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ABSTRACT 23 

The proportional recovery rule asserts that most stroke survivors recover a fixed proportion of lost 24 

function. To the extent that this is true, recovery from stroke can be predicted accurately from 25 

baseline measures of acute post-stroke impairment alone. Reports that baseline scores explain more 26 

ƚŚĂŶ ϴϬй͕ ĂŶĚ ƐŽŵĞƚŝŵĞƐ ŵŽƌĞ ƚŚĂŶ ϵϬй͕ ŽĨ ƚŚĞ ǀĂƌŝĂŶĐĞ ŝŶ ƚŚĞ ƉĂƚŝĞŶƚƐ͛ ƌĞĐŽǀĞƌŝĞƐ͕ ĂƌĞ ƌĂƉŝĚůǇ 27 

accumulating. Here, we show that these headline effect sizes are likely inflated.  28 

 The key effects in this literature are typically expressed as, or reducible to, correlation 29 

coefficients between baseline scores and recovery (outcome scores minus baseline scores). Using 30 

formal analyses and simulations, we show that these correlations will be extreme when outcomes 31 

are less variable than baselines, which they often will be in practice regardless of the real 32 

relationship between outcomes and baselines. We show that these effect sizes are likely to be over-33 

optimistic in every empirical study that we found, which reported enough information for us to 34 

make the judgement, and argue that the same is likely to be true in other studies as well. The 35 

implication is that recovery after stroke may not be as proportional as recent studies suggest. 36 

  37 
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1. INTRODUCTION 38 

Clinicians and researchers have long known stroke ƉĂƚŝĞŶƚƐ͛ ŝŶŝƚŝĂů ƐǇŵƉƚŽŵ severity is related to 39 

their longer term outcomes (Jongbloed, 1986). Recent studies have suggested that this relationship 40 

is stronger than previously thought: that most patients recover a fixed proportion of lost function. 41 

Studies supporting ƚŚŝƐ ͚ƉƌŽƉŽƌƚŝŽŶĂů ƌĞĐŽǀĞƌǇ ƌƵůĞ͛ are rapidly accumulating (Stinear, 2017): in five 42 

studies since 2015 (Byblow et al., 2015; Feng et al., 2015; Winters et al., 2015; Buch et al., 2016; 43 

Stinear et al., 2017b), researchers used the Fugl-Meyer scale ƚŽ ĂƐƐĞƐƐ ƉĂƚŝĞŶƚƐ͛ ƵƉƉĞr limb motor 44 

impairment within two weeks of stroke onset ;͚ďĂƐĞůŝŶĞƐ͛Ϳ, and then again either three or six months 45 

post-stroke ;͚ŽƵƚĐŽŵĞƐ͛Ϳ. The results were consistent with earlier observations (Prabhakaran et al., 46 

2007; Zarahn et al., 2011) that most patients recovered ~70% of lost function. Taken together, these 47 

studies report highly consistent recovery in over 500 patients, across different countries with 48 

different approaches to rehabilitation, ƌĞŐĂƌĚůĞƐƐ ŽĨ ƚŚĞ ƉĂƚŝĞŶƚƐ͛ ĂŐĞƐ Ăƚ ƐƚƌŽŬĞ ŽŶƐĞƚ͕ ƐƚƌŽŬĞ ƚǇƉĞ͕ 49 

sex, or therapy dose (Stinear, 2017). And there is increasing evidence that the rule also captures 50 

recovery from post-stroke impairments of lower limb function (Smith et al., 2017), attention (Marchi 51 

et al., 2017; Winters et al., 2017), and language (Lazar et al., 2010; Marchi et al., 2017), and may 52 

even apply generally across cognitive domains (Ramsey et al., 2017). Even rats appear to recover 53 

proportionally after stroke (Jeffers et al., 2018). 54 

Strikingly, many of these studies report that the baseline scores predict 80%-90%, or more, 55 

of the variance in empirical recovery. When predicting behavioural responses in humans, these 56 

effect sizes are unprecedented. Recently, Winters and colleagues (2015) reported that recovery 57 

predicted from baseline scores explained 94% of the variance in the empirical recovery of 146 stroke 58 

patients. Like many related reports (Stinear, 2017), this study also reported a group of (65) ͚ŶŽŶ-59 

ĨŝƚƚĞƌƐ͕͛ ǁŚŽ did not make the predicted recovery. But if non-fitters can be distinguished at the acute 60 

stage, as this and other studies suggest (Stinear, 2017), the implication is that we can predict most 61 

ƉĂƚŝĞŶƚƐ͛ recovery near-perfectly, given baseline scores alone. Stroke researchers are used to 62 

thinking of recovery as a complex, multi-factorial process (Nelson et al., 2016). If the proportional 63 

recovery rule is as powerful as it seems, post-stroke recovery is simpler and more consistent than 64 

previously thought. 65 

In what follows, we argue that the empirical support for proportional recovery is weaker 66 

than it seems. These results are typically expressed as, or reducible to, correlations between 67 

baselines and recovery (outcomes minus baselines). These analyses pose well-known challenges, 68 

which have been discussed by statisticians for decades (Lord, 1956; Oldham, 1962; Cronbach and 69 

Furby, 1970; Hayes, 1988; Tu et al., 2005). Much of this discussion is focused on problems induced 70 
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by measurement noise, and measurement noise is also the focus of the only prior application of that 71 

discussion to the proportional recovery rule (Krakauer and Marshall, 2015). Here, we argue that 72 

empirical studies of proportional recovery after stroke are likely confounded entirely regardless of 73 

measurement noise. 74 

Our argument is that: (a) correlations between baselines and recovery are spurious when 75 

they are stronger than correlations between baselines and outcomes; (b) this is likely when 76 

outcomes are less variable than baselines; which (c) will often happen in practice, whether or not 77 

recovery is proportional. This argument follows from a formal analysis of correlations between 78 

baselines and recovery, which we introduce in section 2 and illustrate with examples. We then 79 

employ that analysis to re-examining the empirical support for the proportional recovery rule in 80 

section 3. 81 

 82 

2. THE RELATIONSHIPS BETWEEN BASELINES, OUTCOMES, AND RECOVERY 83 

FŽƌ ƚŚĞ ƐĂŬĞ ŽĨ ďƌĞǀŝƚǇ͕ ǁĞ ĚĞĨŝŶĞ ͚ďĂƐĞůŝŶĞƐ͛ с X͕ ͚ŽƵƚĐŽŵĞƐ͛ с Y͕ ĂŶĚ ͚ĐŚĂŶŐĞ͛ ;ƌĞĐŽǀĞƌǇͿ с ȴ͗ ŝ͘Ğ͘ Y 84 

minus X͘ TŚĞ ͚ĐŽƌƌĞůĂƚŝŽŶ ďĞƚǁĞĞŶ ďĂƐĞůŝŶĞƐ ĂŶĚ ŽƵƚĐŽŵĞƐ͛ ŝƐ r(X,YͿ͕ ĂŶĚ ƚŚĞ ͚ĐŽƌƌĞůĂƚŝŽŶ ďĞƚǁĞĞŶ 85 

ďĂƐĞůŝŶĞƐ ĂŶĚ ĐŚĂŶŐĞ͛ ŝƐ r(X,ȴͿ͘ Finally, we ĚĞĨŝŶĞ ƚŚĞ ͚ǀĂƌŝĂďŝůŝƚǇ ƌĂƚŝŽ͛ ĂƐ ƚŚĞ ƌĂƚŝŽ ŽĨ ƚŚĞ ƐƚĂŶĚĂƌĚ 86 

ĚĞǀŝĂƚŝŽŶ ;ʍͿ ŽĨ Y ƚŽ ƚŚĞ ƐƚĂŶĚĂƌĚ ĚĞǀŝĂƚŝŽŶ ŽĨ X͗ ʍYͬʍX.  87 

X and Y are construed as lists of scores, with each entry being the performance of a single 88 

patient at the specified time point. We assume that higher scores imply better performance, so 89 

r(X,ȴͿ ǁŝůů ďĞ ŶĞŐĂƚŝǀĞ ŝĨ ƌĞĐŽǀĞƌǇ ŝƐ ƉƌŽƉŽƌƚŝŽŶĂů (to lost function). One can equally substitute ͚ůŽƐƚ 90 

