appear more mysterious
and newfangled. Associated to each cyclotomic quiver Hecke algebraHn(κ), we have a family of dia-
grammatic Cherednik algebras A(n, θ, κ) for θ ∈ Z

ℓ, each of which gives us a different θ-lens through
which to view Hn(κ). These various θ-lenses correspond to different parameterisations of simple
modules under Ariki’s categorification theorem (over C) and to varying the Lusztig a-function on
Hn(κ). These θ-lenses provide many different graded filtrations of projective Hn(κ)-modules and
each Hn(κ) admits many different graded decomposition matrices (which all specialise to the same
ordinary decomposition matrix by setting t → 1). In [Web17b], Webster showed that each A(n, θ, κ)
categorifies a θ-twisted higher level Fock space (thus vastly generalising [KK12, Web17a]). It is
the desire to fully understand these different θ-structures on Hn(κ) which has continued to inspire
the work of Bonnafé, Chlouveraki, Geck, Gordon, Griffeth, Jacon, and Rouquier, amongst many
others over the past twenty years [BR, BR13, CGG12, CJ12, Gec98, GJ11, GR01, Jac05]. The
diagrammatic Cherednik algebras provide us with a vast new array of tools with which to study
the modular representation theory of Hn(κ) through its various θ-structures.

To each weighting θ ∈ Z
ℓ Webster introduces a graphical calculus for the set of ℓ-multipartitions

based on an embedding of these multipartitions into R
2. We define diagonal cuts on these multi-

partitions in a graphical fashion; these cuts allow us to identify a pair of multipartitions (λ, µ) with
two distinct pairs of multipartitions (λL, µL) and (λR, µR) (the left and right pieces of the cut) of
smaller degree. We thus reduce the problem of calculating the graded decomposition numbers of
these algebras as follows.

Main Theorem. Let R be an arbitrary field. Let (λ, µ) be a pair of ℓ-multipartitions of n and let
a ∈ R. If (λ, µ) admits a θ-diagonal cut at x = a into two pieces (λL, µL) and (λR, µR), then we
can factorise the graded decomposition numbers for these algebras as

d
A(n,θ,κ)
λµ (t) = d

A(nL,θ,κ)

λLµL (t)× d
A(nR,θ,κ)

λRµR (t)

1



2 C. BOWMAN AND L. SPEYER

and the (graded) higher extension groups as

ExtkA(n,θ,κ)(∆(λ),∆(µ)) ∼=
⊕

i+j=k

ExtiA(nL,θ,κ)
(∆(λL),∆(µL))⊗ Extj

A(nR,θ,κ)(∆(λR),∆(µR)),

ExtkA(n,θ,κ)(∆(λ), L(µ)) ∼=
⊕

i+j=k

ExtiA(nL,θ,κ)
(∆(λL), L(µL))⊗ Extj

A(nR,θ,κ)(∆(λR), L(µR)),

where nL = |λL| = |µL| and nR = |λR| = |µR|.

In the level ℓ = 1 case, the algebra A(n, θ, κ) is Morita equivalent to the classical q-Schur algebra.
In this case, one can make a diagonal cut across a pair of partitions if and only if one can make
a vertical (generalised column) cut, if and only if one can make a horizontal (generalised row) cut.
These vertical and horizontal cuts across pairs of partitions have already been extensively studied;
the analogue of the above result for (graded) decomposition numbers was treated in [Jam81, Don85,
CMT02] and for Ext groups in [FL03, LM05, Don07].

In higher levels, the (graphically defined) dominance orders on multipartitions are more exotic;
our diagonal cuts may pass through many components of the multipartitions at once, as illustrated
shortly. Our diagonal cuts provide new information even in the case of the cyclotomic q-Schur
algebras of Dipper, James and Mathas [DJM98] (which are Morita equivalent to the diagrammatic
Cherednik algebras with well-separated weightings); see Example 3.19.

Roughly speaking, a pair of multipartitions λ, µ admits a diagonal cut at x = a if when we draw
the line x = a on the Young diagrams for λ and µ , we have the same number of boxes to the
left of the line in λ as in µ, and likewise to the right of the line. This concept is introduced more
concretely in Definition 3.1. In order to clarify the above, let’s consider an example. For θ = (0, 1),
the bipartitions

λ = ((11, 9, 7, 32, 2, 13), (9, 4, 2, 14)) and µ = ((10, 9, 8, 4, 3, 15), (8, 4, 2, 14))

admit a θ-diagonal cut at x = 5.2 (note that we draw boxes with diagonals of length 2ℓ = 4). To
see this, we draw the bipartitions with respect to this weighting as in Figure 1.

Figure 1. The bipartition λ = ((11, 9, 7, 32, 2, 13), (9, 4, 2, 14)) on the left and the
bipartition µ = ((10, 9, 8, 4, 3, 15), (8, 4, 2, 14)) on the right, with θ = (0, 1).

Intuitively, the left- and right-hand sides of these bipartitions with respect to this cut are the
‘smallest’ bipartitions which contain both the boxes intersected by the line and all the boxes to the
left (respectively right). For λ and µ as above, these cuts are depicted in Figure 2. In this case,

λL = ((11, 9, 7, 32), (9, 4, 2)), λR = ((35, 2, 13), (17)),

µL = ((10, 9, 8, 4, 3), (8, 4, 2)), µR = ((35, 15), (17)).

Now, applying our main theorem to this example, we obtain

dλµ(t) = dλLµL(t)× dλRµR(t).

Now let e = 5 and κ = (0, 2). By results from [BS18] (and the above) we obtain

dλµ(t) = (t5 + t3)× t2 = t7 + t5.

Finally, we remark that our main interest in the diagrammatic Cherednik algebras comes from
the manner in which they control the representation theory of cyclotomic quiver Hecke algebras
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Figure 2. With bipartitions λ and µ as in Figure 1 and a diagonal cut at x = 5.2,
we arrive at pairs of bipartitions (λL, µL) and (λR, µR) as depicted above.

