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Abstract In this paper, we investigate a stochastic Galerkin approximation scheme for an optimal control prob-

lem governed by an elliptic PDE with random field in its coefficients. The optimal control minimizes the expec-

tation of a cost functional with mean-state constraints. We firstly represent the stochastic elliptic PDE in term of

the generalized polynomial chaos expansion and obtain the parameterized optimal control problems. By applying

the Slater condition in the subdifferential calculus, we obtain the necessary and sufficient optimality conditions

for the state-constrained stochastic optimal control problem in the first time in the literature. We then establish a

stochastic Galerkin scheme to approximate the optimality system in the spatial space and the probability space.

Then the a priori error estimates are derived for the state, the co-state and the control variables. A projection

algorithm is proposed and analyzed. Numerical examples are presented to illustrate our theoretical results.

Keywords Stochastic optimal control · Stochastic Galerkin method · Optimal control problem with state

constraints

1 Introduction

Numerical methods for optimal control problems governed by partial different equations have been a major

research topic in applied mathematics and control theory. Since the milestone work of J.P Lions [31], a great

deal of progress has been made in their numerical methods, which are too extensive to be mentioned here even

very briefly. Galerkin approximation (in particular, finite element and spectral approximation) of optimal control
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problems plays a very important role in numerical methods for these problems, and has been much studied in

the literature. There have been extensive studies on this aspect for optimal control governed by such as elliptic

equations, parabolic equations, Stokes equations, and Navier-Stokes equations. They are again too extensive to

be reviewed here even very briefly. Some of recent progress in this area has been summarized in [23,28,30–33,

36,40,47,49], and the references cited therein.

In many complex physical and engineering models, there is always a great amount of uncertainty involved, in

such as the parameters, coefficients, forcing term, and boundary conditions. It is well known that these models are

often represented by stochastic partial differential equations (SPDEs). In recent years, PDEs with random fields

have been a subject of growing interest in the scientific community (see e.g. [2,43] for random elliptic PDEs).

The reason is that such PDEs are conveniently used for modeling in many engineering areas, e.g., fluid flows in

porous media, transport of pollutants in groundwater and oil recovery processes.

The Monte Carlo (MC) method is one of the most commonly used methods for simulating stochastic elliptic

PDEs and dealing with the statistic characteristics of the solution (see e.g. [14,39]). Although MC method is

straightforward to apply as it only requires repetitive executions of deterministic simulations, it is a rather com-

putationally expensive method. Typically a large number of such executions are needed as the solution statistics

converge relatively slowly, as tested and reported in [2].

Other alternatives to Monte Carlo method have been employed in the field of stochastic mechanics. A popular

technique is the perturbation method, cf. [27]. Given certain smoothness conditions, the random functions and

operators involved in the differential equation are expanded in a Taylor series about their respective mean values.

Another approach is the Neumann expansion series method, e.g., [2], in which the inverse of the boundary value

problem’s stochastic operator is approximated by its Neumann series.

In recent years, stochastic Galerkin method for such random PDEs has received substantial attention, see [2],

and has been applied to various stochastic problems, e.g.[3,43,52], with new extensions outlined e.g., in [17,18,

22,37]. These Galerkin methods can transform the random governing equations into a set of deterministic equa-

tions which can be readily discretized via standard numerical techniques. As reported in [2], it out-performances

the Monte Carlo method for more accurate numerical simulations. Furthermore it paves the way for other methods

like stochastic Collocation methods.

Naturally stochastic Galerkin method has recently been used to solve stochastic optimal control governed by

random PDEs, see the very recent work of [15,19,21,29,45,46,48]. The work [21] dealt with optimal control

governed by a random steady diffusion problem with deterministic Neumann boundary control, and obtained a

priori error estimates for the stochastic finite element approximation. The existence of a local optimal solution

was also demonstrated. In [42], numerical experiments were conducted with ‘pure’ stochastic control function as

well as ‘semi’ stochastic control function for an optimal control problem constrained by stochastic steady diffu-

sion problem. In [25] and [29], optimal control problems constrained by random elliptic PDEs with deterministic

distributed control were introduced. The authors proved the existence of the optimal solution, establish the va-

lidity of the Lagrange multiplier rule and obtain stochastic optimality system. Then, they used the Wiener-Itô

(W-I) chaos or the Karhunen-Loève (K-L) expansion as a main tool to convert stochastic optimality system to

deterministic optimality system. Finally, the a priori error estimates for Galerkin approximation of the optimality

system in both physical space and stochastic space were provided. In more recent work [15], the authors presented

an effective gradient projection method for stochastic optimal control. The a priori error estimate of stochastic

Galerkin method for optimal control problem governed by random parabolic PDE was obtained in [19]. Sun etc.

in [46] presented the a priori error estimate of stochastic Galerkin method for optimal control problem governed

by stochastic elliptic PDE with constrained control. Stochastic Galerkin method was used to analyze the con-

strained optimal control problem governed by an elliptic integro-differential PDE with stochastic coefficients in

[45]. In [48], the authors discussed the use of stochastic collocation for the solution of optimal control problems,
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which are constrained by SPDE, and applied the method to develop a gradient descent algorithm as well as a

sequential quadratic program (SQP) for the minimization of objective functions constrained by an SPDE.

Nevertheless, the development of stochastic optimal control problem constrained by stochastic PDEs can still

be considered to be in its infancy, and there are many important open topics to be studied.

State-constrained optimal control is an important but difficult model in many applications and there has al-

ready existed much research on the numerical approximation of deterministic state constrained optimal control

problem governed by PDEs in the literature. Casas in [8], firstly derived some optimality conditions and carried

out important theoretical analysis for the model. For the standard finite element approximation of the control

problem, the a priori error estimates were derived by Deckelnick and Hinze in [13], where non-classic techniques

were developed to handle the delta-singularity of the co-stated equation. An augmented Lagrangian method was

proposed to solve state and control constrained optimal control problems by Bergounioux and Kunisch in [5].

They also proposed another method: a primal-dual strategy to solve problem in [5]. Casas proved convergence of

finite element approximations to optimal control problems for semi-linear elliptic equations with finitely many

state constraints in [9]. Casas and Mateos extended these results in [10] to a less regular setting for the states, and

proved convergence of finite element approximations to semi-linear distributed and boundary control problems.

In [24], the state-constrained control problem was approximated by a sequence of control-constrained control

problems, and then the interior point method was applied to approximating the solutions. In recent years, Liu and

Yang have developed L2 error estimates for integral constraint of optimal control problem in [34], and Chen did

Galerkin spectral approximation of H1 norm constraint of the state for elliptic optimal control problems in [11].

As far as we are aware there has no known research on numerical methods of state-constrained stochastic optimal

control governed by random PDEs in the literature, which is an important gap to fill in this field.

In this work, we present a stochastic Galerkin approximation scheme for a state-constrained optimal control

problem governed by an elliptic PDE with random field in its coefficients. By applying the Slater condition in the

sub-differential calculus, we are able to obtain the necessary and sufficient optimality conditions for the problem

in the first time in the literature. We then establish a stochastic Galerkin scheme to approximate the optimality

system in the spatial space and the probability space. Then a priori error estimates are derived for the state, the

co-state and the control variables. A projection algorithm is proposed and analyzed, and numerical examples

are presented to illustrate our theoretical results. As far as we are aware, this is the first systematical study in

numerical methods for state-constrained optimal control governed by random PDEs, and some new techniques

are needed in analysis of its scheme and approximation errors.

The plan of this paper is as follows: In Section 2, we introduce the model control problem in suitable spaces. In

Section 3, we set up its weak formulation by applying a finite dimensional representation assumption, and derive

its optimality conditions. In Sections 4-5 we present a stochastic Galerkin scheme for the control problem and

derive a priori error estimates for the state and control variables. In Section 6 a projection algorithm is proposed

and its convergence is established, and some numerical tests are presented to illustrate our theoretical analysis.

2 Model control problem

2.1 Function spaces and notations

Let D ⊂Rd (1 ≤ d ≤ 3) be a convex bounded polygonal spatial domain with its boundary ∂D. Let (Ω ,F ,P) be

a complete probability space, where Ω is a set of samples, F is a σ -algebra of events and P : F → [0,1] is a

probability measure. Denote by B(D) the Borel σ -algebra generated by the open subset of D.

Throughout this paper, we use the standard notations (e.g., see [1]) for Sobolev spaces on D. For examples,

L2(D) and H1(D) are Hilbert spaces with norms ∥ · ∥L2(D) and ∥ · ∥H1(D), respectively; H1
0 (D) is the subspace of

H1(D) whose trace on ∂D is zero . With these standard Sobolev spaces, we adopt the definition of stochastic
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Sobolev spaces (see e.g. [3,25,29]). For nonnegative integers s and 1 ≤ q < +∞, let Lq(Ω ;W s,q(D)) contain

stochastic functions, v : D×Ω → R, that are measurable with respect to the product σ -algebra F ⊗B(D) and

equipped with the averaged norms

∥v∥Lq(Ω ;W s,q(D)) =
(

E[∥v∥q

W s,q(D)
]
)1/q

=
(

E[ ∑
|α |≤s

∫

D
|∂ α v|qdx]

)1/q

,

and

∥v∥L∞Ω ;W s,∞(D)) = max
|α|≤s

(
ess sup

D×Ω
|∂ α v|

)
,

where E is the expected value, ∂ α v is partial derivative in weak sense defined in [1]. Observe that if v ∈
Lq(Ω ;W s,q(D)), then v(·,ω) ∈W s,q(D) almost surely (a.s.) and ∂ α v(x, ·) ∈ Lq(Ω) a.e. on D for |α| ≤ s.