ĨƵŶĐƚŝŽŶ͛ ;Ğ͘Ő͘ ŵĂǆŝŵƵŵ ƐĐŽƌĞ ŵŝŶƵƐ ĂĐƚƵĂů ƐĐŽƌĞͿ͕ for ͚ďĂƐĞůŝŶĞ ƐĐŽƌĞ͕͛ ďƵƚ ǁŚŝůĞ ƚŚŝƐ ŵĂŬĞƐ ƌ;X͕ȴͿ 91 

positive if recovery is proportional, it is otherwise equivalent. 92 

 93 

2.1. Strong correlations imply the potential for accurate predictions 94 

Strong correlations between any two variables typically imply that we can use either variable to 95 

predict the other. Out-of-sample predictions should tend toward the least-squares line defined by 96 

the original (in-sample) correlation. Some empirical studies employ this logic to ĚĞƌŝǀĞ ͚ƉƌĞĚŝĐƚĞĚ 97 

ƌĞĐŽǀĞƌǇ͛ ;ƉȴͿ from the least-squares line for r(X,ȴͿ͕ ƌĞƉŽƌƚing r(Ɖȴ͕ȴ) instead of r(X,ȴͿ (Winters et 98 

al., 2015; Marchi et al., 2017). Since the magnitudes of r(X,ȴͿ ĂŶĚ ƌ;Ɖȴ͕ȴ) are the same by definition 99 

(see proposition 8, Appendix A, and Figure 1), the preference for either expression over the other is 100 

arguably cosmetic. 101 
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Nevertheless, the correlation between predicted and empirical data is a common measure 102 

of predictive accuracy: the stronger the correlation, the better the predictions. Very strong 103 

correlations are unusual when predicting behavioural performance in humans ʹ both because 104 

behaviour itself is complex, and because of measurement noise in behavioural assessment. Once 105 

r(Ɖȴ͕ȴ) > ~0.95, for example (Winters et al., 2015), this prognostic problem has seemingly been 106 

͚ƐŽůǀĞĚ͛ more accurately than many might have thought possible. 107 

 108 

2.2. ƌ;X͕ȴͿ ŝƐ ƐƉƵƌŝŽƵƐ ǁŚĞŶ ƐƚƌŽŶŐĞƌ ƚŚĂŶ ƌ;X͕YͿ 109 

Recovery is precisely the difference between baselines and outcomes. When r(X,ȴͿ is strong, 110 

implying that we can predict recovery accurately given baselines, it is tempting to assume that we 111 

can also predict outcomes equally accurately, by simply adding predicted recovery to baselines. 112 

MŽƌĞ ĨŽƌŵĂůůǇ͕ ƚŚĞ ĂƐƐƵŵƉƚŝŽŶ ŝƐ ƚŚĂƚ ƌ;XнƉȴ͕YͿ у ƌ;Ɖȴ͕ȴͿ͘ This assumption is wrong. 113 

In fact͕ ƌ;XнƉȴ͕YͿ у r(X,Y) (see appendix A, proposition 8, and Figure 1). When recovery is 114 

ƉƌĞĚŝĐƚĞĚ ĨƌŽŵ ďĂƐĞůŝŶĞƐ͕ ƚŚĞ ĐŽƌƌĞůĂƚŝŽŶ ďĞƚǁĞĞŶ ͚ďĂƐĞůŝŶĞƐ ƉůƵƐ ƉƌĞĚŝĐƚĞĚ ƌĞĐŽǀĞƌǇ͛ ĂŶĚ ŽƵƚĐŽŵĞƐ͕ 115 

is never stronger than the correlation between baselines and outcomes. WŚĞŶ ƌ;X͕ȴͿ ŝƐ ƐƚƌŽŶŐĞƌ 116 

ƚŚĂŶ ƌ;X͕YͿ͕ ƌ;X͕ȴͿ is spurious, because it encourages an over-optimistic impression of how 117 

predictable outcomes are, given baselines. 118 

 119 

2.3. TŚĞ ĐĂŶŽŶŝĐĂů ĞǆĂŵƉůĞ ŽĨ ƐƉƵƌŝŽƵƐ ƌ;X͕ȴͿ 120 

The canonical example of ƐƉƵƌŝŽƵƐ ƌ;X͕ȴͿ is when X and Y are independent random variables with the 121 

same variance: ʍYͬʍX у ϭ ĂŶĚ ƌ;X͕YͿ у Ϭ, but ƌ;X͕ȴͿ у -0.71 (Oldham, 1962). This ƌ;X͕ȴͿ suggests that 122 

ǁĞ ĐĂŶ ƉƌĞĚŝĐƚ ƌĞĐŽǀĞƌǇ ƌĞůĂƚŝǀĞůǇ ǁĞůů͕ ďƵƚ ǁĞ ĐĂŶŶŽƚ ƵƐĞ ͚ƉƌĞĚŝĐƚĞĚ ƌĞĐŽǀĞƌǇ͛ ƚŽ ƉƌĞĚŝĐƚ ŽƵƚĐŽŵĞƐ 123 

equally well (see Figure 1). 124 

 125 

--Figure 1-- 126 

 127 

 Krakauer and Marshall (2015) recently argued that this scenario has little relevance to (most) 128 

empirical studies of recovery after stroke. This is because: (a) spurious ƌ;X͕ȴͿ only emerge here when 129 

r(X,Y) is weak; and (b) empirical r(X,Y) are usually strong, because X and Y are dependent, repeated 130 

measurements from the same patients. IĨ ƐƉƵƌŝŽƵƐ ƌ;X͕ȴͿ ŽŶůǇ Žƌ ŵĂŝŶůǇ ĞŵĞƌŐĞĚ ǁŚĞŶ ʍYͬʍX у ϭ ĂŶĚ 131 
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ƌ;X͕YͿ у Ϭ͕ they might indeed be irrelevant in practice. Unfortunately, ƐƉƵƌŝŽƵƐ ƌ;X͕ȴͿ ĂůƐŽ ĞŵĞƌŐĞ ŝŶ 132 

another scenario, which is very common in studies of recovery after stroke.  133 

 134 

2.4. Spurious r(X,ȴͿ are likely ǁŚĞŶ ʍYͬʍX is small 135 

For any X and Y, it can be shown that:  136 

ሺܺǡݎ ሻ߂  ൌ ௒ Ǥߪ ሺܺǡݎ ܻሻ െ ௒ଶߪ௑ඥߪ ൅ ௑ଶߪ െ ʹ Ǥ ௑ Ǥߪ ௒Ǥߪ ሺܺǡݎ ܻሻ    ሺEquation ͳሻ 137 

A formal proof of Equation 1 is provided in Appendix A (proposition 4 and theorem 1; also 138 

see (Oldham, 1962)); its consequence is that r(X,ȴͿ ŝƐ Ă ĨƵŶĐƚŝŽŶ ŽĨ r(X,YͿ ĂŶĚ ʍYͬʍX. To illustrate that 139 

function, we performed a series of simulations (see Appendix B) in which r(X,YͿ ĂŶĚ ʍYͬʍX were 140 

varied independently. Figure 1 illustrates the resultƐ͗ Ă ƐƵƌĨĂĐĞ ƌĞůĂƚŝŶŐ ƌ;X͕ȴͿ ƚŽ ƌ;X͕YͿ ĂŶĚ ʍYͬʍX. 141 

Figure 2 illustrates example recovery data at six points of interest on that surface. 142 

 143 

--Insert Figures 2 and 3 and Table 1-- 144 

 145 

Point A corresponds to the canonical example of spurious ƌ;X͕ȴͿ, introduced in the last 146 

section: i.e., ʍYͬʍX у ϭ ĂŶĚ ƌ;X͕YͿ у Ϭ, but ƌ;X͕ȴͿ у -0.71 (see Figure 3a). At point B, ʍYͬʍX у ϭ and r(X,Y) 147 

is strong, so recovery is approximately constant (Figure 3b) and ƌ;X͕ȴͿ у Ϭ, consistent with the view 148 

that strong r(X,Y) curtail spurious r(X,ȴ) (Krakauer and Marshall, 2015). However the situation is 149 

more complex when ʍYͬʍX is more skewed. 150 

When ʍYͬʍX ŝƐ ůĂƌŐĞ͕ Y ĐŽŶƚƌŝďƵƚĞƐ ŵŽƌĞ ǀĂƌŝĂŶĐĞ ƚŽ ȴ͕ ĂŶĚ ƌ;X͕ ȴͿ у r(X,Y); this is Regime 1. 151 

