
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 

for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research

The version in the Kent Academic Repository may differ from the final published version. 

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: 

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Balkenborg, Dieter and Makris, Miltiadis  (2015) An undominated mechanism for a class of informed
principal problems with common values.   Journal of Economic Theory, 157 .   pp. 918-958. 
ISSN 0022-0531.

DOI

https://doi.org/10.1016/j.jet.2015.02.007

Link to record in KAR

https://kar.kent.ac.uk/69609/

Document Version

Author's Accepted Manuscript



An Undominated Mechanism for a Class of Informed

Principal Problems with Common Values∗

Dieter Balkenborg† Miltiadis Makris‡

25th February 2015

Abstract

In a class of informed principal problems with common values, we define iterat-

ively a particular allocation which we call the assured allocation. It is comparatively

easy to calculate and straightforward to interpret. It always exists, is unique and

continuous in the priors. It is undominated, i.e. efficient among the different types

of the principal subject to the agent’s interim participation constraint. It is a per-

fect Bayesian equilibrium of the three-stage game in Myerson (1983) and Maskin

and Tirole (1992). It dominates the RSW allocation as defined in Maskin and Tirole

(1992) and coincides with it when the latter is undominated. It is the unique neutral

optimum as defined in Myerson (1983) when there are only two types. When the as-

sured allocation is separating, then it is a neutral optimum with three or more types.

It is an equilibrium of a game of competition in a market with adverse selecton.
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1 Introduction

Informed principal problems are adverse selection problems where the principal, who pro-

poses a contract to an agent, has private information. Important examples are firms with

private information about projects who seek finance from competing lenders, or managers

with private information who have bargaining power when dealing with shareholders. In-

formed principal problems may also be important for the analysis of regulated privatization

when the government has better information about the productivity of its asset, or for the

analysis of regulation of a monopolistic FDI when the government has superior information

about the characteristics of the domestic market.

Different types of the informed principal may offer different contracts, and hence the

choice of a contract itself becomes a signal to the agent regarding the principal’s type.

This gives rise to an inference process that affects the agent’s incentives and willingness to

accept the contract. Consequently, informed principal problems are significantly harder

to understand than models where only the agent has private information. This difficulty

arises in particular in the case of the so-called common value problems, where typically the

optimum for the principal under complete information is not incentive compatible when

the principal has superior information.1 In this paper we are primarily interested in the

less studied case of common values,2 and we restrict attention to a natural extension of

the canonical adverse selection model that allows for common values. For a discussion of

the relevance of common value problems, we refer the reader to the excellent discussion in

Maskin and Tirole (1992).

Different ways of resolving the conflict between the principal’s types regarding the

contract offer has given rise to different solution concepts. For our framework, the two main

solutions are the neutral optimum and the RSW (Rothschild-Stiglitz-Wilson) allocation.

The neutral optimum, introduced by Myerson (1983), is a strong refinement motivated by

1In the case of private values, i.e. when the principal’s private information does not directly affect the
agent’s utility, it is typically possible to find, at least when utilities are quasi-linear, mechanisms that (a)
are efficient among the different types of the principal when the agent’s beliefs coincide with her priors,
and (b) give the agent an expected payoff at least as high as his outside option, even if the agent knew
the type of the principal,. For the case of private values we refer to Maskin and Tirole (1990), and the
recent works of Cella (2008) and Mylovanov and Tröger (2012) together with the literature they cite.

2A common values environment has also been studied in Maskin and Tirole (1992) and Severinov
(2009). The results in the latter work do not apply here, because we focus on problems with one agent,
which is ruled out by assumption in Severinov (2009).
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various cooperative and non-cooperative solution concepts, which makes it a compelling

solution concept. The RSW allocation, studied by Maskin and Tirole (1992) in terms of

informed principal problems, is the “least-costly-allocation” that has been emphasized in

the signaling and screening literature because it is prior-free (i.e. it only depends on the

support of the prior) and survives the intuitive criterion of Cho and Kreps (1987). Its

importance for informed principal problems is that, if offered, it will be (weakly) preferred

over the outside option by the agent regardless of his/her beliefs.

This paper contributes to this literature by introducing a novel solution concept, the

assured allocation, which is shown to possess a number of attractive properties. The

assured allocation exists, is unique and, in contrast to the RSW, is continuous in the priors

of the agent, even if the probabilities of some types go to zero. Moreover, it can easily be

interpreted. Namely, the assured allocation guarantees for each possible type the surplus

he could have attained, had there been no other types with higher productivity, conditional

on the same being true for all types of lower productivity.3 The assured allocation is an

undominated mechanism, i.e. efficient among the different types of the principal when

the agent’s interim participation constraint must be satisfied, amongst all deterministic

mechanisms. If there is no bunching in the assured allocation, then we can show that the

assured allocation is undominated also amongst all randomizing mechanisms.

The assured allocation weakly dominates the RSW allocation. It coincides with the

RSW allocation when the latter is undominated. A similarity between the assured alloca-

tion and the RSW is that both can be calculated recursively via a sequence of optimization

problems for the different types.

We know from Maskin and Tirole (1992) that an equilibrium selection issue arises in

their mechanism-selection game when the RSW allocation is dominated: all allocations

that weakly dominate it are perfect Bayesian equilibria, and so the assured allocation

is always such an equilibrium.4 When there are only two types we can show that the

assured allocation coincides with the core mechanism as defined in Myerson (1983). This

provides a very strong equilibrium selection argument in favor of the assured allocation,

3The assured allocation can be understood as a solution to a principal-agent problem where the outside
option varies with the type, as in Jullien (2000). In our case the outside options are, however, defined
endogenously.

4For related work see Ma (1994) and von Thadden (1995).
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and emphasizes the importance of the assured allocation for the case of two types.

However, the above result cannot be extended to the case of more than two types.

Therefore, one might ask whether there exists a game of which the assured allocation is

the unique equilibrium outcome. This is a very hard question to tackle in its full generality

in informed principal problems with common values. Nevertheless, we can show that there

is an extensive form game for which the assured allocation can be an equilibrium, when the

RSW is not. This game draws on the insurance literature. It has competing uninformed

parties simultaneously posting contracts and subsequently deciding whether to withdraw

their contracts, before the informed party chooses, given available contracts, who to trade

with and under what terms.5 We know from the insurance literature (e.g. Rothschild and

Stiglitz (1976)) that the RSW allocation will not survive such a competitive process if high

types in our set up (low risk types in the insurance model) are very likely: a profitable

pooling contract that dominates the RSW allocation will be introduced attracting thus

all high types. In this paper, we show, on the other hand, that the assured allocation

will survive such a competitive process if priors are also such that the agent makes profits

only from the highest type under the assured allocation. Crucially, this set of priors

is non-empty. This finding is a generalization of related results in Myazaki (1977) and

Spence (1978) who study Wilson’s “anticipatory equilibria” (Wilson (1977)): the former

does so in the context of a labor market with two types that fits our framework, while the

latter does so in a multi-type insurance model that does not fit our set up.6 This weak

implementation result adds, we believe, significantly to the value of the assured allocation.

It provides, alongside the fact that the assured allocation dominates the RSW allocation,

an equilibrium selection argument in favour of the assured vis-a-vis the RSW allocation

when there are more than two types. This equilibrium selection argument is reinforced by

the fact that the assured allocation is shown to be a neutral optimum under conditions

that are similar to those in Jullien (2000) and imply that there is no bunching in the

assured allocation. Given our aforementioned weak implementation result, the assured

allocation might also be useful in understanding outcomes in competitive markets with

adverse selection.

5A similar game is investigated in Hellwig (1987).
6See also the more recent study of a two-type insurance model in Diasakos and Koufopoulos (2009).
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Neutral optima are in general very difficult to calculate in practice, which is possibly one

reason why there are very few applications using this solution concept.7 Uniqueness of the

neutral optimum is also not generally known. We regard it hence as a major contribution

of this paper that we can show that the assured allocation is a neutral optimum under

conditions ruling out bunching, and that neutral optimum and assured allocation coincide

when there are only two types.8 However, neutral optimum and the assured allocation do

not coincide in general. In fact, we provide an example of three types where the assured

allocation involves bunching between the various types and is dominated by a randomized

mechanism, and hence is not a neutral optimum.

The organization of the paper is as follows. In Section 2 we describe the model and

the weakest assumptions for which we know our analysis to hold. Section 3 introduces the

assured allocation and derives some basic properties. Section 4 discusses some examples

of the assured allocation, and it demonstrates a case when the assured allocation involves

bunching and is not a neutral optimum. Section 5 reviews a number of central concepts

in the literature, and compares the assured allocation with the RSW allocation and the

neutral optimum. Section 6 discusses a particular extensive-form game for which the

assured allocation is, in contrast to the RSW allocation, always an equilibrium. Section 7

concludes. Proofs omitted from the main text are given in the appendix.

2 The Model

We will be focusing on a model of a producer/seller and a buyer, in a broad sense, where

the producer’s cost-efficiency/productivity “type” is her private information. We assume

quasi-linear preferences and a finite type set,9 and that all types of the producer have the

7The only applications we know of are the discussion of the lemon problem in Myerson (1985) and the
extended liability problem discussed in Balkenborg (2006), which are both common value problems. Both
problems do not fall into our framework. Applications to bargaining problems with two-sided incomplete
information are also given in Myerson (1984) and Darrough and Stoughton (1989).

8Other papers characterizing neutral optima are Mylovanov and Tröger (2012), Cella (2008) and
Severinov (2009). Mylovanov and Tröger (2014) and Cella (2008) do this in the private value context.

9See also Severinov (2009) and Mylovanov and Tröger (2012). A finite type set is also used by Myerson
(1983) and Maskin and Tirole (1992), and so we adopt the same assumption to facilitate comparisons.
Note, however, that the general framework of Maskin and Tirole (1992) does not require quasi-linearity.
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same outside option.10 We also allow for common values: the buyer’s utility depends on

the seller’s productivity type. The model we focus on is the canonical model of adverse

selection used, for instance, in the textbook Laffont and Martimort (2002), Chapters 2

and 3.1, except that we allow for common values and assume that the informed seller is

the side with full bargaining power. As we will explain at the end of this section, this

model differs qualitatively from the standard insurance model; e.g. Stiglitz (1977) and

Spence (1978). The model we work with fits the example in Maskin and Tirole (1992) of

an uninformed firm owner and an informed manager who interact to determine the latter’s

output and compensation.

The seller (the principal) produces q ≥ 0 units of a product at a total cost which

depends on output and the seller’s cost-efficiency type. Let the finite type set be, without

loss of generality, the set of numbers N = {1, 2, ..., N}. The production cost of q units by

type i ∈ N is denoted by Ci (q) , which is a twice continuously differentiable function. We

denote the prior probability of type i, 1 ≤ i ≤ N , by si. In the following, let fi ≡
∑i

j=1 sj,

with the convention that f0 = 0. The type of the seller is his private knowledge and the

distribution of types is common knowledge.

Costs and marginal costs are non-decreasing in q, i.e.

C ′i ≥ 0, C
′′
i ≥ 0

for all i ∈ N and q ≥ 0. They are also decreasing in the type, i.e. if i < j then

Cj (q) < Ci (q) for q > 0

C ′j (q) < C ′i (q) for q ≥ 0

The latter is a sorting condition that ranks types according to their marginal utility from

trade. It states that higher (i.e. more productive) types value trading with the agent more.

The value of the product of type-i seller to the buyer (the agent) is Si (q) , which is a

twice continuously differentiable function. The value of the product is non-decreasing and

10Therefore, our model is not suitable to investigate the problem of insurance (see Stiglitz (1977) and
Maskin and Tirole (1992)) or of franchising (see Maskin and Tirole (1992)).
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the marginal value non-increasing in the level of output:

S ′i ≥ 0 S ′′i ≤ 0

for all i ∈ N and q ≥ 0. In the case of independent values, Si (q) is independent of i. As

we are primarily interested in the case of common values, we assume that the value of the

product is non-decreasing in seller’s type. Thus, if i < j then

Sj (q) ≥ Si (q) for q ≥ 0

This assumption simply says that higher types (who have lower costs) are more productive.

It is used in the proofs of all our theorems, except Theorem 2.

The net surplus is concave

S ′′i < C ′′i

In addition, we assume that:

lim
q→∞

(SN (q)− CN (q)) = −∞

which ensures that optimal output levels are always finite. Fixed costs are not too high:

S1(0) ≥ C1(0)

We also assume that there are gains from trade (allowed to be zero for the lowest type),

which are increasing in the seller’s type:

S ′i (0) ≥ C ′i (0)

S ′j (q)− C ′j (q) > S ′i (q)− C ′i (q) for i < j, q ≥ 0.

These conditions imply that the participation constraints for the various types of the

principal are never binding in the allocations defined and discussed below.11 We therefore

11This follows from the fact that the reservation payoff of the principal will be assumed to be zero, and
in the allocations defined below high types will not want to mimic lower types and the lowest type will get
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ignore them in what follows.

To reduce notation clustering, throughout we will use the following notations:

Wi (q) := Si (q)− Ci (q) for 1 ≤ i ≤ N

ψi (q) := Ci (q)− Ci+1 (q) for 1 ≤ i < N

Thus, Wi(q) is the surplus generated from trade between the buyer and a seller of type i

that involves output q. Moreover, ψi(q) is the cost-gain in the production of q by having

a seller of type i + 1 instead of type i. Alternatively, it represents the cost disadvantage

the seller of type i would have when mimicking the more productive type i+ 1.