Hn(κ) of affine type A (over fields of arbitrary characteristic!). For each weighting, θ ∈ Z
ℓ, we

have a corresponding cellular structure on Hn(κ), see [Bow] for details. Given θ ∈ Z
ℓ a weighting,

we let {∆θ(λ) | λ ∈ Pℓ
n} denote the set of cell modules and let {Dθ(µ) | µ ∈ Θ ⊆ Pℓ

n} denote the
corresponding set of simple modules for Hn(κ). The graded decomposition matrix with respect to
this cellular structure appears as a submatrix of the decomposition matrix of A(n, θ, κ) (see [Bow,
Corollary 4.3]) and we hence obtain the following corollary.

Corollary. Let R be an arbitrary field. Let λ ∈ Pℓ
n , µ ∈ Θ ⊆ Pℓ

n and let a ∈ R. If (λ, µ) admits
a θ-diagonal cut at x = a into two pieces (λL, µL) and (λR, µR), then we can factorise the graded
decomposition numbers with respect to the corresponding cellular structure of Hn(κ) as follows.

[∆θ(λ) : Dθ(µ)〈k〉] =
∑

i+j=k

[∆θ(λL) : Dθ(µL)〈i〉]× [∆θ(λR) : Dθ(µR)〈j〉]

Acknowledgements. The authors would like to thank the Royal Commission for the Exhibition of
1851 and the Japan Society for the Promotion of Science for their financial support.

2. The diagrammatic Cherednik algebra

In this section we define the diagrammatic Cherednik algebras and recall the combinatorics
underlying their representation theory. We fix an arbitrary integral domain R. We will first prove
a general result for relating a graded cellular algebra (with a highest weight theory) to certain
subquotient algebras.

Definition 2.1. Suppose that A is a Z-graded R-algebra which is of finite rank over R. We say
that A is a graded cellular algebra with a highest weight theory if the following conditions hold.

The algebra is equipped with a cell datum (Λ, T , C, deg), where (Λ,Q) is the weight poset. For
each λ, µ ∈ Λ such that λ Q µ, we have a finite set, denoted T (λ, µ), and we let T (λ) = ∪µ T (λ, µ).
There exist maps

C :
∐

λ∈Λ

T (λ)× T (λ) → A and deg :
∐

λ∈Λ

T (λ) → Z

such that C is injective. We denote C(S,T) = cλST for S,T ∈ T (λ). We require that A satisfies
properties (1)–(6), below.

(1) Each element cλS,T is homogeneous of degree

deg(cλS,T) = deg(S) + deg(T),

for λ ∈ Λ and S,T ∈ T (λ).
(2) The set {cλS,T | S,T ∈ T (λ), λ ∈ Λ} is an R-basis of A.

(3) If S,T ∈ T (λ), for some λ ∈ Λ, and a ∈ A then there exist scalars rS,U(a), which do not
depend on T, such that

acλS,T =
∑

U∈T (λ)

rS,U(a)c
λ
U,T (mod A⊲λ),
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where A⊲λ is the R-submodule of A spanned by

{cµ
Q,R | µ ⊲ λ and Q,R ∈ T (µ)}.

(4) The R-linear map ∗ : A → A determined by (cλS,T)
∗ = cλT,S, for all λ ∈ Λ and all S,T ∈ T (λ),

is an anti-isomorphism of A.
(5) The identity 1A of A has a decomposition 1A =

∑
λ∈Λ 1λ into pairwise orthogonal idempo-

tents 1λ.
(6) For S ∈ T (λ, µ), T ∈ T (λ, ν), we have that 1µc

λ
S,T1ν = cλS,T. There exists a unique element

Tλ ∈ T (λ, λ), and cλ
Tλ,Tλ = 1λ.

Let A be a graded cellular algebra with a highest weight theory, and t be an indeterminate over
Z>0. The graded decomposition matrix of A is the matrix DA(t) = (dλµ(t)), where for λ, µ ∈ Λ we
have

dλµ(t) =
∑

k∈Z

[∆(λ) : L(µ)〈k〉] tk,

where Λ indexes the standard modules ∆(λ) and their simple heads L(λ), and 〈k〉 denotes a grading
shift by k.

Definition 2.2. Let Q ⊆ Λ. We say that Q is saturated if for any α ∈ Q and β ∈ P with β ⊳ α,
we have that β ∈ Q. We say that Q is cosaturated if its complement in P is saturated.

Definition 2.3. Let E and F denote subsets of Pℓ
n which are saturated and co-saturated, respec-

tively. We let

e =
∑

µ∈E∩F

1µ and f =
∑

µ∈F\E

1µ

in A. We let AE∩F denote the subquotient of A given by

AE∩F = e(A/(AfA))e.

Proposition 2.4. The algebra AE∩F is a graded cellular algebra with a highest weight theory. The
cellular basis is given by

{cλS,T | S ∈ T (λ, µ), T ∈ T (λ, ν), λ, µ, ν ∈ E ∩ F},

with respect to the partial order on E ∩ F ⊆ Λ. Moreover, if R is a field, then

dAλµ(t) = dAE∩F

λµ (t)

and, furthermore,

ExtkA(∆
A(λ),∆A(µ)) ∼= ExtkAE∩F

(∆AE∩F (λ),∆AE∩F (µ))

ExtkA(∆
A(λ), LA(µ)) ∼= ExtkAE∩F

(∆AE∩F (λ), LAE∩F (µ))

for all k > 0.

Proof. The set F \ E is cosaturated in the θ-dominance ordering and so

〈cλS,T | S ∈ T (λ, µ), T ∈ T (λ, ν), λ ∈ F \ E, µ, ν ∈ Λ〉R

is an ideal of A. The resulting quotient algebra has basis indexed by S ∈ T (λ, µ), T ∈ T (λ, ν) such
that λ, µ, ν 6∈ (F \ E). Applying the idempotent truncation to this basis we obtain the required
basis of AE∩F by condition (6) of Definition 2.1. The graded decomposition numbers (as well
as dimensions of higher extension groups) are preserved under both the quotient and truncation
maps; this follows by the arguments of [Don98, Appendix: Lemmas A3.1, A3.3 and A3.13] (for the
ungraded case) as the ideal is generated by a (degree zero) idempotent. �
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2.1. Combinatorics of loadings. We now recall the combinatorics underlying complex reflection
groups and their diagrammatic Cherednik algebras. We have tried to keep this section brief, and
we refer to [BCS17, Bow, BS18] for further details and many illustrative examples.