Especially, when s = 0, q = 2, the above space is just

L2(Ω ;L2(D)) = {v : D×Ω → R | ∥v∥L2(Ω ;L2(D)) < ∞
}
,

with norm

∥v∥2
L2(Ω ;L2(D)) = E[∥v∥2

L2(D)].

Similarly, we can define spaces L2(Ω ;H1(D)) and L2(Ω ;H1
0 (D)). Note that these stochastic Sobolev spaces are

Hilbert spaces.

2.2 Stochastic optimal control problem governed by stochastic elliptic equation with constrained state

We will consider the following control problem governed by the stochastic elliptic equation with constrained

state:

min
u∈L2(D),y(u)∈K

J(y(u),u) = min
u∈L2(D),y(u)∈K

E
[1

2

∫

D
|y− yd |2dx+

α

2

∫

D
|u|2dx

]
(2.1)

subject to

A[y,v] = [u,v], ∀ v ∈V. (2.2)

where J is a cost functional, y : D̄×Ω →R is the state variable, yd : D̄×Ω →R is a given target state, u : D →R

is a deterministic control, D̄ is the closure of D, α is a positive constant measuring the importance between two

terms in J, the bilinear forms:

A[y,v] = E
[∫

D
a∇y ·∇vdx

]
, ∀ y, v ∈ L2(Ω ;H1(D)), (2.3)

[u,v] = E
[∫

D
uvdx

]
, ∀ u ∈ U, v ∈ L2(Ω ;L2(D)), (2.4)

(u,w) =
∫

D
uwdx, ∀ u, w ∈ U, (2.5)

here a : D×Ω → R is a stochastic function with continuous and bounded covariance function, the operator ∇
means derivatives with respect to the spatial variable x ∈ D only. K is a closed convex subset in the state space

L2(Ω ;L2(D)):

K = {y| y ∈ L2(Ω ;H1
0 (D)∩H2(D)), E[

∫

D
y(x,w)dx]≥ 0}.
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Although the objective functional J in (2.1) contains stochastic function y subject to (2.2), its outcome is

deterministic by using the expectation E. If we denote by B(D) the Borel σ -algebra generated by the open

subsets of D, then a is assumed measurable with respect to the σ -algebras (F ⊗B(D)). To ensure regularity of

the solution y, we assume that a is a second-order random field, there are positive constants amin and amax such

that

amin ≤ a(x,ω)≤ amax, a. e. (x, ω) ∈ D×Ω . (2.6)

Then, with this assumption (2.6), by the theory of optimal control problem [31], the existence of an optimal

solution for (2.1)-(2.2) can be proved as in [29]).

In the following, we take the state space V = L2(Ω ;H1
0 (D)) and the control space U = L2(D). In addition, C

will denote general constants.

Since the coefficient a is not known exactly, we should consider a perturbation of the weak formulation (2.2)

and the size of the corresponding perturbation in the solution. Here, we can derive the following result similar to

Corollary 2.1 in [3].

Lemma 2.1 Let 1 < p < +∞ with 1/p + 1/q = 1. Consider the Hilbert space L2(Ω ;H1
0 (D)), perturbed

coefficient â satisfying 0 < amin ≤ â ≤ amax < ∞, a.e. onD×Ω . Let ŷ solve

E
[∫

D
â∇ŷ ·∇vdx

]
= E

[∫

D
uvdx

]
, ∀ v ∈V. (2.7)

Besides this, assume that the solution y belongs to space L2q(Ω ;W 1,2q(D)). Then

∥y− ŷ∥L2(Ω ;H1
0 (D)) ≤

C

amin
∥a− â∥L2p(Ω ;L2p(D))∥y∥L2q(Ω ;W 1,2q(D)), (2.8)

where C > 0 is the Poincaré constant for the domain D.

3 Finite dimensional representation of stochastic fields

3.1 Notations for finite expansion

In most of the existing models, the source of randomness is assumed to be expressed by a finite number of

random variables that are mutually independent. Also whenever we apply numerical methods such as the finite

element method to solve a problem, we always assume that we have finite expansions of input data. For those

reasons, following the theory of Babuska [3], Wiener [50], as well as Xiu and Karniadakis [51], we can employ

the following finite-dimensional noise assumption

Assumption 3.1 (finite dimensional noise) Any general second-order random process X(ω), ω ∈ Ω can

be represented in terms of a prescribed finite number of random variables ξ = ξ (ω) = (ξ1(ω), · · · ,ξN(ω)) with

independent components ξi(ω), i = 1, · · · ,N ∈ N. Let Γi = ξi(Ω) ∈ R be a bounded interval for i = 1, · · · ,N and

ρi : Γi → [0,1] be the probability density functions of the random variables ξi(ω), ω ∈ Ω . Then we can use the

joint probability density function ρ(ξ ) =
N

∏
i=1

ρi(ξi) for random vector ξ with the support Γ =
N

∏
i=1

Γi ⊂ RN . On Γ ,

we have the probability measure ρ(ξ )dξ .

The preceding assumptions enable a parametrization of the problem in ξ in place of the random events ω . As

an example, we can use a finite-term expansion of the stochastic coefficient a based on N random variables (cf.

[42]) :

a(x,ξ ) =
S

∑
i=1

αi(x)Li(ξ ), x ∈ D, ξ ∈ Γ , (3.1)
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where αi(x) : D →R and Li : Γ →R. As discussed in [3,51], assumption (3.1) is valid in its own right in practical

applications: if a is represented by a truncated Karhunen-Loève (KL) expansion [3], then S =N+1 with Li = ξi−1

and ξ0 = 1; if a generalized polynomial chaos expansion [51] is used, Li is an N−variate polynomial of order up

to p and S = (N + p)!/(N!p!).

As commented in [51], the above finite-term expansion allows us to conduct numerical formulations in the

finite dimensional (N-dimensional) random space Γ . Let us denote L2
ρ(Γ ) as the probabilistic Hilbert space [35],

in which the random processes based upon the random variables ξ reside. The inner product of this Hilbert space

is given by

(X ,Y )L2
ρ (Γ ) =

∫

Γ
X(ξ )Y (ξ )ρ(ξ )dξ , ∀ X , Y ∈ L2

ρ(Γ ),

where we have exploited independence of the random variables to allow us to write the measure as product of

measures in each stochastic direction. We similarly define the expectation of a random process X ∈ L2
ρ(Γ ) as

E[X(ξ )] =
∫

Γ
X(ξ )ρ(ξ )dξ ,

and we refer to the expectation of the powers E[X i(ξ )] as the ith moment of the random process.

Additionally, we define the mapping f : (x,ξ ) ∈ D×Γ → R to be a set of random processes, which are

indexed by the spatial position x ∈ D. Such a set of processes is referred to as a random field [26] and can also

be interpreted as a function-valued random variable, because for every ξ ∈ Γ the realization f (·,ξ ) : D → R is a

real valued function on D.

For a vector-space W on D, let the class L2
ρ(Γ ;W ) denote the space of random fields whose realizations lie in

W for a.e (almost every) ξ ∈ Γ . If W is a Banach space, a norm on L2
ρ(Γ ;W ) is induced by

|| f (x,ξ )||2
L2

ρ (Γ ;W )
= E[∥ f (x,ξ )∥2

W ],

for example, on L2
ρ(Γ ;L2(D)) we have

|| f (x,ξ )||2
L2

ρ (Γ ;L2(D))
= E[∥ f (x,ξ )∥2

L2(D)] =
∫

Γ

∫

D
( f (x,ξ ))2ρ(ξ )dxdξ ,

which denotes the expected value of the L2(D)-norm of the function f (x,ξ ). Similarly, we have the norm

|| f (x,ξ )||2
L2

ρ (Γ ;H1(D))
= E[∥ f (x,ξ )∥2

H1(D)] =
∫

Γ

∫

D
{( f (x,ξ ))2 + |∇ f (x,ξ )|2}ρ(ξ )dxdξ .

We now give a Banach space that will be used as the solution space for the stochastic optimality system of

equations, cf. [16]. Here, a Banach space Cρ(Γ ;H) comprises all continuous functions f : Γ → H with a norm

∥ f∥Cρ (Γ ;H) ≡ supξ∈Γ ∥ f (·,ξ )∥H , where H is a Hilbert space. Similarly, C
p
ρ(Γ ;H) is a Banach space with a norm

∥ f∥C
p
ρ (Γ ;H) = ∥ f∥Cρ (Γ ;H)+

N

∑
j=1

p j

∑
k=1

∥∂ k
ξ j

f∥Cρ (Γ ;H),

where p = (p1, p2, · · · , pN).
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3.2 Finite dimensional representation of the control problem

By the above assumption and the Doob-Dynkin lemma (cf. [38]), we have that the solution y corresponding to

(2.2), can be described by just a finite number of random variables, i.e., y(x,ω) = y(x,(ξ1(ω), · · · ,ξN(ω))). The

number N has to be large enough so that the approximation error is sufficient small.