Next, we introduce some more assumptions and discuss the implications of all our

assumptions. So far our assumptions imply that the type-dependent net surplus Wi is a

concave function, and that the full information production level qoi exists, is unique and

non-negative for i = 1 and increasing in type i. In addition, W1 (q
o
1) ≥ 0, and Wi (q

o
i ) is

increasing in type i. Moreover, each ψi(q) is positive for q > 0 and an increasing function

of q. We will also assume that it is (weakly) concave. That is,

Assumption A ψ′′i (q) ≤ 0 for all 1 ≤ i < N and q ≥ 0.

We need Assumption A in order to guarantee that the problem Xn, discussed shortly

when we introduce the assured allocation, is convex for every n.

The principal and the agent are involved in the following three-stage mechanism-

selection game Γ: First the informed principal offers a mechanism to the agent in a take-

or-leave-it manner. The aim of the mechanism is to fix the output q to be produced by

the seller and the transfer t the buyer has to pay in return to the seller. A mechanism is a

set of announcements for the principal and a rule that maps announcements to (possibly

lotteries over) transfer-output pairs.12 The agent must then accept or reject the offered

mechanism. If the agent accepts the mechanism then the latter is executed: the principal

chooses her announcement and the associated transfer-output pair is implemented. We

at least the first-best surplus. These will be ensuring a positive payoff due to the conditions in question.
12Because the agent has no private information, there is no need to include announcements of the agent

into the mechanism.
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assume that the principal’s and agent’s reservation payoffs are zero.13

Most of the work in this literature (e.g. Myerson (1983), Maskin and Tirole (1992),

Severinov (2009) and Mylovanov and Tröger (2012), Mylovanov and Tröger (2014)) use

the same extensive form game in their study of the informed principal problem (adjusting

for the number of agents and their information). We will restrict attention to perfect

Bayesian equilibria (for a formal definition, see page 8 of Maskin and Tirole (1992)) of the

three-stage game Γ. For brevity, we will sometimes simply speak of “equilibria” in what

follows.

Moreover, applying the inscrutability principle in Myerson (1983), Section 3, we restrict

without loss of generality attention to equilibria of the mechanism-selection game Γ where

all types of the principal propose the same mechanism. The proposal (first-) stage of game

Γ is hence uninformative and does not change the prior. Notice thus that there is pooling

at the proposal stage, while there can be separation in the mechanism itself in the sense

that different types of the principal can produce different quantities and receive different

transfers. Following Maskin and Tirole (1992) we focus on finite simultaneous-actions

mechanisms. By the revelation principle for Bayesian games, we have, for any mechanism

offered by the principal and for given beliefs after the mechanism has been offered, that any

equilibrium of the mechanism corresponds to a truthful equilibrium of a direct revelation

mechanism (DRM). In such an equilibrium, the principal simply announces truthfully

her type and the corresponding (stochastic) transfer-output pair is implemented. This

resulting allocation, i.e. profile of (stochastic) transfer-output pairs per type, is the same

with the one arising from the equilibrium of the general mechanism. We therefore focus

on DRMs. Note that an allocation is effectively a DRM.

2.1 Preliminaries

Let a stochastic DRM be denoted with κ ≡ (κi)1≤i≤N ≡ ((ti, µi(q)))1≤i≤N . µi(q) denotes a

probability measure over the set of feasible outputs q ≥ 0 and describes a randomization

over possible output levels designed for type i as part of the stochastic DRM. In addition, ti

13In the general model of Maskin and Tirole (1992) the reservation utility of the buyer is allowed to be
dependent of the seller’s type.
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denotes the net14 transfer from the buyer to the seller of type i. A stochastic mechanism can

in general include a randomization over transfers as well. Due to quasi-linearity of utilities

we can however restrict attention without loss of generality to stochastic mechanisms with

deterministic transfers (ti)1≤i≤N (one would only have to replace a randomized transfer

with its corresponding expected transfer).

Because we restrict attention to equilibria where the proposal stage is uninformative

we can write without loss of generality the agent’s participation constraint along the

equilibrium in terms of the prior:15

N∑

i=1

si(

∫
Si(q)dµi(q)− ti) ≥ 0

We will refer to a mechanism that satisfies the participation constraint as an individually-

rational mechanism. An ex post individually-rational mechanism satisfies
∫
Si(q)dµi(q)−

ti ≥ 0 for all 1 ≤ i ≤ N.

Moreover, an allocation κ satisfies incentive compatibility if the following incentive-

compatibility constraints hold:

ti −

∫
Ci(q)dµi(q) ≥ tj −

∫
Ci(q)dµj(q) for all 1 ≤ i, j ≤ N (ICi,j)

This simply says that type i prefers option κi to any other option κj, j 6= i.

We now introduce some essential definitions. First,

Definition 1 A mechanism is feasible if it is incentive-compatible and individually-

rational.

More generally we will say that a mechanism is feasible given a non-empty subset of

types I ⊆ {1, . . . N} if it is feasible conditional on the agent/buyer holding posterior beliefs

that all possible types belong to I.

We next have:

14Though we allow for net transfers to be negative in the optimal allocation all transfers will be positive.
15Notice, however, that this simplification would be wrong for contracts offered off the equilibrium path.

For our purpose this simplification is without loss of generality because we will not have to consider off
equilibrium mechanisms.
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Definition 2 A mechanism is undominated if it is feasible and there does not exist an-

other feasible mechanism which gives every type of the principal at least the same utility

and some of his types a strictly higher utility.

Undominated mechanisms are important because if the principal can effectively com-

municate with the agent, then he should be expected to offer only undominated mechan-

isms (see page 1775 of Myerson (1983) for more on this).

A strengthening of the notion of undominated mechanisms is the concept of core mech-

anisms, also proposed by Myerson (1983). To introduce this concept start with a mech-

anism µ, and consider the alternative mechanism ν. Let w be the set of winner types in ν

compared to µ. Mechanism ν blocks µ if it is feasible ("incentive compatible" in Myerson

(1983) jargon) given any superset of w. We then have:

Definition 3 A mechanism µ is a core mechanism if there is no alternative mechanism

that can block mechanism µ.

Unless otherwise stated (e.g. Theorem 2), we restrict attention to deterministic

mechanisms in this paper. Such a DRM is thus an option contract κ ≡ (κi)1≤i≤N ≡

((ti, qi))1≤i≤N , where qi denotes the quantity produced and sold by the seller of type i.
16

For expositional simplicity, let us refer, hereafter, with some abuse of terminology, to a

deterministic DRM as, simply, a mechanism or contract or allocation.

Denote the payoff of the principal of type i under some mechanism κ by Ui = ti−Ci(qi).

From now on we will, unless stated otherwise, use the substitution Ui = ti − Ci (qi)

and describe a contract as an N -tuple ((Ui, qi))1≤i≤N ≡ (mi)1≤i≤N ≡ m. Under such

reparametarization, the participation constraint can be re-written as

N∑

i=1

si(Wi(qi)− Ui) ≥ 0 (1)

This states that the expected surplus must exceed the expected net payments to the seller.

One can also show, following standard steps (see the Appendix), that:

16As usual, for notatiional simplicity, we identify the Dirac measure over output level qi with qi itself.
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Lemma 1 For a mechanism to be incentive-compatible, it is necessary and sufficient that

Ui ≥ Ui+1 − ψi(qi+1) for 1 ≤ i < N, (2)

Ui+1 ≥ Ui + ψi(qi) for 1 ≤ i < N. (3)

This Lemma ensures that, when investigating for incentive-compatible allocations, we

can restrict attention to the above constraints. We will be referring to (2) as the (local)

upward incentive (-compatibility) constraint for type i, and to (3) as the (local) downward

incentive (-compatibility) constraint for type i + 1. The former simply says that type i

must receive as much utility as type i+1 minus the cost disadvantage he would have when

imitating the more productive type i + 1. The latter incentive constraint has a similar

interpretation.

Remark 1 The above two local incentive-compatibility constraints imply that

qi ≤ qi+1 for 1 ≤ i < N. (4)

This follows directly by summing up the above two incentive constraints and using

the monotonicity properties of ψi(q). We will also be referring to (4) as the monotonicity

constraint for i.

Let us consider next the benchmark case of full information where the type of the

principal is common knowledge. In this case, the incentive-compatibility constraints are

irrelevant. The full-information monopoly contract, denoted by mM , is thus given by

mM = (UMi , q
M
i )1≤i≤N = (W1(q

o
i ), q

o
i ))1≤i≤N

where qoi ≡ argmaxq≥0Wi(q). Notice that the full-information monopoly contract is first

best in the sense that it maximizes social surplus, and that each type of the principal

receives all the surplus he generates. Note also that qo1 ≤ ... ≤ qoN .

We leave this section by highlighting the main difference between our buyer/seller

model and the standard insurance model; e.g. Stiglitz (1977) and Spence (1978). Suppose

that the informed party faces the full-information monopoly contract, mM , and this con-
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tract is not incentive compatible. Then, in our model, the informed party has an incentive

to mimic a type who is associated with higher first-best full-information output. In the

insurance model, on the other hand, (with higher types being those of lower risk), the

informed party has an incentive to mimic a type who is associated with lower first-best

full-information output/cover.

3 The Assured Allocation

This work introduces the assured allocation. As we will show, it is an equilibrium of the

three-stage-game Γ. Our definition is based on a sequence of constrained optimization

problems to be solved inductively. In this sense the computation is straightforward, at

least in comparison to finding a neutral optimum. The main properties of this allocation

and hence its importance for informed-principal problems with common values, and its

relationship with the other known equilibrium allocations will be discussed in Sections 4-6.

To define the assured allocation, let 1 ≤ n ≤ N . Suppose the numbers V1, · · · , Vn−1

have been defined. We define a mechanism (Uni , q
n
i )1≤i≤n as the solution to, and the scalar

Vn as the maximal value of, the following constrained optimization problem referred to as

Xn:

Vn ≡ max
(Ui,qi)1≤i≤n

Un

subject to

Ui ≥ Ui+1 − ψi (qi+1) for 1 ≤ i ≤ n− 1 (ICi)

qi+1 ≥ qi for 1 ≤ i ≤ n− 1 (MCi)

Ui ≥ Vi for 1 ≤ i ≤ n− 1 (ACi)

n∑

i=1

si (Wi (qi)− Ui) ≥ 0 (PC)

We call (Uni , q
n
i )1≤i≤n the n-assured allocation.

17 For n = N we speak for short of the

17Note that (PC) can be rewritten as

n∑

i=1

sni (Wi (qi)− Ui) ≥ 0

where sni =
si

s1+···+sn
.
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assured allocation. We call Vn the assured claim of type n and use it in the definition of

problem Xj, n+ 1 ≤ j ≤ N .18

We call the constraints Ui ≥ Vi the assured claim constraints. The rest of the con-

straints are, respectively, the incentive-compatibility constraints that require that every

type i does not have an incentive to mimic type i + 1, 1 ≤ i < N − 1, the monotonicity

constraints that require output is non-decreasing, and the participation constraint.

We can regard the assured allocation as a process for determining the minimal “claim”

of a principal’s type on (expected) net surplus, and then allocating the net surplus over all

types on the basis of these claims. The claim of a particular type is determined iteratively

by deriving the maximum utility that type would have obtained, had it been the highest

type, provided that: (i) the upward incentive constraints of all lower types are satisfied;19

(ii) output is a non-decreasing function of the type; (iii) all lower types are guaranteed

their claims derived in the previous iterations; (iv) buyer breaks even in expectation.

A crucial assumption of our model is that the benefit Si(q) is increasing in the type i.

This implies (see proof of Lemma 3 in the Appendix) the following important Extension

property. Consider any contract µ = (Ui, qi)1≤i≤N that is feasible for given types {1, ..., n}.

Construct the new contract ν that gives the same transfer-output pairs to types 1, ..., n

and the transfer-output pair of type n to all higher types. This new contract is feasible

for any given superset of types that contains types {1, ..., n}. This is a direct consequence

of Lemma 1 and the facts that (a) type n and all higher types are bunched, and (b) types

n+ 1, ..., N produce higher net surpluses than type n and so they generate profits for the

agent. This property will be an important building block for most of our proofs.

Another important property that will be used throughout most of the proofs is the

Restriction property. This states that if the assured claim constraint for type k holds

with equality in the n-assured allocation, with k < n, then the restriction of the n-assured

allocation to the first k types is the k-assured allocation. For more details see Lemma 4

in the Appendix.

The above properties, in conjunction with the fact that the objective in each problem

18The inductive definition presupposes the existence of a solution to the optimization problems Xi for
i = 1, · · · , n− 1. Theorem 1 below implies that this is indeed true.
19As we will see shortly, satisfying the upward local incentive-compatibility constraints and the mono-

tonicity constraints are enough to ensure feasibility.
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Xi is to maximize the utility of the highest type, imply also that the downward incentive-

compatibility constraints are satisfied by the solution to problem Xi, for all i = 1, ..., N .

