
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Martin, Alejandro and Hernandez-Castro, Julio C. and Camacho, David (2018) An in-Depth
Study of the Jisut Family of Android Ransomware. IEEE Access, 6 . pp. 57205-57218. ISSN
2169-3536.

DOI

https://doi.org/10.1109/ACCESS.2018.2873583

Link to record in KAR

https://kar.kent.ac.uk/69882/

Document Version

Publisher pdf

SPECIAL SECTION ON ADVANCED SOFTWARE AND
DATA ENGINEERING FOR SECURE SOCIETIES

Received July 19, 2018, accepted September 5, 2018, date of publication October 4, 2018, date of current version October 29, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2873583

An in-Depth Study of the Jisut Family of
Android Ransomware

ALEJANDRO MARTÍN 1, JULIO HERNANDEZ-CASTRO2, AND DAVID CAMACHO 1
1School of Engineering, Autonomous University of Madrid, 28049 Madrid, Spain
2School of Computing, University of Kent, Canterbury CT2 7NF, U.K.

Corresponding author: Alejandro Martín (alejandro.martin@uam.es)

This work was supported in part by the Next Research Projects, such as the Comunidad Autónoma de Madrid under Grant

S2013/ICE-3095 (CIBERDINE: Cybersecurity, Data and Risks), in part by the Spanish Ministry of Science and Education and

Competitivity (MINECO), and in part by the European Regional Development Fund (FEDER) under Grant TIN2014-56494-C4-4-P

(EphemeCH) and Grant TIN2017-85727-C4-3-P (DeepBio).

ABSTRACT Android malware is increasing in spread and complexity. Advanced obfuscation, emulation

detection, delayed payload activation or dynamic code loading are some of the techniques employed by the

current malware to hinder the use of reverse engineering techniques and anti-malware tools. This growing

complexity is particularly noticeable in the evolution of different strands of the same malware family. Over

the years, these families mature to become more effective by incorporating new and enhanced techniques.

In this paper, we focus on a particular Android ransomware family named Jisut, and perform a thorough

technical analysis. We also provide a detailed overall perspective, which will hopefully help to create new

tools and techniques to tackle more effectively the threat posed by ransomware.

INDEX TERMS Ransomware, Jisut, android, malware, malware families.

I. INTRODUCTION

When current mobile operating systems made their first

appearance, late in the first decade of the current century,

there was already an extensive know-how on designing and

fighting against malware aimed at personal computers. The

emergence of malware targeting these new mobile platforms

was a foretold event. The importance reached by smartphones

in our daily lives have made them a particularly attractive

target, and this is specially true of the Android platform.

Whether due to its more open structure or to its notoriously

higher market share, most of malware developer’s efforts

focus on Android. Some of the advantages offered by the

Android platform unfortunately make it also an excellent

target for developing and distributing malware, not only

by experienced developers and cybercriminals, but also by

beginners.

The increasingly key role that smartphones play in our

daily lives turn them into a perfect bridge for extorting

victims. Unsurprisingly, ransomware has emerged as a very

profitable business, allowing to blackmail a victim by lock-

ing access to the device, frequently in combination with

encrypting data files or throwing false accusations of ille-

gal activity, with the ultimate goal of demanding a hefty

ransom.

Although there is an abundance of literature studying

Android malware, most of these works focus on a small

number of research paths: they either center around design-

ing detection tools [1], evaluating the effects of obfuscation

tools [2], on malware classification, or on detecting samples

containing a malicious payload [3]. Curiously, the work we

encompass in this paper, that is, a thorough research focusing

on a fine-grained analysis of the features and evolution of a

single malware family, seems to constitute a new approach.

We think that an in-depth study of the most important

Android malware families can help to understand their evo-

lution, both from a low level perspective (to evaluate imple-

mentation details) and from a high level (to assess common

patterns between variants of the same family). While this has

been a pointless exercise in the past, mostly due to the extreme

simplicity of the known malware families, the current com-

plexity and the consistent evolution and improvement they

are now experiencing warrants, in our opinion, the need for a

more detailed screening.

In this paper we aim to provide a deep insight on a spe-

cific Android malware family called Jisut, which has been

mainly distributed on Chinese markets (although there can be

found variants translated to other languages) and has taken

many different shapes, leading to numerous Jisut variants.

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

57205

https://orcid.org/0000-0002-0800-7632
https://orcid.org/0000-0002-5051-3475

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

The common denominator of these is that they ask for a

ransom after having locked the device with a permanent

screen, or after encrypting user’s files, and that they share

clear structural patterns. However, as it will be shown later,

there are also versionswhich only pursue to lock the operation

of the system, while offering no recovering option.

Throughout the different sections of this paper, the Jisut

family and its most important variations are carefully exam-

ined. It will be shown how these variants have emerged, and

how they had evolved to lead to new variants. At the same

time, the locking and encrypting mechanisms are inspected

and also exploited, providing the necessary details for recov-

ery when getting infected by this ransomware.

The contributions of this research can be summarized as

follows:

• To describe the Jisut family of Android ransomware

and its most important variants, outlining their purposes,

providing the most significant implementation details

and studying their encryption and/or screen-locking

mechanisms.

• To perform a temporal analysis of the evolution of the

different variants found in the wild, studying how mod-

ifications and improvements are successively included.

• To explore the weaknesses of this ransomware, in order

to provide the necessary details to recover both the

device and user data.

The rest of the paper is organised as follows: Section II

describes the background and related work, Section III

presents the Jisut family and some information regarding the

evolution of its most important variants, Section IV describes

the technical details of this family, Section V includes a series

of remarks based on the analysis performed and Section VI

provides some conclusions and recommendations.

II. BACKGROUND AND RELATED WORK

A. ANDROID RANSOMWARE EVOLUTION

In its almost ten years of existence, Android has been con-

stantly pointed as the main target of malware authors. Despite

all the new security policies and other novel countermea-

sures implemented, Android remains attractive as a plat-

form to design and develop new malware. Although when

Android first appeared in 2008 an extensive experience in

building malware for personal computers already existed,

the limitations of the platform made it difficult to translate

it to Android. But this appears to be changing, particularly

since 2016. As Malwarebytes Labs state in their 2017 State

of Malware Report [4], Android is evolving to accommo-

date more complex software and, hence, more powerful

malware.

A clear evidence of this growing complexity is Android

ransomware, which is now our main focal point [5] in this

work. Starting from a brief definition, ‘‘a ransomware is a

kind of malware which demands a payment in exchange for a

stolen functionality’’ [6], it is possible to categorise samples

of this type of malware into two different classes, depending

on the procedure adopted to coerce the victim [7]: lockers

(also called screen-lockers) or cryptoransomware. Added to

this, we also have a related category, scareware.

