-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Kent Academic Repository

Kent Academic Repository
Full text document (pdf)

Citation for published version

Moraglio, Alberto and Krawiec, Krzysztof and Johnson, Colin G. (2012) Geometric Semantic
Genetic Programming. In: Lecture Notes in Computer Science. Parallel Problem Solving from
Nature - PPSN XII. Springer, Heidelberg, Germany pp. 21-31. ISBN 978-3-642-32936-4.

DOI
https://doi.org/10.1007/978-3-642-32937-1_3

Link torecord in KAR
https://kar.kent.ac.uk/69663/

Document Version

Author's Accepted Manuscript

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

KAR e

Kent Academic Repository

https://core.ac.uk/display/189721863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Geometric Semantic Genetic Programming

Alberto Moraglio!, Krzysztof Krawiec?, and Colin G. Johnson?

1 School of Computer Science, University of Birmingham, UK
A.Moraglio@cs.bham.ac.uk
2 Institute of Computing Science, Poznan University of Technology, Poland
kkrawiec@cs.put.poznan.pl
3 School of Computing, University of Kent, UK
C.G.Johnson@kent.ac.uk

Abstract. Traditional Genetic Programming (GP) searches the space
of functions/programs by using search operators that manipulate their
syntactic representation, regardless of their actual semantics/behaviour.
Recently, semantically aware search operators have been shown to out-
perform purely syntactic operators. In this work, using a formal geomet-
ric view on search operators and representations, we bring the semantic
approach to its extreme consequences and introduce a novel form of GP
— Geometric Semantic GP (GSGP) — that searches directly the space of
the underlying semantics of the programs. This perspective provides new
insights on the relation between program syntax and semantics, search
operators and fitness landscape, and allows for principled formal design
of semantic search operators for different classes of problems. We de-
rive specific forms of GSGP for a number of classic GP domains and
experimentally demonstrate their superiority to conventional operators.

1 Introduction

Traditional genetic programming ignores the meaning of programs, as the search
operators it employs act on their syntactic representations, regardless of their se-
mantics. E.g., subtree swap crossover is used to recombine functions represented
as parse trees, regardless of trees representing boolean expressions, mathematical
functions, or computer programs. Whereas this guarantees producing syntacti-
cally well-formed expressions, why should such a blind syntactic search work
well for different problems and across domains? In the end, it is the meaning of
programs that determines how successful search is at solving the problem.

The semantics of a program can be formally defined in a number of ways.
It can be a canonical representation, so that any two programs with the same
semantics/behaviour have the same canonical representation (e.g., Binary De-
cision Diagrams (BDD) for boolean expressions). It can be a description of the
behaviour of the program using a logical formalism. This is used in formal meth-
ods to reason formally about programs. From a strict search viewpoint, it may
be argued that the semantics of a program is just its fitness. Finally, it can also
be defined as the mathematical function computed by a program, i.e., the set of
input-output pairs making up the computed function.

In the literature, there are a number of works using the semantics of pro-
grams to improve GP. As many individuals encode the same function, some
researchers use canonical representations of functions to enforce semantic diver-
sity throughout evolution, by creating semantically unique individuals in the
initial population [2,4], and by discarding offspring of crossover and mutation
when semantically coinciding with their parents [3,1]. Uy et al. [11] propose a
measure of semantic distance between individuals based on how their outputs
differ for the same set of inputs sampled at random. This distance is then used
to bias semantically the search operators: mutation rejects offspring that are
not sufficiently semantically similar to the parent; crossover chooses only se-
mantically similar subtrees to swap between parents. Also Krawiec et al. [5, 6]
have used a notion of semantic distance to propose a crossover operator for GP
trees that is approximately a geometric crossover [10, 8] in the semantic space.
Interestingly, the fitness landscape induced by this operator has perfect fitness-
distance correlation. The operator was implemented approximately by using a
traditional crossover, generating a large number of offspring, and accepting only
those offspring that were “semantically intermediate” with respect to the par-
ents.