Points C and D illustrate the convergence (Figure 3c-d). Data like this might suggest recovery 152 

proportional to spared function. By contrast, when ʍYͬʍX is small, X contributes more variance to Y-X, 153 

ĂŶĚ ƌ;X͕ȴͿ у r(X,-X): i.e. -1 (see appendix A, theorem 2); this is Regime 2, where the confound 154 

emerges. Point E corresponds to data predicted by the proportional recovery rule: all patients 155 

recover exactly 70% of lost function (Figure 2e). Here, ʍYͬʍX is already small enough (0.3) to be 156 

dangerous: after randomly shuffling Y, ƌ;X͕YͿ у Ϭ͕ ďƵƚ ƌ;X͕ȴͿ is almost unaffected (Point F, and Figure 157 

3f). Even if patients do recover proportionally, in other words, empirical data may enter territory, on 158 

the surface in Figure 2, where spurious ƌ;X͕ȴͿ are likely. 159 

 160 
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2.5. ʍYͬʍX will often be small, whether or not recovery is proportional 161 

Proportional recovery implies small ʍYͬʍX, but small ʍYͬʍX does not imply proportional recovery; for 162 

example, constant recovery with ceiling effects will produce the same effect. To illustrate this, we 163 

ran 1,000 simulations in which: (i) 1,000 baseline scores are drawn randomly with uniform 164 

probability from the range 0-65 (i.e. impaired on the 66-point Fugl-Meyer upper-extremity scale); (ii) 165 

outcome scores were calculated as the baseline scores plus ŚĂůĨ ƚŚĞ ƐĐĂůĞ͛Ɛ ƌĂŶŐĞ ;ϯϯ); and (iii) 166 

outcome scores greater than 66 were set to 66 (i.e. a hard ceiling). Mean r(X,Y) and r(X,ȴͿ ǁĞƌĞ 167 

calculated both before and after shuffling the outcomes data for each simulation. After shuffling, 168 

r(X,YͿ у Ϭ and r(X,ȴͿ с -0.88: ceiling effects make ʍYͬʍX small enough to encourage ƐƉƵƌŝŽƵƐ ƌ;X͕ȴͿ͘ 169 

And just as importantly, before shuffling, r(X,Y) = 0.89 and ƌ;X͕ȴͿ с -Ϭ͘ϵϬ͗ ĞǀĞŶ ǁŚĞŶ ƌ;X͕ȴͿ ŝƐ not 170 

spurious (because r(X,Y) is similarly strong), we cannot conclude that recovery is really proportional.  171 

 172 

3. RE-EXAMINING THE EMPIRICAL LITERATURE ON PROPORTIONAL RECOVERY 173 

The relationships between r(X,Y), r(X,ȴͿ ĂŶĚ ʍYͬʍX, merit a re-examination of the empirical support 174 

for the proportional recovery rule. In the only study we found, ǁŚŝĐŚ ƌĞƉŽƌƚƐ ŝŶĚŝǀŝĚƵĂůƐ͛ ďĞŚĂǀŝŽƵƌĂů 175 

ĚĂƚĂ͕ )ĂƌĂŚŶ ĂŶĚ ĐŽůůĞĂŐƵĞƐ ;ϮϬϭϭͿ ĐŽŶƐŝĚĞƌ ϯϬ ƉĂƚŝĞŶƚƐ͛ ƌĞĐŽǀĞƌŝĞƐ ĨƌŽŵ ŚĞŵŝƉĂƌĞƐŝƐ ĂĨƚĞƌ ƐƚƌŽŬĞ͘ 176 

Across the whole sample, r(X,Y) = 0.80 and r(X,ȴͿ с -0.49; after removing 7 non-fitters: r(X,Y) = 0.75 177 

and r(X,ȴͿ с -0.95. Removing the non-fitters increases the apparent predictability of recovery but 178 

reduces the predictability of outcomes (and reduces ʍYͬʍX from 0.88 to 0.36). Notably, the residuals 179 

for both correlations are identical (see Figure 4), and in fact this is always true (see Appendix A, 180 

proposition 10). r(X,ȴͿ has the same errors as r(X,Y), but a larger effect size: r(X,ȴͿ ŝƐ over-optimistic. 181 

 182 

--Insert Figure 3-- 183 

 184 

 We can also use Equation 1 to reinterpret studies that do not report individual patient data. 185 

One example is the first study to report proportional recovery from aphasia after stroke (Lazar et al., 186 

2010). Here, r(X,ȴͿ у -0.9 and ʍYͬʍX у 0.48; Equation 1 implies that r(X,Y) was either ~0.78 or zero. 187 

Similarly, in the recent study of proportional recovery in rats (Jeffers et al., 2018), ʍYͬʍX у 0.8, and 188 

r(X,ȴͿ у -0.71; Equation 1 implies that r(X,Y) was either much stronger (>0.95) or considerably 189 

weaker (~0.29) than r(X,ȴͿ. In both cases͕ ƌ;X͕ȴͿ tells us less than expected about how predictable 190 

outcomes really were, given baseline scores.  191 



8 

 

 Many recent studies report inter-quartile ranges (IQRs), rather than standard deviations, for 192 

the baselines and outcomes of patients deemed to recover proportionally. Accepting some room for 193 

error, we can also ĞƐƚŝŵĂƚĞ ʍYͬʍX from those IQRs. In one case (Winters et al., 2015), r(X,ȴͿ с -0.97 194 

and ʍYͬʍX = 0.158, while in another (Veerbeek et al., 2018), ʍYͬʍX = 0.438 and r(X,ȴͿ у -0.88. In both 195 

cases, Equation 1 implies that r(X,ȴͿ ǁŽƵůĚ ďĞ Ăƚ ůĞĂƐƚ that strong as that reported, regardless of 196 

r(X,Y): here again, the headline effect sizes do not tell us how predictable outcomes actually are, 197 

given baseline scores. 198 

Many studies in this literature only relate baselines to recovery through multivariable 199 

models (Buch et al., 2016; Marchi et al., 2017; Winters et al., 2017); in these studies, we cannot 200 

demonstrate confounds directly with Equation 1. Nevertheless, these studies are also probably 201 

ĐŽŶĨŽƵŶĚĞĚ͕ ďĞĐĂƵƐĞ ĂŶǇ ŝŶĨůĂƚŝŽŶ ŝŶ ŽŶĞ ǀĂƌŝĂďůĞ͛Ɛ ĞĨĨĞĐƚ ƐŝǌĞ ǁŝůů ŝŶĨůĂƚĞ ƚŚĞ ŵƵůƚŝǀĂƌŝĂďůĞ ŵŽĚĞů͛Ɛ 202 

effect size as well. As discussed in section 2.5, empirical studies of recovery after stroke should tend 203 

ƚŽ ĞŶĐŽƵƌĂŐĞ ƐŵĂůů ʍYͬʍX, whether or not recovery is really proportional. Consequently, the null 204 

ŚǇƉŽƚŚĞƐŝƐ ǁŝůů ƌĂƌĞůǇ ďĞ ƚŚĂƚ ƌ;X͕ȴͿ у Ϭ͘ FŽƌ ĞǆĂŵƉůĞ͕ ŝŶ ƚŚĞ ŽŶůǇ ŵƵůƚŝǀĂƌŝĂďůĞ ŵŽĚĞůůŝŶŐ ƐƚƵĚǇ͕ 205 

which reports IQRs for its fitter-ƉĂƚŝĞŶƚƐ͛ ďĂƐĞůŝŶĞƐ ĂŶĚ ŽƵƚĐŽŵĞƐ (Stinear et al., 2017c)͕ ʍYͬʍX у Ϭ͘ϰϴ͕ 206 

ǁŚŝĐŚ ŝŵƉůŝĞƐ ƚŚĂƚ ƚŚĞ ǁĞĂŬĞƐƚ ƌ;X͕ȴͿ ǁĂƐ -0.88, for any positive value of r(X,Y).  207 