Here, we will take the deterministic state space Vρ = L2
ρ(Γ ;H1

0 (D)). Corresponding to equations (2.3)-(2.4),

we have notations:

A[y,v] =
∫

Γ

∫

D
a∇y ·∇vρdxdξ , ∀ y, v ∈Vρ , (3.2)

and

[u,v] =
∫

Γ

∫

D
uvρdxdξ , ∀ u ∈U, v ∈Vρ . (3.3)

Similarly, we have the finite dimensional presentation for the weak formulation of optimal control problem

(2.1)-(2.2), which can be rewritten as:

min
u∈L2(D),y∈Kρ

J(y(u),u) = min
u∈L2(D),y∈Kρ

E
[1

2

∫

D
|y− yd |2dx+

α

2

∫

D
|u|2dx

]
(3.4)

subject to

A[y,v] = [u,v], ∀ v ∈Vρ . (3.5)

Under the assumption (2.6), the existence of solutions to (3.4)-(3.5) can be proved similarly [25,31].

We take notation S : L2(D)→ L2
ρ(Γ ;L2(D)) to denote the operator which assigns u ∈ L2(D) to the solution

y(u) ∈ L2
ρ(Γ ;H1

0 (D)) →֒ L2
ρ(Γ ;L2(D)) of the state equation.

For simplicity, we denote ∥v∥L2
ρ (Γ ;L2(D)), ∥v∥L2

ρ (Γ ;H1
0 (D)), ∥v∥L2

ρ (Γ ;H2(D)) by ∥v∥0,ρ , ∥v∥1,ρ , ∥v∥2,ρ , respectively.

Following from [8,9,46], let

Kρ = {y | y(x,ξ ) ∈ L2
ρ(Γ ;H1

0 (D)∩H2(D)), E[
∫

D
y(x,ξ )dx]≥ 0}, (3.6)

we have the following optimal control conditions of (3.4)-(3.5).

Theorem 1 The pair (y,u) ∈ Kρ ×U is the solution of the optimal control problem (3.4)-(3.5) iff there is a pair

(p,λ ) ∈Vρ ×L2
ρ(Γ ;L2(D)), such that (y, p,λ ,u) satisfies the following optimality system:

A[y,v] = [u,v], ∀ v ∈Vρ , (3.7a)

A[p,q] = [y− yd ,q]+E[⟨λ ,q⟩], ∀ q ∈Vρ , (3.7b)

E[⟨λ ,v− y⟩]≤ 0, ∀ v ∈ Kρ , (3.7c)

E[p+αu] = 0, (3.7d)

where V ∗
ρ is the dual space of Vρ , ⟨ , ⟩ is the dual product on V ∗

ρ ×Vρ .
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Proof Define IK : V → R∪{+∞} to be the indicator of the convex set Kρ :

IK(y) =

{
0, y ∈ Kρ ,
+∞, y ∈ Kρ .

The functional Ĵ : L2(D) → R is defined by Ĵ(u) := J(u,y(u)). It is an essential fact that ∃ũ > 0 such that

y(ũ) = S(ũ)> 0 belongs to the interior of Kρ in L2
ρ(Γ ;L2(D)) topology. Here we view that Kρ is a convex set in

L2
ρ(Γ ;L2(D)), so the Slater condition (i.e. Kρ has an interior point in L2

ρ(Γ ;L2(D)) topology) is satisfied. By the

properties of subdifferential calculus, the convexity of Ik and the strict convexity of Ĵ, the pair (y,u) = (Su,u) is

a solution to (3.4)-(3.5) if and only if

0 ∈ ∂ (Ĵ(u)+ IK(Su)).

Using the Moreau-Rockafellar formulas ( see, e.g. [41] ), we have

0 ∈ ∂ Ĵ(u)+S∗ ·∂ IK(Su),

which is equivalent to the existence of λ ∈ ∂ IK(Su) ∈ L2(Γ ;L2(D)) such that

0 ∈ ∂ Ĵ(u)+S∗λ . (3.8)

Here S∗ denotes the adjoint operator of the operator S. As we know, λ is in the sub-differential set ∂ Ik(Su) of IK

at y = Su iff

E[⟨λ ,w− y⟩]≤ 0, ∀ w ∈ Kρ ⊂ L2
ρ(Γ ;L2(D)). (3.9)

As Ĵ is differentiable at u, so we can infer that

(∂ Ĵ(u),v) = (J′(u),v) = [y− yd ,Sv]+α[u,v].

Thus (3.8) can be expressed as

[y− yd ,Sv]+ [αu,v]+ [S∗λ ,v] = 0, ∀ v ∈U. (3.10)

Then we define p ∈Vρ , such that

A[p,q] = [y− yd ,q]+E[⟨λ ,q⟩], ∀ q ∈Vρ . (3.11)

Setting q = Sv in (3.11), we have

A[p,Sv] = [y− yd ,Sv]+E[⟨λ ,Sv⟩], ∀ v ∈U. (3.12)

From (3.10) and (3.12), we obtain

A[p,Sv]−E[⟨λ ,Sv⟩]+ [αu,v]+ [S∗λ ,v] = 0, ∀ v ∈U, (3.13)

that is

A[p,Sv]− [S∗λ ,v]+ [αu,v]+ [S∗λ ,v] = 0, ∀ v ∈U. (3.14)

Then we have

[p,−∇ · (a∇Sv)]+ [αu,v] = 0, ∀ v ∈U. (3.15)

By the definition of S, we have y = Sv, −∇ · (a∇y) = v, and thus v =−∇ · (a∇Sv).
Then we obtain

[p,v]+ [αu,v] = 0, ∀ v ∈U. (3.16)
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Consequently

E[p+αu] = 0. (3.17)

Then (3.7b)-(3.7d) follow from (3.9), (3.11), and (3.17).
Finally, we prove the uniqueness of the solution (y, p,λ ,u) of (3.7a)-(3.7d). Assume that there exist two

solutions: (y1, p1,λ1,u1) and (y2, p2,λ2,u2). Then we have

A[y1 − y2,v] = [u1 −u2,v], ∀ v ∈Vρ , (3.18)

A[p1 − p2,q] = [y1 − y2,q]+E[⟨λ1 −λ2,q⟩], ∀ q ∈Vρ . (3.19)

Taking v = p1 − p2 in (3.18) and q = y1 − y2 in (3.19), from (3.7d), we obtain

A[y1 − y2, p1 − p2] =− 1

α
[p1 − p2, p1 − p2],

A[p1 − p2,y1 − y2] = [y1 − y2,y1 − y2]+E[⟨λ1 −λ2,y1 − y2⟩].

Then we have

[y1 − y2,y1 − y2]+
1

α
[p1 − p2, p1 − p2]+E[⟨λ1 −λ2,y1 − y2⟩] = 0.

Since E[⟨λ1,y2 − y1⟩]≤ 0 and E[⟨λ2,y1 − y2⟩]≤ 0, hence

∥y1 − y2∥2
2,ρ +

1

α
∥p1 − p2∥2

2,ρ ≤ 0.

Thus y1 = y2 and p1 = p2. Furthermore, λ1 = λ2. �

We remark that, the control problem is convex due to the linearity of the state equation. Therefore the above

first order optimality conditions are sufficient for this problem.

In the following we will present the expression and property of λ by applying the following Lemma.

Lemma 1 Let Q from L2
ρ(Γ ;L2(D)) onto the convex set Kρ be the projection operator such that

∥v−Qv∥2,ρ = min
w∈Kρ

∥v−w∥2,ρ . (3.20)

Then Qv satisfies (3.20) if and only if, for any w ∈ Kρ

[Qv− v,w−Qv]≥ 0, (3.21)

and

Qv = v−min{v̄,0}, (3.22)

where v̄ is the mean of v over Γ ×D given by

v̄ =
1

|D×Γ |

∫

Γ

∫

D
vρdxdξ .

Proof Let j(w) = ∥w− v∥2
2,ρ and the equivalence between (3.20) and (3.21) follows from the Lions’s lemma:

j′(Qv)(w−Qv)≥ 0, ∀w ∈ Kρ . We now prove (3.22).

If v̄ ≥ 0, i.e., v ∈ K, such that Qv = v , then [Qv− v,w−Qv] = 0, (3.21) holds;

If v̄ < 0, then [Qv− v,w−Qv] =−[v̄,w− (v− v̄)] =−v̄
∫

Γ

∫
D wρdxdξ ≥ 0. Hence (3.21) still holds.

This means that Qv defined by (3.22) is the project operator. �
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Theorem 2 Let (y, p,λ ,u) ∈ Kρ ×Vρ × L2
ρ(Γ ;L2(D))×U be the optimal solution to the continuous systems

(3.7a)-(3.7d), respectively. Then the multiplier λ satisfies the following equality

λ = min{λ + y,0}. (3.23)

As a consequence, λ is a non-positive constant in the whole domain D×Γ and

λ ȳ = 0. (3.24)

Proof It follows from (3.7c) that

[(λ + y)− y,v− y] = [λ ,v− y]≤ 0, ∀ v ∈ Kρ .

That is

[y− (λ + y),v− y]≥ 0, ∀ v ∈ Kρ .

By Lemma 1, y is the projection of λ + y in K , that is

[Q(λ + y)− (λ + y),v−Q(λ + y)]≥ 0, ∀ v ∈ Kρ ,

we have

y =Q(λ + y) = λ + y−min{λ + y,0}.
This infers

λ = min{λ̄ + ȳ,0}.
and λ is a constant.