Fix integers ℓ, n ∈ Z>0 and e ∈ {3, 4, . . . } ∪ {∞}. We define a weighting θ = (θ1, . . . , θℓ) ∈ Z
ℓ

to be any strictly increasing ℓ-tuple such that θj − θi /∈ ℓZ for 1 6 i < j 6 ℓ. Let κ denote an

e-multicharge κ = (κ1, . . . , κℓ) ∈ (Z/eZ)ℓ.

We define the corresponding Russian array as follows. For each 1 6 m 6 ℓ, we place a point on
the real line at θm and consider the region bounded by half-lines at angles 3π/4 and π/4. We tile
the resulting quadrant with a lattice of squares, each with diagonal of length 2ℓ.

An ℓ-multipartition λ = (λ(1), . . . , λ(ℓ)) of n is an ℓ-tuple of partitions such that |λ(1)|+· · ·+|λ(ℓ)| =

n. We will denote the set of ℓ-multipartitions of n by Pℓ
n. Let λ = (λ(1), λ(2), . . . , λ(ℓ)) ∈ Pℓ

n. The
θ-Young diagram [λ]θ is defined to be the set

[λ]θ = {(r, c,m) ∈ N× N× {1, . . . , ℓ} | c 6 λ(m)
r }.

We refer to elements of the θ-Young diagram as nodes or boxes. We define the residue of a node
(r, c,m) ∈ [λ]θ to be κm + c− r (mod e).

As a set, [λ]θ is independent of θ, but we depict it inside the Russian array as follows. For each
node of [λ]θ we draw a box in the Russian array. We place the first node, (1, 1,m), of component
m at θm on the real line, with rows going northwest from this node, and columns going northeast.
The diagram is tilted ever-so-slightly (by an angle of ε ≪ 1

2n radians) in the clockwise direction
so that the top vertex of the box (r, c,m) (that is, the box in the rth row and cth column of the
mth component of [λ]θ) has x-coordinate θm+ ℓ(r− c)+ (r+ c)ε (up to first order approximation).
Having made this tilt, we note that the boxes of a θ-Young diagram of a multipartition all have
distinct x-coordinates (by our assumptions on the weighting and the tilt).

Definition 2.5. Let (r, c,m), (r′, c′,m′) be two i-boxes and θ ∈ Z
ℓ be a weighting. We write

(r, c,m) �θ (r
′, c′,m′) if either

(i) θm + ℓ(r − c) < θm′ + ℓ(r′ − c′) or
(ii) θm + ℓ(r − c) = θm′ + ℓ(r′ − c′) and r + c < r′ + c′.

Given two multipartitions, λ, µ ∈ Pℓ
n, we say that λ θ-dominates µ (and write µ ⊳θ λ) if for every

i-box (r, c,m) ∈ [µ]θ, there exist strictly more i-boxes (r′, c′,m′) ∈ [λ]θ which θ-dominate (r, c,m)
than there do i-boxes (r′, c′,m′) ∈ [µ]θ which θ-dominate (r, c,m). We extend this order to subsets
(of the same cardinality) of multipartitions in the obvious fashion.

Given λ ∈ Pℓ
n we have an associated loading Iθλ ⊆ R given by the ordered set of real numbers

obtained by projecting the top vertex of each box (r, c,m) ∈ [λ]θ to its x-coordinate Iθ(r,c,m) =

θm + ℓ(r − c) + (r + c)ε ∈ R. Given λ ∈ Pℓ
n, the associated residue sequence, res(λ), of λ is given

by reading the residues of the boxes of λ according to the ordering on Iθλ.

Definition 2.6. Let λ, µ ∈ Pℓ
n. A λ-tableau of weight µ is a bijective map T : [λ]θ → Iθµ which

respects residues. In other words, T maps a given node (r, c,m) of [λ]θ to a point Iθ(r′,c′,m′) ∈ R for

(r′, c′,m′) ∈ [µ]θ such that κm + c− r = κm′ + c′ − r′ (mod e).

Definition 2.7. A λ-tableau, T, of shape λ and weight µ is said to be semistandard if

◦ T(1, 1,m) > θm,
◦ T(r, c,m) > T(r − 1, c,m) + ℓ,
◦ T(r, c,m) > T(r, c− 1,m)− ℓ.

We denote the set of all semistandard tableaux of shape λ and weight µ by SStd(λ, µ).

2.2. The diagrammatic Cherednik algebra. Recall that we have fixed ℓ, n ∈ Z>0, and e ∈
{3, 4, . . . } ∪ {∞}. Given any weighting θ ∈ Z

ℓ and any e-multicharge κ ∈ (Z/eZ)ℓ, we now recall
the definition of the diagrammatic Cherednik algebra, A(n, θ, κ).

Definition 2.8. We define a θ-diagram of type G(ℓ, 1, n) to be a frame R× [0, 1] with distinguished
solid points on the northern and southern boundaries given by the loadings Iθµ and Iθλ for some
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λ, µ ∈ Pℓ
n and a collection of solid strands each of which starts at a northern point, Iθ(r,c,m) say,

and ends at a southern point, Iθ(r′,c′,m′) such that κm + c− r ≡ i ≡ κm′ + c′ − r′ (mod e) (we refer

to this as a solid i-strand). We further require that each strand has a mapping diffeomorphically
to [0, 1] via the projection to the y-axis. Each strand is allowed to carry any number of dots. We
draw: (i) a dashed line ℓ units to the left of each strand, which we call a ghost i-strand or i-ghost;
(ii) vertical red lines at θm ∈ R each of which carries a residue κm for 1 6 m 6 ℓ which we call a
red κm-strand. We require that there are no triple points or tangencies involving any combination
of strands, ghosts or red lines and no dots lie on crossings. We consider these diagrams equivalent
if they are related by an isotopy that avoids these tangencies, double points and dots on crossings.
A θ-diagram is depicted in Figure 3, below.