Finally, while r(X,ȴͿ ĐĂŶ ďĞ ŵŝƐůĞĂĚŝŶŐ ŝĨ ŝƚ ŝƐ extreme relative to r(X,Y), the reverse is also 208 

true. One study in this literature which employs outcomes as the dependent variable, rather than 209 

recovery (Feng et al., 2015), reports that r(X,YͿ у Ϭ͘ϴ ĂŶĚ ʍYͬʍX = 1.2 ŝŶ ƚŚĞŝƌ ͚ĐŽŵďŝŶĞĚ͛ ŐƌŽƵƉ ŽĨ ϳϲ 210 

patients. BǇ EƋƵĂƚŝŽŶ ϭ͕ ƌ;X͕ȴͿ с -0.05: i.e. recovery was uncorrelated with baseline scores. These 211 

authors only report proportional recovery in a sub-sample of their patients (but not the information 212 

we need to re-examine that claim), but their full sample seems better described by constant 213 

recovery (as in Figure 3b). 214 

 215 

4. Discussion 216 

The proportional recovery rule is striking because it implies that recovery is simple and consistent 217 

across patients (non-fitters notwithstanding), and because that implication appears to be justified by 218 

strong empirical results (Stinear, 2017). We contend that the empirical support for the rule is weaker 219 

than it seems.  220 

In summary, our argument is that r(X,ȴͿ is spurious when stronger than r(X,Y), and that the 221 

ĐŽŶĚŝƚŝŽŶƐ ǁŚŝĐŚ ĞŶĐŽƵƌĂŐĞ ƐƉƵƌŝŽƵƐ ƌ;X͕ȴͿ ǁŝůů ďĞ ĐŽŵŵŽŶ ŝŶ ĞŵƉŝƌŝĐĂů ƐƚƵĚŝĞƐ ŽĨ ƌĞĐŽǀĞƌǇ ĂĨƚĞƌ 222 

stroke, whether or not recovery is really proportional. MĂŶǇ ĞŵƉŝƌŝĐĂů ƌ;X͕ ȴͿ ŝŶ ƚŚŝƐ ůŝƚĞƌĂƚƵƌĞ ĂƉƉĞĂƌ 223 
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ƚŽ ďĞ ƐƉƵƌŝŽƵƐ ŝŶ ƚŚŝƐ ƐĞŶƐĞ͘ AŶĚ ŝŶ ĂŶǇ ĐĂƐĞ͕ ƐƚƌŽŶŐ ƌ;X͕ȴͿ ĂƌĞ ŝŶƐƵĨĨŝĐŝĞŶƚ ĞǀŝĚĞŶĐĞ ĨŽƌ ƉƌŽƉŽƌƚŝŽŶĂů 224 

recovery if they are not spurious (because they are accompanied by similarly strong r(X,Y)). 225 

 The only previous discussion of the risk of spurious r(X,ȴͿ, in analyses of recovery after stroke, 226 

(Krakauer and Marshall, 2015), concluded that this risk is small provided the tools used to measure 227 

post-stroke impairment are reliable: i.e. so long as measurement noise is minimal. Crucially, our 228 

analysis applies entirely regardless of measurement noise. WĞ ĐŽŶƚĞŶĚ ƚŚĂƚ ƚŚĞ ƌŝƐŬ ŽĨ ƐƉƵƌŝŽƵƐ ƌ;X͕ȴͿ 229 

is significant, if there are ceiling effects on the scale used to measure post-stroke impairment, and if 230 

most patients improve between baseline and subsequent assessments. The criteria will usually be met 231 

in practice, because every practical measurement of post-stroke impairment employs a finite scale, 232 

and because non-fitters, who do not make the predicted recovery, are removed prior to calculating 233 

ƌ;X͕ȴͿ.  234 

We are not suggesting that there is anything wrong with the practice of distinguishing fitters 235 

from non-fitters. Indeed, our results prove that this work may be valid regardless of our other 236 

concerns. Non-fitters do not recover as predicted; by definition, they contribute the largest, negative 237 

residuals to r(X,ȴͿ͘ In Figure 4 and appendix A (proposition 9), we show that the residuals for r(X,Y) 238 

ĂŶĚ ƌ;X͕ȴͿ ĂƌĞ ĞǆĂĐƚůǇ ƚŚĞ ƐĂŵĞ, so the same patients will be placed in the same sub-groups regardless 239 

of which correlation is used, and biomarkers which distinguish those sub-groups at the acute stage 240 

(Stinear, 2017), will be equally accurate regardless of which correlation is used. Nevertheless, extreme 241 

r(X,ȴͿ ĨŽƌ patients classified as fitters, will naturally encourage the assumption that those ĨŝƚƚĞƌƐ͛ 242 

outcomes are largely determined by initial symptom severity. If this assumption is true, therapeutic 243 

interventions must be largely ineffective (or at least redundant) for these patients. Our analysis 244 

suggests that this assumption is wrong. 245 

Nevertheless, we are not claiming that the proportional recovery rule is wrong. Our analysis 246 

suggests that empirical studies to date do not demonstrate that the rule holds, or how well, but we 247 

could only confirm that ƌ;X͕ȴͿ ǁĂƐ actually over-optimistic in one study, which reported individual 248 

patient data. And while we have also shown that extreme r(X,ȴͿ ĂŶĚ r(X,Y) can result from non-249 

proportional (constant) recovery, this is simply a plausible alternative hypothesis about how patients 250 

really recover.  251 

Quite how to interpret empirical recovery with confidence in this domain, remains an open 252 

question: we have articulated a problem here, hoping that recognition of the problem will motivate 253 

work to solve it. Nevertheless, we can make some recommendations for future studies in the field.  254 
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First, ƚŚĞƐĞ ƐƚƵĚŝĞƐ ƐŚŽƵůĚ ƌĞƉŽƌƚ ƌ;X͕ȴͿ͕ ƌ;X͕YͿ͕ ĂŶĚ ʍYͬʍX, for those patients deemed to 255 

recover proportionally. DĞƐƉŝƚĞ ŽƵƌ ĐŽŶĐĞƌŶƐ ĂďŽƵƚ ƌ;X͕ȴͿ͕ we do learn something when r(X,Y) is 256 

strong, but r(X,ȴͿ ŝƐ ǁĞĂŬ͕ ĂƐ ŝŶ FĞŶŐ ĂŶĚ ĐŽůůĞĂŐƵĞƐ͛ ;ϮϬϭϱͿ ƌĞƐƵůƚƐ ŝŶ ƐĞĐƚŝŽŶ ϯ͕ ǁŚŝĐŚ ĂƉƉĞĂƌĞĚ ƚŽ ďĞ 257 

better explained by constant recovery than by proportional recovery.  258 

Second, future studies should consider explicitly testing the hypothesis that recovery depends 259 

on baseline scores (Oldham, 1962; Hayes, 1988; Tu et al., 2005; Tu and Gilthorpe, 2007; Chiolero et 260 

al., 2013). These tests sensibly acknowledge that the null hypothesis is rarely ƌ;X͕ȴͿ у Ϭ ŝŶ ƚŚĞƐĞ 261 

analyses. However, they do not address the proper measurement and interpretation of effect sizes, 262 

which is our primary concern here; somewhat paradoxically, this means that they may be less useful 263 

in larger samples than in smaller samples (Friston, 2012; Lorca-Puls et al., 2018).  264 

These hypothesis tests will also all be confounded by ceiling effects. We recommend that 265 

future studies should measure the impact of such effects, perhaps by reporting the shapes of the 266 

distributions of X and Y (greater asymmetry implying more prominent ceiling effects). Future studies 267 

should also attempt to minimise ceiling effects. One approach might be to remove patients whose 268 

outcomes are at ceiling: though certainly inefficient, this does at least remove the spurious ƌ;X͕ȴͿ in 269 

our simulations of constant recovery (section 2.5). However, it may be difficult to determine which 270 

patients to remove in practice; the Fugl-Meyer scale, for example, imposes item-level ceiling effects, 271 

ǁŚŝĐŚ ĐŽƵůĚ ĚŝƐƚŽƌƚ ʍYͬʍX well below the maximum score. A better, though also more complex 272 

alternative, may be to employ assessment tools expressly designed to minimise ceiling effects, or to 273 

add such tools to those currently in use. 274 

More generally, we may need to replace correlations with alternative methods, which can 275 

provide less ambiguous evidence for the proportional recovery rule. One principled alternative might 276 

employ Bayesian model comparison to adjudicate between different forward or generative models of 277 

the data at hand: i.e. using the empirical data to quantify evidence for or against competing 278 

hypotheses about the nature of recovery, which may or may not be conserved across patients. We 279 

hope that our analysis here will encourage work to develop such methods, delivering better evidence 280 

for (or against) the proportional recovery rule. 281 
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Figure 1 359 