One the other hand, since y ∈ Kρ which means ȳ ≥ 0, then we have:

If ȳ > 0, as λ = min{λ̄ + ȳ,0}, we have λ ̸= λ̄ + ȳ, then λ = 0.

Otherwise, if ȳ = 0, clearly λ ȳ = 0. As λ = min{λ̄ + ȳ,0}, then λ ≤ 0.

So the conclusion (3.24) holds. �

4 Stochastic Galerkin method

4.1 Finite element spaces on D and Γ

To present the discretization of the optimality system (3.4)-(3.5), a stochastic Galerkin scheme will be formu-

lated. We adopt finite element spaces defined on D×Γ by [4,25].

First of all, we consider finite element spaces defined on spatial domain D ⊂ Rd . Let {Th}h>0 be a family

of regular triangulation of D such that D̄ = ∪τ∈Th
τ̄ . Let hs = maxτ∈Th

hτ , where hτ denotes the diameter of the

element τ . Here regular triangulation of D [33] means: there is a positive constant C such that for all τ ∈ Th,

C−1h2
τ ≤| τ |≤Ch2

τ ,

where | τ | is the area of τ . Consider two finite element spaces Vhs ⊂ H1
0 (D) and Whs ⊂ L2(D), consisting of

piecewise linear continuous functions on {Th} and piecewise constant functions on {Th}, respectively. We assume

that Vhs and Whs satisfy the following approximation properties [12]:

(i) For any φ ∈ H2(D)∩H1
0 (D), there exists φhs ∈Vhs , such that

inf
φhs∈Vhs

∥φ −φhs∥H1
0 (D) ≤Chs∥φ∥H2(D), (4.1)
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where C > 0 is a constant independent of φ and hs.

(ii) For any φ ∈ H1
0 (D), there exists φhs ∈Whs , such that

inf
φhs∈Whs

∥φ −φhs∥L2(D) ≤Chs∥φ∥H1
0 (D), (4.2)

where C > 0 is a constant independent of φ and hs.

Next, we consider a finite dimensional space defined on Γ ⊂ RN ([3]). Let Γ be partitioned into a finite

number of disjoint boxes BN
i ⊂ RN , that is, for a finite index set I, we have

Γ =
∪

i∈I

BN
i =

∪

i∈I

N

∏
j=1

(a j
i , b

j
i ),

where BN
k ∩BN

l = /0 for k ̸= l ∈ I and (a j
i ,b

j
i )⊂ Γj. A maximum grid size parameter 0 < hr < 1 is denoted by

hr = max{|b j
i −a

j
i |/2 : 1 ≤ j ≤ N and i ∈ I}.

Let Shr ⊂ L2
ρ(Γ ) be the finite element space of piecewise polynomials with degree at most p j on each direction

ξ j. Thus if ψhr ∈ Shr , then ψhr |BN
i
∈ span{

N

∏
j=1

ξ
n j

j : n j ∈ N andn j ≤ p j}. Letting the multi-index p = (p1, · · · , pN),

we have (cf. [7] ) the following property: for all ψ ∈Cp+1(Γ ),

inf
ψhr∈Shr

∥ψ −ψhr∥L2
ρ (Γ ) ≤ hγ

r

N

∑
j=1

∥∂
p j+1

ξ j
ψ∥L2

ρ (Γ )

(p j +1)!
, (4.3)

where γ = min
1≤ j≤N

{p j +1}.

4.2 Tensor product finite element spaces on D×Γ

Combining spaces Vhs ,Whs and Shr together, we now define a tensor product finite element space on D×Γ .

We will use Vh =Vhs ×Shr for the sate variable y and co-state variable p, Uh =Whs for the control variable u

and let Kh =Vh ∩Kρ be the finite element space of the convex set Kρ .

We define the H1
0 (D)-projection operator Rhs : H1

0 (D) → Vhs by

(Rhsφ ,φhs)H1
0 (D) = (φ ,φhs)H1

0 (D), ∀ φhs ∈Vhs , ∀ φ ∈ H1
0 (D), (4.4)

the L2(D)-projection operator Πhs : L2(D) → Whs by

(Πhsφ ,φhs)L2(D) = (φ ,φhs)L2(D), ∀ φhs ∈Whs , ∀ φ ∈ L2(D). (4.5)

Similarly, let the L2
ρ(Γ )-projection operator Πhr : L2

ρ(Γ ) → Shr by

(Πhr ψ,ψhr)L2
ρ (Γ ) = (ψ ,ψhr)L2

ρ (Γ ), ∀ ψhr ∈ Shr , ∀ ψ ∈ L2
ρ(Γ ). (4.6)

It follows from (4.1) that for all φ ∈ H2(D)∩H1
0 (D)

∥φ −Rhsφ∥H1
0 (D) ≤Chs∥φ∥H2(D), (4.7)
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and from (4.2) that for all φ ∈ H1(D)

∥φ −Πhsφ∥L2(D) ≤Chs∥φ∥H1(D). (4.8)

Similarly, by (4.3) we obtain that for all ψ ∈C
p+1
ρ (Γ )

∥ψ −Πhr ψ∥L2
ρ (Γ ) ≤ hγ

r

N

∑
j=1

∥∂
p j+1

ξ j
ψ∥L2

ρ (Γ )

(p j +1)!
. (4.9)

Using the inequalities (4.7) and (4.9), we have the following approximation property (cf. [3], Proposition 3.1):

for all y ∈C
p+1
ρ

(
Γ ;H2(D)∩H1

0 (D)
)

inf
yh∈Yh

∥y− yh∥1,ρ ≤C
{

hs∥y∥2,ρ +hγ
r

N

∑
j=1

∥∂
p j+1

ξ j
y∥1,ρ

(p j +1)!

}
, (4.10)

where positive constant C is independent of hs, hr, N and p.

In order to obtain the separate error estimates in D and Γ , we define a projection operator Ph which maps onto

the tensor product space Whs ×Shr . It is defined as follows

Phϕ = ΠhsΠhr ϕ = Πhr Πhsϕ, ∀ ϕ ∈ L2
ρ(Γ ;L2(D)). (4.11)

Furthermore, we use the following decomposition

ϕ −Phϕ = (ϕ −Πhsϕ)+Πhs(I −Πhr)ϕ , ∀ ϕ ∈ L2
ρ(Γ ;L2(D)). (4.12)

To derive the error estimates, we need assumption and lemmas on the regularity as follows.

Assumption 4.1 Let y, p, u satisfy the following regularity condition

y, p ∈C
p+1
ρ

(
Γ ;H2(D)∩H1

0 (D)
)
, u ∈ H1(D). (4.13)

Lemma 4.1 [20] Let u ∈ L2(D). Then for any ξ ∈ Γ , y(·,ξ ) ∈ H2(D) and there exists C > 0 such that

∥y(·,ξ )∥H2(D) ≤C∥u∥L2(D). (4.14)

Similar to Lemma 3.7 in [21], the following Lemma follows from an inductive argument after taking deriva-

tives with respect to ξ j of (3.5) and using Greens formulas.

Lemma 4.2 Let u ∈ L2(D) and ϕ j ∈ L∞(D). Then for all j = 1,2, · · · ,N and for any ξ ∈Γ , there exists C > 0

such that

∥∂
p j+1

ξ j
y(·,ξ )∥H1

0 (D)

(p j +1)!
≤C∥ϕ j∥

p j+1

L∞(D)
∥u∥L2(D). (4.15)
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4.3 Galerkin approximation scheme

Let us discrete the constrained set of the state Kh = {yh| yh ∈ V h ∩Kρ , E[
∫

D yhdx] ≥ 0}. Then, we can use

Galerkin finite element scheme to approximate the optimal control problem (3.4)-(3.5), which can be formulated

as follows:

min
uh∈Uh,yh∈Kh

Jh(uh) = min
uh∈Uh,yh∈Kh

E
[1

2

∫

D
|yh − yd |2dx+

α

2

∫

D
|uh|2dx

]
(4.16)

subject to

A[yh,vh] = [uh,vh], ∀ vh ∈V h . (4.17)

Define discrete operator Sh : Uh →V h such that:

A[Shuh,vh] = [uh,vh], uh ∈Uh, ∀vh ∈V h.

Consequently, the conditions {uh ∈Uh,yh ∈ Kh} can be rewritten as {uh ∈Uh,E[
∫

D Shuhdx]≥ 0}.
Then the discrete optimal control problem (4.16)-(4.17) is equivalent to the following optimal control problems

of constrained control type:

min
uh∈Uh

ad

Jh(uh,yh) = min
uh∈Uh

ad

E
[1

2

∫

D
|yh − yd |2dx+

α

2

∫

D
|uh|2dx

]
(4.18)

subject to

A[yh,vh] = [uh,vh], ∀ vh ∈Vh, (4.19)

where the discrete constrained set for the control is:

Uh
ad := {vh| vh ∈Uh : E[

∫

D
Shvhdx]≥ 0} ⊆U. (4.20)

Then we have the following discrete optimal control conditions of (4.18)-(4.19).