κ2κ1 i2 i4 i5i3i1

Figure 3. A θ-diagram for θ = (0, 1) with northern and southern loading given by
Iω where ω = (∅, (15)).

Definition 2.9 (Definition 4.1 [Web17b]). The diagrammatic Cherednik algebra, A(n, θ, κ), is the
R-algebra spanned by all θ-diagrams modulo the following local relations (here a local relation
means one that can be applied on a small region of the diagram)

(2.1) Any diagram may be deformed isotopically; that is, by a continuous deformation of the
diagram which at no point introduces or removes any crossings of strands.

(2.2) For i 6= j we have that dots pass through crossings.

i j

=

i j

(2.3) For two like-labelled strands, we get an error term.

i i

=

i i

+

i i i i

=

i i

+

i i

(2.4) For double crossings of solid strands, we have the following.

i i

= 0

i j

=

ji

(2.5) If j 6= i− 1, then we can pass ghosts through solid strands.

i j

=

i j i j

=

i j
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(2.6) On the other hand, in the case where j = i− 1, we have the following.

i i−1

=

i i−1

−

i i−1

(2.7) We also have the relation below, obtained by symmetry.

i i−1

=

i i−1

−

i i−1

(2.8) Strands can move through crossings of solid strands freely.

ki j

=

ki j

Similarly, this holds for triple points involving ghosts, except for the following relations when
j = i− 1.
(2.9)

jji

=

jji

−

jji

(2.10)

ii j

=

ii j

+

ii j

In the diagrams with crossings in (2.9) and (2.10), we say that the solid (respectively ghost) strand
bypasses the crossing of ghost strands (respectively solid strands). The ghost strands may pass
through red strands freely. For i 6= j, the solid i-strands may pass through red j-strands freely. If
the red and solid strands have the same label, a dot is added to the solid strand when straightening.
Diagrammatically, these relations are given by
(2.11)

i i

=

ii ji

=

i j

and their mirror images. All solid crossings and dots can pass through red strands, with a correction
term.
(2.12)

ij k

=

ij k

+

ij k

δi,j,k

(2.13)

= =

(2.14)
= =

Finally, we have the following non-local idempotent relation.

(2.15) Any idempotent in which a solid strand is ℓn units to the left of the leftmost red strand is
referred to as unsteady and set to be equal to zero. Using relation (2.1), this is easily seen
to be equivalent to the unsteady relation in [BCS17, BS18, Web17b].

The product d1d2 of two diagrams d1, d2 ∈ A(n, θ, κ) is given by putting d1 on top of d2. This
product is defined to be 0 unless the southern border of d1 is given by the same loading as the
northern border of d2 with residues of strands matching in the obvious manner.
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Remark 2.10. The relations (2.5)–(2.7), (2.9), and (2.10) actually depict an entire region of width
ℓ inside a given diagram (as we have drawn a solid strand and its ghost). This has been done to
highlight the residue of the ghost strand and the number of dots on the solid strand. However,
the local neighbourhood of interest is that containing the ghost j-strand and solid i-strand(s);
the solid j-strands need not be in this local neighbourhood. In particular, we can apply relations
(2.5)–(2.7), (2.9), and (2.10) even if there is another strand lying between the solid j-strand and
its ghost.

The diagrammatic Cherednik algebra is graded as follows:

◦ dots have degree 2;
◦ the crossing of two strands has degree 0, unless they have the same label, in which case it
has degree −2;

◦ the crossing of a solid strand with label i and a ghost has degree 1 if the ghost has label
i− 1 and 0 otherwise;

◦ the crossing of a solid strand with a red strand has degree 0, unless they have the same
label, in which case it has degree 1.

In other words,

deg
i

= 2 deg
i j

= −2δi,j deg
i j

= δj,i+1 deg
i j

= δj,i−1

deg
i j

= δi,j deg
ji

= δj,i.

2.3. A cellular basis of the diagrammatic Cherednik algebra. Given any T ∈ SStd(λ, µ),
we have a θ-diagram CT consisting of a frame with northern and southern distinguished points
given by Iθµ and Iθλ, respectively, in which the n solid strands each connecting a northern and
southern point are drawn so that they trace out the bijection determined by T in such a way that
we use the minimal number of crossings without creating any bigons between pairs of strands or
strands and ghosts. This diagram is not unique up to isotopy (since we have not specified how to
resolve triple points), but we can choose one such diagram arbitrarily.

Given a pair of semistandard tableaux of the same shape (S,T) ∈ SStd(λ, µ) × SStd(λ, ν), we
have a diagram CST = CSC

∗
T where C∗

T is the diagram obtained from CT by flipping it through the

horizontal axis. Notice that there is a unique element Tλ ∈ SStd(λ, λ) and the corresponding basis
element 1λ = CTλ,Tλ is the idempotent in which all solid strands are vertical. A degree function
on tableaux is defined in [Web17b, Defintion 2.13]; for our purposes it is enough to note that
deg(T) = deg(CT) as we shall always work with the θ-diagrams directly. The following theorem
(see [Web17b, Sections 2.6 and 4.4] for R a field and [Bow] for R an integral domain) provides a
cellular basis, C, of the algebra A(n, θ, κ).

Theorem 2.11. The algebra A(n, θ, κ) is a graded cellular algebra with a highest weight theory.
The cellular basis is given by

C = {CST | S ∈ SStd(λ, µ),T ∈ SStd(λ, ν), λ, µ, ν ∈ P
ℓ
n}

with respect to the θ-dominance order on the set Pℓ
n and the anti-isomorphism given by flipping a

diagram through the horizontal axis.

Remark 2.12. We say that θ ∈ Z
ℓ is a well-separated weighting for A(n, θ, κ) if |θj − θi| > nℓ for all

1 6 i < j 6 ℓ. In [Web, Theorem 3.9] it is shown that if θ ∈ Z
ℓ is well-separated, then the algebra

A(n, θ, κ) is Morita equivalent to the corresponding cyclotomic q-Schur algebra.