Regarding lockers, they try to stop most of the device func-

tionality by making use of persistent screens which cannot

be closed, or by locking the device with a password. In the

case of cryptoransomware, the malware encrypts user’s files,

so it is necessary to pay the ransom to recover them. Depend-

ing on the encryption methods used, we can identify [8]:

private-key ransomware, public-key ransomware or hybrid

ransomware, where a random secret key is generated in the

device and encrypted using public-key cryptography. Finally,

in scareware [9] the coercion procedure involves threatening

or frightening the victim. For instance, making public some

personal information or falsely accusing the victim of holding

illegal content (i.e. child pornography).

Regarding ransomware specifically designed for Android,

the first implementation able to encrypt files was called Sim-

plocker, reported in 2014 [10]. It showed a screen accusing

the victim of having child pornography while the user files

were encrypted in the background. A ransom was asked for

unlocking the victim’s data, which was encrypted using a

fixed key that can be found in the ransomware code. Later,

an evolution of this malware was described in 2015 [11], able

of communicating with its authors. In this new variant, Sim-

plocker is more complex and, for example, employs unique

keys.

Other family of malware usually cited in security reports

is Lockerpin [12]. While old versions of this family tried to

lock the victim’s device by constantly prompting a screen,

recent samples make use of the native Android locking sys-

tem. This procedure, for which the user has to grant Device

Administrator privileges, is really effective and cannot be

easily removed or bypassed. The Jisut family, also described

in the 2017 Trends in Android Ransomware by ESET [12],

has been widely spread in the Chinese market. With similar

aims and methods to the previous mentioned families, Jisut

locks the device by showing a permanent screen where the

user is encouraged to pay a ransom. Currently, many other

ransomware families are active: Slocker, Koler or LockDroid

are some of the most dangerous families that have emerged

over the last years [13].

B. ANDROID MALWARE FAMILIES ANALYSIS IN

THE LITERATURE

So far, research related to Android malware has usually

studied it from a general perspective, taking sets of samples

of varied families as a whole, without explicit attention to

the specifics that each kind of malware family presents.

To the best of our knowledge, only one previous research

has made a deep analysis of a malware family. In that study,

the GinMaster [14] family is described quite technically,

analysing the different generations that have appeared over

time, and mentioning the improvements which have been

sequentially added.

Other literature focused on this topic adopts a more

general perspective. Thus, an interesting research by

57206 VOLUME 6, 2018

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

Zhou and Jiang [15] offers overall details of a big set of

Android malware families, providing a few technical details

and some general patterns. Andrubis [16], [17] draws a wide

analysis of a huge dataset of Android malware samples,

with the aim of providing a dataset of features, but no

technical details of the families are provided. Monika and

Lindskog [13] perform a study showing general trends among

Android families, describing their appearance over the years.

However, the approach taken is very general, and particular-

ities and technical details are not provided.

Other literature is focused on developing analysis and

detection tools. For instance, multiple research studies broad

feature sets to discern the nature of applications. The use of

third-party calls [1], string-based features [18] or API-calls,

permissions and network addresses [19] are some of the fea-

tures extracted from sets of malware and benign software to

build detection tools. To these features, other tools have also

incorporatedmore determinant features such as taint analysis,

used by Revealdroid [20], or dynamically extracted infor-

mation, as it is the case of Droid-Sec [21]. DroidSieve [2]

is also focused on presenting a tool for malware detection

and classification. This tool constitutes an interesting step

forward against obfuscated malware, giving special attention

to obfuscation-invariant features and directly extracting infor-

mation from the DEX files.

Specifically focused on Android ransomware,

Andronio et al. [22] concentrate on extracting features able

to detect malware thanks to the use of encryption pro-

cesses, threatening texts or locking services. A similar

approach opts for including into the model threatening pic-

tures or logos [23]. The use of API packages has also been

studied [24] to discern between apps of different nature with-

out specific previous knowledge. Instead of using code-level

features, the effects of ransomware have been measured by

monitoring hardware metrics, such as processor or memory

usage [25]. The particular weaknesses of the Android plat-

form when dealing with ransomware has also been studied

by Yang et al. [26]. However, neither these nor previous

literature analyse malware families independently.

The need to focus on the specifics of each family has also

been highlighted in the literature [27]. Wei et al. state that

when gathering a dataset of malware samples, detailed and

reliable informationmust be provided. This means, according

to the authors, that each type of malware must be profiled

independently and that manual analysis become mandatory.

III. THE JISUT RANSOMWARE

The Jisut family started spreading in 2014. There are no

available reports on the number of users infected, but it is

probably a significant figure, for the reasons shown below.

We can, however, approximate the number of different sam-

ples detected by antivirus engines during these years. For

instance, based on the database of the VirusTotal Intelli-

gence portal,1 4,693 different samples have been detected

1http://virustotal.com/intelligence/

by at least one antivirus from 2014 as belonging to the Jisut

family.2

Nevertheless, even classifying these samples as variants of

the Jisut family is a non-trivial issue. Some of these are also

categorised as Slocker, or as belonging to other families by

different antivirus. This problem has been already highlighted

in several research works, which showed that the procedure

for naming malware families [28] is inconsistent. This is

clearly visible when uploading a sample to the VirusTotal ser-

vice, as the categorisation performed by the different antivirus

can vary significantly.

Even when two engines agree on the type classification of

a piece of malware, they can call it as belonging to different

families. Added to this is the fact that there are some engines

which attribute no explanatory names (i.e. just a number

sequence) to malicious samples. Different researchers have

concentrated on addressing this problem, and have built tools

to offer an agreed tag [29].

However, sometimes it is possible to observe how dif-

ferent malware families along different variants are distin-

guishable due to the use of common structural patterns.

Although Jisut has unmistakable patterns, retrieving sam-

ples of different variants becomes an arduous task. In this

research, in order to gather a varied and representative set

of Jisut samples, a manually intensive work to search for

individual samples was necessary. Throughout the paper,

we will mainly refer to these variants with their main package

name.

With regard to the structure and general characteristics

of the Jisut family, it is important to stress the simplicity

observed in its coding style. This fact suggests authorship

by people with a lack of experience, possibly young. These

beginners probably started by reading the easy-to-find doc-

umentation available in many Chinese webs and blogs con-

taining instructions on how to develop a simple lock-screen

ransomware.