Theorem 3 The pair (yh,uh) ∈ Kh ×Uh is the optimal solution to(4.18)-(4.19), if and only if there exist ph ∈V h

and λh ∈ R−∪{0} such that

A[yh,vh] = [uh,vh], ∀ vh ∈V h, (4.21a)

A[ph,qh] = [yh − yd ,qh]+E[⟨λh,qh⟩], ∀ qh ∈V h; (4.21b)

E[⟨λh,vh − yh⟩]6 0, ∀ vh ∈ Kh, (4.21c)

E[Pph +αuh] = 0. in D. (4.21d)

Here P is the L2-projection from L2
ρ(Γ ;H1

0 (D)) onto closed subspace L2
ρ(Γ ;Uh). Furthermore, the solution

(yh,uh, ph,λh) of (4.21a) - (4.21d) is unique.
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Proof Here we only outline the proof. Similarly to the proof of Theorem 1, we can show there exists λh such

that

0 ∈ ∂ Ĵh(uh)+S∗hλh, (4.22)

E[⟨λh,vh − yh⟩]6 0, ∀ vh ∈ Kh, (4.23)

and

[yh − yd ,Shvh]+ [αuh,vh]+ [S∗hλh,vh] = 0, ∀ vh ∈Uh. (4.24)

We define ph ∈V h such that

A[qh, ph] = [yh − yd ,qh]+E[⟨λh,qh⟩], ∀qh ∈V h. (4.25)

Noting that Sh is a bijection from finite dimension space onto another finite dimension space, so there is wh ∈Uh

such that Shwh = qh, i.e.

A[Shwh,vh] = [wh,vh], ∀ vh ∈V h.

Furthermore we have

[wh, ph] = A[Shwh, ph] = [yh − yd +λh,Shwh] = [S∗h(yh − yd +λh),wh] = [−αuh,wh].

Therefore we obtain

[ph +αuh,wh] = 0. (4.26)

Since qh is an arbitrary element in V h and Sh is a bijection, the above equality (4.26) holds for any wh ∈Uh. This

fact shows αuh is a unique projection of ph from L2
ρ(Γ ;H1

0 (D)) onto closed subspace L2
ρ(Γ ;Uh). So we have

E[Pph +αuh] = 0, in D. (4.27)

Then (4.21a)-(4.21d) follow from (4.23), (4.25), and (4.27).
Similarly, we can prove that the solution of (4.21a)-(4.21d) is unique and λh is a non-positive constant . �

Remark. If Uh is a piecewise constant space, we note that P is such that

Pv|τ =
1

|τ|

∫

τ
v, ∀τ ∈ T h

U ,

where |τ| is the measure of τ , which implies

α ūh = P(−ph) =− p̄h. (4.28)

If Uh is a piecewise linear element space, we have well-known result

∥v−Pv∥0 6 chU∥v∥1. (4.29)

We will use above facts to deduce convergence results of approximation in the following section.

We know that it is very useful to examine the structure of the matrix systems of the above finite element

problems (4.21a)-(4.21d) for developing efficient numerical algorithms. Without loss of generality, we consider a

particular case that the space Shr has no partition of Γ , i.e. only the polynomial degree is increased. Here, we use

the tensor finite element space Shr =
⊗N

n=1 Z
pn
n , where we use the global polynomial subspaces Z

pn
n = {v : Γn →

R : v ∈ span(1,yn, · · · ,ypn
n )}, n = 1, · · · ,N.
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Let {ϕi(x)} be the a basis of the space Vhs , {ψ j(ξ )} be a basis of the space Shr . Then the solutions of the

discrete optimality system of equations (4.21a)-(4.21d) are given by





yh = ∑
i, j

yi jϕi(x)ψ j(ξ ),

ph = ∑
i, j

pi jϕi(x)ψ j(ξ ),

uh = ∑
i

uiϕi(x).

(4.30)

We take the state equation in (4.21a)-(4.21d) as an example. Using test function vh = ϕl(x)ψk(ξ ), we have

∑
i, j

(∫

Γ
ρ(ξ )ψk(ξ )ψ j(ξ )(a∇ϕi,∇ϕl)L2(D)dξ

)
yi j = ∑

i

(∫

Γ
ρ(ξ )ψk(ξ )(ϕi,ϕl)L2(D)dξ

)
ui, ∀ k, l, (4.31)

which can be written as

∑
i, j

(∫

Γ
ρ(ξ )ψk(ξ )ψ j(ξ )Ki,l(ξ )dξ

)
yi j = ∑

i

(∫

Γ
ρ(ξ )ψk(ξ )Mi,ldξ

)
ui, ∀ k, l, (4.32)

where Ki,l(ξ ) = (a(·,ξ )∇ϕi,∇ϕl)L2(D) and Mi,l = (ϕi,ϕl)L2(D) .

If the diffusion coefficient a is expanded by finite terms (3.1), i.e. a(x,ξ ) =
S

∑
t=1

αt(x)Lt(ξ ), we have a corre-

sponding expression for the stiffness matrix

Ki,l(ξ )≡
∫

D

( S

∑
t=1

αt(x)Lt(ξ )
)

∇ϕi(x) ·∇ϕl(x)dx. (4.33)

Since ψk ∈ Shr =
⊗N

n=1 Z
pn
n , it is enough to take it as the product ψk(ξ ) =

N

∏
r=1

ψkr(ξr), where ψkr : Γr → R is a

basis function of the subspace

Zpr
r = span{1,ξr, · · · ,ξ pr

r }= span{ψkr : kr = 1, · · · , pr +1}.

Putting this choice of ψk into (4.32), we obtain

∑
i, j

(∫

Γ

N

∏
r=1

ρr(ξr)ψkr(ξr)ψ jr(ξr)Ki,l(ξ )dξ
)

yi j = ∑
i

(∫

Γ

N

∏
r=1

ρr(ξr)ψkr(ξr)Mi,ldξ
)

ui, ∀ k, l. (4.34)

Following (4.33), we derive the coefficients of yi j as

S

∑
t=1

Kt
i,l

∫

Γ
Lt(ξ )

N

∏
r=1

ρr(ξr)ψkr(ξr)ψ jr(ξr)dξ , (4.35)

where

Kt
i,l =

∫

D
αt(x)∇ϕi(x) ·∇ϕl(x)dx. (4.36)

Similarly we can obtain explicit formulas for the other equations. Then we have to solve the linear systems to

determine yi j, pi j and ui that are coefficients of solutions of the discrete optimality system of equations (4.21a)-

(4.21d), which will be carried out in Section 6.

Remark 4.1: For ease of exposition, we have chosen the basis {ϕi(x)} to be the basis of the space Kh, see

e.g. (4.30). Actually, the base functions of the space Vhs and the space Kh can be chosen differently. In practice,
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the control variable of a constrained control problem normally has lower regularity than that of the state variable.

Due to the limited regularity of the optimal control in general, there will be no advantage in considering higher-

order finite element spaces than the piecewise constant space for the control. We therefore only consider the

piecewise constant finite element space for the approximation of the control, though piecewise linear continuous

finite element spaces will be used to approximate the state and the co-state.

5 A priori error estimates

In this section, we will derive the a priori error estimates for the approximation solutions.

In order to obtain error estimates of the approximation solutions, we introduce an auxiliary system with

auxiliary state y(uh) ∈Vρ and co-state p(uh) ∈Vρ , which is defined by the following system:

A[y(uh),w] = [uh,w], ∀w ∈Vρ , (5.1a)

A[p(uh),q] = [y(uh)− yd ,q]+E[⟨λh,q⟩], ∀q ∈Vρ . (5.1b)

Obviously, we note that according to Theorem 1 and the requirement of boundary, y(uh) and p(uh) are also

bounded in L2
ρ(Γ ;H2(D)). In order to obtain the a priori error estimates, we first present some Lemmas.

Lemma 2 Let (y, p,u) ∈ Kρ ×Vρ ×U and (yh, ph,uh) ∈ Kh ×V h ×Uh be the solutions of optimality condition of

continuous system (3.7a)-(3.7d) and discretized optimality conditions (4.21a)-(4.21d) respectively. Let p(uh) be

the solution of the auxiliary system defined above. Then we have the following estimate:

∥p− p(uh)∥1,ρ 6C(∥u−uh∥0 +∥ph − p(uh)∥0,ρ +∥ph −P(ph)∥0,ρ). (5.2)

where ∥ · ∥0 = ∥ · ∥L2(D),∥ · ∥0,ρ = ∥ · ∥L2
ρ (Γ ;L2(D)).

Proof Select ϕ ∈ L2
ρ(Γ ;C∞

0 (D)) such that ϕ̄ = 1 and ∥ϕ∥1,ρ 6C. For brevity, we denote C̃ = p− p(uh), and we

note that C̃ϕ ∈ L2
ρ(Γ ;C∞

0 (D))⊂ L2
ρ(Γ ;H1

0 (D)). From (3.7b) and (5.1b), we have

A[p− p(uh),q] = [y− y(uh),q]+E[⟨λ −λh,q⟩]. (5.3)

Letting q = C̃ϕ and q = p− p(uh) respectively in (5.3), we obtain

A[p− p(uh)−C̃ϕ, p− p(uh)] = [y− y(uh)+λ −λh, p− p(uh)−C̃ϕ].

Note that
∫

Γ

∫
D[p− p(uh)−C̃ϕ]ρdxdξ = 0 and λ −λh is a constant. Hence

A[p− p(uh), p− p(uh)] = A[C̃ϕ, p− p(uh)]+ [y− y(uh), p− p(uh)−C̃ϕ ].