The proof of this is more involved than in standard models of adverse selection because at

the optimum some types’ upward incentive constraints may be satisfied as strict inequal-

ities, while their assured claim constraints be binding.20 Thus, the proof that the assured

allocation is an incentive compatible mechanism is put in the Appendix (see Lemma 6).

Given this and the fact that our main results on the assured allocation are more easily

proved by using the above definition, we chose not to include the downward incentive

constraints in the definition of the assured allocation.

Focusing on the solution of problem XN , first note that the participation constraint

is binding, i.e. the corresponding Kuhn-Tucker multiplier is positive and thus the agent

makes zero profits in the assured allocation. To understand the intuition behind this, note

that if the highest type was not facing the agent’s participation constraint, then she could

always increase the utility of all types uniformly, and thereby increase her payoff in a

an incentive-compatible way. After some straightforward manipulations of the first-order

conditions of the problem XN , we also have that output q
N
i is given by

(fi−1 − gi−1)ψ
′
i−1

(
qNi
)
+ siW

′
i

(
qNi
)
+ ρi−1 − ρi = 0 (5)

where gi ≡
∑i

j=1 σj ≤ fi, ρ0 ≡ 0 and ρN ≡ 0, and σj ≥ 0 and ρj ≥ 0, j = 1, ..., N − 1, are

the Kuhn-Tucker multipliers of the assured claim constraint Uj ≥ Vj and monotonicity

constraint qj+1 ≥ qj, respectively (expressed in terms of the multiplier of the participation

constraint). Moreover, the Kuhn-Tucker multiplier of the (local) upward incentive con-

straint of type i− 1 (expressed in terms of the multiplier of the participation constraint)

is

µi−1 = fi−1 − gi−1 (6)

This is intuitive and follows standard arguments.21 Due to lower types having an in-

20If, on the other hand, the upward incentive constraint for some type i holds as equality, then, as in
standard adverse selection models, the downward incentive constraint for type i+ 1 follows directly from
ψ′i ≥ 0 and the monotonicity constraint qi+1 ≥ qi.
21To arrive at (6) simply add up all first-order conditions with respect to Uj , j = 1, ..., i− 1 and divide

across sides by the Kuhn-Tucker multiplier of the participation constraint. (5) is then the first-order
condition with respect qi after dividing by the Kuhn-Tucker multiplier of the participation constraint and
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centive to mimic higher types, output of each type j maximizes its virtual surplus

(fj−1 − gj−1)ψj−1 (q) + sjWj (q) insofar the monotonicity constraints qj+1 ≥ qj ≥ qj−1

are slack. If, however, the monotonicity constraints qk′ ≥ ... ≥ qk are binding, i.e.

ρk > 0, ..., ρk′−1 > 0, and the monotonicity constraints qk′+1 ≥ qk′ and qk ≥ qk−1 are

slack, i.e. ρk−1 = ρk′ = 0, then there is bunching between types k, ..., k′ that involves a

common output level that maximizes the total virtual surplus of all the types in question
∑k′

j=k{(fj−1 − gj−1)ψi−1 (q) + siWi (q)}. In any case, the virtual surplus of a type j takes

into account that the assured claim constraints of some of the lower types may be binding,

relaxing thus the information problem vis-a-vis type j.

Note that bunching cannot involve the lowest type, i.e. ρ1 = 0. If it did, then, by

definition, ρ1 > 0, and (5) for i = 1 (and using f0 − g0 = ρ0 = 0) would imply that

qN1 < qo1. In addition, let j be the maximum type involved in the bunching in question

(and hence ρj−1 = ρj = 0 and q
N
1 = ... = qNj ). We have from (5) for i = j that qNj ≥ qoj

which leads to a contradiction due to qo1 < qoj . Therefore, ρ1 = 0 and we have from (5)

for i = 1 that qN1 = qo1. Trivially, then, V1 = W1(q
o
1). As a corollary we have directly that

there is no bunching when N = 2.

The following Theorem implies that the assured allocation is well-defined.

Theorem 1 The assured allocation exists, is unique and continuous in the prior.

The Extension property discussed above is crucial to obtain admissible mechanisms

for the optimization problem defining the assured allocation. Our concavity assumptions

together with the Restriction property then guarantee uniqueness. Continuity can be

derived using Berge’s maximum theorem.

The importance of existence is self-explanatory. Uniqueness is a useful property that

will be used in the proof of certain important results (e.g. Theorem 4). The continuity

property is particularly desirable because it implies that the proposed allocation is robust

to small changes in priors, even if the probability of some types goes to zero.

A natural question is what are the efficiency properties of the assured allocation. We

have that:

eliminating µi−1 by using (6). For more details see Appendix 7.
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Theorem 2 The assured allocation is undominated within the class of deterministic mech-

anisms. If there is no bunching in the assured allocation then it is undominated within the

class of stochastic mechanisms.

The intuition behind the first part of the above theorem is that if there was a mechanism

that dominates the assured allocation, then that mechanism would also be admissible for

being the assured allocation, which contradicts its uniqueness. The second part of the

theorem, echoing Strauz (2006), relates the optimality of stochastic mechanisms over the

assured allocation to the presence of non-monotonic production schedules in the latter

allocation.

In Section 5 we will compare in detail the assured allocation with two famous solutions

of informed principal problems with common values: the RSW allocation and the neutral

optima. The latter are undominated mechanisms and, in our environment, the former

allocation has no bunching. One might wonder at this stage whether similar properties

hold for the assured allocation. In Lemma 8 in the Appendix we show that under certain

conditions the assured allocation also has no bunching. In the second part of the next

section we provide an example of an assured allocation with bunching, and show that this

allocation is dominated by a stochastic mechanism.

4 Some Illustrative Examples

4.1 Two Types

Consider the case of two types. Suppose first that

W1(q
o
1) ≥ W2(q

o
2)− ψ1(q

o
2)

In this case, the full-information monopoly contract, mM , is feasible,22 The highest type

cannot ensure a higher payoff than UM2 subject to feasibility and assured claim constraints.

Therefore, the assured allocation coincides with the full-information monopoly contract:

22The local downward incentive-compatibility constraints are satisfied under the full-information mono-
poly allocation. To see this, note that for any i=1, ..., N − 1, Wi(q

o
i ) + ψi (q

o
i ) = Si(q

o
i ) − Ci+1 (q

o
i ) =

Si+1(q
o
i )− Ci+1 (q

o
i ) + Si(q

o
i )− Si+1 (q

o
i ) ≤Wi+1(q

o
i+1).
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q2i = qoi , U
2
i = Vi = Wi(q

o
i ), i = 1, 2.

Suppose next that

W1(q
o
1) < W2(q

o
2)− ψ1(q

o
2)

In this case, the full-information monopoly mechanism is not incentive compatible: the low

productivity type would like to mimic the high productivity type. This implies that the

upward incentive constraint is binding in the assured allocation: U21 = U22 − ψ1(q
2
2), and -

by the usual rent-extraction/efficiency trade-off - the output of the high type is distorted

upwards, i.e. q22 > qo2. From the participation and upward incentive constraints holding

as equalities, we can derive that V2 = U22 =
s1

s1+s2
[W1(q

o
1) + ψ1(q

2
2)] +

s2
s1+s2

W2(q
2
2) and

U21 =
s1

s1+s2
W1(q

o
1) +

s2
s1+s2

[W2(q
2
2)− ψ1(q

2
2)]. Moreover, the downward incentive constraint

is satisfied, i.e. U21 + ψ1(q
o
1) ≤ U22 , by ψ

′
1 > 0, the upward incentive constraint holding as

equality and q22 > qo2 > qo1. Whether the assured claim constraint is slack depends on the

relative likelihood of the two types, s1/s2.

To start with, for sufficiently low s1/s2, the information problem is not so severe:

the highest type is less concerned about leaving information rents than distorting (her)

output. This implies that output distortion is not very high, and information rents given

to the low type are sufficiently high to ensure that the assured claim constraint is strictly

satisfied, i.e. U21 > V1 and σ
2
1 = 0. Given that V1 = W1(q

o
1) and q

2
1 = qo1, we thus have

that the agent is making losses from the lowest type. As s1/s2 increases, the information

problem becomes more severe, and output (of the high type) is further distorted and

information rents left to the low type are reduced. In this range of priors, we have from

(5) for i = 2 (after using ρ1 = ρ2 = 0) that q
2
2 = argmaxq≥0{s1ψ1(q)+s2W2(q)}. For s1/s2

at least equal to a well-defined threshold information rents cannot be reduced further,

and the assured claim constraint becomes binding, and so U21 = V1(= W1(q
o
1)). In such a

case, we thus have U22 = W2(q
2
2), and production of the high type, q

2
2, is given implicitly

by W1(q
o
1) = W2(q

2
2) − ψ1(q

2
2).

23 That is, the agent breaks even regardless of the type

she faces, and the low type is indifferent between the two offered options. Readers who

are familiar with the RSW allocation will immediately recognize that this is the RSW

allocation as characterized in Maskin and Tirole (1992).

23Moreover, σ21 is given by solving (5) for i = 2 with respect to σ1 (after using ρ1 = ρ2 = 0), for the
given output q22 .
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It follows that for s1/s2 low enough so that the assured claim constraint holds as a strict

inequality, the assured allocation dominates the RSW allocation: the highest type selects

the assured allocation instead of the (feasible) RSW contract, attaining thus a higher

payoff than under the RSW mechanism, while, as we have already noted, the utility of

the lowest type is greater than her full-information monopoly payoff, which coincides with

her payoff in the RSW allocation. Our Theorem 3 in Section 5.2 is a generalization of this

result for any N .

As Theorem 2 above shows the assured allocation is an undominated mechanism. The

argument here where N = 2 is very simple: if there was a mechanism that dominates the

assured allocation, then that mechanism would also be admissible for being the assured

allocation, and the highest type would be able to attain a higher payoff, which is a contra-

diction. One natural question then is what is the relationship with the Neutral optimum

and the core mechanisms, which are also undominated mechanisms. We establish in The-

orem 4 in Section 5.3 that for N = 2 the assured allocation is the only core mechanism.

Because neutral optima are always core mechanisms (see Theorem 5 in Myerson (1983))

we therefore have that the assured allocation and the neutral optimum coincide when

N = 2.

4.2 Three Types: Possibility of Bunching and Assured Alloca-

tion Differing from Neutral Optimum

Moving to the case of three types makes things very complicated quickly. Bunching in the

assured allocation becomes now a possibility, and neutral optima, the core and the assured

allocations may no longer coincide. The intuition behind this is the following. Consider the

case when both upward incentive constraints are violated at the full-information monopoly

contract. This implies for the assured allocation that production of the two highest types

must be distorted upwards to reduce information rents. Suppose, however, that the upward

distortion in the production of the second-highest type is so high that it makes under-

reporting an attractive option for the highest type. In this case, bunching may emerge in

the assured allocation. Following then similar arguments to Strauz (2006), a stochastic

mechanism may dominate the assured allocation, implying that the latter is not a core
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allocation and hence not a neutral optimum. The next example demonstrates.

First, we construct an example where bunching occurs in the assured allocation.

Let Ci(q) = 8q − θi ln(q + 1) and Si(q) =
θi
2
q + θi{ln(q + 2) − ln(2)}. Moreover,

θ1 = 4, θ2 = 7.8, θ3 = 8 with s1 = 0.04, s2 = 0.06 and s3 = 0.9. We thus have that

ψ1(q) = 3.8 ln(q + 1) and ψ2(q) = 0.2 ln(q + 1). After some simple calculations, one can

easily verify that qo1 = 0, qo2 = 2.3695 and qo3 = 2.5616, whereas V1 = W1(q
o
1) = 0 and

W2(q
o
2) = 5.8559 and W3(q

o
3) = 6.5115. Note here that W1(q

o
1) < W2(q

o
2) − ψ1(q

o
2) and

W2(q
o
2) < W3(q

o
3) − ψ2(q

o
3). That is, the upward incentive constraints are violated by

the full-information monopoly contract, and so we should expect both upward incentive

constraints to be binding at the assured allocation. We note also that qo3 is very close to

qo2. In addition, s1/s2 is relatively large, so that the upward distortion of production of

the second highest type is relatively large. Moreover, (s1 + s2)/s3 is close to zero, so that

the upward distortion of production of the highest type is very small. These last three

facts provide conditions for bunching, as we will see next. This example will also be used

in our discussion in Section 6 of a particular extensive form game for which the assured

allocation is an equilibrium, while the RSW allocation is not.