Whereas, overall the semantically aware methods above produced superior
performance to traditional methods, they are indirect: search operators are im-
plemented via acting on the syntax of the parents to produce offspring, which
are accepted only if some semantic criterion is satisfied. This has two drawbacks:
(i) these implementations are very wasteful as heavily based on trial-and-error;
(ii) they do not provide insights on how syntactic and semantic searches relate
to each other. Would it then be possible to search directly the semantic space of
programs? More precisely, would it be possible to build search operators that,
acting on the syntax of the parent programs, produce offspring that are guaran-
teed to respect some semantic criterion/specification by construction? Krawiec
et al. [5, 6] stated that due to the complexity of the genotype-phenotype map-
ping in GP, a direct implementation of exact semantic operators is probably
impossible.

The present paper brings the following contributions: (i) it formalises the
notions of semantic distance, semantic geometric operators and semantic fitness
landscapes; (ii) it proves that the fitness landscapes seen by geometric semantic
operators are always cone landscapes, which are easy to search; (iii) it shows
that, contrary to widespread belief, the genotype-phenotype map of commonly
considered GP domains is, in an important sense, very easy, not complex; (iv) it
introduces a general method to derive ezact semantic geometric crossovers and
mutations for different problem domains that search directly the semantic space;
(v) it derives semantic operators for the Boolean domain, arithmetic domain, and
program domain; (vi) it reports experimental results for a standard test-bed of
GP problems.

2 Abstract Geometric Semantic Search

In this section, we report non-operational definitions of geometric semantic op-
erators and their properties. They are characterised algorithmically in Section 3.

A search operator CX : Sx S — S is a geometric crossover w.r.t. the metric
d if for any choice of parents p; and ps, any of their offspring o = C X (p1,p2)
is in the metric segment between parents. A search operator M : S — S is a
geometric e-mutation w.r.t. the metric d if for any choice of the parent p, any
of its offspring o = M (p) is in the metric ball of radius e centered in the parent.
Given a fitness function f : S — R, the geometric search operators induce or see
the fitness landscape (f, .S, d). Many well-known recombination operators across
representations are geometric crossovers [8], e.g., all mask-based crossovers on
binary strings are geometric crossovers w. r. t. Hamming distance. Point mutation
on binary strings is geometric 1-mutation w.r.t. Hamming distance. Geometric
operators can also be derived for new spaces and representations by using in
their definitions a distance based on a target representation (e.g., edit distance).
If the distance is not directly linked to a representation, the geometric operators
are well-defined but an algorithmic description for them can be hard to derive.

Genetic programming is essentially a supervised learning method: given a
fixed set of input-output pairs T = {(x1,91), ..., (zn,yn)} (i-e., training set or
fitness cases), a function h : X — Y belonging to a certain fixed class H —
specified by the chosen terminal and function sets — is sought (evolved) that
interpolates the known input-output pairs, i.e., V(z;,v;) € T : h(x;) = y;. The
fitness function Fr : H — R measures the error of a function h on the training
set T. Compared to other learning methods, two distinctive features of GP are
(i) it can be applied to learn virtually any type of functions, and (ii) it is a
black-box method, as it does not need explicit knowledge of the training set, but
only of the errors on the training set.

Let I = (21,...,zn) and O = (y1,...,yn) be the input and the output vec-
tors, respectively, associated with the training set T. Let O(h) be the vector
of the outputs of a function h when queried with the inputs I, i.e., O(h) =
(h(z1),...,h(zN)). The function O : H — YV can be interpreted as genotype-
phenotype mapping as it maps a representation of a function h (i.e., genotype)
to the actual outcome of the application of function h on the input vector I (i.e.,
phenotype) represented by its output vector.

Traditional measures of error of a function h on the training set T' can be
interpreted as distance between the target output vector O and the output vector
O(h) measured using some suitable metric D, ie., Fp(h) = D(O,0(h)) (to
minimise). For example, when the space H of functions considered is the class of
Boolean functions, the input and output spaces are X = {0,1}" and Y = {0, 1},
and the output vector is a binary vector of size N (i.e., YV). A suitable metric
D to measure the error as a distance between binary vectors is the Hamming
distance. When considering functions returning real values (e.g., regression), the
output vectors are real vectors, and suitable metrics to measure the error are
Euclidean and Manhattan distances, each of which gives rise to a different type
of fitness function.