Therefore, we have

c∥p− p(uh)∥2
1,ρ 6 A[C̃ϕ, p− p(uh)]+ [y− y(uh), p− p(uh)−C̃ϕ]

6 C(ε)C̃2∥ϕ∥2
1,ρ + ε∥p− p(uh)∥2

1,ρ +C(ε)∥y− y(uh)∥2
0,ρ ,

which implies

∥p− p(uh)∥2
1,ρ 6CC̃2 +C∥y(u)− y(uh)∥2

0,ρ 6CC̃2 +C∥u−uh∥2
0. (5.4)
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Since D is a bounded domain, from (3.7d) and (4.21d), we note that

C̃ 6

∫

Γ

∫

D
|p− p(uh)|ρdxdξ 6C∥p− p(uh)∥0,ρ

=C∥p+αu−αu+αuh −αuh −P(ph)+P(ph)− ph + ph − p(uh)∥0,ρ

6C(∥−αu+αuh∥0 +∥ph − p(uh)∥0,ρ +∥ph −P(ph)∥0,ρ)

6C(∥u−uh∥0 +∥ph − p(uh)∥0,ρ +∥ph −P(ph)∥0,ρ).

(5.5)

Then (5.2) follows from (5.4) and (5.5). �

Next we estimate the approximation λh of the multiplier λ .

Lemma 3 Let the discretized solution (yh, ph,uh) ∈ Kh ×V h ×Uh be defined as above. Let λ and λh be the

solutions of multiplier of the continuous and discretized systems respectively. We have the following estimates:

|λ −λh|6C(∥u−uh∥0 +∥ph − p(uh)∥0,ρ +∥ph −P(ph)∥0,ρ). (5.6)

Proof Select ϕ ∈ L2
ρ(Γ ;C∞

0 (D)) ⊂ L2
ρ(Γ ;H1

0 (D)) such that ϕ̄ = 1 and ∥ϕ∥1,ρ 6 C. From the continuous and

auxiliary systems, we obtain

E[⟨λ −λh,(λ −λh)ϕ⟩] = A[(λ −λh)ϕ, p− p(uh)]+ [y(uh)− y,(λ −λh)ϕ ],

which implies

|λ −λh| 6 C(∥p− p(uh)∥1,ρ +∥y− y(uh)∥0,ρ)

6 C(∥u−uh∥0 +∥ph − p(uh)∥0,ρ +∥ph −P(ph)∥0,ρ). (5.7)

Here we have used the estimate (5.2) and the fact ∥y− y(uh)∥0,ρ 6 ∥y− y(uh)∥1,ρ 6 C∥u− uh∥0. Therefore the

result (5.6) holds. �

Lemma 4 Let (y, p,u) ∈ Kρ ×Vρ ×U and (yh, ph,uh) ∈ Kh ×V h ×Uh be the solutions of optimality condi-

tion of continuous system (3.7a)-(3.7d) and discretized optimality conditions (4.21a)-(4.21d) respectively. Let

(y(uh), p(uh)) be the solution pair of the auxiliary system (5.1a)-(5.1b). Then we have the following estimate:

∥u−uh∥0 6 C(∥yh − y(uh)∥0,ρ +∥ph − p(uh)∥0,ρ +∥P(ph)− ph∥0,ρ)

6 C
(

h2
s +∥ph − p(uh)∥0,ρ +hs∥p∥1,ρ +hγ

r

N

∑
j=1

(∥∂
p j+1

ξ j
p∥0,ρ

(p j +1)!

))
. (5.8)

Proof By direct calculation, and using the continuous and auxiliary systems, we have

J′(u)(u−uh) = [y− yd ,y
′(u)(u−uh)]+ [αu,u−uh]

= [y− yd +λ ,y′(u)(u−uh)]+ [αu,u−uh]− [λ ,y′(u)(u−uh)]

= A[p,y′(u)(u−uh)]+ [αu,u−uh]− [λ ,y(u)− y(uh)]

= [u−uh, p]+ [αu,u−uh]− [λ ,y(u)− y(uh)]

=−[λ ,y(u)− y(uh)].

(5.9)

Similarly,

J′(uh)(u−uh) = [p(uh)+αuh,u−uh]− [λh,y− y(uh)], (5.10)
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As the optimal control problem (2.1)-(2.2) is quadratic control of a linear system, J(u) is strictly convex. It follows

from the properties of convex function, we have

c∥u−uh∥2
0 ≤ J′(u)(u−uh)−J′(uh)(u−uh).

From (5.9)-(5.10), we have

J′(u)(u−uh)−J′(uh)(u−uh) =−[p(uh)+αuh,u−uh]− [λ −λh,y− y(uh)].

Then we obtain

c∥u−uh∥2
0 6 J′(u)(u−uh)−J′(uh)(u−uh)

= −[p(uh)+αuh,u−uh]− [λ −λh,y− y(uh)]

= [ph − p(uh),u−uh]−⟨λ −λh,y− yh⟩−⟨λ −λh,yh − y(uh)⟩+[P(ph)− ph,u−uh]

6 [ph − p(uh),u−uh]−⟨λ −λh,yh − y(uh)⟩+[P(ph)− ph,u−uh]

6 C(ε)∥ph − p(uh)∥2
0,ρ + ε∥u−uh∥2

0 + ε∥λ −λh∥2
0,ρ +C(ε)∥yh − y(uh)∥2

0,ρ +C(ε)∥P(ph)− ph∥2
0,ρ

6 C∥ph − p(uh)∥2
0,ρ +Cε∥u−uh∥2

0 +Cε∥ph − p(uh)∥2
0,ρ +C∥yh − y(uh)∥2

0,ρ +C∥P(ph)− ph∥2
0,ρ

6 C∥ph − p(uh)∥2
0,ρ +Cε∥u−uh∥2

0 +C∥yh − y(uh))∥2
0,ρ +C∥P(ph)− ph∥2

0,ρ ,

(5.11)

here we have used the complementary condition, conform condition Kh ⊂ K, and the estimate (5.6). Note that yh

is the Stochastic Galerkin finite element solution of y(uh), from the Aubin-Nitsche technique [12] together with

regularity assumption of D, we have the finite element estimate

∥yh − y(uh)∥0,ρ 6Ch2
s∥y(uh)∥2,ρ 6Ch2

s∥uh∥0 6Ch2
s . (5.12)

By the property of L2 projection operator

∥P(ph)− ph∥0,ρ 6C
(

hs∥p∥1,ρ +hγ
r

N

∑
j=1

(∥∂
p j+1

ξ j
p∥0,ρ

(p j +1)!

))
, (5.13)

then the estimate (5.8) follows from (5.11), (5.12) and (5.13). �

Finally, we can obtain the a priori estimates of the Stochastic Galerkin approximations by using the above

lemmas.

Theorem 4 Let (y, p,λ ,u) ∈ Kρ ×Vρ ×R− ×U and (yh, ph,λh,uh) ∈ Kh ×V h ×R− ×Uh be the solutions of

continuous optimality condition (3.7a)-(3.7d) and discretized optimality condition (4.21a)-(4.21d) respectively.

Let p(uh) be the solution of the auxiliary system (5.1b). We have the following estimate:

∥ph − p(uh)∥1,ρ 6C
(

hs +hγ
r

N

∑
j=1

(∥∂
p j+1

ξ j
p∥0,ρ

(p j +1)!

))
. (5.14)

Therefore, we obtain the a priori error estimate for the approximation solutions:

|λ −λh|+∥u−uh∥0 +∥y− yh∥1,ρ +∥p− ph∥1,ρ 6C
(

hs +hγ
r

N

∑
j=1

(∥∂
p j+1

ξ j
p∥0,ρ

(p j +1)!

))
. (5.15)
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Proof We denote p(uh)I ∈V h ⊂Vρ to be the L2 projection of p(uh) ∈Vρ . Then

c∥p(uh)− ph)∥2
1,ρ 6 A[p(uh)− ph, p(uh)− ph]

= A[p(uh)I − ph, p(uh)− ph]+A[p(uh)− p(uh)I , p(uh)− ph]

= [y(uh)− yh, p(uh)I − ph]+A[p(uh)− p(uh)I , p(uh)− ph]

6 ∥y(uh)− yh∥2
0,ρ +C(ε)∥p(uh)− p(uh)I∥2

1,ρ + ε∥p(uh)− ph)∥2
1,ρ .

Therefore,

∥p(uh)− ph)∥2
1,ρ 6 C(∥y(uh)− yh∥2

1,ρ +∥p(uh)− p(uh)I∥2
1,ρ)

6 Ch2
s (∥y(uh)∥2

2,ρ +∥p(uh)∥2
2,ρ)+C

(
h2

s∥p∥2
1,ρ +h2γ

r

N

∑
j=1

(∥∂
p j+1

ξ j
p∥L2

ρ (Γ ;L2(D))

(p j +1)!

)2
)
,

Due to the regularity of the boundary ∂D, we have

∥p(uh)∥2,ρ 6C∥y(uh)− yd +λh∥0,ρ 6C.

Therefore we obtain

∥p(uh)− ph∥0,ρ 6 ∥p(uh)− ph∥1,ρ 6C
(

hs∥p∥1,ρ +hγ
r

N

∑
j=1

(∥∂
p j+1

ξ j
p∥0,ρ

(p j +1)!

))
. (5.16)

It follows from (5.8) and (5.16) that we have

∥u−uh∥0 6C
(

hs +hγ
r

N

∑
j=1

(∥∂
p j+1

ξ j
p∥0,ρ

(p j +1)!