3. Diagonal cuts of multipartitions

In this section, we identify subquotients of the diagrammatic Cherednik algebras which are
isomorphic to the product of subquotients of two smaller diagrammatic Cherednik algebras. We
first do this on the level of the indexing sets of representations (in Subsections 3.1 and 3.2) and
then lift this to the level of algebras (Subsection 3.3). We show that the graded decomposition
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numbers and higher extension groups are preserved under taking these subquotients and hence
prove the main theorem stated in the introduction.

3.1. Diagonal cuts and subquotients of the set of multipartitions. Let a ∈ R be such
that the interval (a − nε, a + nε) ⊂ R does not contain the x-coordinate of the loading of a node
belonging to any ℓ-multipartition of n. Given θ ∈ Z

ℓ a weighting and λ ∈ Pℓ
n, we define the set

(3.1) Ia(λ) = {(r, c,m) ∈ [λ]θ | a− ℓ < θm + ℓ(r − c) < a}.

Note that for the set Ia(λ) contains at most a single diagonal of boxes from each component of λ.
Similarly, we define

La(λ) = {(r, c,m) ∈ [λ]θ | θm + ℓ(r − c) < a− ℓ} Ra(λ) = {(r, c,m) ∈ [λ]θ | a < θm + ℓ(r − c)}.

That is, La(λ) (respectively Ra(λ)) is the loading corresponding to all nodes in [λ]θ which are
strictly to the left (respectively right) of the line x = a− ℓ (respectively x = a).

Definition 3.1. Let θ be a weighting, λ, µ ∈ Pℓ
n and a ∈ R. We say that the pair (λ, µ) admits a

θ-diagonal cut at x = a if the nodes (whose top vertices are) in the region (a− ℓ, a) are common to
both λ and µ, and the number of nodes strictly to the left or right of the line x = a is the same in
both multipartitions; in other words,

Ia(λ) = Ia(µ), |La(λ)| = |La(µ)|, and |Ra(λ)| = |Ra(µ)|.

Given λ ∈ Pℓ
n, we let

Λa(n, θ, κ) = {µ ∈ P
ℓ
n | (λ, µ) admits a θ-diagonal cut at x = a}.

Example 3.2. Let e = 3, θ = 0 and (λ, µ) = ((5, 4, 3, 2, 1), (43, 13)). This pair admits a diagonal
cut at x = 1/2. This cut is slightly to the right of the top vertex of the box (3, 3), as can be seen
in Figure 4. In this case

Ia(λ) = Ia(µ) = {(1, 1, 1), (2, 2, 1), (3, 3, 1)}

and

|La(λ)| = |La(µ)| = 6, |Ra(λ)| = |Ra(µ)| = 6.

Note that the pair (λ, µ) also admits a horizontal cut after the third row, and a vertical cut after
the third column (in the sense of [Don85, FL03]). That is,

5 + 4 + 3 = λ1 + λ2 + λ3 = µ1 + µ2 + µ3 = 4 + 4 + 4,

5 + 4 + 3 = λ′
1 + λ′

2 + λ′
3 = µ′

1 + µ′
2 + µ′

3 = 6 + 3 + 3.

Figure 4. Fix e = 3 and θ = 0. The partitions (5, 4, 3, 2, 1) and (43, 13) admit a
diagonal cut at x = 1/2.

Remark 3.3. Let (λ, µ) be a pair of partitions such that λ Q µ. The above example illustrates that
in level 1, the pair (λ, µ) admits a θ-diagonal cut if and only if they admit a horizontal cut, if and
only if they admit a vertical cut (in the sense of [Don85, FL03]).

Lemma 3.4. The set Λa(n, θ, κ) is closed under the θ-dominance order. That is, if µ, µ′ ∈
Λa(n, θ, κ) and ν ∈ Pℓ

n are such that µ ⊲θ ν ⊲θ µ
′, then ν ∈ Λa(n, θ, κ).

Proof. By the definition of the θ-dominance order, the number of nodes to the left of the point
x = a− ℓ for each of the three multipartitions is bounded as follows,

(3.2) |La(µ)| > |La(ν)| > |La(µ
′)|.
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Recall (by the definition of Λa(n, θ, κ)) that |La(µ
′)| = |La(λ)| = |La(µ)|; therefore |La(λ)| =

|La(ν)|, as required. Similarly, we have that the number of nodes to the right of x = a for each of
the multipartitions is bounded as follows,

(3.3) |Ra(µ
′)| > |Ra(ν)| > |Ra(µ)|.

Therefore (as above) we have that |Ra(ν)| = |Ra(λ)|, as required. Finally, it is immediate from
the definition that Ia(µ) = Ia(µ

′) = Ia(λ). By equations (3.2) and (3.3) and our assumption that
µ Q ν Q µ′, we deduce Ia(µ) Q Ia(ν) Q Ia(µ

′), therefore Ia(ν) = Ia(λ) as required. �

Given a subset Q ⊆ P , we let E(Q) (respectively F (Q)) denote the saturated (respectively cosat-
urated) closure of Q in P ; that is, the smallest saturated (respectively cosaturated) set containing
Q. By Lemma 3.4, we immediately deduce the following corollary.

Corollary 3.5. We have that Λa(n, θ, κ) = E(Λa(n, θ, κ)) ∩ F (Λa(n, θ, κ)).

Remark 3.6. In what follows, when the choice of λ ∈ Pℓ
n, a ∈ R, and θ ∈ Z

ℓ is clear, we shall let
E := E(Λa(n, θ, κ)) and F := F (Λa(n, θ, κ)).

3.2. A bijection between partially ordered sets. We now construct the bijection between
partially ordered sets which will underly the isomorphism of subquotient algebras in Subsection 3.3.

Definition 3.7. Given λ ∈ Pℓ
n, we define the left-hand side of λ (with respect to a θ-diagonal cut

at x = a), denoted λL, to be the smallest ℓ-multipartition such that

Ia(λ) ∪ La(λ) ⊆ [λL]θ.

Similarly, we define the right-hand side of λ, denoted λR, to be the smallest ℓ-multipartition such
that

Ia(λ) ∪Ra(λ) ⊆ [λL]θ.