We define semantic distance SD between two functions hq, hy € H as the dis-
tance between their corresponding output vectors w.r.t. the input vector of all
possible inputs (i.e., I = (x;) for all z; € X)) measured with the metric D used in
the definition of the fitness function Fr, i.e., SD(hy, h2) = D(O(h1),O(hg)). The
semantic distance SD is a genotypic distance induced from a phenotypic metric
D, via the genotype-phenotype mapping O. As O is generally non-injective (i.e.,
different genotypes may have the same phenotype), SD is only a pseudometric
(i.e., distinct functions can have distance zero). This naturally induces an equiv-
alence relation on genotypes: genotypes belong to the same semantic class h iff
their semantic distance is zero. Then, SD can be interpreted as a metric on the
set of semantic classes of genotypes H.

We define semantic geometric operators as geometric crossover and mutation
specified on the space of (classes of) functions endowed with the distance SD.
E.g., semantic geometric crossover on boolean functions returns offspring boolean
functions such that the output vectors of the offspring are in the Hamming
segment between the output vectors of the parents (w.r.t. all ; € X). The
effect of SD being defined on the space of classes of functions H, rather than
on the space of functions H, is that the geometric crossover is only function of
the semantic classes of the parents hi, hg rather than directly of the parents
hi, hs (i.e, their specific representations), and the returned offspring can be
any function hz belonging to the offspring class hs (i.e., any function with the
prescribed output vector/semantics).

The semantic fitness landscape seen by an evolutionary algorithm with se-
mantic geometric operators is a cone landscape by construction ¢ as, from the
definition of semantic distance, the fitness of a solution is its distance in the
search space to the optimum. This observation is remarkably general, as it holds
for any domain of application of GP (e.g., Boolean, Arithmetic, Program), any
specific problem within a domain (e.g., Parity and Multiplexer problems in the
Boolean domain) and for any choice of metric for the error function. Further-
more, there is some formal evidence [9] that EAs with geometric operators can
optimise cone landscapes efficiently very generally for virtually any metric.

GP search with geometric operators w.r.t. the semantic distance SD on the
space of function classes H is formally equivalent to EA search with geometric
operators w.r.t. the distance D on the space of output vectors. This is because:
(i) semantic classes of functions are in bijective correspondence with output
vectors, as “functions with the same output vector” is the defining property of
a semantic class of function; (ii) semantic geometric operators on functions are
isomorphic to geometric operators on output vectors, as SD is induced from
D via the genotype-phenotype mapping (see diagram (1)). ® E.g., for Boolean

4Thc landscape includes also a form of neutrality. As the training set covers a fraction of all
possible input-output pairs of a function, only that part of the output vector of a function affects
its fitness, the remaining large part is “inactive”. This does not affect crossover, but it may make
mutation ineffective.

5Despite this formal equivalence, actually encoding a function in a EA using its output vector
instead of, say, a parse tree, is futile: in the end we want to find a function represented in an
intensive form that can represent concisely “interesting” functions and that allows for meaningful
generalisation of the training set.

functions, semantic GP search is equivalent to GA search on binary strings on
OneMax of dimension N.

3 Construction of Geometric Semantic Operators

The commutative diagram below illustrates the relationship between the seman-
tic geometric crossover GXgp on genotypes (e.g., trees) on the top, and the
geometric crossover (GXp) operating on the phenotypes (i.e., output vectors)
induced by the genotype-phenotype mapping O, at the bottom. It holds that for
any 71,72 and T3 = GXgp(T1,T2) then O(T3) = GXp(O(T1),0(T2)).

GXsp
Tl x T2 —— T3

lo lo Jo (1)
GXp
01 x02—— 03

The problem of finding an algorithmic characterization of semantic geometric
crossover can be stated as follows: given a family of functions H, find a re-
combination operator GXgp (unknown) acting on elements of H that induces
via the genotype phenotype mapping O a geometric crossover GXp (known)
on output vectors. E.g., for the case of boolean functions with fitness measure
based on Hamming distance, output vectors are binary strings and GXp is a
mask-based crossover. We want to derive a recombination operator acting on
Boolean functions that corresponds to a mask-based crossover on their output
vectors. Note that there is a different type of semantic geometric crossover for
each choice of space H and distance D. Consequently, there are different seman-
tic crossovers for different GP domains. We will give a recipe to derive specific
semantic crossovers for new domains.