))
. (5.17)

From (3.7a) and (5.1a) we have

A[y− y(uh),w] = [u−uh,w],∀w ∈ Vρ . (5.18)

Letting w = y− y(uh) in (5.18), from (2.6) we have

c∥y− y(uh)∥2
1,ρ ≤ A[y− y(uh),y− y(uh)] = [u−uh,y− y(uh)]≤C∥u−uh∥0∥y− y(uh)∥1,ρ .

Then

∥y− y(uh)∥1,ρ ≤C∥u−uh∥0. (5.19)

From (5.17) and (5.19), we obtain

∥y− yh∥1,ρ 6 ∥y− y(uh)∥1,ρ +∥y(uh)− yh∥1,ρ 6C∥u−uh∥0 +Ch∥y(uh)∥2,ρ 6Chs. (5.20)

Further, it follows from (5.16) and Lemma 2 that we have

∥p− ph∥1,ρ 6 ∥p− p(uh)∥1,ρ +∥ph − p(uh)∥1,ρ

6C(hs +∥ph − p(uh)∥1,ρ +∥u−uh∥0 +∥ph −P(ph)∥0,ρ) (5.21)

6C
(

hs +hγ
r

N

∑
j=1

(∥∂
p j+1

ξ j
p∥0,ρ

(p j +1)!

))
. (5.22)

Then it follows from (5.16), (5.17) and Lemma 3 that we have

|λ −λh|6C(∥u−uh∥0 +∥ph − p(uh)∥0,ρ +∥ph −P(ph)∥0,ρ)6C
(

hs +hγ
r

N

∑
j=1

(∥∂
p j+1

ξ j
p∥0,ρ

(p j +1)!

))
. (5.23)

Thus (5.15) follows from (5.17)-(5.23). �
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6 Numerical examples

6.1 A projection algorithm

To present our algorithm we reduce the control problem into an optimization on a convex subset Uad of L2(D)
and use the projection method to discuss algorithm. We consider the following optimal problem:

min
u∈Uad

J(u)

where J is the reduced functional as before and the constraint set Uad = {u ∈ L2(D) : E[Su] > 0}. For easy of

exposition, we state our method for the continuous form. For discretized problems (4.18)-(4.19), the method is

similar.

Our scheme is as follows:
{

u
n+ 1

2
= un −ρJ′(un) = un −ρE[αun + p̃n],

un+1 = P(u
n+ 1

2
) := u

n+ 1
2
−ρE[S∗λn],

(6.1)

where

A[yn,v] = [un,v], yn ∈ L2
ρ(Γ ,H1

0 (D)),

A[p̃n,q] = [yn − yd ,q], p̃n ∈ L2
ρ(Γ ;H1

0 (D)).

Next we will discuss how to select λn in each step such that un+1 ∈Uad , i.e. E[Sun+1] = E[yn+1]> 0.

Note that

A[yn+1,v] = [un+1,v] = [un −ρE[αun + p̃n]−ρE[S∗λn],v].

Therefore if we define y
n+ 1

2
by solving the following equation,

A[y
n+ 1

2
,v] = [u

n+ 1
2
,v] = [un −ρE[αun + p̃n],v], y

n+ 1
2
∈ L2

ρ(Γ ;H1
0 (D)),

then we have A[yn+1 − y
n+ 1

2
,v] = [−ρE(S∗λn),v] = E[−ρλnS∗(1),v], and thus

S−1(yn+1 − y
n+ 1

2
) =−ρλnS∗(1),

yn+1 − y
n+ 1

2
=−ρλnSS∗(1).

Therefore we have

E[yn+1] = E[y
n+ 1

2
−ρλnSS∗(1)].

Hence if we select

λn = min{
E[y

n+ 1
2
]

ρSS∗(1)
,0}, (6.2)

we can assure E[yn+1]> 0 in each step. Furthermore the constant SS∗(1) can be computed as follows: Let y∗ be

the solution of

A[q, p∗] = [1,q], ∀q ∈ L2
ρ(Γ ;H1

0 (D)),

A[y∗,v] = [p∗,q], ∀q ∈ L2
ρ(Γ ;H1

0 (D)),
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Table 1: Algorithm

Step 1: Select u0 ∈Uad , and calculate y0 by solving the state equation.

Step 2: Calculate p̃n by solving the equation

A[p̃n,v] = [yn − yd ,v], p̃n ∈ L2
ρ (Γ ;H1

0 (D)).

Step 3: Set u
n+ 1

2
= un −ρE[αun + p̃n]. Calculate y

n+ 1
2

by solving the equation

A[y
n+ 1

2
,v] = [u

n+ 1
2
,v], y

n+ 1
2
∈ L2

ρ (Γ ;H1
0 (D)).

Step 4: Set λn = min{
ȳ

n+ 1
2

ρSS∗(1)
,0}, and let un+1 = u

n+ 1
2
−ρE[S∗λn].

Calculate yn+1 by solving the equation

A[yn+1,v] = [un+1,v], yn+1 ∈ L2
ρ (Γ ;H1

0 (D)).

Step 5: Stop if stopping criterion is satisfied, e.g., | un+1 −un |< ε ,where ε ia a given parameter. Otherwise set n = n+1 go to Step 2.

then

SS∗(1) =
1

|D×Γ |

∫

Γ

∫

D
y∗ρ(ξ )dxdξ .

Before discussing convergence of our method, we summarize our algorithm in Table 1.

In order to present the proof for the convergence of our algorithm, we need the following lemma. This lemma

indicates that actually P is the projection operator from Hilbert space L2(D) onto its non-empty closed convex

subset Uad .

Lemma 5 The operator P defined in (6.1) is the projection operator from Hilbert space L2(D) onto its non-empty

closed convex subset Uad . Further, for any u,v ∈Uad ,

∥Pu−Pv∥0 6 ∥u− v∥0. (6.3)

Proof For any v ∈Uad ,

(u
n+ 1

2
−P(u

n+ 1
2
),v−P(u

n+ 1
2
)) = (u

n+ 1
2
− (u

n+ 1
2
−ρE[S∗λn]),v− (u

n+ 1
2
−ρE[S∗λn]))

= ρE[< λn,Sv−Su
n+ 1

2
+λnρSS∗(1)>]

= ρE[< λn,Sv− y
n+ 1

2
+λnρSS∗(1)>].

Noting that E[< λn,−y
n+ 1

2
+λnρSS∗(1)>] = 0, and E[Sv]> 0,∀v ∈Uad ,

we have

(u
n+ 1

2
−P(u

n+ 1
2
),v−P(u

n+ 1
2
)) = ρE[< λn,Sv− y

n+ 1
2
+λnρSS∗(1)>] = ρE[< λn,Sv >]6 0,∀ v ∈Uad ,

which implies P is the projection operator.

Furthermore, we have

∥Pu−Pv∥2
0 = (Pu−Pv,Pu−Pv)

= (Pu−Pv,v−Pv)+(Pu−Pv,Pu−u)+(Pu−Pv,u− v)

6 (Pu−Pv,u− v).

Then we have

∥Pu−Pv∥0 6 ∥u− v∥0.

This completes the proof. �
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Obviously, the objective functional J′ is Lipschtiz and uniformly monotone, i.e. there are positive constant

c,C such that

∥J′(u)−J′(v)∥0 6 C∥u− v∥0, ∀u,v ∈ L2(D),

(J′(u)−J′(v),u− v) > c∥u− v∥2
0, ∀u,v ∈ L2(D).

Following Lemma 5, we have the following convergence results.

Theorem 5 There are 0 < δ < 1,ε > 0 such that

∥u−un∥0 6 δ n∥u−u0∥0, n = 0,1,2, · · · , (6.4)

provided ρ < ε .

Proof Firstly we show that u = P(u−ρE[αu+ p̃)], where P is defined in (6.1)and p̃ satisfies the equation

A[ p̃,v] = [y− yd ,v], p̃ ∈ L2
ρ(Γ ;H1

0 (D)).

Due to the optimality conditions (3.7c) and (3.7d), we conclude that for any v ∈Uad ,

(u−ρE[αu+ p̃]−u,v−u) =−ρ(E[−p+ p̃],v−u) = ρ(E[S∗λ ],v−u) = ρE[< λ ,Sv−Su >]6 0,

which means u = P(u−ρE[αu+ p̃]).
Furthermore we note that J′(un) = E[αun + p̃n] and J′(u) = E[αu+ p̃]. From the iteration scheme, we deduce

that

un+1 −u = P(un −ρE[αun + p̃n])−P(u−ρE[αu+ p̃]) = P(un −ρJ′(un))−P(u−ρJ′(u)).

By the character of the projection operator P, we have

∥un+1 −u∥2
0 = ∥P(un −ρJ′(un))−P(u−ρJ′(u))∥2

0

6 ∥u−un −ρ(J′(u)−J′(un))∥2
0

= ∥u−un∥2
0 +ρ2∥J′(u)−J′(un)∥2

0 −2ρ(J′(u)−J′(un),u−un) (6.5)

6 ∥u−un∥2
0 +Cρ2∥u−un∥2

0 − cρ∥u−un∥2
0

6 (1− cρ(1− Cρ

c
))∥u−un∥2

0.

Choose ρ such that

0 6 1− cρ(1− Cρ

c
)6 δ . (6.6)

Then

∥un+1 −u∥2
0 6 δ∥un −u∥2

0 6 δ n+1∥u0 −u∥2
0. (6.7)

This completes the proof. �
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6.2 Numerical experiments

In this section, we present three numerical examples to illustrate our analytical results above. In these examples,

for the state and co-state y, p, we take the Legendre polynomial in every direction of the random space Γi (whose

order is 3 ) and use the piecewise linear finite element in the space D. For the control u, we use the piecewise

constant finite element in the space D.