 360 

FŝŐƵƌĞ ϭ͗ A ĐĂŶŽŶŝĐĂů ĞǆĂŵƉůĞ ŽĨ ƐƉƵƌŝŽƵƐ ƌ;X͕ ȴͿ͘ Baselines scores are uncorrelated with outcomes 361 

(A), but baseline scores appear to be strongly correlated with recovery (B). That correlation can be 362 

used to derive predicted recovery, which is strongly correlated with empirical recovery (C) ʹ but 363 

predicted outcomes, derived from that predicted recovery, are still uncorrelated with empirical 364 

outcomes (D). 365 

  366 
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 367 

Figure 2 368 

 369 

Figure 2: The relationship between r(X,Y), r(X,ȴͿ ĂŶĚ ʍYͬʍX. Note that the x-axis is log-transformed to 370 

ĞŶƐƵƌĞ ƐǇŵŵĞƚƌǇ ĂƌŽƵŶĚ ϭ͖ ǁŚĞŶ X ĂŶĚ Y ĂƌĞ ĞƋƵĂůůǇ ǀĂƌŝĂďůĞ͕ ůŽŐ;ʍYͬʍX) = 0. Proposition 7 in Appendix 371 

A provides a justification for unambiguously using a ratio of standard deviations in this figure, rather 372 

ƚŚĂŶ ʍY ĂŶĚ ʍX as separate axes. The two major regimes of Equation 1 are also marked in red. In Regime 373 

1, Y is more variable than X, so contributes more variance to ȴ, and r(X,ȴͿ у ƌ;X͕YͿ. In Regime 2, X is 374 

more variable than Y, so X contributes more variance to ȴ, and ƌ;X͕ȴͿ у r(X,-X) (i.e. -1). The transition 375 

between the two regimes, when the variability ratio is not dramatically skewed either way, also allows 376 

for spurious ƌ;X͕ȴͿ͘ FŽƌ ƚŚĞ ƉƵƌƉŽƐĞƐ ŽĨ ŝůůƵƐƚƌĂƚŝŽŶ͕ ƚŚĞ ĨŝŐƵƌĞ ĂůƐŽ ŚŝŐŚůŝŐŚƚƐ ϲ ƉŽŝŶƚƐ ŽĨ ŝŶƚĞƌĞƐƚ ŽŶ 377 

the surface, marked A-F; examples of simulated recovery data corresponding to these points are 378 

provided in Figure 3. 379 

 380 

  381 
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Figure 3 382 

 383 

Figure 3: Exemplar points on the surface in Figure 2. Simulated recovery data, corresponding to the 384 

points A-F marked on the surface in Figure 1. (A) Baselines and outcomes are entirely independent 385 

(r(X,Y)=0)͕ ǇĞƚ ƌ;X͕ ȴͿ ŝƐ relatively strong; this is the canonical example of mathematical coupling, first 386 

introduced by Oldham (1962); (B) Recovery is constant with minimal noise, so baselines and 387 

outcomes are equally variable (ʍYͬʍX у ϭͿ ĂŶĚ recovery is unrelated to baseline scores (ƌ;X͕ ȴͿ у ϬͿ; 388 

(C-D) Outcomes are more variable than baselines (ʍYͬʍX у ϱͿ, and ƌ;X͕ ȴͿ ĐŽŶǀĞƌŐĞƐ ƚŽ ƌ;X͕ YͿ͖ ;EͿ 389 

Recovery is 70% of lost function, so outcomes are less variable than baselines (ʍYͬʍX у Ϭ͘ϯͿ͖ ĞǀĞŶ 390 

with shuffled outcomes data (F) baselines and recovery still appear to be strongly correlated. 391 
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Figure 4 392 

 393 

Figure 4: (Left) Least squares linear fits for analyses relating baselines to (upper) outcomes and 394 

(lower) recovery, using the ĨŝƚƚĞƌƐ͛ data reported by Zarahn and colleagues (Zarahn et al., 2011). 395 

(Middle) Plots of residuals relative to each least squares line, against the fitted values in each case. 396 

(Right) A scatter plot of the residuals from the model relating baselines to change, against the 397 

residuals from the model relating baselines to outcomes: the two sets of residuals are the same. 398 

  399 
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Table 1 400 

REGIME VA‘IABILITY OF Y ;ʍY) VA‘IABILITY OF X ;ʍX) ȴ ΀с Y-X] r(X,ȴͿ ΀сr(X,Y-X)] 

1 Smaller Larger Y-X у -X r(X,Y-XͿ у r(X,-X) = -1 

2 Larger Smaller Y-X у Y r(X,Y-XͿ у r(X,Y) 

  401 
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Supplementary Appendix A: formal relationships between the correlations 402 

We present a simple, general and self-contained formulation of the proportional recovery concept. 403 

We have derived all of the key results from first principles, while acknowledging previous 404 

presentations of these results when they can be found in the literature.  405 

We assume two variables ܺԢ and ܻԢ corresponding to performance at initial test (ܺԢ) and at second 406 

test (ܻԢ). These will be represented as column vectors, with each entry being the performance of a 407 

single patient and vector lengths being ܰ א Գ. Performance improves as numbers get bigger, up to a 408 

maximum, denoted ݔܽܯ, which corresponds to no discernible deficit. Severity is measured as 409 

difference from maximum, i.e. ݔܽܯ െ ܺԢ. 410 

The two variables (ܺԢ and ܻԢ) could be specialised to more detailed formulations: e.g., true score 411 

theory or with an explicit modelling of measurement or state error. However, this would not impact 412 

any of the derivations or inferences that follow. Indeed, the results that we present would hold even 413 

in the complete absence of measurement noise, which has been considered the main concern for 414 

the validity of quantifications of proportional recovery. 415 

 416 

Demeaning 417 

Without loss of generality, we work with demeaned variables. That is, where over-lining denotes 418 

mean, we define new variables as, 419 ܺ ൌ ܺᇱ െ ܺԢഥ  420 ܻ ൌ ܻᇱ െ ܻԢഥ  421 

This also means that recovery, i.e. ܻ െ ܺ, will be demeaned, since, using proposition 1, the following 422 

holds. 423 ܻ െ ܺ ൌ ሺܻᇱ െ ܻᇱഥ ሻ െ ሺܺᇱ െ ܺᇱതതതሻ ൌ ሺܻᇱ െ ܺԢሻ െ ሺܻᇱഥ െ ܺᇱതതതሻ ൌ ሺܻᇱ െ ܺԢሻ െ ሺܻᇱ െ ܺᇱሻതതതതതതതതതതതത 424 

Proposition 1 425 

Let ܸ and ܹ be vectors of the same length, denoted ܰ. Then, the following holds, 426 തܸ ൅ ഥܹ ൌ ሺܸ ൅ ܹሻതതതതതതതതതതത 427 

with തܸ െ ഥܹ ൌ ሺܸ െ ܹሻതതതതതതതതതതത as a trivial consequence. 428 

Proof 429 

By distributivity of multiplication through addition and associativity of addition, the following holds. 430 

തܸ ൅ ഥܹ ൌ ൭ͳܰ ෍ ௜ܸே
௜ୀଵ ൱ ൅ ൭ͳܰ ෍ ௜ܹே

௜ୀଵ ൱ ൌ ͳܰ ൭෍ ௜ܸே
௜ୀଵ ൅ ෍ ௜ܹே

௜ୀଵ ൱ ൌ ͳܰ ൭෍ሺ ௜ܸே
௜ୀଵ ൅ ௜ܹሻ൱ ൌ ሺܸ ൅ ܹሻതതതതതതതതതതത 431 

                                QED 432 

Correlations 433 

There are two basic correlations we are interested in, (1) the correlation between initial 434 

performance and performance at second test, i.e. ݎሺܺǡ ܻሻ, and (2) the correlation between initial 435 

performance and recovery, i.e. ݎሺܺǡ ܻ െ ܺሻ ൌ ሺܺǡݎ ȟሻ. The latter of these is the key relationship, and 436 
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we would expect this to be a negative correlation; that is, as initial performance is smaller (i.e. 437 

further from ݔܽܯ), the larger is recovery. (One could also formulate the correlation as ݎሺሺݔܽܯ െ438 ܺሻǡ ܻ െ ܺሻ, which would flip the correlation to positive, but the two approaches are equivalent). 439 