Definition 1. Given two parent functions T1,T2: {0,1}" — {0, 1}, the recom-
bination SGXB returns the offspring boolean function T3 = (TINTR)V(T RAT2)
where TR is a randomly generated boolean function (see Fig. 1).

Theorem 1. SGXB is a semantic geometric crossover for the space of boolean
functions with fitness function based on Hamming distance, for any training set
and any boolean problem.

Proof. The offspring function is T3 = (T1 A TR) V (TR A T2). Expanding it for any input i:
T3(i) = (T1(i) AN TR(4)) V (TR(i) A T2(3)). So, for any entry ¢ of the output vectors: O(T3)(z) =
(O(T1)(2) ANO(TR)(i)) V (O(TR)(i) A O(T2)(4)). In the last expression, the Boolean expression at
each position ¢ is a multiplexer function which, depending on the bit-value of O(T'R)(¢) (piloting
bit), assigns either O(T'1)(i) or O(T2)(i) to O(T3)(i). Then, the output vector O(T'R) acts as a
crossover mask on the parent output vectors O(T'1) and O(T2) to produce the offspring output
vector O(T'3). This is a geometric crossover on output vectors w.r.t. the Hamming distance.

Let us now consider the Real Functions domain (e.g., for symbolic regression).

Definition 2. Given two parent functions T1,T2 : R™ — R, the recombinations
SGXE and SGXM return the real function T3 = (T1-TR)+ (1 —TR) - T2)
where TR is a random real constant in [0,1] (SGXE), or a random real function
with codomain [0,1] (SGMX).

L=/ \
OR X1 X2 OR
/ \ / \
AND AND OR AND X3
T3 = / 0\ / 0\ T2 = / \ T3 = / \
Tt TR NOT T2 X2 X3 AND NOT
| /N |
TR NOT X1 X2 X3
TR = |
X3

Fig. 1: Left: Semantic Crossover scheme for Boolean Functions; Centre: Example of parents (T1 and
T2) and random mask (TR); Right: Offspring (T3) obtained by substituting T1, T2 and TR in the
crossover scheme and simplifying.

Theorem 2. SGXFE and SGXM are semantic geometric crossovers for the space
of real functions with fitness function based on Euclidean and Manhattan dis-
tances, respectively, for any training set and any real problem.

Proof. By expanding the offspring function on the inputs and considering every entry 4 of the output
vectors: O(T'3)(i) = (O(T1)(i) - O(TR)(4)) + ((1 — O(TR)(i)) - O(T2)(i)). As O(TR)(3) € [0, 1], at
each position the value of O(T'3)(%) is a convex combination of the values of O(T'1)() and O(T2)(%).
So, the vector O(T'3) is within the hyper-box delimited by O(T'1) and O(T2), i.e., it is in their
Manhattan segment. Expressing the above relation in functional form: O(T3) = (O(T'1) - O(TR)) +

((1 = O(TR)) - O(T2)). When additionally O(T'R) is constant in i, we see that O(T'3) is a convex
combination of the vectors O(T'1) and O(T'2), i.e., it is in their Euclidean segment.

Let us now consider the Computer Program domain intended as functions with
symbols as inputs (I.5) and outputs (OS). The following can be easily extended
to other types of inputs and outputs.

Definition 3. Given two parent programs T1,T2 : I1S™ — OS, the recombi-
nation SGXP returns the offspring program T3 = IF CONDR THEN T1 ELSE T2
where CONDR is a random program whose output is interpreted as a logical value.

Theorem 3. SGXP is a semantic geometric crossovers for the space of pro-
grams with fitness function based on Hamming distance, for any training set
and any problem.