Among the variants found, the same base structure can

be identified. On top of this structure, we find from

variants implementing very small changes to versions

where the attacker opts for adopting a totally different

cryptoransomware-based model instead of the screen locking

scheme. Five screenshots of some of the most important

variants of this family are shown in Fig. 1.

A. THE EVOLUTION OF JISUT

We first have analysed the evolution of this family in terms

of number of distinct samples found, month by month,

by the VirusTotal portal and reported as Jisut by at least one

antivirus3 (see Fig. 2). This family has had two moments of

wide popularity:When it appeared in June 2014, new samples

were continuously found for almost a year. At the beginning

of 2016 it was reactivated, and it reached its global maximum

2We have applied a threshold of twominimum different sources uploading
a sample, in order to avoid minor variations which have not spread widely.

3We have applied a threshold of twominimum different sources uploading
a sample in order to avoid minor variations.

VOLUME 6, 2018 57207

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

FIGURE 1. Screenshots of the main variants of the Jisut ransomware, sorted by year. (a) Variant tk.jianmo.study (2014). (b) Variant lichongqing
_shuang (2014). (c) Variant nero.lockphone (2015). (d) Variant qqmagic (2016). (e) Variant Hongyian - Huanmie (2017).

FIGURE 2. Evolution of the number of samples categorised as Jisut submitted to VirusTotal, per month.

in September 2017. In this month, around 1,500 new samples

of different variants were found.

From these, different broad sample sets, which share

almost an identical code but which include minor changes

(i.e. a different package name or a different message on

the screen), can be identified. We call these sets variants.
The differences found between variants may include different

encryption mechanisms, different forms of scaring a vic-

tim, etc. Fig. 3 shows the most important variants (which

are described in depth below) of the Jisut malware. In this

figure, interesting behavioural patterns among variants can

be identified. The most significant characteristic lies in how

the number of uploads has peaks of different size depending

on the variant. For instance, the tk.jianmo.study generation,
which can be considered as the original one, had a peak

relevance during the second half of 2014 and the beginning

of 2015. Then a long hibernation is easy to spot. After that,

at the beginning of 2017, the most important peak is reached

detecting 70 new samples in January.

It should be also noted how the Nero.lockphone variant

appeared when the original family was decreasing in pop-

ularity, at the beginning of 2015. From that moment, both

variants have followed a very close pattern. With two recent

peaks in January and September 2017, both variants seem to

behave in a very similar fashion. This fact could reflect an

organised campaign, where the same people work simultane-

ously with different variants, but it could also be the result of

a ripple effect. One way or another, there is also a seasonal

component. The four highest peaks in the plot, August 2015,

January 2015, January 2017 and September 2017, correspond

to a period immediately after holidays. This makes sense,

particularly among young people, who have significant more

exposure time during holidays. Holiday gifts in the form of

new smartphones can also play a role.

57208 VOLUME 6, 2018

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

FIGURE 3. Evolution of the different Jisut variants, in terms of number of samples submitted to VirusTotal, per month.

In contrast with the two previous variants, the plot sug-

gests other variants follow different trends. In the case of

com.lichongqing.shuang or tos.tx, their repetitive pattern over
time has a reduced number of new samples detected. This dif-

ference among variants can be ascribed to different criminal

groups working independently.

IV. TECHNICAL IMPLEMENTATION DETAILS OF JISUT

This section deepens the analysis of these variants, revealing

technical implementation aspects, such as the the necessary

actions to undermine the integrity of the infected system and

the procedures used to encrypt user’s files. At the same time,

the evolution of each family is analysed separately.

A. THE JIANMO VARIANT

In June 2016, the first samples categorised as Jisut

were detected.4 These samples, whose main package is

tk.jianmo.study, implement a lock-screen malware.

1) APPLICATION ANALYSIS

Once installed and launched,5 this ransomware shows a

screen (see Fig. 1a) which reports that the device has been

infected by a Trojan virus, and that the user must contact

the author via the QQ messaging service within 24 hours.

Otherwise, user’s data will be definitely removed. At the

bottom, a timer registers the remaining time. We have

4The first sample on 6th June 2016. Can be identified by SHA-256:789f8
bfedf8f04ee8fe9c01cc0bda76604a89bf6fc641cd75dc9221a1a2a7ac3

5For this analysis, we have use the sample identified by SHA-256:4aaf
1687316ffa6de108e12768b8434a9f12b07ea6953450cbf8a2a6b633fdc1

checked the operation of this counter, proving that turning

the system clock back makes no difference (so the user

cannot extend the time). By taking a look into the code,

we can see that a file located in the path /data/data/tk.

jianmo.study/shared_prefs/TimeSave.xml is

continuously updated to store the remaining time. In a few

samples of this variant that we have studied, when the timer

expires, the user’s files are not removed (this functionality is

in fact not implemented). However, as it will be shown, there

are numerous variants which actually materialise this threat.

Thismalware is composed by just one packagewith several

classes:

The first class, BootBroadcastReceiver.class,

implements the necessary code to restart the app if it is

closed, by means of a BroadcastReceiver which launches

MainActivity.class if a Broadcast is received. This

last class manages the timer of the app, as explained, and

overrides the onKeyDown() method in order to control

which buttons are pressed:

The previous code works together with the following

method:

VOLUME 6, 2018 57209

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

Listing. 1. Detection of keystrokes in the Jianmo variant.

Listing. 2. Keystroke detection in the Jianmo variant.

The goal of these code bits is to detect when a particular

sequence of keys are pressed. This is used to hide the deacti-

vation mechanism, which is prompted when the user presses

a certain sequences of keys. Said sequence is provided by

the criminal when the ransom has been paid. The method

used consists on evaluating when a particular key has been

pressed. As it can be seen in Listing 1, several conditional

statements compare the key pressed. Then, the keyTouch()
method is called with the keyTouchInt value and a constant.

When these two values are equal and the last key was pressed

less than 2 seconds ago, the value of keyTouchInt is incre-

mented by 1 in line 6, Listing 2. If these two conditions

are not met, the value of the variable is reset to 0 (line 7,

Listing 2). If the value of keyTouchInt reaches the value of 6

(line 14, Listing 1), a dialog is prompted which asks the

user to introduce a code while threatening the victim it will

delete all its data if not. The sequence of keys, in terms of

KEYCODES is: 4-4-25-24-4-3, that correspond to the keys:

KEYCODE_BACK - KEYCODE_BACK - KEY-

CODE_VOLUME_DOWN - KEYCODE_VOLUME_

UP - KEYCODE_BACK - KEYCODE_HOME

The last key is the HOME key, which although the Android

system does not allow to directly detect when pressed (the

onKeyDown() method is not called) is commonly used in

lockware like this by overriding the method onAttached-
ToWindow() and changing the type of the window, as it can

be seen below (see Listing 6). However, this trick is no longer

functional in the newest Android versions.