We let nL = |λL| and nR = |λR|. We extend the notation of Definition 3.1 as follows,

ΛL
a (n, θ, κ) = {µ ∈ P

ℓ
nL

| (λL, µ) admit a θ-diagonal cut at x = a}

and
ΛR
a (n, θ, κ) = {µ ∈ P

ℓ
nR

| (λR, µ) admit a θ-diagonal cut at x = a}.

Informally, we may think of the line x = a as determining the left- and right-hand sides of a
multipartition in the obvious way. The catch is that these pieces won’t be multipartitions, and so
we add in as few nodes as possible to make them multipartitions.

Proposition 3.8. Given λ ∈ Pℓ
n, we have a bijection

Λa(n, θ, κ)
∼

−→ ΛL
a (nL, θ, κ)× ΛR

a (nR, θ, κ)

µ 7−→ (µL, µR).

Proof. This is clear from the definitions. �

Remark 3.9. Given λ ∈ Pℓ
n and µ ∈ Λa(n, θ, κ), one can write down the ℓ-multipartitions µL and

µR explicitly as follows. Suppose µ(m) = (µ1, µ2, . . . ). If every node in [µ(m)]θ lies to the left of

a− ℓ (respectively right of a), then the mth component of µL (respectively µR) is just µ(m) itself.

Otherwise, at least one node in [µ(m)]θ has x-coordinate in (a− ℓ, a). Suppose the highest such

node is (r, c,m) ∈ [µ(m)]θ. Then the mth components of µL and µR are

(µL)(m) = (µ1, µ2, . . . , µr) and (µR)(m) = (cr, µr+1, µr+2, . . . ).

Example 3.10. Continuing Example 3.2, recall that e = 3, θ = 0, λ = (5, 4, 3, 2, 1) and µ =
(43, 13). Making a diagonal cut at x = 1/2 yields

λL = (5, 4, 3), λR = (33, 2, 1), µL = (43), µR = (33, 13).

These are depicted in Figure 5. We note that the only difference between our diagonal cuts and
the more classical horizontal and vertical cuts is that we have an ‘extra rectangle’ of boxes in the
form of a partition (rc) common to both λL and λR.
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Figure 5. Let (λ, µ) be the pair of partitions admitting a diagonal cut as in Fig-
ure 4. We picture the resulting partitions above. The leftmost diagram depicts
λL, µL, and the rightmost diagram depicts λR, µR.

3.3. A subquotient of the diagrammatic Cherednik algebra. We now define the subquo-
tients of the diagrammatic Cherednik algebras in which we shall be interested for the remainder
of the paper. Fix n ∈ N, θ ∈ Z

ℓ, and κ ∈ (Z/eZ)ℓ. We now choose λ ∈ Pℓ
n, a ∈ R and we let

E := E(Λa(n, θ, κ)) and F := F (Λa(n, θ, κ)). As in Definition 2.3, we let

e =
∑

µ∈E∩F

1µ and f =
∑

µ∈F\E

1µ

and we define
AΛa = e(A/(AfA))e

for A := A(n, θ, κ). By Proposition 2.4 this algebra is a graded cellular algebra with basis

{CST | S ∈ SStd(α, β), T ∈ SStd(α, γ), α, β, γ ∈ Λa}.

If R is a field, then AΛa is quasi-hereditary.

Definition 3.11. Let µ, ν ∈ Λa(n, θ, κ). For S ∈ SStd(µ, ν), we define SL and SR to be the
tableaux determined by

(1) SL(r, c, k) = S(r, c, k) for Iθ(r,c,k) < a (respectively SR(r, c, k) = S(r, c, k) for Iθ(r,c,k) > a);

(2) SL(r, c, k) = Iθ(r,c,k) for I
θ
(r,c,k) > a (respectively SR(r, c, k) = Iθ(r,c,k) for I

θ
(r,c,k) < a);

for (r, c, k) ∈ [µL]θ (respectively (r, c, k) ∈ [µR]θ).

Theorem 3.12. Given λ ∈ Pℓ
n and a ∈ R. We have an isomorphism

AΛa(n,θ,κ)
∼= AΛL

a (nL,θ,κ) ⊗k AΛR
a (nR,θ,κ)

of graded R-modules given by the map

ϕ : CST 7−→ CSLTL ⊗ CSRTR .

Proof. Recall from Proposition 3.8 that the map Λa(n, θ, κ) ∼= ΛL
a (nL, θ, κ)×ΛR

a (nR, θ, κ) given by
µ 7→ µL × µR, is bijective. Given µ, ν ∈ Λa(n, θ, κ), we have that

|Iθµ ∩ (−∞, a− ℓ)| = |Iθν ∩ (−∞, a− ℓ)|,

|Iθµ ∩ (a− ℓ, a)| = |Iθν ∩ (a− ℓ, a)|,

|Iθµ ∩ (a,∞)| = |Iθν ∩ (a,∞)|,

and therefore (by Definition 2.7) any tableau S ∈ SStd(µ, ν) satisfies

S(r, c, k) = Iθ(r′,c′,k′),

for (r, c, k) and (r′, c′, k′) a pair of boxes whose loadings belong the same region: (−∞, a − ℓ),
(a − ℓ, a), or (a − ℓ,∞) respectively. Therefore SL ∈ SStd(µL, νL), SR ∈ SStd(µR, νR), and the
map S 7→ SL × SR is a bijection SStd(µ, ν) → SStd(µL, νL) × SStd(µR, νR). Moreover, we have
that

(3.4)
CSL ∩ (−∞, a− ℓ)× [0, 1] = CS ∩ (−∞, a− ℓ)× [0, 1]

CSR ∩ (a,∞)× [0, 1] = CS ∩ (a,∞)× [0, 1].