Proof. By expanding the offspring program on the inputs and considering every entry i of the output
vectors: 0(T3) (i) = IF 0(CONDR) (i) THEN 0(T1) (i) ELSE 0(T2)(i). This means that for each input,
the output value of T3 is that of T1 or T2 depending of the value of CONDR, which is then acting

as a crossover mask on T1 and T2. This is a geometric crossover on the output vectors w.r.t. the
Hamming distance (for symbolic vectors).

Definition 4. Semantic Mutations. Boolean: Given a parent function T :
{0,1}™ — {0,1}, the mutation SGMB returns the offspring boolean function
TM = TV M with probability 0.5 and TM = T NM with probability 0.5 where M
18 a random minterm of all input variables. Arithmetic: Given a parent function
T :R™ = R, the mutation SGMR with mutation step ms returns the real function
TM =T+ ms- (TRl — TR2) where TR1 and TR2 are random real functions.
Programs: Given a parent program T, the mutation SGMP returns the offspring
program TM = IF CONDR THEN OUTR ELSE T where CONDR is a condition which
s true only for a single random setting of all input parameters, and OUTR is a
random output symbol. The offspring can be expressed as nested IF-THEN-ELSE
statements with simple conditions of a single input parameter each.

Theorem 4. SGMB and SGMP are semantic 1-geometric mutations for boolean
functions and of programs, respectively, with fitness function based on Hamming
distance. SGMR is a semantic e-geometric mutation for real functions with fit-
ness function based on Fuclidean and Manhattan distances. The mean of its
probability distribution is the parent, and € is proportional to the step ms.

General construction method: it can be obtained by reversing the common
argument in the proofs above: (i) take the geometric crossover on output vectors
associated with the distance used in the fitness function; (ii) consider the action
of the recombination operator on a single entry of the output vectors; (iii) use
the domain-specific language of the particular class of functions considered to
describe the recombination action on a single entry; (iv) that description is
the scheme to produce the offspring. Note that the offspring is not only the
effect of crossover, it is also the description of how to crossover its parents.
The target domain-specific language must be expressive enough to describe the
recombination. This seems to be the case for most GP problems.
Simplification: As the syntax of the offspring of semantic crossover contains
both parents, the size of individuals grows exponentially in the number of gener-
ations. To keep their size manageable, we need to simplify offspring sufficiently
and efficiently (not optimally, as that is NP-Hard on many domains) without
changing the computed function. The search of semantic crossover is completely
unaffected by syntactic simplification, which can then be done at any moment
and in any amount. For boolean functions, there are quick function-preserving
simplifiers (e.g., Espresso). Computer algebra systems (e.g., Maple) can be used
to simplify symbolically mathematical functions, like polynomials, and more
complicated expressions including sin, cos, exp, etc. if used in disciplined ways
(e.g., nested sin not allowed). Formal methods (e.g., static analysis) can be used
to simplify computer programs (but loops/recursion may be challenging).
Does syntax matter? In theory, it does not matter! The offspring is a func-
tion obtained from a functional combination of parent functions. The offspring
is defined purely functionally and does not depend on how functions are ac-
tually represented (e.g., trees, graphs, sequences) and what language is used
(e.g., Java, Lisp, Prolog), as long as the semantic operators can be described
in that language. In practice, syntax does matter! As genotype structure and
language influence the way random genotypes are generated, as different repre-
sentations suggest different “natural” ways of generating them. This affects the
offspring distribution of semantic operators, the semantic diversity in the initial
population, and the dependencies in the crossover mask. Furthermore, some rep-
resentations may be easier to simplify, and may have preferable inductive bias
(i.e., generalise better on unseen inputs).

4 Computational Experiments

We compare GP, semantic GP (SGP), and semantic stochastic hill climber
(SSHC), which employs semantic mutation to explore the neighbourhood. In
all experiments GP and SGP use a generational scheme with tournament selec-
tion (size 5), crossover and mutation, which are always engaged. We give the

algorithms the same number of evaluations, set as the number needed by SSHC
to typically find the optimum. We also compare algorithms on CPU time: GPt is
GP running for the same time as the greater of average execution times of SGP
and SSC. Below are the main settings of the experimental setups considered.
Other parameters are set to ECJ’s defaults [7].