Listing. 3. Override of onAttachedToWindow method in the Jianmo
variant.

2) VARIATIONS OF THIS VARIANT

Throughout 2014, this variant was spread featuring only

minor changes. In most of them, modifications are limited to

different messages or package names. However, it is valuable

for this work to glimpse through how attackers employ simple

alterations to build new pieces of malware, since they allow

us to gather further insights on the key trends of the evolution

of ransomware.

For instance, one common pattern found among samples

that are almost clones is the use of different package names,

mostly by adding suffixes to the original name. This might

be an attempt to upload new samples to markets such as

Google Play and/or to produce, through new signatures, false

negatives by one or more antivirus. For instance, among the

samples of this variant found in 2014, from 35 to 41 of the

antivirus included in the VirusTotal service test for positive,

depending on the sample. Worse still, an average of 35%

of the antivirus engines incorrectly return a negative clas-

sification. Examples of these new package names, derived

from the original tk.jianmo.study are tk.jianmo.

studyds21 or tk.jianmo.studypj7m76mo.

Alternatively, differences also exists at the code level.

In another sample,6 we can observe an slightly different

specification of the onKeyDownmethod. But in this particular

case we are facing a useless piece of code, since it does not

lead to unlock the secret screen.

Other variation of this method found in a different sample7

is used to define a different sequence of key presses to unlock

the secret screen. This time, the user must press twice the

6Identified by SHA-256: 9e99dd63b41dffb12af7a82bad4efc80bf095
edcd6fe3dc718630dc76335b28a

7Identified by SHA-256: d2a5aed7c26caf55721460f252d6119c0ab6ffe
fbda875c42fccb1e5c71de873

57210 VOLUME 6, 2018

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

back key followed by a different key. Then, it is possible to

introduce the deactivation key, which is a string formed by

10 spaces.

B. THE LICHONGQING SHUANG VARIANT

One of the branches originated in 2014 evolved into a curious

type of scareware (see Fig. 1b). Analysing a sample of this

year,8 we found it plays a loud scream sound and shows and

frightening picture. The creator tries to scare and to coerce

the victim into paying the ransom. This lock-screen malware

also employs a hidden menu, which is activated through a

long press in the upper section of the screen. Again, the key

is assigned in the code, in plain text, to a variable. This

makes it easy to extract. In this particular sample, the key is:

‘‘2235600939’’.
The malware makes use of the MediaPlayer resource to

play the scream sound:

Listing. 4. Mediaplayer invocation in the Lichonqing Shuan variant,
preventing volume decrease.

The code, shown in Listing 4, starts by setting the volume

to its maximum level (line 2). Then it invokes themediaplayer

to play the sound on an infinite loop, while continuous actions

to increase the volume are sent in order to counter any

attempts by the to decrease it. In line 18, it also employs the

vibration function,

C. THE NERO.LOCKPHONE VARIANT

Samples of this variant (see Fig.1c) were detected for the first

time in 2014, but it was in 2015 when it was widely spread.

8Identified by SHA-256: 8043461bc97509bdf3300376898040d5dba4b5
f5804e942c1d0b4fb4119b69f9

Although the graphical interface of this variant9 is indeed

substantially different from the samples previously men-

tioned, the behaviour and intentions are identical. Proof of

this can be found just by taking a look at the code, where

it can be seen that the operation is also basically the same.

It encourages the user to contact the criminals through the

QQ chat app (where it is presumed he will ask for a ransom).

At the code level, the package structure contains the same

classes with identical names. The only major difference lies

in the deactivation procedure. On this occasion, the text box

to introduce the deactivation code is shown from the outset

on the screen.

The unlock code is also saved as plain text within the code:

Listing. 5. Unlock procedure in the Nero.Lockphone variant.

The ransomware checks (Listing 5) the time the button

on the left of the smartphone is pressed (line 2). When the

user performs a long press the app shows a counter, prob-

ably to confuse the user. When the button is only briefly

pressed, the code inserted by the user is compared against

the string ‘‘ QQ1767332988!". If both values are the

identical, the application terminates (line 7).

D. THE QQMAGIC VARIANT

The messages shown by the previous analysed versions dis-

play various kinds of threats to incite the victim to pay a

ransom. However, the malicious payload is limited to screen

locking, with unlocking possible after using a key provided in

plain in the code. Even when this key is encrypted, the orig-

inal one can be easily obtained since we can observe how

it has been encrypted with a symmetric key. However, this

qqmagic variant implements some interesting improvements

which make the process of obtaining the unlocking code

through reverse engineering much more complicated.

For instance, in a sample of this variant,10 the attacker

makes use of SMS services in order to receive a password,

randomly generated and encrypted. Thus, each time this ran-

somware is installed by a different victim, a new and different

password is generated, which is shared with the attacker

through a SMS. This allows to generate victim dependent

numbers, which the attacker use to generate victim dependent

deactivation codes. In Listing 6 it is possible to see how

9Identified by SHA-256: 4bed20bdb3586dfea0b7a09e28a0126ebc0566
9551d53c4c9ac69aaee5ca8f69

10Identified by SHA-256: b914c0dd57ffcb1c96cf37d61a3ae052a5372
f01c5fac3ea0535bbdb0da862dd

VOLUME 6, 2018 57211

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

two variables, which are used to calculate the unlocking

password, are initialised (lines 1 and 2), how a DES object is

initialised with a string (line 3) and also how the SmsManager

service is used (line 6):

Listing. 6. Password unlocking, QQmagic variant.

After analysing these objects, the malware checks if there

is a network connection. If it is possible to use network

services (lines 2-9), the app transmits the randomly gener-

ated code, which will be used by the attacker to generate a

deactivation code. If it is not possible to use SMS services

(lines 12-18), the app employs a DES algorithm to decrypt a

text provided in plain to be used as the encryption password,

so the functionality of the app is guaranteed.

Listing. 7. Deactivation code computation with no network connection in
the QQmagic variant.

One of the common code snippets shared with other

variants of Jisut is the class where the DES algorithm is

implemented, which is identical among these variants. This

algorithm is also used to decrypt the content received by SMS

from the attacker:

As it can be seen in lines 9 and 10, a decryption object is

invoked to transform two strings which are provided in plain

text.