Our main correlations are defined as follows, 440 

ሺܺǡݎ ܻሻ ൌ σ  ௜ܺ Ǥ  ௜ܻே௜ୀଵሺܰ െ ͳሻ Ǥ ௑ Ǥߪ  ௒  441ߪ

ሺܺǡݎ ሺܻ െ ܺሻሻ ൌ σ  ሺ ௜ܺ  Ǥ ሺ ௜ܻ െ ௜ܺሻሻே௜ୀଵሺܰ െ ͳሻ Ǥ ௑ Ǥߪ ሺ௒ି௑ሻߪ  442 

Standard Deviation of a Difference 443 

We need a straightforward result on the standard deviation of a difference. 444 

Proposition 2 445 ߪሺ஺ି஻ሻ ൌ ටߪ஺ଶ ൅ ஻ଶߪ െ ʹ Ǥ ǡܣሺݒ݋ܿ  ሻ 446ܤ

Proof 447 

The result is a direct consequence of the following standard result from probability theory, e.g. see 448 

Ross, S. M. (2014). Introduction to probability and statistics for engineers and scientists. Academic 449 

Press., 450 ߪሺ஺ି஻ሻଶ ൌ ஺ଶߪ ൅ ஻ଶߪ െ ʹ Ǥ ǡܣሺݒ݋ܿ  ሻ 451ܤ

 452 

Key Results 453 

The following proposition enables us to express the key correlation, ݎሺܺǡ ሺܻ െ ܺሻሻ, in terms of 454 

covariance of its constituent variables. 455 

Proposition 3 456 ݎሺܺǡ ሺܻ െ ܺሻሻ ൌ ሺܺǡݒ݋ܿ ܻሻ െ ሺܺǡݒ݋ܿ ܺሻߪ௑ Ǥ ඥߪ௒ଶ ൅ ௑ଶߪ െ ʹ Ǥ ሺܺǡݒ݋ܿ ܻሻ 457 

Proof 458 

Using distributivity of multiplication through addition, associativity of addition, the definition of 459 

covariance and proposition 2, we can reason as follows. 460 

ሺܺǡݎ ሺܻ െ ܺሻሻ ൌ σ  ሺ ௜ܺ Ǥ ሺ ௜ܻ െ ௜ܺሻሻே௜ୀଵሺܰ െ ͳሻ Ǥ ௑ Ǥߪ ሺ௒ି௑ሻߪ ൌ σ  ሺ ௜ܺ ௜ܻ െ ௜ܺ ௜ܺሻே௜ୀଵሺܰ െ ͳሻ Ǥ ௑ Ǥߪ ሺ௒ି௑ሻߪ ൌ σ  ሺ ௜ܺ ௜ܻሻே௜ୀଵ െ σ  ሺ ௜ܺ  ௜ܺሻே௜ୀଵሺܰ െ ͳሻ Ǥ ௑ Ǥߪ ሺ௒ି௑ሻߪ  461 

ൌ ሺܺǡݒ݋ܿ ܻሻ െ ሺܺǡݒ݋ܿ ܺሻߪ௑ Ǥ ሺ௒ି௑ሻߪ ൌ ሺܺǡݒ݋ܿ ܻሻ െ ሺܺǡݒ݋ܿ ܺሻߪ௑ Ǥ ඥߪ௒ଶ ൅ ௑ଶߪ െ ʹ Ǥ ሺܺǡݒ݋ܿ ܻሻ 462 

QED 463 

It is straightforward to adapt proposition 3 to be fully in terms of correlations. 464 
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Proposition 4 465 ݎሺܺǡ ሺܻ െ ܺሻሻ ൌ ௒ Ǥߪ ሺܺǡݎ ܻሻ െ ௑ Ǥߪ ሺܺǡݎ ܺሻඥߪ௒ଶ ൅ ௑ଶߪ െ ʹ Ǥ ௑ Ǥߪ ௒Ǥߪ ሺܺǡݎ ܻሻ 466 

Proof 467 

Straightforward from proposition 3 and definition of correlations, which gives the relationship 468 ܿݒ݋ሺܣǡ ሻܤ ൌ ஺ Ǥߪ ஻ Ǥߪ ǡܣሺݎ  ሻ.                                                                                                       QED 469ܤ

Scale Invariance 470 

The next set of propositions justifies working with a standardised ܺ variable. 471 

Lemma 1 472 ܿ׊ א Թ ή ȁܿȁǤ ஺ߪ ൌ  ሺ௖Ǥ஺ሻ 473ߪ

Proof 474 

Using distributivity of a multiplicative constant through averaging, ξ݀ଶ ൌ ȁ݀ȁ and distributivity of 475 

square root through multiplication, we can reason as follows. 476 

ሺ௖Ǥ஺ሻߪ ൌ ඨσ  ሺܿǤ ௜ܣ െ ܿǤ തതതതതሻଶே௜ୀଵܣ ܰ െ ͳ ൌ ඨσ  ሺܿǤ ௜ܣ െ ܿǤ ҧሻଶே௜ୀଵܣ ܰ െ ͳ  ൌ  ȁܿȁ Ǥ ඨσ  ሺܣ௜ െ ҧሻଶே௜ୀଵܰܣ െ ͳ ൌ ȁܿȁǤ  ஺ 477ߪ

QED 478 

Proposition 5 (Invariance to scaling) 479 

The absolute magnitude of a correlation is not changed by scaling either variable by a constant, i.e. 480 ܿ׊ א Թ ή ǡܣሺݎ ሻܤ ൌ ሺܿሻǤ݊݃݅ݏ  ሺܿǤݎ ǡܣ ሻܤ ൌ ሺܿሻǤ݊݃݅ݏ  ǡܣሺݎ ܿǤ  ሻ 481ܤ

where  ݊݃݅ݏሺ݀ሻ  ൌ  ݂݅  ሺ݀ ൏ Ͳሻ  ݄݊݁ݐ െ ͳ  ݈݁݁ݏ ൅ ͳ. 482 

Proof 483 

For any ܿ א Թ, using distributivity of multiplication through mean and addition, and lemma 1, the 484 

following holds, 485 

ሺܿǤݎ ǡܣ ሻܤ ൌ σ  ሺܿǤ ௜ܣ െ ܿǤ ௜ܤതതതതതሻሺܣ െ തሻே௜ୀଵሺܰܤ െ ͳሻ Ǥ ஻ߪ ሺ௖Ǥ஺ሻߪ ൌ σ  ሺܿǤ ௜ܣ െ ܿǤ ௜ܤҧሻሺܣ െ തሻே௜ୀଵሺܰܤ െ ͳሻ Ǥ ஻ߪ ሺ௖Ǥ஺ሻߪ  486 

ൌ ܿ Ǥ σ  ሺܣ௜ െ ௜ܤҧሻሺܣ െ തሻே௜ୀଵሺܰܤ െ ͳሻ Ǥ ȁܿȁ Ǥ ஺ Ǥߪ ஻ߪ ൌ ሺܿሻǤ݊݃݅ݏ σ  ሺܣ௜ െ ௜ܤҧሻሺܣ െ തሻே௜ୀଵሺܰܤ െ ͳሻ Ǥ ஺ Ǥߪ ஻ߪ ൌ ሺܿሻǤ݊݃݅ݏ ǡܣሺݎ  ሻ 487ܤ

Then, one can multiply both sides by ݊݃݅ݏሺܿሻ to obtain ݎሺܣǡ ሻܤ ൌ ሺܿሻǤ݊݃݅ݏ  ሺܿǤݎ ǡܣ  ሻ. Additionally, 488ܤ

as correlations are symmetric, ݊݃݅ݏሺܿሻǤ ሺܿǤݎ ǡܤ ሻܣ ൌ ሺܿሻǤ݊݃݅ݏ  ǡܣሺݎ ܿǤ  ሻ, and the full result follows. 489ܤ

QED 490 

Corollary 1 491 ܿ׊ א Թ ή ǡܣሺݎ ሻܤ ൌ ሺܿǤݎ  ǡܣ ܿǤ  ሻ 492ܤ

Proof 493 
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Follows from twice applying proposition 5, and that ݊݃݅ݏሺܿሻଶ ൌ ൅ͳǤ            QED 494 