Given any two multipartitions µL, νL ∈ ΛL
a (nL, θ, κ) (or µR, νR ∈ ΛR

a (nR, θ, κ)) all nodes to the
right of the point a−ℓ (respectively to the left of a) are common to both multipartitions. Therefore
by the definition of semistandard tableaux, we have that

U(r, c, k) = Iθ(r,c,k) and V(r′, c′, k′) = Iθ(r′,c′,k′)
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for Iθ(r,c,k) > a− ℓ, Iθ(r,c,k) < a and U ∈ SStd(µL, νL), V ∈ SStd(µR, νR). Therefore, we have that

(3.5)
CSL ∩ ((a− ℓ,∞)× [0, 1]) = 1µ ∩ ((a− ℓ,∞)× [0, 1]) = 1ν ∩ ((a− ℓ,∞)× [0, 1])

CSR ∩ ((−∞, a)× [0, 1]) = 1µ ∩ ((−∞, a)× [0, 1]) = 1ν ∩ ((−∞, a)× [0, 1])

and the diagrams in equation (3.5) are both of degree zero. Therefore by equations (3.4) and (3.5)
we have that

deg(CSL) + deg(CSR) = deg(CS ∩ (−∞, a− ℓ)× [0, 1]) + deg(CS ∩ (a,∞)× [0, 1]) = deg(CS)

and the map CS 7→ CSL × CSR is a degree preserving bijection on the cell modules. The result
follows. �

Example 3.13. Recall our running example, with e = 3, θ = 0 and (λ, µ) =
((5, 4, 3, 2, 1), (43, 13)). There is a unique element S ∈ SStd(λ, µ) and the corresponding basis
element CS is depicted in Figure 6. This pair admits a θ-diagonal cut at x = 1/2. The elements
CSL and CSR are depicted in Figure 7.

aa − ℓ

1 0 2 2 1 1 0 00 0 2 2 1 1 0 2

Figure 6. The basis element CS for (µ, ν) = ((5, 4, 3, 2, 1), (43, 13)). Given a = 1/2,
we mark the lines of the cut, x = a and x = a− ℓ.

1 0 2 2 1 1 0 00 0 2 2 1

2 1 1 0 00 0 2 2 1 1 0 2

Figure 7. The basis elements CSL and CSR corresponding to (µ, ν) =
((5, 4, 3, 2, 1), (43, 13)) cut at x = 1/2 and the unique S ∈ SStd(µ, ν).

Theorem 3.14. The map ϕ : AΛa(n,θ,κ) → AΛL
a (nL,θ,κ) ⊗k AΛR

a (nR,θ,κ), defined in Theorem 3.12, is
an isomorphism of graded R-algebras.

Proof. We have already seen in Theorem 3.12 that the map ϕ is an isomorphism of graded R-
modules; it remains to check that

CSLTLCULVL ⊗ CSRTRCURVR = ϕ(CST)ϕ(CUV) = ϕ(CSTCUV).

The cell-ideals of A(n, θ, κ) are ordered according to the θ-dominance order on loadings; more
dominant loadings in this ordering are given by moving strands to the left. Therefore in order
to rewrite a product in terms of the cellular basis, we shall proceed by pulling the strands in the
diagrams as far to the left as possible using relations (2.1) to (2.15).
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The relations of A(n, θ, κ) (and therefore those of the subquotients AΛa(n,θ,κ), AΛL
a (nL,θ,κ), and

AΛR
a (nR,θ,κ)) can all be applied to the regions (−∞, a− ℓ), then (a− ℓ, a), and then (a,∞) to each

of the diagrams in turn. This is because relations (2.1) to (2.14) of A(m, θ, κ) for m = n, nL, nR

are local, and the additional idempotent relations (relation (2.15) and the cosaturated quotient
relation in the θ-dominance order) are all given in terms of loadings, and therefore are compatible
with restriction to regions of R. Consider a diagram, D, in any one of the algebras AΛa(n,θ,κ),
AΛL

a (nL,θ,κ), and AΛR
a (nR,θ,κ). By [Bow, Theorem 4.1], if we can pull an i-strand from D ∩ (a, a+ ℓ)

to the left of the line x = a− ℓ or a strand from (a+ ℓ,∞) to the left of the line x = a, then the
resulting diagram is zero.

First, apply relations (2.1) to (2.15) to the region (−∞, a − ℓ) of the diagrams CSTCUV and
CSLTLCULVL concurrently to push all strands in both

CSTCUV ∩ ((−∞, a− ℓ)× [0, 1]) and CSLTLCULVL ∩ ((−∞, a− ℓ)× [0, 1])

as far to the left as possible. Next, apply relations (2.1) to (2.15) to the region (a,∞) of the
diagrams CSTCUV and CSRTRCURVR concurrently to push all strands in both

CSTCUV ∩ ((a,∞)× [0, 1]) and CSRTRCURVR ∩ ((a,∞)× [0, 1])

as far to the left as possible. If every element in the resulting linear combination of diagrams in
A(n, θ, κ) is an element of the basis C, then the result follows. Otherwise, let d be any diagram in
the linear combination which is not in C. By assumption, the diagram d contains a strand which
cannot be pushed further left (using relations (2.1) to (2.15)) in either (a−ℓ, a) or (a,∞), but which
can be pushed further left in (−∞,∞). In the former (respectively latter) case, pull this strand to
the left of a− ℓ (respectively a); the resulting diagram factors through an idempotent with loading
Iθν , for some ν such that |La(ν)| > |La(λ)| (respectively |Ia(ν)|+ |La(ν)| > |Ia(λ)|+ |La(λ)|), and
so is zero in AΛa(n,θ,κ).

Now consider the element ϕ(d) = d′⊗ d′′ ∈ A(nL, θ, κ)⊗A(nR, θ, κ). In the former (respectively
latter) case, there is a strand in the diagram d′ ∈ A(nL, θ, κ) (respectively d′′ ∈ A(nR, θ, κ))
which can be pulled to the left of a − ℓ (respectively a); the resulting diagram factors through
an idempotent with loading Iθν , for some ν ∈ Pℓ

nL
(respectively for some ν ∈ Pℓ

nR
) such that

|La(ν)| > |La(λ
L)| (respectively |Ia(ν)|+ |La(ν)| > |Ia(λ

R)|+ |La(λ
R)|) and so is zero in AΛL

a (nL,θ,κ)

(respectively AΛR
a (nR,θ,κ)). The result follows. �

Corollary 3.15. Suppose R is a field, and let (λ, µ) be a pair of ℓ-multipartitions of n such that
µ Pθ λ. If, for some a ∈ R, (λ, µ) admits a θ-diagonal cut at x = a, then

dλµ(t) = dλLµL(t)× dλRµR(t)

and, furthermore,

ExtkA(n,θ,κ)(∆(λ),∆(µ)) ∼=
⊕

i+j=k

ExtiA(nL,θ,κ)
(∆(λL),∆(µL))⊗ Extj

A(nR,θ,κ)(∆(λR),∆(µR)),

ExtkA(n,θ,κ)(∆(λ), L(µ)) ∼=
⊕

i+j=k

ExtiA(nL,θ,κ)
(∆(λL), L(µL))⊗ Extj

A(nR,θ,κ)(∆(λR), L(µR)),

where nL = |λL| = |µL| and nR = |λR| = |µR|.