In addition, the qqmagic variant11 goes one step further

and implements the necessary code to actually carry out the

11Identified by SHA-256: 506f668438477b7476674957d14407d207
de1f576e5c9de2852490b43a6a013b

Listing. 8. SMS decryption in the QQmagic variant.

removal of all user files, if the ransom is not paid after

a period of time. Nevertheless, the important enhancement

found in this sample is the use of an advanced obfuscation

software. The author employs Ijiami,12 a tool for hard obfus-

cation based on collecting the code into compiled libraries of

native code, where applying reverse engineering becomes a

particularly tedious and time-consuming task. Unzipping the

original apk file of this sample delivers the following tree:

The files highlighted in blue contain these compiled

libraries which are loaded at runtime to build a new apk.

In line 3, ijm-x86.so is loaded:
As shown in Listing 10, different folders are remounted

with read and write permissions. Then the new apk is placed

in the system apps folder (line 8) after giving the necessary

access and execution permissions with the following proce-

dure:

The use of this technique poses an additional challenge to

the use of reverse engineering techniques. Although there are

advanced techniques available to deal with obfuscated code,

the use of this scheme by the ransomware is really effective

12http://www.ijiami.cn/

57212 VOLUME 6, 2018

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

Listing. 9. Runtime libraries compilation, QQmagic variant.

Listing. 10. Allocation of access and execution permissions, QQmagic
variant.

to make classical and specially static analysis tools almost

pointless. For instance, if we observe static API calls by

disassembling the app, we will not encounter any malicious

behaviour since this is actually contained in separated com-

piled files. The only suspicious element here lies in invoking

the call needed to load the external library. Nevertheless, this

is a process which cannot be solely attributed to malicious

code as many benign applications employ it to defend from

piracy or due to other legitimate security reasons.

E. THE HONGYAN AND HUANMIE VARIANTS

These variants also resemble the SLocker family in some

aspects (and in fact a few antivirus wrongly classify them

as SLocker). They provide interesting implementation differ-

ences and show clearly the process whereby new subvariants

are created. As in the case of the other variants analysed in this

document, the procedure followed by this malware is quite

simple: once the application has been installed and launched,

it displays a screen with a Chinese message which falsely

informs that the device configuration is being checked.

We have found two main versions of this variant, which we

have called theHongyan and theHuanmie versions (color and
disillusionment in English) in reference to the package name.

One of the most remarkable details of these variants is that

we can explicitly observe the process by which a variant gets

transformed into a new one. This process will be described at

the end of this subsection.

The Hongyan version has been chosen for a deep

analysis.13

1) APPLICATION ANALYSIS

After a few minutes, or if the app is closed and launched

again, it shows the screen displayed in Fig. 1e, that reports

that the user data has been encrypted and that it is necessary

to contact whoever caused it by using the QQ messaging

service. It also mentions the amount needed to unlock the

files, which is 20 yuans (this small value was probably chosen

to maximise the number of paying victims). The presentation

screen also shows a large number, which is expected to be

provided to the attacker when contacting him to obtain the

deactivation key, for which a text field is provided below.

This version really encrypts data. We left a few decoy files

with different extensions in the /sdcard/ partition. When

the app was launched, all files were immediately encrypted

and the extension was added to them

(it varies between different samples of this variant). The

ransomware does not make any distinction between file types,

it encrypts any file whatever its format is.

Taking a look at the package folder tree helps identi-

fying the different parts of this malware. The subpackage

Xbox contains the encryption tools, with methods that call

the algorithms implemented in the javax.crypto native

library and some new methods that allow to convert between

strings and bytes. The com.android.admin.hongyan

includes the main code section of the app, including the main

file MainActivity.class which is in charge of calling

the necessary classes to launch the malicious payload.

Among the rest of files, des.class invokes the DES

algorithm used to decrypt the text which will define the

13The sample chosen for this analysis is identified by SHA-256: 5212b
6a8dd17ccfc60f671c82f45f4885e0abcc354da3d007746599f10340774

VOLUME 6, 2018 57213

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

encryption key. lock.class contains the necessary code to

calculate the key provided to the user in the screen, and checks

whether the deactivation key introduced is correct. newone.

class performs the user data encryption process, and also

makes use of the code defined in LogCatBroadcaster.class to
automatically reactivate the encryption process if it stopped.

implements the SHA-1 andMD5 hash functions. Finally
it.sauronsoftware.base64 implements some auxil-

iary functions to deal with data operations.

2) ENCRYPTION PROCESS

The encryption method employed in this malware is fairly

straightforward. Using the javax.crypto built-in library

of the Android API (see Listing 11), the app executes the AES

algorithm over any user file.

Listing. 11. AES encryption in the Hongyan variant.

Since no parameters are provided in the algorithm call,

the cipher configuration is provider specific. In Oracle

Java JDK 7, the configuration used is AES + ECB +

PKCS5Padding. According to the taxonomy described by

Ahmadian et al. [8], this variant belongs to the private-key

cryptosystem ransomware (PrCR).

The author tries to hide the encryption/decryption key in

the code through a worthless obfuscation mechanism, con-

sisting on several concatenated decryptions of a large text

using a secondary decryption object whose key is coded in

plain:

Listing. 12. Encryption of decryption key, Hongyan variant.

As it can be observed in the first line, a des object is

initialised using two Chinese characters. This object repre-

sents a DES encryption algorithm (newly implemented using

javax.crypto) where the two characters are the encryp-

tion/decryption key. In the second line, this object is used to

decrypt a 16 characters text, whose result is used to reini-

tialise the des object. However, this step is redundant and

strangely useless, since the result obtained by the decryption

of the 16 characters text is equivalent to the two previous

Chinese characters, so it leads to the same argument and the

decryption object remains identical.

In the third line, the encryption/decryption key is

obtained applying the above mentioned des object to

several nested decryptions of a large text provided in

plain. This let us know the decryption key by just exter-

nally executing this piece of code. The resulting key is:

‘‘GiEhjghmZIO7RTWyycQ9PQ==’’. Although this key is

different from the one that is expected to be introduced by

the user to trigger the deactivation process, it allows a full

recovery of every file, even when after the malware has been

removed.

3) DEACTIVATION PROCEDURE EXAMINATION

A glance at the code level also allows us to reach all the

necessary details to understand how both the key provided

to the user and the deactivation key are generated. Although

in most of the samples there are signs of the use of obfus-

cation techniques, the code can be easily untangled. First

of all, a striking piece of code reveals (listing 13) that the

app retrieves the IMEI number (line 1):

Listing. 13. IMEI code retrieval in the Hongyan variant.