For these parameters, we have that the assured allocation when only the two lowest

types are present, with priors s1/(1− s3) and s2/(1− s3), is given by q
2
1 = qo1, q

2
2 = 3.0457,

U21 = 0.0108 > V1 and U
2
2 = V2 = 5.5039. This is different than the RSW allocation where

q2 = 3.2442. Note that q22 is given by (5) for i = 2, after using ρ0 = ρ1 = σ1 = 0). To

demonstrate the optimality of bunching when N = 3, consider the solution (denoted by

tildas) to problem X̃3, which is as problem X3, except that it ignores the monotonicity

constraints. This is the solution to problem X3 after simply setting in the corresponding

Lagrangian ρ1 = ρ2 = 0. In this example, we have both upward incentive constraints

being binding, and both assured claim constraints being slack. We thus have from (5) for

i = 2 that q̃32 = q22. Moreover, we have from (5) for i = 3 that q̃33 = 2.5677. Note that

in this case, using the binding participation and upward incentive constraints, we derive

Ũ31 = 0.8706 > V1 and Ũ
3
2 = 6.1818 > V2. Therefore, σ1 = σ2 = 0 and µi = fi, i = 1, 2, are

indeed part of the solution of X̃3. Obviously, this is a solution to problem X̃3, but not to

problem X3 because it violates the monotonicity constraint q2 ≤ q3. In other words, this

mechanism is not feasible because it violates the downward incentive constraint for type

20



i = 3. Consequently, there is bunching in the assured allocation, i.e.

q32 = q33 = q̄ ≡ argmax
q≥0

{(s1 + s2)ψ2(q) + s3W3(q) + s1ψ1(q) + s2W2(q)} = 2.59869220515

Using the binding upward incentive constraints and participation constraint we also have

that U31 = 1.3074 > V1 and U
3
2 = 6.1736 > V2; that is, the assured claim constraints are

slack under bunching in this example.

Interestingly, the highest type might be able do better than in the above assured alloc-

ation with bunching by using a randomized mechanism. The reason echoes the arguments

in Strauz (2006). In more detail, by using an appropriate randomized mechanism, the

highest type may be able to separate herself from the second highest type by means of

relaxing her (downward) incentive constraint. This can be achieved here because, in our

example, risk aversion is increasing with productivity, and hence introducing more risk

in type 2′s output makes the latter’s output-utility pair less attractive to type i = 3.

Moreover, such a mechanism may also be designed to generate more expected net surplus

and hence profits to the agent, which can then be distributed in a lump-sum way to the

various types.

Specifically, consider a stochastic mechanism that gives the same expected utility and

deterministic output to types i = 3 and i = 1, and the same expected utility to type

i = 2, while offering a stochastic output to type i = 2, such that incentive compatibility

is maintained and the expected net surplus produced by type i = 2 goes up. That

is, denoting with Ui, the expected utility of type i, assume that Ui = U3i , i = 1, 2, 3,

q3 = q, q1 = qo1. Assume also that the lottery over q2 is such that EW2(q2) > W2(q)

and Eψ2(q2) ≤ ψ2(q). The former says that the expected net surplus is higher, and the

latter implies that the downward incentive constraint of type 3 is (weakly) relaxed, in the

randomized mechanism. Finally, if the lottery over q2 is such that Eψ1(q2) ≥ ψ1(q), then

the upward incentive constraint of type 1 is still satisfied in the randomized mechanism.24

24We note that the monotonicity constraints under such a stochastic mechanism are Eψ2(q2) ≤ ψ2(q)
and ψ1(q

o
1) ≤ Eψ1(q2). The former is the second of the three inequalities in the main text. Note then

that we require Eψ1(q2) ≥ ψ1(q) instead of the remaining monotonicity constraint in the constructed
randomized mechanism. The reason is that in the original deterministic mechanism the upward incentive
constraint for type 1 is binding, which implies that the corresponding constraint in the stochastic mech-
anism in question (where expected utilities are kept the same across mechanisms) is satisfied if only if
Eψ1(q2) ≥ ψ1(q). Note that if Eψ1(q2) ≥ ψ1(q) (which is the last of the three inequalities in question in
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If such a mechanism exists, then the highest type can choose an alternative stochastic

mechanism that takes some of the excess net surplus (profit of the agent in this case) and

distribute it uniformly to all types in the form of utils. This is clearly feasible and makes

the highest type strictly better off. In summary, the assured allocation (with bunching) is

dominated by a stochastic mechanism if we can find a lottery over q2 such that

Eψ1(q2) ≥ ψ1(q)

EW2(q2) > W2(q)

Eψ2(q2) ≤ ψ2(q)

To demonstrate the existence of such a lottery, consider the binary lottery that gives

q2 = qL with probability ρ and q2 = qM with probability 1 − ρ, with qL < q < qM . In

terms of our example, it turns out that the first and third inequalities are satisfied if and

only if ρ = ln(qM+1)−ln(q+1)
ln(qM+1)−ln(qL+1)

, for any given qM , qL and the given q. Therefore, the problem

in hand boils down to finding values for qM and qL such that EW2(q2) > W2(q) holds.

This is written (in terms of our example) as

ln(qM + 1)− ln(q + 1)

ln(qM + 1)− ln(qL + 1)
>

(qM − q)(4.1) + (7.8){ln(q + 1)− ln(qM + 1) + ln(q + 2)− ln(qM + 2)}

(qM − qL)(4.1) + (7.8){ln(qL + 1)− ln(qM + 1) + ln(qL + 2)− ln(qM + 2)}

One can verify that this inequality is satisfied for qL = 2.598692205125 and qM =

2.5986924650177,25 which completes our construction.

The assured allocation in this example is not a core mechanism, and thereby is different

from neutral optimum (seen Myerson (1983)). One may wonder what is the relationship

between the assured allocation and neutral optima when N > 2 if there is no bunching

in the assured allocation. We show in Theorem 5 that in the absence of bunching, the

assured allocation is a neutral optimum.

the main text), then q > qo1 and ψ
′
1(q) > 0 imply the remaining monotonicity constraint.

25The left hand side equals 0.9999118075 and the right hand side equals 0.9999118031. Note also that
qL < q < qM .
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To facilitate further understanding of the assured allocation we will compare it next

with two famous solutions of informed principal problems with common values: the RSW

allocation and the notion of neutral optimum, and by doing so we will derive our main

results, Theorems 3 - 6.

5 The RSW Allocation, Neutral Optima and the As-

sured Allocation

We first need to introduce some definitions and review the concepts of RSW and the

neutral optima.

5.1 Safe and Strong Mechanisms

Adjusting the definitions of a safe mechanism and a strong solution in Myerson (1983) to

the way we set up the model here, we have:26

Definition 4 A mechanism is safe if it is incentive-compatible and ex post individually

rational.

Thus, a safe mechanism is a truth-telling mechanism that the agent is willing to accept

to play when she/he knows the principal’s type. The principal can successfully implement

a safe mechanism as it is feasible regardless of what the agent can infer about the principal

who offers such a mechanism.

Definition 5 A mechanism is a strong solution if it is safe and undominated.

A strong solution is an important mechanism because, as Theorem 1 of Myerson (1983)

emphasizes, if such a mechanism exists then the principal should implement it despite the

fact that he may strictly prefer (given his true type) another feasible mechanism. The

reason is that if the agent infers that the principal’s type belongs to the set of types

that strictly prefer this alternative mechanism to the strong solution, then the former

26See page 1772 of Myerson (1983) for how to interpret our model in his framework.
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mechanism violates the agent’s individual rationality given these posterior beliefs on the

part of the agent.

Though compelling as a solution concept, a strong solution often does not exist. Re-

calling Theorems 1 and 2, we have that the assured allocation is a mechanism which,

like neutral optima, extends the notion of a strong solution in such a way that a solution

always exists and is undominated, but not necessarily safe. The RSW allocation, reviewed

next, extends, on the other hand, the notion of a strong solution in such a way that a

solution always exists and is safe, but not necessarily undominated.27 This highlights the

fundamental difference in the concepts of RSW and the assured allocations.

5.2 Perfect Bayesian Equilibria and the RSW and Assured Al-

locations

The RSW allocation has been studied in terms of the three-stage game Γ by Maskin and

Tirole (1992). Their Proposition 2 and Theorem 1 will be used here to yield Propositions

1 and 2 below. The following two Remarks facilitate the use of their Proposition 2 and

Theorem 1 in our set up.

Remark 2 An undominated mechanism is called an interim efficient allocation in Maskin

and Tirole (1992).

Remark 3 Our model satisfies the Sorting Assumption on page 5 of Maskin and Tirole

(1992) and the assumptions in their footnote 19, except that we restrict q to be nonnegat-

ive. However, even with this restriction, Propositions 2, 4(a) and 5 of Maskin and Tirole

(1992) still hold. Thus, the RSW allocation is deterministic and the hypothesis of their

Theorem 1 is satisfied as long as RSW exists (see their Remark 3 after their Theorem 1).

In terms of our model, Proposition 2 in Maskin and Tirole (1992) can then be stated

as:

27An extreme example occurs in the model of lender liability studied in Balkenborg (2006) when the
informed borrower has all the bargaining power. In the trivial cases where the liability is so low that the
borrower can pay it herself, the RSW allocation is a strong solution. In the economically interesting case
where the lender has to pay some of the liability, the RSW typically gives all the surplus to the lender,
regardless of the type of the borrower. The RSW is dominated by any feasible allocation in that model.
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Proposition 1 The RSW allocation
((
URSWi , qRSWi

))
1≤i≤N

is the solution to Programs

(RSWn) defined inductively for n = 1, · · · , N as follows:

max
(Un,qn)

Un

subject to

URSWn−1 ≥ Un − ψn−1 (qn) provided n > 1

Wn (qn) ≥ Un

In particular, the allocation satisfies Wn (qn) = Un and qn < qn+1.

Remark 4 Given our assumption on Wi and ψi the solution to this problem exists and

is unique. Recalling the above Remark, we thus have that the hypothesis of Maskin and

Tirole (1992) Theorem 1 is automatically satisfied.

In contrast to the assured allocation, the RSW allocation is not continuous in priors.

To see this, consider the case of N = 2. In our set-up here we have directly that if the full-

information monopoly contract mM is not incentive compatible, then the RSW allocation,

denoted by mRSW , is given by

mRSW
1 =

(
URSW1 , qRSW1

)
= (W1(q

o
1), q

o
1)

and

mRSW
2 =

(
URSW2 , qRSW2

)
=
(
URSW1 + ψ1

(
qRSW2

)
, W−1

2

(
URSW2

))

That is, the low-type seller attains her full-information monopoly option, while the high-

type seller’s option is such that the low type is indifferent between the two options and the

buyer makes zero profits from each and every type. Note that qRSW2 > qo2. Consequently,

there is a discontinuity in the allocation when the prior probability on the low type goes

to zero. Namely, the allocation for the high type jumps frommRSW
2 to the full-information

monopoly allocation mM
2 .
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The RSW allocation is the “least-cost-separating allocation” which has received much

attention in the signaling and screening literature. Its importance in our set up can be

understood by noticing that it is a safe mechanism. Therefore, any type of the principal can

guarantee her RSW payoff. Consequently, the principal’s utility profile that corresponds

to the RSW allocation is a lower bound for the equilibrium utility profile of the principal.

Moreover, if there exist beliefs on the part of the agent after observing a deviation from the

RSW allocation that ensure the absence of a profitable deviation, then the RSW allocation

is an equilibrium of the three-stage game Γ. This is dealt with in Theorem 1 of Maskin

and Tirole (1992). The following proposition is an application of the latter Theorem to

our setting (recall our Remark above).

Proposition 2 (Maskin and Tirole) A feasible mechanism ((Ui, qi))1≤i≤N is a perfect

Bayesian equilibrium allocation of the three-stage game Γ if and only if it gives each type of

the principal at least his utility in the RSW allocation. In particular, if the RSW allocation

is undominated, then it is the only perfect Bayesian equilibrium allocation.

Recalling the definition of a strong solution, we clearly have that if the RSW allocation

is undominated then it is a strong solution. In fact, combining the above two propositions

with Theorem 1 in Myerson (1983) we show in the Appendix that:

Proposition 3 A strong solution exists if and only if the RSW allocation is undominated.

Therefore, if a strong solution does not exist, then the RSW allocation is dominated and

an equilibrium selection problem arises for the mechanism selection game Γ. In our first

example in Section 4 the RSW allocation is indeed dominated by the assured allocation,

and hence the latter is an equilibrium of game Γ. We generalize this finding in our second

main result:

Theorem 3 The assured allocation weakly dominates the RSW allocation.

The intuition is as follows. As it is shown in the proof of Theorem 3 in the Appendix,

the RSW allocation for every group of first k types is admissible for the k-assured alloca-

tion. Therefore, the utility of every type under the RSW allocations is at most as high as
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the type’s assured claim, with the latter being by definition a lower utility bound on what

types can obtain in the assured allocation.

Theorems 1 and 3 and Propositions 2 and 3 imply that the unique assured allocation

tracks in a continuous (and computable) way an equilibrium outcome of the game Γ which

is undominated amongst deterministic mechanisms and coincides with the strong solution

whenever the latter exists (and hence with the RSW allocation).

Comparing the RSW and the assured allocations as equilibria of the game Γ, whenever

a strong solution does not exist and hence equilibrium selection is an issue in game Γ,

note first that the principal can successfully implement the RSW allocation because it

is a safe mechanism, and so it is feasible regardless of what the agent can infer about

the principal who offers such a mechanism. Importantly, however, the assured allocation

strictly dominates the RSW allocation. Therefore, following the discussion in Myerson

(1983), if the principal could communicate effectively with the agent, then the assured

allocation, and not the RSW allocation, could be one mechanism offered by the principal.

Second, note that Theorem 1 implies that if a sequence of priors converges to the

distribution which puts all mass on one type, then the assured allocation converges to the

full-information monopoly optimum for this type. This is in sharp contrast to the RSW

allocation which is prior-independent for a given set of types, but can jump discontinuously

if the prior probability on a type goes to zero, as we have discussed earlier. Accordingly,

the assured allocation is a more robust equilibrium in such changes of the prior beliefs.