Boolean Functions (Table 1): Test-bed: standard GP benchmark. Fitness func-
tion: Hamming distance to the output vector of the target function queried on
all inputs. GP: standard GP with instruction set: ‘And’, ‘Or’, ‘Not’. SGP and
SSHC' individuals are Boolean expressions in disjunctive normal form; SGMB
and SGXB with a mask T'R being a random minterm of a random subset of
input variables; simplification of offspring by Espresso. Comparison: budget of
2n - 2" evaluations, where n is the number of input variables; as to population
size, GP and SGP have max{y/2",10}, and GPt has max{y/2",50} (and from
20 to 200 times more evaluations).

Polynomial Regression (Table 2): Test-bed: univariate polynomials of degrees
from 3 to 10, with real-valued coefficients uniformly drawn from [—1,1]. Fitness
function: Euclidean distance to the output vector of the target function queried
on 20 inputs in [—1,1]. GP: Standard GP with instruction set: ‘47, -7, ¥’ ‘x|
constant. SGP and SSHC' individuals are polynomials of degree 10, initialised
with coefficients drawn uniformly from [—1, 1]; SGXE and SGMR with step ms =
0.001; implicit simplification (i.e, weighted sums of polynomials). Comparison:
budget of 100,000 evaluations, with population size 1,000 for GP, and 20 for
SGP.

Classifiers (Table 3): Test-bed: IS = {1,...,n.}, OS = {1,...,n¢}, target func-
tions f : IS™ — OS are f(x1,%2,...,2,,) = ((z1 + 22) mod ng) + 1, for all
combinations of n, = 3,4, n. = 3,4 and ny = 2,4,8. Fitness function: Ham-
ming distance to the output vector of the target function queried on all inputs.
All algorithms use classifiers of the form: <CF> := IF <COND> THEN <CF> ELSE
<CF> || <0S8>; <COND> := <x;> = <IS>, and Ramped-half-and-half initialisa-
tion. SGP and SSHC use SGXP and SGMP, and simplification of classifiers
done by an Espresso-like simplifier. Comparison: budget of 2n.n,nl* evalua-
tions; as to population size, GP and SGP have max{yv/nz",10}, and GPt has
max{y/n¢",50} (and from 10 to 130 times more evaluations).

Analysis: Performance: for all domains and problems, SSHC and SGP find
consistently near-optimal solutions, beating by far GP with the same budget
of evaluations, and also GPt with the same CPU time. Size: SSHC and SGP
produce individuals larger than GP. This is due to a limited amount of simpli-
fication applied that finds shorter but usually not the shortest expressions, and,
for some problems, to the optimal solution having a long encoding in the chosen
representation. Importantly, experiments show that the simplification counter-
acts effectively the exponential growth of individuals inherent in the semantic
operators, within affordable computational cost. Bias: despite seeing any prob-
lem as a cone landscape, hence potentially easy, semantic operators may have
heavy biases in the offspring distributions that hinder performance. Experiments
show that these biases do not prevent achieving very good performance.

Table 1: Problems: standard boolean benchmark suite. Hits %: percentage of training examples
correctly predicted by best solution; average (avg) and standard deviation (sd) of 30 runs. Length:
logarithm base 10 of the length of the largest solution encountered in the search.