In the next line (line 2), two hash functions are composed,

taking as input the IMEI number. Thus, a variable saves the

result of the SHA-1 of the MD5 of the IMEI, which is the

value later displayed in the red ransomware screen. At this

point, if the user provides this number to the attacker, he will

send back the deactivation code.

In the same package class (named lock.java in most

samples) we can also find the procedure to check whether

the deactivation code inserted by the user is correct. It is

simply a string comparison between the value inputted by

the user and a transformation of the number provided to the

attacker, based again on the the use of cryptographic hash

functions:

Listing. 14. Deactivation code check in the Hongyan variant.

Actually, this new value is computed through a similar

process to the one described before: it is the SHA-256 of

the MD5 of the value given on the screen. In short, the key

which deactivates the ransomware (and starts the decryption

of user’s data) is computed as:

SHA− 1(MD5(SHA− 256(MD5(IMEI)))) (1)

57214 VOLUME 6, 2018

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

FIGURE 4. Different samples of the Hongyan and Huanmie variants of the Jisut ransomware. Each sample is identified by the first 8 characters of its
SHA-256 hash.

When the user introduces this value and clicks on the

Decrypt button, all the files are decrypted and the ransomware

can be uninstalled.

4) VARIATIONS OF THIS VARIANT

The above analysis is intended to describe the particularities

of the Jisut variant. However, after a long manual search

through the VirusTotal Intelligence service, we have found

multiple samples which implement a plethora of interesting

but mostlyminor changes. A comparative assessment of these

samples allows us to evaluate how different modification

were sequentially introduced. Fig. 4 shows the differences we

found between a number of important samples of this variant.

Each sample is represented by the first 8 hex characters of

their SHA-256 signature.14 The first submission date of the

sample to the VirusTotal portal is also included.15

In general terms, we have found that the Hongyan version

is the one which has led to most variations. The sample

identified by 5212B6A8 in the diagram (the first 8 characters

of the SHA-256 hash) has led to new samples with minor

changes (as shown in the left part of the upper box) and to

another set of applications where the adrt package has been
extracted to include the LogCatBroadcaster.class as

14The complete signatures can be found at http://aida.ii.uam.
es/jisutnoransom/index.php/jisut-hashes/

15This date does not represent when the sample was built or deployed,
but when it was first uploaded to the VirusTotal portal. This is the reason of
having samples in Fig. 4 shown as offspring of samples with a newer date

VOLUME 6, 2018 57215

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

a new class (in the group of apps placed at the right of the

box).

On the other hand, an important branch starts with sample

CDE39A13. It can be seen as the first attempt to make the

encryption key harder to retrieve, although the underwhelm-

ing implementation of this idea just consists on a bigger text

needing to be decrypted in order to obtain said key. This

sample leads to a new subset where substantial changes are

included. For instance, within the code of sample 1C8A5045,
together with a lot of useless classes we can find again a clone

of the previous versions under path com.a.a.android.

admin.hongyan. But a new package has been added under

com.a.a.android.admin.huanmie, which seems to

be mostly a copy of previous ones with some modifications

aimed to hinder attempts at reverse engineering. This is also

a clear evidence of the evolution of malware, where an old

version is taken to build a new and better one. Surprisingly,

the encryption process remains identical so we can still easily

decrypt every file with just a few lines of code.

In this sample, the main difference lies in the computation

of the deactivation key:

Listing. 15. Obfuscated key deactivation, Hongyan variant.

The above code was obtained using the JADX tool,

although it produces some decompilation problems probably

due to the use of Chinese characters. There are a number of

computations which finally lead to a value which is concate-

nated to this.val$xx. While this last value is the same

as the resulting from Equation 1, now it is concatenated with

a new value computed by this confusing procedure. As the

result of the decompilation process, there is one missing

variable declaration, the one related to f158. It appears that the

value of this variable is not relevant at all. When simplifying

all the computations, the variables start to cancel each other

out. The last variable key_decryption is:

((i− j− k) + (m+ n+ i1 + 1)) (2)

Lets replace j, which is i-k:

i− i+ k − k + m+ n+ i1 + 1 (3)

The remaining variables are constants: m = 3, n = 1, i1 = 2.

So:

key_decryption = m+ n+ i1 + 1 = 7 (4)

So, in the end, the new deactivation key is calculated in

almost the same way as in the previously variant. The only

real change involves the additional concatenation of a ‘‘7’’:

SHA− 1(MD5(SHA− 256(MD5(IMEI)) + ‘‘7’’)) (5)

Finally, a more advanced variation (AE3F772B) was

found, where the malicious payload is hidden following a

procedure already taken by other ransomware. In this case,

several files with an .acc extension contain the compiled

code, which is loaded at runtime.

F. THE COM.BLL.APKIN VARIANT

This variant was first reported in 2017 by Lukas Stefanko [30]

as a ransomware capable of talking to victims. Again pri-

marily targeting Chinese users, this version asks for device

administration privileges and informs the user that it is neces-

sary to pay the ransom in order to unlock the device together,

also displaying a classical locking screen stating the QQ

number which the user must contact. The application lies in

MainActivity.class, which is in charge of detectingwhen a key
is pressed, and to launch a method which decrypts a text file.

This file can be found under assets/bll, and contains a

large seemingly random text.

The method initialises a large array with Chinese charac-

ters, building which seems to be a decryptor based on simple

transformations. But this time, they are not totally useless.

Instead, the file is read as a bytes array and passed as an

argument to the enorde() object (line 18 in Listing 16), which
is a decryption method previously initialised with the key bll
(see line 3). The enorde class contains both an encryption

and decryption method based on different transformation and

bytes operations. When applied to the bll file, it results in

a new text file which actually is a new apk. This new apk is

saved in a file on the external storage directory (see line 6),

and then it is read again (see line 11).

This new apk has been obfuscated using the Jiagu 36016

tool, as the name of the compiled libraries suggest. Among

the files found in this new apk, there are references to the

JavaMail library, which indicates the use of mail services for

communication.

16http://jiagu.360.cn/

57216 VOLUME 6, 2018

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

Listing. 16. Hidden app recovering process, Hongyan variant.