However, because the RSW is prior independent for a given set of a priori possible types

it could be robust implementable in the sense of Bergemann and Morris (2005).28 The

RSW yields in our set up the only perfect Bayesian equilibrium satisfying the intuitive

criterion of Cho and Kreps (1987) (see Proposition 7 and, for the intuition, Figure 4

and the discussion surrounding it, in Maskin and Tirole (1992)). Yet, as already noted,

for instance, by Cho and Sobel (1990) in the conclusions in their paper, the intuitive

criterion and related refinement concepts are not continuous and have the drawback of

28Proving that it is may not merely be a direct application of the results recently derived in Bergemann
and Morris (2005), Bergemann and Morris (2008) and the literature they cite. The reason is that in our
framework the designer herself has private information. Therefore, firstly, an offered mechanism may have
some informational content and, secondly, the type space of the agent will include her prior beliefs about
the principal’s payoff type, and the type space of the principal will include the prior beliefs of the principal
about the agent’s prior beliefs.
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being sensitive to small changes in the extensive form. A related issue is discussed shortly

in Section 6.

Our discussion highlights that an understanding of the robustness properties of mech-

anisms and equilibrium refinement, on one hand, and how these interact with efficiency

and continuity, on the other, is very important. However, it is out of the scope of the

current work and must be left for future research. In this paper we will not take a stance

on the relative importance of these properties. We do not claim that the assured allocation

must be preferred against all other allocations when the RSW allocation is dominated (by

the assured allocation). Our contribution in this paper is instead to provide an easily in-

terpreted algorithm for an undominated allocation which is an equilibrium for the 3-stage

game in Maskin and Tirole (1992) and, under some conditions discussed next, a neutral

optimum. We leave it to the researchers and practitioners to choose which of these two or

other allocations to focus on.

5.3 The Neutral Optimum and the Assured Allocation

Neutral optimum is an axiomatically founded solution concept (Myerson (1983)) that

always exists in environments with finite outcome and type spaces. It cannot be eliminated

by any reasonable concept of blocking.29 The neutral optimum is not necessarily a strong

solution itself. To simplify exposition, we do not state here Theorem 7 in Myerson (1983).

However, we will need it in the proof of Theorem 5, in the Appendix, and therefore we

will state it there for completeness.

We turn to the comparison of the assured allocation with the neural optimum.

Theorem 4 If N = 2, then the neutral optimum coincides with the assured allocation and

is the unique core mechanism.

Proof. Note that in any core allocation, the lowest type should be getting at least his

assured claim. If not, compare with the pooling mechanism which requires both types

to produce qo1 and yields utility W1 (q
o
1) to type 1. This mechanism makes zero profits

from the lowest type and positive profits from type 2 (as this type is more productive

than the lowest type). It is also incentive compatible for all types due to pooling, and

29For the original, axiomatic definition see Myerson (1983) or the brief review in Severinov (2009).
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hence it is feasible for any superset of whatever the set of winners is in this alternative

mechanism (which includes i = 1 by construction). Therefore, the alternative mechanism

is a "blocking" mechanism, which contradicts the assumption that the original mechanism

is a core allocation.

We next show that in any core allocation, the highest type should be getting at least

his assured claim. If not, compare with the assured allocation for the two types. As we

have seen in the discussion of the assured allocation for two types in Section 4.1, (see also

Lemma 3 in the Appendix) the agent makes non-negative profits from type i = 2 under

the assured allocation and zero expected profits overall. So this alternative mechanism

satisfies the participation constraint regardless of the superset of winners (which includes

i = 2 by construction). Thus it blocks the given mechanism.

Recall now that the assured claim of type 2 is by defiition the maximum utility type 2

can get conditional on offering a feasible mechanism that gives type 1 at least her assured

claim. Therefore, the assured allocation coincides with the core allocation when N = 2.

The remaining result follows directly from the result in Myerson (1983) that neutral optima

are core allocations, and by the uniqueness of the assured allocation (Theorem 1).

The above result is interesting because, in general, it is very hard to determine the set

of all neutral optima, and often even to find a single one. However, in the Theorem above

we prove, in effect, uniqueness of the neutral optimum and provide, a simple, computable

characterization of it, when N = 2, via the assured allocation.

The fact that the assured allocation coincides with the core mechanism as defined

in Myerson (1985) provides a very strong equilibrium selection argument in favor of the

assured allocation, when N = 2, and emphasizes the importance of the assured allocation

for the case of two types.

To proceed to our next result, we need to introduce one more assumption, which makes

use of the following definition.

Definition 6 Denote by qi(δ) for δ ∈ [0, fi−1] the maximizer of
fi−1−δ
si

ψi−1 (q) +Wi (q).

Notice that by our previous assumptions the latter function is strictly concave and

hence has a unique maximizer qi(δ) ≥ 0 or it is never decreasing. Notice also that qi(fi−1) =

qoi and that qi(δ) is decreasing in δ whenever qi(δ) > 0.
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Assumption B : For all 1 ≤ i < j ≤ N and δ ∈ [0, fi−1], it holds that qi(δ) ≤ qj(δ), if

qi(δ) > 0.

Assumption B ensures that there is no bunching in the assured allocation when there

are three types or more. It is used in Theorem 5, but not elsewhere. Assumption B is

often deployed to ensure no bunching in optimal screening problems with type-dependent

outside options. For instance, Assumption B is the counterpart of the Potential Separation

assumption in Jullien (2000). Assumption B is needed here because the assured allocation

is defined by means of an optimal screening problem with type-dependent reservation

utilities. As in Jullien (2000) we can give separate conditions on the priors and the

technology which jointly imply Assumption B. These are provided for completeness in

Lemma 7 in the Appendix.

Theorem 4 provides also the basic motivation behind Theorem 5. Start from the case

with two types. Suppose now that a third, even more productive type of the principal is

added. Then, recalling problemXn in Section 3 for n = N , we define the assured allocation

for the three types as a feasible mechanism that achieves for the third type the maximal

payoff conditional on the lower types getting at least their assured claims, which in turn

are the payoffs of the lower types if they were the highest types. This construction can

be iterated when more and more types of higher efficiency are added to the model. Recall

now that there is no bunching in the unique assured allocation when N = 2. In Lemma

8 in the Appendix we show that Assumption B implies that there is no bunching in the

assured allocation for any N . Motivated by these findings, and our discussion in Section

4.2 — in particular, that if there is bunching in the assured allocation then it may not be

a a neutral optimum — we obtain the final main result of this paper, which is technically

the hardest to prove.

Theorem 5 Under Assumption B the assured allocation is a neutral optimum.

The result implies in turn that the assured allocation (without bunching) belongs to

the minimal set of “unblocked mechanisms”as defined in Myerson (1983)). This, alongside

that the assured allocation dominates the RSW allocation when equilibrium selection arises

in game Γ, provides an equilibrium selection argument in favor of the assured vis-a-vis the

RSW allocation when there are more than two types and no bunching in the assured
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allocation. We do not know whether there exists another neutral optimum which is not

the assured allocation when in the latter there is no bunching. We strongly conjecture

that there are. On the other hand, recalling the second example in Section 4, we know

that when there is bunching in the assured allocation, then the assured allocation may not

be a neutral optimum. This emphasizes that the assured allocation does not in general

coincide with neutral optima.

6 Market Implementation of the Assured Allocation

As Proposition 2 and Theorem 3 imply that the assured allocation is a perfect Bayesian

equilibrium of the three-stage game Γ, one may wonder whether there is a dynamic process

or game for which the RSW allocation may not be an equilibrium outcome, while the

assured allocation is. If such a game exists, this could provide an additional reason for

selecting the assured, and not the RSW, allocation as a solution to the informed-principal

problem. In this section we provide such a game. In doing so, we also provide an additional

link of the assured allocation with the received literature - in particular, the literature on

markets with adverse selection.

Consider the following game. There is a unit mass of sellers and NB ≥ 2 buyers, with

each seller and each buyer conforming to the description of "the seller" and "the buyer"

in Section 2, respectively. Let si represent the proportion of sellers of type i. Types are

the sellers’ private information. The game has the following stages:

• At the first stage, the uninformed parties (buyers) post simultaneously and independ-

ently incentive-compatible and individually-rational30 deterministic direct mechan-

isms.

• At the second stage, having observed the competitors’ postings, each buyer can

"withdraw" its contract, i.e. "exit the market", at no cost. Withdrawing a contract

means that the buyer decides not to trade with any seller, and thereby makes zero

profits.

30This is without loss of generality as (a) any contract which is not incentive-compatible for some types
can be replaced by another mechanism where each type is offered instead its preferred option from the
original menu, and (b) any incentive-compatible contract which is not individually-rational for some types
can be replaced by another menu of options where each such type is offered its reservation payoff.
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• At the last stage, sellers choose an option from the available contracts and trade

does take place (i.e. no further market-exits are allowed at this stage). If no con-

tract is available, i.e. if all buyers have exited the market, then sellers receive their

reservation utilities.

We call this the “market game”. This game is a modification of the model of an insur-

ance market analyzed in Rothschild and Stiglitz (1976) where an exit stage is explicitly

added. The idea behind this extension is to allow buyers to react to possible deviations

by their competitors, introducing thus forces akin to those behind Wilson’s "anticipatory

equilibrium" notion.

We restrict attention to priors being such that the assured allocation does not coincide

with the RSW allocation. If it did, then it would be a symmetric pure strategy Perfect

Bayesian Nash equilibrium outcome of the market game; this is a consequence of being,

in this case, a strong solution solution.

We will be referring to type i as "loss-making", if it creates losses for the buyer under

the assured allocation, i.e. if Wi(q
N
i ) < UNi . Conversely, we will be referring to type i as

"profit-making", if it creates positive profits for the buyer under the assured allocation,

i.e. if Wi(q
N
i ) > UNi .

We then have the following important result:

Theorem 6 Assume that priors are such that all types i = 1, ..., N − 1 are loss-making.

All buyers posting the assured allocation at the first stage, with buyers sharing the market

(i.e. each buyer trading with si/NB sellers of type i, for all i) is a symmetric pure strategy

Perfect Bayesian Nash equilibrium outcome of the market game.

Proof. Let us denote the contract that offers the assured allocation with κN =
(
UNi , q

N
i

)N
i=1

. To prove the existence of an equilibrium where this contract is offered by

all buyers and no buyer exits the market, we assume that in equilibrium sellers who are

indifferent between an option from the assured allocation contract and an option from

an alternative contract select the former option. Furthermore, sellers always choose the

option which is designed for them. Moreover, we postulate that after a deviating offer by

another buyer, the only buyers who exit are those who would have otherwise made losses.

32



We prove the theorem by contradiction, and so suppose that there exists a feasible

deterministic deviation that makes positive profits. Refer to this deviation as contract

κd =
(
Udi , q

d
i

)N
i=1

.We will be referring to it simply as the deviation. We will also be saying

that a type is "attracted" by the deviating buyer, if the type (weakly) prefers the option

offered to it in the first stage by the deviating buyer. Notice that the deviation, being

profitable, must have the deviating buyer not exiting the market at the second stage.

Suppose first that the deviation is such that some non-deviating buyers do not exit the

market. These buyers are not making losses; otherwise they would have also exited the

market. Consider then the mechanism κ′ = (U ′i , q
′
i)
N

i=1 that consists of the options that are

chosen at the last stage by the sellers from all available contracts. That is,

(U ′i , q
′
i) =





(
UNi , q

N
i

)
if U ′i ≥ UNi

(
Udi , q

d
i

)
if U ′i < UNi

This mechanism is feasible and makes strictly positive profits by construction. It also

satisfies the assured claim constraints (because no type is worse off following the deviation).

This implies that a mechanism κ′′ that differs from mechanism κ′ only in that it offers

every type a sufficiently small epsilon more utility is also feasible and makes every type

strictly better off. This contradicts the fact that the assured allocation is undominated

amongst all deterministic mechanisms.

Assume now that the deviation is such that all non-deviating buyers exit the market

at the second stage. Since they would have been making losses if they had not exited, it

must be that the deviating buyer attracts some profit-making types. By the description

of the candidate equilibrium, these types are strictly better off with the option offered to

them by the deviating buyer. By assumption, all types i = 1, ..., N − 1 are loss-making,

which implies by the properties of the assured allocation that the highest type is the only

profit-making type. Therefore, this type chooses the option
(
UdN , q

d
N

)
and UdN > UNN .

However, the maximum profits that can arise from any incentive-compatible mechanism

subject to the condition that the utility of the highest type is at least as high as its utility

in the assured allocation is zero.31 Thus, contract κd is not a profitable deviation, and the

31The proof of this is as follows: recalling Lemma 1 we have that all incentive-compatibility constraints
in the problem in the main text above can equivalently be replaced by the local incentive-compatibility
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proof is comlpete.

A corollary of this theorem is that the assured allocation is an equilibrium of the market

game for all priors, conditional on there being only two types.32 A natural question is

whether there are priors such that all types i = 1, ..., N − 1 with N > 2 are loss-making.