Problem Hits % Length

GP GPt SSHC SGP

avg| sd| avgl| sd| avg|sd| avg| sd|GP|GPt|SSHC|SGP
Comparator6 | 80.2({3.8| 90.9(3.5| 99.8/0.5| 99.5(0.7{1.0/ 2.0 | 2.9 | 2.8
Comparator8 | 80.3|2.8| 94.9(2.4|100.0{0.0| 99.9(0.2|1.0| 2.3 | 2.9 | 3.0
Comparator10| 82.3|4.3| 95.3]/0.9/100.0{0.0{100.0(0.1|1.6| 2.4 | 2.7 | 3.0
Multiplexer6 70.8(3.3] 94.7(5.8| 99.8(0.5| 99.5|0.8|1.1| 2.2 | 2.7 | 2.9
Multiplexerll | 76.4|7.9| 88.8|3.4|100.0(0.0| 99.9(0.1{2.2|2.4| 2.9 | 2.6
Parityb 52.9(2.4] 56.3(4.9] 99.7(0.9| 98.1|2.1|1.4|1.7| 2.9 | 2.9
Parity6 50.5|0.7| 55.4|5.1| 99.7|0.6| 98.8(1.7|1.0| 1.9 | 3.0 | 3.0
Parity7 50.1]0.2] 51.7(2.8| 99.9(0.2| 99.5/0.6/1.0(1.7 | 3.0 | 3.1
Parity8 50.1]0.2] 50.6|/0.9/100.0(0.0f 99.7|0.3|1.0/1.6 | 3.4 | 3.4
Parity9 50.0{0.0| 50.2|0.1{100.0(0.0| 99.5|0.3|1.0| 1.3 | 3.8 | 3.8
Parity10 50.0({0.0| 50.0({0.0{100.0({0.0| 99.4|0.2|0.9| 1.2 | 4.1 | 4.1
Randomb 82.2(6.6| 90.9/6.0| 99.5|1.2| 98.8(2.1{0.9| 1.6 | 2.7 | 2.8
Random6 83.6|6.6| 93.0|4.1| 99.9|0.4| 99.2|1.3|1.2|1.9| 2.9 | 2.8
Random7 85.1(5.3| 92.9|3.8| 99.9|0.2| 99.8(0.4/1.1|2.0| 2.8 | 2.9
Random8 89.6(5.3| 93.7|2.4|100.0|0.1| 99.9/0.2{1.4| 2.0 | 3.0 | 2.9
Random9 93.1|3.7| 95.4|2.3|100.0{0.1{100.0{0.1{1.5| 1.8 | 2.9 | 2.9
Random10 95.3|2.3| 96.2|2.0/100.0{0.0{100.0{0.0{1.5| 1.8 | 2.8 | 3.0
Randoml11 96.6/1.6| 97.3|1.5(100.0(0.0{100.0{0.0|1.6| 1.7 | 2.7 | 3.1
Trueb 100.0{0.0{100.0|0.0| 99.9]0.6/100.0{0.0{1.1| 1.3 | 2.0 | 2.4
True6 100.0{0.0{100.0|0.0| 99.8]0.6|100.0{0.0{1.2| 1.2 | 2.6 | 2.5
True7? 100.0{0.0{100.0|0.0/100.0{0.0{100.0{0.0{1.2| 1.2 | 2.9 | 2.6
True8 100.0(0.0(100.0(0.0({100.0/0.0|100.0{0.1|1.2| 1.4 | 3.3 | 2.9

Table 2: Problems: Random Polynomials of degrees 3 to 10. Hits %: percentage of training examples
correctly predicted by best solution with tolerance 0.01; avg and sd of 30 runs.

Problem Hits %

GP SSHC SGP
avg| sd| avg| sd| avg| sd
Polynomial3 |79.9|23.1|100.0{0.0{99.5|1.5
Polynomial4 [60.5|27.6| 99.9/0.9/99.9|0.9
Polynomial5 |40.7|21.6{100.0(0.0{99.5|2.0
Polynomial6 |37.5|23.4/100.0(0.0{98.9(3.1
Polynomial7 |30.7[18.5/100.0/0.0(99.9|0.9
Polynomial8 |34.7|16.0| 99.5(2.0{99.7|1.3
Polynomial9 |20.7|13.2{100.0(0.0{98.5|4.9
Polynomiall0|25.7|16.7| 99.4(1.7|99.9|0.9

Table 3: Problems: see text. Hits % and Length same as in Table 1.