V. DISCUSSION

As shown in the previous sections, the Jisut family has

explored different modifications and refinements in order to

improve its ability to lock users’ devices and obtain a ransom

from its victims. Although some of the techniques exposed

do not entail a high degree of technical sophistication, they

can be used to help in understanding the operation of the

criminal group behind the ransomware, and possibly as well

to establish authorship. Some of the later techniques reveal

a higher degree of technical acumen, particularly those that

dynamically load code. This, in our opinion, makes the use

of dynamic analysis tools mandatory to deal with the most

recent ransomware variants. We also believe the study per-

formed in this work can have valuable didactic contents for

anyone starting its journey in Android malware forensics.

Furthermore, while we have focused on theAndroid platform,

other environments such as iOS are not exempt from this

kind of threat. Although in general malware exploits specific

weaknesses of the target operating system, it is expected that

many of the common patterns and techniques will be spread

across platforms.

VI. CONCLUSION

The Jisut family can boast of a long and illustrious career

infecting Android smartphones. The family has evolved in

interesting ways to produce new variants, where both the

graphics and technical details vary while the core of the ran-

somware is nearly identical. Throughout this paper we have

analysed the most important variants of this ransomware,

describing how they take control of the device and try to

coerce the user to pay a ransom. We have described their

encryption, deactivation and screen locking mechanisms,

information that we hope will be useful for past, present and

future victims. At the same time, we have also shown how

these variants evolve and how past versions are taken as a

template to build up new, more powerful and more complex

variants.

The main objective of our work is to help not only victims

and beginners in Android forensic and malware analysis,

but also those interested in designing anti-malware tools.

For this we provide them with a detailed characterisation of

a currently active ransomware family. In our future work,

we plan to extend the approach followed in this paper to

analyse other Android malware families and to perform more

detailed comparative assessments.

ACKNOWLEDGMENT

This work was supported in part by the Next Research

Projects, such as the Comunidad Autónoma de Madrid under

Grant S2013/ICE-3095 (CIBERDINE: Cybersecurity, Data

and Risks), in part by the Spanish Ministry of Science

and Education and Competitivity (MINECO), and in part

by the European Regional Development Fund (FEDER)

under Grant TIN2014-56494-C4-4-P (EphemeCH) andGrant

TIN2017-85727-C4-3-P (DeepBio). This work was also

funded by InnovateUK as part of the authenticatedSelf (aS)

project, under reference number 102050, and partly spon-

sored by the ICT COST Action IC1403 Cryptacus in the EU

Framework Horizon 2020.

This project has received funding from the European

Unions Horizon 2020 research and innovation programme,

under grant agreement No.700326 (RAMSES project). The

authors also want to thank EPSRC for project EP/P011772/1,

on the EconoMical, PsycHologicAl and Societal Impact of

RanSomware (EMPHASIS), which additionally supported

this work.

REFERENCES

[1] A. Martín, H. D. Menéndez, and D. Camacho, ‘‘MOCDroid: Multi-

objective evolutionary classifier for Android malware detection,’’ Soft
Comput., vol. 21, no. 24, pp. 7405–7415, 2017.

[2] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, and

L. Cavallaro, ‘‘DroidSieve: Fast and accurate classification of obfuscated

Android malware,’’ in Proc. 7th ACM Conf. Data Appl. Secur. Privacy,
2017, pp. 309–320.

[3] A. Martín, H. D. Menéndez, and D. Camacho, ‘‘Genetic boosting classifi-

cation for malware detection,’’ in Proc. IEEE Congr. Evol. Comput. (CEC),
Jul. 2016, pp. 1030–1037.

[4] MalwareBytes. (2017). 2017 State of Malware Report. [Online].

Available: https://kitedistribution.co.uk/wp-content/uploads/2017/03/

StateofMalware_Report_final_PT.pdf

[5] G. Davis and R. Samani. (2018). McAfee mobile threat report Q1, 2018.

McAfee. [Online]. Available: https://www.mcafee.com/enterprise/en-

us/assets/reports/rp-mobile-threat-report-2018.pdf

[6] A. Gazet, ‘‘Comparative analysis of various ransomware virii,’’ J. Comput.
Virol., vol. 6, no. 1, pp. 77–90, 2010.

[7] K. Cabaj and W. Mazurczyk, ‘‘Using software-defined networking for

ransomware mitigation: The case of cryptowall,’’ IEEE Netw., vol. 30,
no. 6, pp. 14–20, Nov. 2016.

VOLUME 6, 2018 57217

A. Martín et al.: In-Depth Study of the Jisut Family of Android Ransomware

[8] M. M. Ahmadian, H. R. Shahriari, and S. M. Ghaffarian, ‘‘Connection-

monitor & connection-breaker: A novel approach for prevention and

detection of high survivable ransomwares,’’ in Proc. 12th Int. Ira-
nian Soc. Cryptol. Conf. Inf. Secur. Cryptol. (ISCISC), Sep. 2015,

pp. 79–84.

[9] A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and E. Kirda, ‘‘Cutting

the gordian knot: A look under the hood of ransomware attacks,’’ in Proc.
Int. Conf. Detection Intrusions Malware, Vulnerability Assessment, 2015,
pp. 3–24.

[10] J. Hamada. Simplocker: First Confirmed File-Encrypting
Ransomware for Android | Symantec Connect Community.
Accessed: Feb. 10, 2018. [Online]. Available: https://www.

symantec.com/connect/blogs/simplocker-first-confirmed-file-encrypting-

ransomware-android

[11] N. Chrysaidos. Mobile Crypto-Ransomware Simplocker Now
on Steroids. Accessed: Sep. 1, 2018. [Online]. Available:

https://blog.avast.com/2015/02/10/mobile-crypto-ransomware-

simplocker-now-on-steroids/

[12] R. Lipovsky, L. Stefanko, and G. Branisa, ‘‘The rise of Android ran-

somware,’’ White Paper, 2016.

[13] P. Zavarsky et al., ‘‘Experimental analysis of ransomware on windows and

Android platforms: Evolution and characterization,’’ Procedia Comput.
Sci., vol. 94, pp. 465–472, Jan. 2016.

[14] R. Yu, ‘‘Ginmaster: A case study in Android malware,’’ in Proc. Virus Bull.
Conf., 2013, pp. 92–104.

[15] Y. Zhou and X. Jiang, ‘‘Dissecting Android malware: Characterization

and evolution,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2012,

pp. 95–109.

[16] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,

V. van der Veen, and C. Platzer, ‘‘ANDRUBIS—1,000,000 apps later:

A view on current Android malware behaviors,’’ inProc. 3rd Int. Workshop
Building Anal. Datasets Gathering Exper. Returns Secur. (BADGERS),
Sep. 2014, pp. 3–17.