Example 1 We take space domain D= [−1,1]× [−1,1], and stochastic domain Γi = [−1,1], a(x,ξ ) = 10+
N

∑
i=1

ξi.

We consider the following model problem:

min
u∈L2(D),E[

∫
D ydx]≥0

J(u) = min
u∈L2(D),E[

∫
D ydx]≥0

(
1

2

∫

Γ

∫

D
(y− yd)

2ρ(ξ )dxdξ +
α

2

∫

D
u2dx) (6.8)

subject to

−∇ · (a(x,ξ )∇y(x,ξ )) = f +u, x ∈ D, ξ ∈ Γ ,

y(x,ξ ) = 0, x ∈ ∂D, ξ ∈ Γ .

The target state yd = (1 − 2π2)sin(πx1)sin(πx2)− 1. The objective is to minimize the expectation of a cost

functional and the constraint for the state is E[
∫

D ydx] ≥ 0. We assume each probability density function on Γi

is uniform, i.e. ρi(ξi) =
1
2
, i = 1, · · · ,N. Thus, the joint probability density function ρ(ξ ) of random variable

ξ = (ξ1, · · · ,ξN) is 1
2N . Let α = 1 and the solutions for this problem are as follows:

p =
1

a(x,ξ )
sin(πx1)sin(πx2),

y = sin(πx1)sin(πx2),

u = −E[p]

α
,

f = 2π2 sin(πx1)sin(πx2)a(x,ξ )−u,

λ = −1.

In this example, we compute for two cases. First case for N = 5 are shown in Table 2. For simplicity, Γi has

no partition and we use the same mesh in D for the state, the co-state and the control. Here h is the mesh size for

the discretized optimal condition.

Table 2: The error for optimal control problem

hs ∥uh −u∥0 ∥yh − y∥0,ρ ∥yh − y∥1,ρ ∥ph − p∥0,ρ ∥ph − p∥1,ρ |λ −λh|
1/4 0.2010 0.3918 1.1302 0.0404 0.1180 2.6156e-04

1/8 0.1026 0.1013 0.5654 0.0105 0.0595 6.3795e-05

1/16 0.0512 0.0252 0.2812 0.0026 0.0297 1.6151e-05

1/32 0.0249 0.0060 0.1413 6.1837e-04 0.0148 3.9977e-06

1/64 0.0108 0.0012 0.0711 1.1611e-04 0.0075 9.7267e-07

From Table 2, we can see the approximation errors of u,y, p,λ are at least linearly decreased as the meshes

decrease.
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The second case is for N = 2 in which the stochastic space could be divided into quadrilateral mesh. We

use the same degree of piecewise polynomials for each direction ξ j which is labeled as p. Since the control is

independent of random, we only compute the state and co-state to show the change of error with the change of

hr. The result is shown in Table 3 in which the mesh size of physical space is hs =
1
64

. From Table 3, we find that

the numerical results are consistent with our theoretical results in Theorem 4.

Table 3: The error for optimal control problem

p hr ∥yh − y∥1,ρ ∥ph − p∥1,ρ

1 1 0.3674 0.0442

1 1/2 0.0875 0.0103

1 1/4 0.0224 0.0025

1 1/8 0.0059 6.4103e-04

2 1/2 0.0443 0.0053

2 1/4 0.0056 6.5432e-04

2 1/8 7.1795e-04 8.2825e-05

Example 2 We take space domain D = [−1,1]× [−1,1], and stochastic domain Γi = [−1,1], a(x,ξ ) = 20+
N

∑
i=1

3sin(iπ(x1−x2))
(iπ)2 ξi. We consider the following model problem:

min
u∈L2(D),E[

∫
D ydx]≥0

J(u) = min
u∈L2(D),E[

∫
D ydx]≥0

(
1

2

∫

Γ

∫

D
(y− yd)

2ρ(ξ )dxdξ +
α

2

∫

D
u2dx) (6.9)

subject to

−∇ · (a(x,ξ )∇y(x,ξ )) = u, x ∈ D, ξ ∈ Γ ,

y(x,ξ ) = 0, x ∈ ∂D, ξ ∈ Γ .

The target state yd = 1. The objective is to minimize the expectation of a cost functional, and the deterministic

control is constrained by the condition E[
∫

D ydx] ≥ 0. We assume that each probability density function on Γi

is uniform, i.e. ρi(ξi) =
1
2
, i = 1, · · · ,N. Thus, the joint probability density function ρ(ξ ) of random variable

ξ = (ξ1, · · · ,ξN) is 1
2N . Here we present two cases for this problem with N = 5,10. Since the exact solution for

this problem could not be given, we contrast the objective function value with the change of α .

For simplicity, Γi has no partition and we use the same mesh in D for the state, the co-state and the control.

The results for N = 5,10 are shown in Table 4. Since the exact solution is unknown, following the idea in [29] and

[46], we let the parameter α approximating zero, so that the relative errors of yh to yd should approximate zero

and the functional values should be getting smaller. From Table 4 we can see that
E[∥yh−yd∥2]

∥yd∥2 and the objective

function values Jh(yh,uh) are smaller, respectively, as the value α becomes smaller. And the mean value for y and

u in N = 10 with α = 0.1 and α = 0.0001 are shown in Fig. 1-2.
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Table 4: The result for optimal control problem with order = 3 and h = 1/16

N α E[∥yh−yd∥2 ]

∥yd∥2 Jh(yh,uh)

5 0.1 0.9990 1.9986

5 0.01 0.9905 1.9863

5 0.001 0.9137 1.8741

5 0.0001 0.5556 1.2955

10 0.1 0.9998 2.0001

10 0.01 0.9983 1.9977

10 0.001 0.9834 1.9773

10 0.0001 0.8582 1.8012
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Fig. 1: Mean of y for N=10, α = 0.1(left) and α = 0.0001(right) for Example 2.
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Fig. 2: Value of u for N=10, α = 0.1(left) and α = 0.0001(right) for Example 2.
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Example 3 We take space domain D = [−1,1]× [−1,1], and stochastic domain Γi = [−1,1], the random coeffi-

cient a(x,ξ ) is in the form of the KL(Karhunen-Loeve) expansion [6]:

a(x,ξ ) = µ(x)+σ
√

3
N

∑
i=1

√
λiφi(x)ξi,

where x ∈ D, and (λi,φi)
N
i=1 are the eigenpairs of the integral operator associated with C[a]. C[a] is the covariance

function

C[a](x, x̄) = σ2exp(−|x1 − x̄1|
l1

− |x2 − x̄2|
l2

),

where σ denotes the standard deviation and l1, l2 are correlation lengths.

We consider the following model problem:

min
u∈L2(D),E[

∫
D ydx]≥0

J(u) = min
u∈L2(D),E[

∫
D ydx]≥0

(
1

2

∫

Γ

∫

D
(y− yd)

2ρ(ξ )dxdξ +
α

2

∫

D
u2dx) (6.10)

subject to

−∇ · (a(x,ξ )∇y(x,ξ )) = u, x ∈ D, ξ ∈ Γ ,

y(x,ξ ) = 0, x ∈ ∂D, ξ ∈ Γ .

The target state yd = x2
1 + x2

2. µ(x) = 1, σ = 0.3, l1 = 2, l2 = 2. The objective is to minimize the expectation of

a cost functional, and the deterministic control is constrained by the condition E[
∫

D ydx] ≥ 0. We assume each

probability density function on Γi is uniform, i.e. ρi(ξi) =
1
2
, i = 1, · · · ,N. Thus, the joint probability density

function ρ(ξ ) of random variable ξ = (ξ1, · · · ,ξN) is 1
2N . We present one case for this problem with N = 20.

Since the exact solution for this problem is un-known, we contrast the objective function value with the change

of α .

For simplicity, Γi has no partition and we use the same mesh in D for the state, the co-state and the control.

The results for N = 20 are shown in Table 5. From Table 5 we can see that
E[∥yh−yd∥2]

∥yd∥2 and the objective function

values Jh(yh,uh) are smaller, respectively, as the value α becomes smaller. These simulation results are similar to

that in [46]. The mean value for y and u for N = 20 with different α are shown in Fig. 3-4.

Table 5: The result for optimal control problem with order = 3 and h = 1/16

N α E[∥yh−yd∥2 ]

∥yd∥2 Jh(yh,uh)

20 1 0.9973 1.2282

20 0.1 0.9755 1.2085

20 0.01 0.8761 1.1094
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Fig. 3: Mean of y for N=20, α = 1(left), α = 0.1(middle) and α = 0.01(right) for Example 3.
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Fig. 4: Mean of y for N=20, α = 1(left), α = 0.1(middle) and α = 0.01(right) for Example 3.

7 Conclusions

We have investigated a stochastic Galerkin approximation scheme for a model optimal control problem governed

by an elliptic PDE with random field in its coefficients and state-meant constraints. We successfully obtain the

necessary and sufficient optimality conditions for the state-constrained stochastic optimal control problem in the

first time in the literature. We further establish a Stochastic Galerkin scheme to approximate the optimality system

in the spatial space and the probability space. We have developed an efficient projection algorithm for solving

the problem, and the numerical results presented have showed consistency with our theoretical the a priori error

estimates derived.
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