Problem Hits % Length

GP GPt SSHC SGP

sd| avg sd avg| sd avg| sd|G

80.00(8.41(97.30| 4.78| 99.74]0.93| 99.89(0.67|1

49.15(9.96|78.89| 8.93| 99.89/0.67| 99.00(1.63|1

37.04(5.07(59.52(14.26| 99.74|0.93| 96.04(2.85|1.
1
1
1
1
1

3
o
3
g
g
02

67.92(7.05|93.80| 5.41| 99.95(0.28| 99.58|0.80
39.11|7.02|68.48| 8.66| 99.84|0.47| 98.08|1.64
3.73]46.98|14.48| 99.73|0.58| 94.22|1.72
88.31(6.98]98.89| 2.89| 99.96(0.22]100.00(0.00
48.85(6.54|88.15(10.10|100.00(0.00| 99.54|0.68 . .
36.54(9.01|60.37|17.14|100.00({0.00| 96.63(1.23(1.0| 1.9 | 2.9 | 2.9
82.75(8.21|99.79| 1.12|100.00({0.00| 99.86(0.23(2.2| 2.3 | 3.3 | 3.3
44.13|8.75|77.55| 6.30/100.00({0.00| 99.68(0.29(2.0| 2.4 | 3.3 | 3.3
30.63|5.33|50.21|{15.08| 99.96(0.12| 98.84(0.58|1.4| 2.1 | 3.3 | 3.3

bl e e w w wlw wwld
B |00 0wl b i w o 03
00 10| 00 i M| 00 i B[00 i 10

[}

[o]

o

[V}

5 Conclusions and Future Work

We presented a new GP framework rooted in a geometric theory of representa-
tions to search directly the semantic space of functions/programs. Remarkably,
the landscape seen by the semantic operators is always a cone by construction,
hence easy to search. Seen from a geometric viewpoint, the genotype-phenotype
mapping of GP becomes very easy, and allows us to derive explicit algorithmic
characterization of semantic operators for different domains following a simple
recipe. Semantic operators require simplification, which in practice is not a prob-
lem. Experiments showed that the semantic approach systematically outperforms
standard GP. There is plenty of future work: (i) construct semantic operators for
more complex domains, to explore potentialities and limits of the framework; (ii)
use formal methods to simplify non-trivial programs with loops/recursion, and
use CAS to simplify non-polynomial functions, and, more generally, devise quick
heuristic simplifiers for complex domains; (iii) investigate the practical advan-
tages of different types of syntax/languages: e.g., programs written in minimal-
istic languages with strong theory, like lambda calculus, may be much easier to
simplify; also, certain syntax may allow to implement easily semantic operators
with probabilistic biases that make them more effective in practice; (iv) derive
analytical runtime: as semantic GP search is equivalent to standard GAs/ES
on cone landscapes, it should be easy to transfer analytical runtime results to
semantic GP, and determine the optimal parameter settings.

References

1. L. Beadle and C. G. Johnson. Sematically driven crossover in genetic programming.
In Proc. of IEEE WCCI ’08, pages 111-116, 2008.
2. L. Beadle and C. G. Johnson. Semantic analysis of program initialisation in genetic
programming. Genetic Programming and Evolvable Machines, 10(3):307-337, 20009.
3. L. Beadle and C. G. Johnson. Semantically driven mutation in genetic program-
ming. In Proc. of IEEE CEC 09, pages 1336-1342, 2009.
4. D. Jackson. Phenotypic diversity in initial genetic programming populations. In
Proc. of EuroGP ’10, pages 98-109, 2010.
5. K. Krawiec and P. Lichocki. Approximating geometric crossover in semantic space.
In Proc. of GECCO ’09, pages 987-994, 2009.
6. K. Krawiec and B. Wieloch. Analysis of semantic modularity for genetic program-
ming. Foundations of Computing and Decision Sciences, 34(4):265-285, 2009.
7. S. Luke. The ECJ Owner’s Manual — A User Manual for the ECJ Evolutionary
Computation Library, 2010.
8. A. Moraglio. Towards a Geometric Unification of Evolutionary Algorithms. PhD
thesis, University of Essex, 2007.
9. A. Moraglio. Abstract convex evolutionary search. In Proc. of FOGA ’11, pages
151-162, 2011.
10. A. Moraglio and R. Poli. Topological interpretation of crossover. In Proc. of
GECCO °04, pages 13771388, 2004.
11. N. Q. Uy et al. Semantically-based crossover in genetic programming: application
to real-valued symbolic regression. Genetic Programming and Evolvable Machines,
12(2):91-119, 2011.