[17] L. Weichselbaum, M. Neugschwandtner, M. Lindorfer, Y. Fratantonio,

V. van der Veen, and C. Platzer, ‘‘Andrubis: Android malware under the

magnifying glass,’’ Vienna Univ. Technol., Vienna, Austria, Tech. Rep.

TR-ISECLAB-0414-001, 2014.

[18] A. Martín, H. D. Menéndez, and D. Camacho, ‘‘String-based malware

detection for Android environments,’’ in Proc. Int. Symp. Intell. Distrib.
Comput., 2016, pp. 99–108.

[19] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and

C. Siemens, ‘‘DREBIN: Effective and explainable detection of Android

malware in your pocket,’’ in Proc. NDSS, vol. 14, 2014, pp. 23–26.
[20] J. Garcia, M. Hammad, B. Pedrood, A. Bagheri-Khaligh, and S. Malek,

‘‘Obfuscation-resilient, efficient, and accurate detection and family identi-

fication of Android malware,’’ Dept. Comput. Sci., George Mason Univ.,

Fairfax, VA, USA, Tech. Rep., 2015.

[21] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, ‘‘Droid-Sec: Deep learning in

Android malware detection,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 4, pp. 371–372, 2014.

[22] N. Andronio, S. Zanero, and F. Maggi, ‘‘HelDroid: Dissecting and detect-

ing mobile ransomware,’’ in Proc. Int. Workshop Recent Adv. Intrusion
Detection, 2015, pp. 382–404.

[23] A. Gharib and A. Ghorbani, ‘‘DNA-Droid: A real-time Android ran-

somware detection framework,’’ in Proc. Int. Conf. Netw. Syst. Secur.,
2017, pp. 184–198.

[24] D. Maiorca, F. Mercaldo, G. Giacinto, C. A. Visaggio, and F. Martinelli,

‘‘R-PackDroid: API package-based characterization and detection of

mobile ransomware,’’ in Proc. Symp. Appl. Comput., 2017, pp. 1718–1723.
[25] S. Song, B. Kim, and S. Lee, ‘‘The effective ransomware prevention

technique using process monitoring on Android platform,’’ Mobile Inf.
Syst., vol. 2016, Mar. 2016, Art. no. 2946735.

[26] T. Yang, Y. Yang, K. Qian, D. C.-T. Lo, Y. Qian, and L. Tao, ‘‘Automated

detection and analysis for Android ransomware,’’ in Proc. IEEE 17th Int.
Conf. High Perform. Comput. Commun. (HPCC), IEEE 7th Int. Symp.
Cyberspace Saf. Secur. (CSS), IEEE 12th Int. Conf. Embedded Softw.
Syst. (ICESS), Aug. 2015, pp. 1338–1343.

[27] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, ‘‘Deep ground truth analysis

of current Android malware,’’ in Proc. Int. Conf. Detection Intrusions
Malware, Vulnerability Assessment, 2017, pp. 252–276.

[28] F. Maggi, A. Bellini, G. Salvaneschi, and S. Zanero, ‘‘Finding non-trivial

malware naming inconsistencies,’’ in Proc. Int. Conf. Inf. Syst. Secur.,
2011, pp. 144–159.

[29] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, ‘‘AVCLASS: A tool

for massive malware labeling,’’ in Proc. Int. Symp. Res. Attacks, Intrusions,
Defenses, 2016, pp. 230–253.

[30] F-Secure Labs. Trojan: Android/SLocker Description. Accessed:

Feb. 10, 2018. [Online]. Available: https://www.f-secure.com/

v-descs/trojan_android_slocker.shtml

ALEJANDRO MARTÍN received the B.Sc.

degree in computer science from the Universi-

dad Carlos III de Madrid in 2014, and the M.Sc.

degree in computer science and technology from

the Universidad Carlos III de Madrid in 2015.

He is currently pursuing the Ph.D. degree with

the Autonomous University of Madrid, where he

is also involved with the AIDA Research Group.

His main research interests are related to machine

learning and cybersecurity, focused on malware

detection and classification problems.

JULIO HERNANDEZ-CASTRO was with the

University of Portsmouth, U.K., and Carlos III

University, Spain. He is also affiliated with the

Kent Cybersecurity Center. He is currently a Pro-

fessor of computer security with the School of

Computing, University of Kent. His research inter-

ests are wide, covering from RFID security to

lightweight cryptography, including steganogra-

phy and steganalysis and the design and analy-

sis of CAPTCHAs. He has been a Pre-Doctoral

Marie Curie Fellow and also a Post-Doctoral INRIA Fellow. He is cur-

rently the Vice-Chair of the EU COST Project CRYPTACUS. He receives

research funding from InnovateUK Project aS, EPSRC Project 13375, and

EU H2020 Project RAMSES.

DAVID CAMACHO received the Ph.D. degree in

computer science from the Universidad Carlos III

de Madrid in 2001, and the B.S. degree in physics

from the Universidad Complutense de Madrid

in 1994. He is currently an Associate Professor

with the Computer Science Department, Univer-

sidad Autonoma de Madrid, Spain, where he is the

Head of the Applied Intelligence and Data Anal-

ysis Group. He has published over 250 journals,

books, and conference papers. His research inter-

ests include data mining (clustering), evolutionary computation (GA, GP),

multi-agent systems and swarm intelligence (ant colonies), automated plan-

ning and machine learning, or video games among others. He receives

research funding from the Spanish Ministry of Science and Education and

Competitivity (EphemeCH and Deepbio), and from the EU (Justice, ISFP,

Erasmus+, and H2020).

57218 VOLUME 6, 2018

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	ANDROID RANSOMWARE EVOLUTION
	ANDROID MALWARE FAMILIES ANALYSIS IN THE LITERATURE

	THE JISUT RANSOMWARE
	THE EVOLUTION OF JISUT

	TECHNICAL IMPLEMENTATION DETAILS OF JISUT
	THE JIANMO VARIANT
	APPLICATION ANALYSIS
	VARIATIONS OF THIS VARIANT

	THE LICHONGQING SHUANG VARIANT
	THE NERO.LOCKPHONE VARIANT
	THE QQMAGIC VARIANT
	THE HONGYAN AND HUANMIE VARIANTS
	APPLICATION ANALYSIS
	ENCRYPTION PROCESS
	DEACTIVATION PROCEDURE EXAMINATION
	VARIATIONS OF THIS VARIANT

	THE COM.BLL.APKIN VARIANT

	DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	ALEJANDRO MARTÍN
	JULIO HERNANDEZ-CASTRO
	DAVID CAMACHO