Proof. This follows by Proposition 2.4 and Theorem 3.14. �

Remark 3.16. As previously noted, in the level 1 case, a pair (λ, µ) such that λ Q µ admits a θ-
diagonal cut at x = a if and only if it admits a horizontal cut, if and only if it admits a vertical cut.
These horizontal and vertical cuts cross at the ‘highest’ node in the diagonal Iθλ∩ (a− ℓ, a); that is,
the node (r, c) satisfying Equation 3.1 for which r + c is maximal. In this case, the corresponding
horizontal and vertical cuts are after the rth row and the cth column, respectively. In this case,
the ungraded version of the result above is a corollary of [Don98, 4.2(9)] and [Don07, Section 10].
(We remark that the graded case is new, although the result for graded decomposition numbers
was already known over C by calculations in the Fock space – see [CMT02]).
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For (graded) decomposition numbers and higher extension groups of cyclotomic q-Schur algebras
(in other words, the algebras A(n, θ, κ) for θ a well-separated weighting) the result above is com-
pletely new. In this case it is easy to see that a pair of multipartitions (λ, µ) admits a θ-diagonal
cut at x = a if and only if it admits a horizontal cut after the rth row of the mth component (in the
sense of [FS16]), where (r, c,m) is the highest node in (a−ℓ, a), as in Remark 3.9. Thus we retrieve
an analogue of [FS16, Theorem 4.8] (which is stated for the cyclotomic Hecke algebras) for the
cyclotomic q-Schur algebras. Here, our ‘left piece’ is the same as the ‘top piece’ in [FS16, Theorem
4.8] (modulo empty components which do not play an important role where these decomposition
numbers are concerned), while our right piece differs from their ‘bottom piece’ in component m;
we have an extra r rows of length c, which are common to λR and µR. In order to remove this
‘extra rectangle’ it would suffice to establish a ‘first row removal’ isomorphism of algebras relating
algebras of different degrees and more importantly different e-multicharges and weightings; this
would proceed by analogy with [FS16]. Given an algebra with a well-separated weighting, it is not
difficult to establish such an isomorphism on the level of graded vector spaces and thus deduce
the equality of graded decomposition numbers over fields of characteristic zero (by arguing in an
LLT-type fashion as in [BS18, Theorem 4.12]). However, the obvious map does not lift to the level
of an isomorphism of algebras and so we do not include this here.

Example 3.17. Recall our running example, with e = 3, θ = 0, λ = (5, 4, 3, 2, 1), and µ = (43, 13).
We have that

d(5,4,3,2,1)(43,13)(t) = d(5,4,3)(43)(t)d(33,2,1)(33,13)(t) = t× t = t2.

regardless of the characteristic of the underlying field R. Similarly,

Dimt(HomA(15,(0),(0))(∆(5, 4, 3, 2, 1),∆(43, 13)))

=Dimt(HomA(12,(0),(0))(∆(5, 4, 3),∆(43)))×Dimt(HomA(12,(0),(0))(∆(33, 2, 1),∆(33, 13)))

=t× t = t2.

Example 3.18. Let e = 5, κ = (0, 2), and θ = (0, 1). The bipartitions

λ = ((11, 9, 7, 32, 2, 13), (9, 4, 2, 14)) and µ = ((10, 9, 8, 4, 3, 15), (8, 4, 2, 14))

admit a diagonal cut at x = 5.2, which yields

λL = ((11, 9, 7, 32), (9, 4, 2)), λR = ((35, 2, 13), (17)),

µL = ((10, 9, 8, 4, 3), (8, 4, 2)), µR = ((35, 15), (17)).

These bipartitions are depicted in Figures 1 and 2 in the introduction. Applying Corollary 3.15,
we have

dλµ(t) = dλLµL(t)× dλRµR(t).

First of all, we note that [BS18, Theorem 4.30] is insufficient to calculate dλµ(t); this is because λ
and µ differ in nodes of adjacent residues (0 and 1). However, [BS18, Theorem 4.30] is sufficient
to calculate both dλLµL(t) and dλRµR(t), because λL and µL (respectively λR and µR) differ only
in nodes of a single residue, namely 0 (respectively 1). Applying [BS18, Theorem 4.30], we deduce
that

dλµ(t) = (t5 + t3)× t2 = t7 + t5.

Example 3.19. Let e = 3, κ = (0, 1), and θ = (0, 115) a well-separated weighting. The bipar-
titions λ = ((52, 42, 3, 2, 1), (9, 6, 42, 3, 23, 1)) and µ = ((5, 42, 33), (9, 6, 5, 42, 22, 13)) of 57 admit a
θ-diagonal cut at x = 121. This cut results in

λL = ((52, 42, 3, 2, 1), (9, 6, 42, 3)), λR = (∅, (35, 23, 1)),

µL = ((5, 42, 33), (9, 6, 5, 42)), µR = (∅, (35, 22, 13)).

This reduction again yields multipartitions amenable to the techniques of [BS18] (whereas λ and
µ are not). The left-hand pieces should be compared with [BS18, Example 2.6], which yields
dλLµL = t11+2t9+2t7+ t5. We may also apply [BS18, Theorem 4.30] to calculate that dλRµR = t.

Thus, we have dλµ = t12 + 2t10 + 2t8 + t6.
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