Proposition 6 495 ܿ׊ א Թ ή ሺܺǡݎ  ሺܻ െ ܺሻሻ ൌ ሺܿǤݎ ܺǡ ሺܿǤ ܻ െ ܿǤ ܺሻሻ 496 

Proof 497 

We can use distributivity of multiplication through subtraction and corollary 1 to give us the 498 

following. 499 ݎ൫ܿǤ ܺǡ ሺܿǤ ܻ െ ܿǤ ܺሻ൯ ൌ ൫ܿǤݎ ܺǡ ܿǤ ሺܻ െ ܺሻ൯ ൌ ሺܺǡݎ ሺܻ െ ܺሻሻ 500 

QED 501 

It follows from proposition 6 that we can work with a standardised ܺ variable, since, 502 ݎሺܺȀߪ௑ǡ ሺܻȀߪ௑ െ ܺȀߪ௑ሻሻ ൌ ሺܺǡݎ ሺܻ െ ܺሻሻ 503 

Proposition 7 (Sufficiency of variability ratio) 504 

Assume two pairs of variables: ଵܺ, ଵܻ and ܺଶ, ଶܻ, such that, ݎሺ ଵܺǡ ଵܻሻ ൌ ሺܺଶǡݎ ଶܻሻ, then, 505 ߪ௒భߪ௑భ ൌ ௑మߪ௒మߪ   ฺ ൫ݎ   ଵܺǡ ሺ ଵܻ െ ଵܺሻ൯ ൌ ൫ܺଶǡݎ ሺ ଶܻ െ ܺଶሻ൯ 506 

Proof 507 

The proof has two parts. 508 

1) We consider the implications of equality of ratio of standard deviations. Firstly, we note that, 509 ߪ௒భߪ௑భ ൌ ௑మߪ௒మߪ   ฻ ௑భߪ௑మߪ   ൌ ௒భߪ௒మߪ        ሺ݁ݏ݋݅ݐܽݎ ݊ݍሻ 510 

Secondly, using eqn ratios, we can argue as follows, 511 ߪ௒భߪ௑భ ൌ ௑మߪ௒మߪ   ฻  ቆߪ௒మ ൌ ௑భߪ௑మߪ ௒భߪ  ר  ௑మߪ   ൌ ௒భߪ௒మߪ ௑భቇߪ  ฻ ቆߪ௒మ ൌ ௑భߪ௑మߪ ௒భߪ  ר  ௑మߪ   ൌ ௑భߪ௑మߪ  ௑భቇ  512ߪ 

ฺ ൫݀׌ א Թ ή ߪ௒మ ൌ ݀Ǥ ௒భߪ ר  ௑మߪ  ൌ ݀Ǥ  ௑భ൯ 513ߪ

2) Using 4, the fact that ݎሺ ଵܺǡ ଵܻሻ ൌ ሺܺଶǡݎ ଶܻሻ, the property just derived in part 1), with ݀ ൌ ఙ೉మఙ೉భ and 514 

rules of square roots, we can reason as follows, 515 ݎ൫ܺଶǡ ሺ ଶܻ െ ܺଶሻ൯ ൌ ௒మߪ  Ǥ ሺܺଶǡݎ ଶܻሻ െ ௑మߪ  Ǥ ሺܺଶǡݎ ܺଶሻටߪ௒మଶ ൅ ௑మଶߪ െ ʹ Ǥ ௑మߪ  Ǥ ௒మߪ Ǥ ሺܺଶǡݎ ଶܻሻ ൌ ௒మߪ  Ǥ ሺݎ ଵܺǡ ଵܻሻ െ ௑మߪ  Ǥ ሺݎ ଵܺǡ ଵܺሻටߪ௒మଶ ൅ ௑మଶߪ െ ʹ Ǥ ௑మߪ  Ǥ ௒మߪ Ǥ ሺݎ ଵܺǡ ଵܻሻ 516 

ൌ ݀Ǥ ௒భߪ  Ǥ ሺݎ ଵܺǡ ଵܻሻ െ ݀Ǥ ௑భߪ Ǥ ሺݎ ଵܺǡ ଵܺሻට݀ଶǤ ௒భଶߪ ൅ ݀ଶǤ ௑భଶߪ െ ʹ Ǥ ݀Ǥ ௑భߪ  Ǥ ݀Ǥ ௒భߪ Ǥ ሺݎ ଵܺǡ ଵܻሻ ൌ ݀Ǥ ሺߪ௒భ  Ǥ ሺݎ ଵܺǡ ଵܻሻ െ ௑భߪ  Ǥ ሺݎ ଵܺǡ ଵܺሻሻ݀Ǥ ටߪ௒భଶ ൅ ௑భଶߪ െ ʹ Ǥ ௑భߪ  Ǥ ௒భߪ Ǥ ሺݎ ଵܺǡ ଵܻሻ 517 

ൌ ൫ݎ ଵܺǡ ሺ ଵܻ െ ଵܺሻ൯Ǥ 518 

QED 519 

Proposition 8 520 
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If ȟ ൌ ܻ െ ܺ and ݌ȟ ൌ ܺǤ ߚ where ,ߚ א Թ, then, 521 

ȟǡ݌ሺݎ (1 ȟሻ ൌ ሻǤߚሺ݊݃݅ݏ ሺܺǡݎ ȟሻ; and 522 

ሺܺݎ (2 ൅ ȟǡ݌ Yሻ ൌ ሺͳ݊݃݅ݏ ൅ ሻǤߚ ሺܺǡݎ Yሻ. 523 

Proof 524 

Both results are easy consequences of proposition 5. 525 

ȟǡ݌ሺݎ   (1 ȟሻ ൌ ሺܺǤݎ ǡߚ ȟሻ ൌ ሻǤߚሺ݊݃݅ݏ ሺܺǡݎ ȟሻǤ 526 ʹሻ   ݎሺܺ ൅ ȟǡ݌ Yሻ ൌ ሺሺܺݎ ൅ ሺܺǤ ሻሻǡߚ Yሻ ൌ ሺሺܺǤݎ ሺͳ ൅ ሻሻǡߚ Yሻ ൌ ሺͳ݊݃݅ݏ ൅ ሻǤߚ ሺܺǡݎ Yሻ ൌ ሺܺǡݎ YሻǤ 527 

QED 528 

Main Findings 529 

Theorem 1: 530 

Since ܺ will be standardised, we can adapt the finding in proposition 4, to give us the key 531 

relationship we need, 532 ݎ൫ܺǡ ሺܻ െ ܺሻ൯ ൌ ௒ Ǥߪ ሺܺǡݎ ܻሻ െ ௒ଶߪ௑ඥߪ ൅ ͳ െ ʹ Ǥ ௒Ǥߪ ሺܺǡݎ ܻሻ       ሺeqn ݐ݊݅ݎ݌݉ܫሻ 533 

Note, this equation can be found in (Oldham, 1962), and also in (Tu et al., 2005). 534 

Proof 535 

Immediate from proposition 4.    QED 536 

Theorem 1 shows clearly that ݎሺܺǡ ሺܻ െ ܺሻሻ is fully defined by the correlations ݎሺܺǡ ܻሻ and ݎሺܺǡ ܺሻ, 537 

along with the variability of ܻ. The correlation of ܺ with itself, i.e. ݎሺܺǡ ܺሻ, is a prominent aspect of 538 

this equation, which drives its oddities.  ݎሺܺǡ ܺሻ reflects the coupling in the equation that arises 539 

because ܺ appears in both the terms being correlated in ݎሺܺǡ ሺܻ െ ܺሻሻ. ݎሺܺǡ ܺሻ is of course a 540 

constant, i.e. 1 for any ܺ, so in fact, ߪ௒ and ݎሺܺǡ ܻሻ, are the only variables; accordingly, their size 541 

determines the extent to which the imprint of ܺ in ܻ െ ܺ drives ݎሺܺǡ ሺܻ െ ܺሻሻ. 542 

This leads to the key observation that, as ߪ௒ gets smaller, ݎሺܺǡ ሺܻ െ ܺሻሻ tends towards െݎሺܺǡ ܺሻ, 543 

which equals െͳ. In other words, as the variability of Y decreases, the imprint of ܺ becomes 544 

increasingly prominent. This is shown in the next theorem. 545 

Theorem 2 546 ݎ൫ܺǡ ሺܻ െ ܺሻ൯ ื െݎሺܺǡ ܺሻ ൌ െͳǡ as  ߪ௒ ื Ͳ 547 

Proof 548 

The right hand side of equation Imprint, has five constituent terms, two in the numerator and three 549 

in the denominator. Of these five, three are products with the standard deviation of ܻ, i.e. ߪ௒. 550 