The answer is affirmative. In fact, our example in Section 4.2 (of the assured allocation

involving bunching) is such an example. Loosely speaking, the highest type will be the

only type who is not loss-making, if it is very productive (so that all upward incentive

constraints are binding) and is sufficiently more likely than all other types (so that the

upward distortion of its output is relatively small). The reason is that in this case, the

information problem will not be very severe and the highest type will be willing to leave

sufficiently high information rents to (i.e. cross-subsidize) all types below.

Echoing results in the literature on insurance, we can easily show that the RSW will

not be an equilibrium outcome of the market game for some priors. To see this, consider

momentarily the market game after dropping the second stage. In this game, the RSW is

not an equilibrium outcome when higher types are sufficiently more likely than lower types

so that there is a profitable pooling contract that attracts all types. This follows directly

from single-crossing and the concavity assumptions about the cost and benefit functions.

Figure 1 demonstrates this situation for the case of two types (and linear buyers’ benefit

functions). This figure is the analogue of the corresponding figure that shows the well

known case when the RSW is not a Nash equilibrium in the insurance market game

(without the second withdrawal stage); see, for instance, Figure III in Rothschild and

Stiglitz (1976). The same is clearly also true for the market game as defined earlier (i.e.

with the second stage), because such a profitable pooling contract will attract all types

constraints and the monotonicity constraints. Consider the relaxed problem P that results from the latter
problem after dropping the local downward incentive constraints. Problem P is a well-defined problem.
Note then that the assured allocation and the associated Kuhn-Tucker multipliers (expressed in terms of
the multiplier of the participation constraint) from problem XN is a solution to problem P after using the
inverse of the multiplier of the participation constraint for the Kuhn-Tucker multiplier of the constraint
UN ≥ UNN in problem P . This follows directly from the fact that for the highest type the assured claim
constraint holds by construction as equality, while for all other types the assured claim constraints hold
as strict inequalities (and hence the corresponding assured allocation Kuhn-Tucker multipliers are zero).
Therefore, maximized profits in problem P are zero. But we know that the assured allocation satisfies
also the downward incentive constraints. Thus, the solution in problem P is also a solution to the problem
stated in the main text above.
32With two types and the assured allocation being different than the RSW allocation, the lowest type

is loss-making (recall our discussion in Section 4.1).
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and hence the non-deviating buyers will end up with zero profits and not exit the market.

The same construction can easily be extended to the case of more than one types as long

as the highest type is sufficiently more likely than lower types.

Given the above discussion, a very important question, for our purposes, is whether

there are priors such that the above theorem holds and the RSW allocation is not an

equilibrium outcome of the market game. Again, our example in Section 4.2 provides us

with such a case. In that example, one can easily see that there is pooling contract that

strictly dominates the RSW allocation and makes strictly positive profits.33 Therefore,

we can have situations where priors are such that an equilibrium outcome of the market

game is the assured, but not the RSW contract. The existence of a game for which the

33To be precise, such mechanism is the pooling contract {t′ +0.01, q′} where {t′, q′} = {20.3848, 3.273}
is the transfer-output option that would make both types 1 and 3 indifferent between this option and their
RSW options. That is, {t′, q′} is the solution to the system of equations {t−C1(q) = URSW1 , t−C3(q) =
URSW3 } where URSWi denotes the utility of type i under the RSW allocation. For completeness, we
note that URSWi = Wi(q

RSW
i ), with qRSW1 = qo1, and qRSW2 and qRSW3 being defined implicitly by

W3(q
RSW
3 ) =W2(q

RSW
2 ) + ψ3(q

RSW
3 ) and W2(q

RSW
3 ) =W1(q

o
1) + ψ2(q

RSW
2 ).
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assured, but not the RSW, allocation is an equilibrium outcome emphasizes the value of

the assured allocation, especially when it dominates the RSW allocation.

7 Conclusions

In this paper we introduced a specific deterministic mechanism which we called the assured

allocation. We showed that it exists, and is unique, undominated (amongst deterministic

mechanisms) and robust in small changes in prior beliefs. We also showed that it (weakly)

dominates the RSW and coincides with the RSW only when the latter is undominated.

If the assured allocation is separating it is a neutral optimum, while we have provided an

example where there is bunching in the assured allocation and the latter is not a neutral

optimum. We have also shown that when N = 2 the assured allocation coincides with the

neutral optimum and the core mechanism. Therefore, faced with equilibrium selection in

the mechanism-selection game in Maskin and Tirole (1992), one could choose the assured

allocation as the solution. When N > 2, the latter argument cannot be made as the

assured allocation may not coincide with the core mechanism. We show that when there

is no bunching in the assured allocation, then the latter is a neutral optimum and hence

a subset of the core. We have also shown that in a particular class of “market games”,

the assured, but not the RSW, allocation is always an equilibrium. These properties,

alongside that the assured allocation dominates the RSW mechanism, could be used to

argue in favor of the assured, and not the RSW, allocation as a solution to informed

principal problems of the type we study here.

One interesting avenue for future work would be to attempt to generalize the concept of

the assured allocation to stochastic mechanisms. This would require a different approach

than the one we have employed here. We have shown and extensively used that the surplus

attained by each type had it been the highest one, is increasing in the type. However, with

stochastic mechanisms this might no longer be always true. The reason is the following.

It is true that stochastic mechanisms will in general (weakly) increase the surplus of the

highest type, all other things equal. Nevertheless, all other things are not equal. Due to

the recursive nature of defining the assured allocation, the constraints that lower types

attain at least as much as what they would have attained had they been the highest type,
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may also be more stringent when stochastic mechanisms are allowed.

We expect that our analysis extends to more general environments with multiple agents

and interdependent values provided there remains a clear hierarchy of the types of the

principal in terms of attained surplus for contracts which are individually rational and

incentive compatible for all types of the principal and all types of the agents. We leave

this for future research.

It would be interesting to add ex post participation constraints for the agent (i.e. that

he can ex post refuse a contract if the principal decides to take a particular option). Such

model modifications, which relax the commitment assumptions used here, could alter the

nature of the assured allocation. One could also allow for type-dependent outside options.

This would enable the investigation of insurance and franchise contracts. Our analysis

does not allow us to handle cases where there is a trade-off between quality and costs. For

our analysis, it is important that higher types are unambiguously preferred by the agent.

However, interesting applications, such as in the procurement of public services, might

require a purchaser who prefers a producer of lower cost-efficiency and higher quality of

produced services. All these are very interesting future research projects.
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APPENDIX

Proof of Lemma 1

Proof of Lemma 1. First, note, after using the definition of Ui, that the incentive-

compatibility constraints can be re-written, respectively, as

Ui ≥ Uj −

j−1∑

v=i

ψv(qj) for 1 ≤ i < N, i < j ≤ N

Ui ≥ Uj +
i−1∑

v=j

ψv(qj) for 1 < i ≤ N, 1 ≤ j < i

The proof then follows usual arguments. Specifically, the necessary part follows directly

because the local incentive-compatibility constraints for types i and i + 1 are a subset of

all incentive-compatibility constraints. Sufficiency is obtained as follows. (a) The local

incentive-compatibility constraints for types i and i+ 1 imply

ψi(qi+1) ≥ Ui+1 − Ui ≥ ψi(qi)

and so qi ≤ qi+1 by the monotonicity of ψi. (b) After forward iteration of Ui ≥ Ui+1 −

ψi(qi+1) we have Ui ≥ Uj −
∑j−1

v=i ψv(qv+1) for j > i. Given ψ′v > 0 and, by monotonicity,

qv+1 ≤ qj for i ≤ v < j − 1, we get that Ui ≥ Uj −
∑j−1

v=i ψv(qj). (c) After backward

iteration of Ui + ψi(qi) ≤ Ui+1 we have Uj +
∑i

v=j ψv(qv) ≤ Ui+1 for j < i. Given ψ′v > 0

and, by monotonicity, qv ≥ qj for j < v ≤ i, we get that Uj +
∑i

v=j ψv(qj) ≤ Ui+1.

Proofs of Propositions and Theorems 1 - 3

We first need to prove a number of useful Lemmas. These Lemmas use optimization

problems Xn(y), X
∗
n(y) and X̃n(y).

First, problem Xn(y) is derived from problem Xn after replacing the participation

constraint with
∑n

i=1 si (Wi (qi)− Ui) + sny ≥ 0 where y ≥ 0 (that is, Xn = Xn(0)).

Second, let X∗
n(y) be the more constrained optimization problem which is derived from

40



Xn(y) by adding the downward incentive constraints

Ui+1 ≥ Ui + ψi (qi) for 1 ≤ i ≤ n− 1. (DCi,j)

The significance of this problem comes from Lemma 1 which ensures that a solution to X∗
n

is a feasible mechanism given the set of types {1, . . . , n} for the informed principal problem

with n types. We will show in Lemma 6 (stated and proved shortly) that a solution to Xn

is a solution to X∗
n(0).

Third, let X̃n(y) be the less constrained problem which is derived from Xn(y) after

dropping all the monotonicity constraints MCi. Problem X̃n(0) characterizes the assured

allocation if there is no bunching (see Lemma 8). This problem will be used, for instance,

in the proof of Theorem 2.

In both problemsX∗
n(y) and X̃n(y) the numbers Vi used in the assured claim constraints

are the maximal values U ii from the problem Xi.

As we will see, the Lagrangian for the problemXn(y) plays an important role in proving

Theorem 5. The Lagrangian for the problem Xn (y), with the appropriate multipliers

σi, µi, ρi and γ, is (with σn + µn > 0)

L = (σn + µn)Un +
n−1∑

i=1

σi (Ui − Vi) +

n−1∑

i=1

µi (Ui − Ui+1 + ψi (qi+1)) (7)

+

n−1∑

i=1

ρi (qi+1 − qi) + γ

(
n∑

i=1

si (Wi (qi)− Ui) + sny

)
.

Notice that (σn + µn) is a weight on the objective function in the Lagrangian and not,

strictly speaking, a Lagrange multiplier. Normally one would set (σn + µn) = 1. However,

if one multiplies in a solution to the first-order conditions for the Lagrangian problem

all multipliers, including (σn + µn) , by the same constant, the optimum is not changed.

Rather than fixing (σn + µn) we can hence fix any positive Lagrange multiplier at a suitable

value. For us it will be convenient to set γ = 1, once we have shown that γ must always be

positive. This will ease the comparison between the solutions to the problems Xn (y) and

Xk (0) for k < n below. Note thus that σk and µk are determined as Lagrange multipliers

for the problem Xn (y) while only their sum is determined in the problem Xk (y) .
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Using µ0 ≡ ρ0 ≡ ρn ≡ 0 we can rewrite the Lagrangian as:

L=
n∑

i=1

[
σi +

(
µi − µi−1

)
− γsi

]
Ui −

n−1∑

i=1

σiVi + γsny (8)

+
n∑

i=1

[
µi−1ψi−1 (qi) + γsiWi (qi) +

(
ρi−1 − ρi

)
qi
]

The first-order conditions are for i = 1, · · · , n:

σi +
(
µi − µi−1

)
− γsi = 0

µi−1ψ
′
i−1 (qi) + γsiW

′
i (qi) + ρi−1 − ρi = 0.

Addition of the former over i yields, since σn + µn > 0, 0 <
∑n

i=1 σi + µn = γ
∑n

i=1 si.

Hence γ > 0, and so the participation constraint of the agent is binding, and therefore

n∑

i=1

si (Wi (qi)− Ui) + sny = 0 (9)

From now on we set γ = 1.

The first-order conditions for i = 1, · · · , n become:

σi +
(
µi − µi−1

)
− si = 0 (10)

µi−1ψ
′
i−1 (qi) + siW

′
i (qi) + ρi−1 − ρi = 0. (11)

Let gi =
∑i

j=1 σj, with g0 ≡ 0. The first-order conditions with respect to Ui imply, using

fi =
∑i

j=1 sj, that

µi = fi − gi. (12)

Denote a solution to optimization problem Xn (y) by (U
n
i (y) , q

n
i (y))1≤i≤n. We de-

note the corresponding multipliers by σni (y), µ
n
i (y), and ρ

n
i (y) . We also write g

n
i (y) =

∑i

j=1 σ
n
j (y). Notice that g

n
i (y) is non-decreasing in i. When there is no danger of con-

fusion we will often drop the (y) or even the superscript n in the solution. We can now

proceed to the various proofs.
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Lemma 2 The participation constraint of the agent is binding in a solution to the problem

Xn (y). Moreover, for each type 1 ≤ i < n either the incentive constraint ICi and/or the

assured claim constraint ACi is binding, i.e. µi > 0 and/or σi > 0.

Proof. The discussion below Formula (8) already showed that the participation constraint

must be binding in an optimum; in particular, γ = 1. The second part of the Lemma

follows directly from Formula (10) and that γ > 0.

Lemma 3 Suppose type n produces qnn in a solution to Xn. Then

Vn+1 ≥ Vn + ψn (q
n
n) and Wn (q

n
n) ≥ Vn

Proof. Let ((Uni , q
n
i ))1≤i≤n be a solution to the program Xn. We have thus by definition

Unn = Vn. Consider now the contract
((
Ûn+1i , q̂n+1i

))
1≤i≤n+1

for the types 1 ≤ i ≤ n + 1

defined by
(
Ûn+1i , q̂n+1i

)
= (Uni , q

n
i ) for 1 ≤ i ≤ n and

(
Ûn+1n+1 , q̂

n+1
n+1

)
= (Vn + ψn (q

n
n) , q

n
n).

We show now that this contract is admissible for the problemXn+1. Given the definition of

Vn+1, we thus have Vn+1 ≥ Vn+ψn (q
n
n). To show admissibility notice first that the contract

satisfies by construction all incentive constraints ICi, the monotonicity constraints MCi

and the assured claim constraints ACi.

The participation constraint for the agent is also satisfied. To see the latter, we prove

first that Wn (q
n
n) ≥ Vn must hold. For n = 1 this is clear. For n > 1 we would otherwise

obtain from the participation constraint for the problemXn that
∑n−1

i=1 si (Wi (q
n
i )− Uni ) >

0. So ((Uni , q
n
i ))1≤i≤n−1 would be admissible for the problem Xn−1, give utility at least

Vn−1 to type n − 1, due to U
n
n−1 ≥ Vn−1 by ACn−1, and have a participation constraint

for the agent which is satisfied as a strict inequality. However, this means that we have a

solution for problem Xn−1 in which the participation constraint is slack. This contradicts

Lemma 2.

Secondly, we have for any q

Wn+1 (q) = Sn+1 (q)− Cn+1 (q) ≥ Sn (q)− Cn+1 (q)

= (Sn (q)− Cn (q)) + (Cn (q)− Cn+1 (q))

= Wn (q) + ψn (q)
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and therefore

n+1∑

i=1

si

(
Wi

(
q̂n+1i

)
− Ûn+1i

)
=

n∑

i=1

si (Wi (q
n
i )− Uni ) + sn+1 (Wn+1 (q

n
n)− (Vn + ψn (q

n
n))) ≥

sn+1 (Wn (q
n
n) + ψn (q

n
n)− (Vn + ψn (q

n
n))) ≥ 0

The last inequality uses Wn (q
n
n) ≥ Vn, derived above. Thus, the participation holds.

Lemma 4 Suppose that in a solution (Uni , q
n
i )1≤i≤n to Xn (y) the k-assured claim con-

straint holds with equality for 1 ≤ k < n. Then

k∑

i=1

si (Wi (q
n
i )− Uni ) = 0. (13)

and the restricted solution (Uni , q
n
i )1≤i≤k is a solution to Xk (0). If, in addition, the assured

claim constraint is satisfied as a strict inequality at k + 1, then we must have qnk < qnk+1,

i.e. there cannot be bunching between types k and k + 1.

Proof. Suppose first that
∑k

i=1 si (Wi (q
n
i )− Uni ) > 0. Then the restriction ((U

n
i , q

n
i ))1≤i≤k

of the solution would satisfy all constraints of the problem Xk (0) with the participation

constraint being slack. Since type k receives Vk in this solution, (U
n
i , q

n
i )1≤i≤k is an optimal

solution of Xk (0) in which the participation constraint is slack. This contradicts Lemma

2.

Suppose next that
k∑

i=1

si (Wi (q
n
i )− Uni ) < 0 (14)

Take a solution
((
Uki , q

k
i

))
1≤i≤k

for the problem Xk (0). Consider the new contract defined

by
(
Ûni , q̂

n
i

)
=





(
Uki , q

k
i

)
for i ≤ k

(Uni , q
n
i ) for i > k

We have

Unk = Vk = Ukk = Ûnk . (15)
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The first equality follows by the assumption of the Lemma, the second by the definition

of Vk and the third by the above construction. Since the participation constraint for

Xn (y) is binding in the optimal contract (U
n
i , q

n
i )1≤i≤n and since the participation con-

straint for Xk (0) is binding in the optimal contract
(
Uki , q

k
i

)
1≤i≤k

, inequality (14) implies
∑n

i=1 si

(
Wi (q̂

n
i )− Ûni

)
+sny > 0. Therefore, the above contract satisfies the participation

constraint of problem Xn (y) strictly. By construction all assured claim constraints and

all incentive constraints ICi are satisfied as well as the monotonicity constraints MCi for

1 ≤ i ≤ n possibly with the exception of q̂nk+1 ≥ q̂nk . However, also the latter inequality

holds.

To see this, note

Vk + ψk
(
q̂nk+1

)
= Ûnk + ψk

(
q̂nk+1

)
≥ Ûnk+1 ≥ Vk+1 ≥ Vk + ψk

(
qkk
)

which implies by the monotonicity of ψk that q̂
n
k+1 ≥ qkk = q̂nk . The equality follows from

(15). The first inequality is ICk after using the definition of the new contract and, once

again, (15). The second inequality combines the definition of the new contract with either

ACk+1 if κ+ 1 < n, or Unn ≥ Vn if κ+ 1 = n. The last inequality follows from Lemma 3.

Therefore,
((
Ûi, q̂i

))
1≤i≤n

is admissible for the problem Xn (y) with a slack particip-

ation constraint. Since Ûnn = Unn , it is also an optimal solution for this problem, again in

contradiction to Lemma 2.

Thus the equality (13) must hold. In consequence, (Uni , q
n
i )1≤i≤k is admissible for the

problem Xk (0) and, since U
n
k = Vk, it is an optimal solution for this problem.

Finally, we prove the second part of the Lemma. Suppose that the assured claim

constraint is satisfied as a strict inequality at k + 1, i.e. Unk+1 > Vk+1, and that q
n
k = qnk+1.

Since qnk is part of a solution to Xk (0), Lemma 3 implies

Unk+1 > Vk+1 ≥ Vk + ψk (q
n
k ) = Unk + ψk

(
qnk+1

)

which contradicts the incentive constraint ICk.

Lemma 5 Assume that the solution (Uni , q
n
i )1≤i≤n to the optimization problem Xn (y) for

any 1 ≤ n ≤ N exists. Then the solution (Uni , q
n
i )1≤i≤n to the optimization problem Xn (y)
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is unique. Moreover, the corresponding multipliers σni , µ
n
i and ρ

n
i as defined above (see

formula (7)) are unique up to the choice of the terms in σnn + µ
n
n.

Proof. The proof is by induction. The claim is clearly true for n = 1. Suppose it holds

for n− 1 ≥ 1. In the problem Xn (y) let k < n be the largest index for which the assured

claim constraint is binding. That is, σnk > 0 and σ
n
i = 0 for any k < i ≤ n. (Set k = 0 if

no assured claim constraint is binding. The remaining statements in this paragraph are

then vacuously true.) Let
(
Uki , q

k
i

)
1≤i≤k

be the solution to the problem Xk (0), which is by

assumption unique. Also the Lagrange multipliers σki , µ
k
i , and ρ

k
i of the latter problem are

unique, up to the choice of the terms in σkk + µ
k
k. Let (U

n
i , q

n
i )1≤i≤n be the solution to the

problem Xn (y), and let σ
n
i , µ

n
i , and ρ

n
i be corresponding Lagrange multipliers. By Lemma

4 (Uni , q
n
i )1≤i≤k is a solution to Xk (0) and by the assumed uniqueness we have U

n
i = Uki

and qni = qki for 1 ≤ i ≤ k. From definition of k and the second part of Lemma 4, we know

that MCk is slack, i.e. ρ
n
k = 0 (= ρkk). The first-order conditions for the problem Xk (0) are

hence a subset of the set of first-order conditions for the problem Xn (y). Thus σ
k
i = σni ,

µki = µni and ρ
k
i = ρni for i < k and σkk + µ

k
k = σnk + µ

n
k by the induction assumption.

It remains to show the uniqueness of µnk , σ
n
k , (U

n
i , q

n
i , σ

n
i , µ

n
i , ρ

n
i )k+1≤i≤n−1, U

n
n , q

n
n and

σnn + µnn. We do this first for a given ‘bunching pattern’. By the latter we mean that the

set B of indices i for which qni = qni+1 holds is fixed. The binding incentive constraints ICi

for k < i < n (recall the definition of k and the second part of Lemma 2) give

Uni = Unn −
n−1∑

j=i

ψj
(
qnj+1

)
(16)

where Unn is by definition the same in all solutions of Xn (y). Since σ
n
i = 0 for k < i < n

by assumption, µni for k ≤ i < n and σnn+µ
n
n are uniquely determined by formula (12) and

depend only on gnk or, equivalently, σ
n
k . In particular, µ

n
i = fi− g

n
k . For any i /∈ B we have

that MCi is slack, i.e. ρ
n
i = 0. Partition the set of indices {k + 1, · · · , n} into maximally

connected sets J such that the monotonicity constraint is binding for any two adjacent

indices i, i+1 in J . Thus a set J = {i1 ≤ i ≤ i2} is in the partition if i1−1, i2 /∈ B and for

all i ∈ J it holds that (i ∈ B ⇔ i+ 1 ∈ J). (Notice that J = {i} is a set in the partition

if neither qni−1 = qni nor q
n
i = qni+1.) Summing the first-order conditions (11) over all i ∈ J

46



gives the equation
∑

j∈J

(
µnj−1ψ

′
j−1 (q) + sjW

′
j (q))

)
= 0

in which no non-zero ρni occur and from which qni for any i ∈ J can be inferred uniquely

from
{
µni−1

}
i∈J
and hence gnk by the implicit function theorem because the derivative of the

left hand side of the equation is strictly negative with respect to both q and gnk . It follows

moreover that qni is a decreasing function of g
n
k with strictly negative derivative. Starting

with the lowest index in J = {i1 ≤ i ≤ i2} one can then infer the ρ
n
i1
, ρni1+1, · · · , ρ

n
i2−1

inductively from the first-order conditions (11).

We now claim that the left-hand term in the participation constraint (9) is, with the

variables determined as just described, strictly increasing in gnk . To show this we prove

that its derivative with respect to gnk is strictly positive except in a single point. The

terms on the left-hand side in (9), which depend on gnk , are, using (16) and, once again,

the definition of k and Lemma 4,

n∑

i=k+1

si (Wi (q
n
i )− Uni ) =

n∑

i=k+1

si

(
Wi (q

n
i )− Unn +

n−1∑

j=i

ψj
(
qnj+1

)
)

=
n∑

i=k+1

(
si (Wi (q

n
i )− Unn ) + (fi−1 − fk)ψi−1 (q

n
i )
)

where the last equality follows by collecting terms and using the definition of the cumu-

lative probability fj. Differentiating, and using the equation (11) and that, by g
n
i = gnk for

k ≤ i < n and equation (12), µni = fi − gnk = fi − fk + µnk for k < i < n, we have (recall

ρnk = 0.)

n∑

i=k+1

(
siW

′
i (q

n
i ) + (fi−1 − fk)ψ

′
i−1 (q

n
i )
) dqni
dgnk

=
n∑

i=k+1

(
−µnkψ

′
i−1 (q

n
i ) + ρ

n
i − ρni−1

) dqni
dgnk

= −µnk

n∑

i=k+1

ψ′i−1 (q
n
i )
dqni
dgnk

−
n−1∑

i=k

ρni

(
dqni+1
dgnk

−
dqni
dgnk

)
= −µnk

n∑

i=k+1

ψ′i−1 (q
n
i )
dqni
dgnk

> 0

where the last equality follows from µnk > 0 and
dqni
dgn
k

< 0 for k < i < n. The former is

true whenever gnk < fk (recall (12) and that g
n
k ∈ [0, fk]), while the latter is due to the

monotonicity properties of the ψi and Wi. Thus the derivative is strictly positive except
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when gnk = fk, which proves our claim. Therefore, there can be at most one value of g
n
k

for which the participation constraint is satisfied. It follows that there can only be one

solution (including the Lagrange multipliers) for each bunching pattern.

Suppose, finally, that we have two different solutions to the optimization problem

Xn (y) (excluding the Lagrange multipliers) with possibly different bunching patterns.

Any convex combination of the two solutions is also a solution because the optimization

problem is convex. Since there are infinitely many convex combinations and only finitely

many bunching patterns, we can find two different solutions with the same bunching

pattern, which contradicts the above finding. This concludes the proof.

We start with the proof of Theorem 1. In fact, when it comes to the existence proof, we

will prove the more general result that a solution to problem Xn(y) exists for any y ≥ 0.

Proof of Theorem 1. We first prove existence. Denoting a solution to optimization

problem Xn (y) by (U
n
i (y) , q

n
i (y))1≤i≤n, we have the following:

The proof of existence is by induction on the number of types n. Our assumptions

imply that the first-best level q01 exists and is finite. Moreover, type 1 has a non-negative

utility V1 = W1 (q
0
1) in this mechanism. Therefore a solution exists for n = 1. Suppose

a solution exists for all i = 1, · · · , n and that all Vi are non-negative. Then there is a

feasible mechanism for the optimization problem where the most productive type n + 1

gets at least Vn ≥ 0. Namely, take an optimal mechanism for type n and extend it such

that type n+1 produces qn+1 = qnn(y) and receives utility Un+1 such that the relevant local

incentive-compatibility constraints are satisfied, i.e. ψn(q
n
n(y)) ≤ Un+1 − Vn ≤ ψn(qn+1).