Assuming all else is constant, as ߪ௒ reduces, the absolute value of each of these three terms reduces 551 

towards zero. The rate of reduction is different amongst the three, but they will all decrease. 552 

Accordingly, as ߪ௒ decreases, ݎ൫ܺǡ ሺܻ െ ܺሻ൯ becomes increasingly determined by the two terms not 553 
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involving ߪ௒, and thus, it tends towards െ ௥ሺ௑ǡ௑ሻξାଵ ൌ െݎሺܺǡ ܺሻ ൌ െͳǤ                                                                    554 

QED 555 

 556 

Equality of Residuals 557 

An important finding of section 5 of the main text, is that the residuals resulting from regressing Y 558 

onto X are the same as regressing Y-X onto X. We show in this section, that this equality of residuals 559 

is necessarily the case. 560 

We focus on the following two equations, 561 

Eqn 1) ܻ ൌ ෨ܺǤ ଵߚ ൅  ଵ 562ߝ

Eqn 2) ܻ െ ܺ ൌ ෨ܺǤ ଶߚ ൅  ଶ 563ߝ

where ෨ܺ is the ܰ ൈ ʹ matrix, with first column being ܺ and second being the ܰ ൈ ͳ vector of ones 564 

(which provides the intercept term); ߚଵ and ߚଶ are ʹ ൈ ͳ vectors of parameters and ܻ, ܺ, ߝଵ and ߝଶ 565 

are ܰ ൈ ͳ vectors. As in the rest of this document, ܻ and ܺ are our (demeaned) initial and outcome 566 

variables, while ߝଵ and ߝଶ are our residual error terms. 567 

Proposition 9 568 

If we assume that ߚଵ and ߚଶ are fit with ordinary least squares, with ߝଵ and ߝଶ the associated 569 

residuals, then, ߝଵ ൌ  ଶ. 570ߝ

Proof 571 

Under ordinary least squares, the parameters are set as follows. 572 ߚଵ ൌ ሺ ෨்ܺ ෨ܺ ሻିଵ ෨்ܺ ܻ     (Eqn 3) 573 ߚଶ ൌ ሺ ෨்ܺ ෨ܺ ሻିଵ ෨்ܺ ሺܻ െ ܺሻ      (Eqn 4) 574 

We start with the second of these, and using left distributivity of matrices, and then substituting Eqn 575 

3, we obtain the following. 576 ߚଶ ൌ ሺ ෨்ܺ ෨ܺ ሻିଵ ෨்ܺ ሺܻ െ ܺሻ ൌ ሺ ෨்ܺ ෨ܺ ሻିଵ ෨்ܻܺ െ ሺ ෨்ܺ ෨ܺ ሻିଵ ෨்ܺܺ ൌ ଵߚ െ ሺ ෨்ܺ ෨ܺ  ሻିଵ ෨்ܺܺ 577 

Using the fact that the variable ܺ is demeaned, we can now evaluate the main term here as follows, 578 ߚଶ ൌ ଵߚ െ ሺ ෨்ܺ ෨ܺ ሻିଵ ෨்ܺܺ ൌ ଵߚ െ ቀܺଶ ȭܺȭܺ ܰ ቁିଵ ቀܺଶȭܺቁ ൌ ଵߚ െ ͳܣ ቀ ܰ െȭܺെȭܺ ܺଶ ቁ ቀܺଶȭܺቁ 579 

where ܺଶ is the dot product of ܺ with itself, ȭܺ is the sum of the vector ܺ, and ܣ ൌ ܰܺଶ െ  ȭܺȭܺ is 580 

the determinant of the matrix being inverted. From here we can derive the following, 581 ߚଶ ൌ ଵߚ െ ͳܣ ൬ ܰܺଶ െ  ȭܺȭܺെȭܺǤ ܺଶ ൅  ܺଶǤ ȭܺ൰ ൌ ଵߚ െ ͳܣ ቀܣͲቁ ൌ ଵߚ െ ቀͳͲቁ 582 

We can then substitute this equality for ߚଶ in eqn 2 and re-arrange to obtain, 583 ܻ െ ܺ ൌ ෨ܺߚଶ ൅ ଶߝ ൌ ෨ܺ ቆߚଵ െ ቀͳͲቁቇ ൅ ଶߝ ൌ ෨ܺߚଵ െ ܺ ൅  ଶ 584ߝ

It follows straightforwardly from here that, 585 
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ܻ െ ෨ܺߚଵ ൌ  ଶ 586ߝ

i.e. ߝଵ ൌ  ଶ, as required.                                                                                                    QED 587ߝ

Proposition 9 shows that the residuals resulting from fitting equations 1 and 2 will be the same. A 588 

consequence of this is that the error variability will be the same. As a result of this, the factor that 589 

determines whether more variance is explained when regressing ܻ onto ܺ or when regressing ܻ െ ܺ 590 

onto ܺ, is the variance available to explain. That is, the relative variance of ܻ and ܻ െ ܺ drive the ܴଶ 591 

values of these two regressions. This then implicates the variance of ܻ and ܺ and in fact their 592 

covariance (which impacts the variance of ܻ െ ܺ). 593 

More precisely, we can state the following. 594 

1) If ߪሺ௒ି௑ሻଶ  is big relative to ߪ௒ଶ, then regressing ܻ െ ܺ onto ܺ will explain more variability than 595 

regressing ܻ onto ܺ. 596 

2) If ߪሺ௒ି௑ሻଶ  is small relative to ߪ௒ଶ, then regressing ܻ െ ܺ onto ܺ will explain less variability than 597 

regressing ܻ onto ܺ. 598 

 599 

 600 

  601 
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Supplementary Appendix B: illustrating the relationship between the correlations 602 

 603 

% This function illustrates the relationship 604 
function [r_XY,std_Y,r2,r3] = CheckEqn1() 605 

  606 
noise = [0.01:0.01:1,2:100]; % controls r(X,Y) 607 
scale = [0.01:0.01:1,2:100]; % controls sigma_Y/sigma_X 608 
X = single(randn(1000,1)); 609 
for j=1:length(noise) 610 
    Y = X + single(randn(1000,1).*noise(j)); %Y is X plus noise 611 
    Y = zscore(Y); % then scale to X so the actual scaling is consistent 612 
    for k=1:length(scale) 613 
        Yl = Y.*scale(k); % rescale to control the variability ratio 614 
        r_XY(j,k) = corr(X,Y); % calculate the correlation with outcomes 615 

         616 
        r2(j,k) = corr(X,Yl-X); % calculate the correlation with change 617 
        std_Y(j,k) = std(Yl)./std(X); % record the variability ratio 618 
        r3(j,k) = eqn_r_X_XminusY(r_XY(j),std_Y(j,k)); % check Equation 1 619 
    end 620 
end 621 
 622 
% display the resulting surface (Figure 1) 623 
figure,surf(log(std_Y),r_XY,r3,'edgecolor','none') 624 
lighting flat 625 
l = light('Position',[50 100 100]); 626 
l = light('Position',[50 100 -50]); 627 
l = light('Position',[50 -100 -50]); 628 
l = light('Position',[-50 -15 29]); 629 
l = light('Position',[-50 -15 -29]); 630 
l = light('Position',[-50 15 -29]); 631 
l = light('Position',[50 15 -29]); 632 
l = light('Position',[50 15 -50]); 633 
shading interp 634 
xlabel('log ( sigmaY / sigmaX )') 635 
ylabel('r(X,Y)') 636 
zlabel('r(X,Y-X)') 637 
 638 
% confirm that equation 1 does actually match 'empirical' r(X,Y-X) 639 
figure,scatter(r2(:),r3(:)) 640 
xlabel('Empirical coefficients') 641 
ylabel('Derived coefficients') 642 

  643 
end 644 

  645 
% This function implements Equation 1 646 
function res = eqn_r_X_XminusY(r_XY,std_Y) 647 

  648 
res = (((r_XY.*std_Y) - 1) ./ sqrt(1 + (std_Y).^2 - (2*(r_XY.*std_Y)))); 649 

  650 
end 651 

  652 

 653 