Obviously, this is feasible by the monotonicity property of ψn. Consider next a sequence

of feasible mechanisms for which Un+1 converges to the (non-negative) supremum of all

possible values of Un+1 in any feasible mechanism of the problem. Suppose that for some

subsequence the value of qi for some 1 ≤ i ≤ n + 1 goes to infinity. Then the surplus

Wi (qi) of type i goes to minus infinity by assumption. Since all types j = 1, · · · , n have

utility at least Vj ≥ 0 in each mechanism and since the participation constraint must hold,

Un+1 must go to −∞, contradicting Un+1 ≥ 0. By selecting a subsequence we can assume

that all qi in the sequence converge to a finite value and hence the surplus
∑n+1

i=1 siWi (qi)

converges to a finite value. Because each type j = 1, · · · , n has utility at least Vj ≥ 0

in each mechanism in the sequence, Un+1 is bounded from above due to the participation
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constraint. Hence a maximizing mechanism exists.

Uniqueness follows from existence and Lemma 5.

We finish with the proof of continuity. Berge’s maximum theorem implies by induction

that the claims V1, · · · , Vn−1 are continuous in the prior. By the same theorem Vn is

continuous and the n-assured allocation upper hemi-continuous. Because the latter is

unique, it is therefore continuous.

The proceed with the following important Lemma:

Lemma 6 The solution ((Uni , q
n
i ))1≤i≤n for problem Xn is also a solution to the complete

problem X∗
n, which therefore exists and is unique.

Proof. To prove this we need to show that the solution ((Uni , q
n
i ))1≤i≤n for problem Xn

satisfies the downward incentive constraints. For type 1 ≤ i < n we distinguish two cases:

i) The incentive constraint ICi holds as equality. Then, by using also the monotonicity

constraint MCi we have

Uni = Uni+1 − ψi
(
qni+1

)
≤ Uni+1 − ψi (q

n
i )

and hence (DCi) is satisfied.

ii) The ICi holds as a strict inequality (and hence µi = 0). Then, by Lemmas 4 and

2, ACi is binding. Therefore, by Lemma 3, and ACi+1 and the definition of Vn = Unn we

have

Uni+1 ≥ Vi+1 ≥ Vi + ψi
(
qii
)
= Uni + ψi

(
qii
)

Note thus that if qii ≥ qni , then the incentive constraint (DCi) holds. In fact, we show next

that qii = qni . First, we have from Theorem 1 the uniqueness of the solution to problems

Xi and Xn. Second, we have, from Lemma 4 and that ACi is binding, that the solution

to problem Xi is part of the solution to problem Xn, and hence q
i
i = qni .

Thus, the solution ((Uni , q
n
i ))1≤i≤n for problem Xn is admissible for problem X∗

n. Prob-

lemX∗
n is more restricted than problemXn.Hence, existence and uniqueness of the solution

to Xn (Theorem 1) implies existence and uniqueness of the solution to X∗
n.

We next prove Theorem 2 To do so the following remark is in order.
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Remark 5 In the same fashion, it can be shown that Theorem 1 for problem Xn(y) and

Lemmas 2-5 (all proved earlier in this Appendix) apply to optimization problem X̃n (y)

as well.

Proof of Theorem 2. First, note from the above Lemma and Lemma 1 that the as-

sured allocation is incentive compatible, and thereby a feasible (deterministic) mechanism.

Suppose now the n-assured allocation is dominated by another mechanism. Then this al-

ternative allocation is also a solution to Xn (0) and hence, by uniqueness (Theorem 1),

identical to the n-assured allocation. The proof of the first part is complete after setting

n = N .

We prove next the second part of the theorem. After using (with a slight abuse of

notation) Ui = ti−
∫
Ci(q)dµi(q), the incentive-compatibility and participation constraints

can be re-written, respectively, as

Ui ≥ Uj −

j−1∑

v=i

∫
ψv(q)dµj(q) for 1 ≤ i < N, i < j ≤ N,

Ui ≥ Uj +
i−1∑

v=j

∫
ψv(q)dµj(q) for 1 < i ≤ N, 1 ≤ j < i, (17)

N∑

i=1

si(

∫
Wi(q)dµi(q)− Ui) ≥ 0.

Suppose now that the assured allocation ((Ui, qi))1≤i≤N does not entail bunching, in

which case it is admissible for the more restricted problem X̃N . By Remark 5, the assured

allocation is thus the unique solution for problem X̃N . The same argument as in the proof

of the first part of this theorem shows that the assured allocation is undominated within

the class of all deterministic mechanisms where only the agent’s participation constraint

(PC), the assured claim constraints (ACi) and the upward incentive constraints (ICi) are

imposed (but not the monotonicity constraints MCi).

Consider now a feasible stochastic mechanism κ̂ =
(
Ûi, µ̂i (q)

)
1≤i≤N

that satisfies the

stochastic version of the above constraints, and which dominates the assured allocation.

In particular, any stochastic mechanism satisfying all constraints of (17) could be allowed

for.

Consider the deterministic outputs (q̂i)1≤i≤N where q̂i =
∫
qdµ̂i(q).We have by Jensen’s
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inequality and the strict concavity of Wi(q) that Wi(q̂i) >
∫
Wi (q) dµ̂i(q). Let

S =

N∑

i=1

si

(
Wi(q̂i)−

∫
Wi (q) dµ̂i(q)

)
/N > 0

be the associated per-type gain in expected surplus. Consider the deterministic mechanism

κ′ =
(
Ûi + S, q̂i

)
1≤i≤N

, which dominates the stochastic mechanism κ̂ and thereby the

assured allocation. Clearly, the new deterministic mechanism κ′ satisfies by construction

the assured claim constraints and the participation constraint of the agent. From Jensen’s

inequality and the concavity of ψi(q) we have that ψi(q̂i) ≥
∫
ψi (q) dµ̂i(q). Thus, the

mechanism κ′ satisfies also the upward incentive constraints (ICi). It follows that the

unique assured allocation is identical with the mechanism
(
Ûi + S, q̂i

)
1≤i≤N

and yields the

same payoffs for all types of the principal and for the agent as the stochastic mechanism

κ̂. We conclude that the assured allocation is undominated within the class of stochastic

mechanisms.

We now turn to the proofs of Proposition 3.

Proof of Proposition 3. From the definition of a strong solution and Proposition 2

we know that if the RSW allocation is undominated, it is a strong solution and hence a

strong solution exists. To prove the converse we notice again that the RSW allocation

is safe. It is hence, in the terminology of Myerson (1983), incentive compatible given S

for any subset S of types of the principal. Theorem 1 of Myerson (1983) implies hence

that a strong solution, if it exists, dominates weakly any safe mechanism, in particular

the RSW allocation. Suppose a strong solution exists and strictly dominates the RSW

allocation. Then there exists a type of the principal who does not get in the RSW his

highest possible payoff amongst all mechanisms which are incentive compatible and yield

non-negative payoffs to the agent conditional on every type of the principal. However, this

contradicts the definition of the RSW allocation in Maskin and Tirole (1992), p. 11 (which

appears here as Proposition 1 for convenience). Thus the RSW yields the same payoffs

for each type of the principal as the given strong solution and is hence undominated.

Proof of Theorem 3. For n = 1, . . . , N consider the following allocations. Let
((
URSWi , qRSWi

))
1≤i≤n

be the RSW allocation for the restricted typeset {1, . . . n}. Let
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((Uni , q
n
i ))1≤i≤n be a solution to the problem Xn. Let

((
Ûni , q̂

n
i

))
1≤i≤n

be the contract

which satisfies
(
Ûni , q̂

n
i

)
=
(
Un−1i , qn−1i

)
for any 1 ≤ i < n and where

(
Ûnn , q̂

n
n

)
solves the

following optimization problem Zn:

max
(Un,qn)

Un

subject to

Un−1n−1 ≥ Un − ψn−1 (qn) for n > 1

Wn (qn) ≥ Un

We prove by induction over n that a)
(
URSWn , qRSWn

)
is admissible for the problem Zn and

hence satisfies URSWn ≤ Ûnn , and b)
((
Ûni , q̂

n
i

))
1≤i≤n

is admissible for the problem Xn and

hence satisfies that Ûnn ≤ Unn = Vn. a) and b) imply directly that U
RSW
n ≤ Vn, which

proves the theorem.

For n = 1 all three solutions coincide and so our claims hold. Suppose that they hold

for n − 1 ≥ 1. To prove claim a) for type n, notice that URSWn−1 ≤ Ûn−1n−1 ≤ Un−1n−1 by our

induction assumption. Recalling that, by definition, URSWn−1 ≥ URSWn − ψn−1(q
RSW
n ), we

thus have from URSWn−1 ≤ Un−1n−1 that
(
URSWn , qRSWn

)
is admissible for problem Zn. Since Û

n
n

is the optimal value for problem Zn we have therefore U
RSW
n ≤ Ûnn .

We show next that claim b) holds for type n. We notice first that
((
Ûni , q̂

n
i

))
1≤i≤n

satisfies all assured claim constraints and all incentive constraints for ProblemXn hold (by

construction of
(
Ûnn , q̂

n
n

)
and because

((
Ûni , q̂

n
i

))
1≤i≤n−1

is a solution to Xn−1). The ex-

ante participation constraint from problem Xn−1 and the ex post participation constraint

for
(
Ûnn , q̂

n
n

)
from Problem Zn combined imply that

((
Ûni , q̂

n
i

))
1≤i≤n−1

satisfies also the

participation constraint of the Problem Xn. As in the proof of Proposition 2 (Appendix

A, top of page 38) in Maskin and Tirole (1992), using thatWn−1

(
qn−1n−1

)
≥ Vn−1 = Un−1n−1 by

Lemma 3, one can show for the problem Zn that q̂
n
n−1 < q̂nn. This, in turn, implies, given

q̂ni = qn−1i for any 1 ≤ i < n, that all monotonicity constraints of the problem Xn are also

satisfied by the contract
((
Ûni , q̂

n
i

))
1≤i≤n−1

. Hence, the latter contract is admissible for

Xn. Since U
n
n = Vn is the optimal value for problem Xn we have therefore Û

n
n ≤ Unn = Vn.

This completes the proof.
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Proof of Theorem 5

Assumption B is required in Theorem 5. We thus show next that Assumptioon B is not

empty.

Lemma 7 A sufficient condition for Assumption B is that

W ′
i (q)

ψ′i−1(q)
,
fi−1
si

and
fi−1 − fN−1

si
are increasing in i for all q ≥ 0.

Proof. We first show that fi−1−δ
si

be strictly increasing in i for any δ ∈ [0, fN−1] for

given i, j with j > i. Suppose that sj ≥ si. We then have, by δ ≥ 0 and the assumed

monotonicity of fi−1
si
, that

fj−1−δ

sj
− fi−1−δ

si
> 0. Suppose now that sj < si.We then have, by

δ ≤ fn−1 and the assumed monotonicity of
fi−1−fN−1

si
, that

fj−1−δ

sj
− fi−1−δ

si
=

fj−1−fN−1
sj

−

fi−1−fN−1
si

+ (fN−1 − δ)( 1
sj
− 1

si
) > 0.

By the first order conditions for a maximum, qi(δ) is given by

δ − fi−1
si

=
W ′
i (q)

ψ′i−1(q)

for qi(δ) > 0. Here the left-hand side is constant in q. Because Wi is concave and ψi

convex, the quotient on the right-hand side is decreasing in q. As i increases, the left-hand

side shifts downward and the right-hand side upwards. qi (δ) must hence increase.

To prove Theorem 5, we need a number of preliminary results.

We start with the following Lemma, which implies that the solution of Xn(y) is the

solution of X̃n (y), where, recall, the monotonicity constraints of Xn(y) are ignored.

Lemma 8 Under Assumption B, the monotonicity constraints in problem Xn(y) are slack

(i.e. they could be ignored).

Proof. The proof is by induction on n. For n = 1 there is nothing to show. Suppose the

claim holds for all 1 ≤ i < n. Let
(
Ũni (y) , q̃

n
i (y)

)
1≤i≤n

be the solution of the optimization

problem X̃n (y) with associated Lagrange multipliers (σ̃i, µ̃i). Let (U
n
i (y) , q

n
i (y))1≤i≤n

be the solution of Xn (y) with associated Lagrange multipliers (σi, µi, ρi). Clearly, the

first-order and complementarity conditions of the problem Xn (y) with ρi = 0 for all
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0 ≤ i ≤ n are identical to the first-order and complementarity conditions of the prob-

lem X̃n (y) . Moreover, it is easy to see that the multipliers (σ̃i, µ̃i)1≤i≤n and the solution(
Ũni (y) , q̃

n
i (y)

)
1≤i≤n

satisfy the first-order conditions, the complementarity conditions

associated with the incentive-compatibility and assured claim constraints, and the parti-

cipation constraint of the problem Xn (y) , as long as ρi = 0 for all i. As we show next,

(q̃ni (y))1≤i≤n satisfy also the monotonicity constraints of problem Xn (y) .

Suppose, first, that none of the assured claim constraints ACi, 1 ≤ i < n, are binding

for
(
Ũni (y) , q̃

n
i (y)

)
1≤i≤n

. Then g̃ni (y) =
∑i

j=1 σ̃j (y) = 0 for all 1 ≤ i ≤ n − 1 and

hence µ̃i = fi by equation (12). By the first-order condition (11) we have q̃
n
i (y) = qi (0)

with qi (δ) as defined prior to Assumption B. By Assumption B we have q1 (0) ≤ q2 (0) ≤

· · · ≤ qn (0). Secondly, suppose that some assured claim constraint is binding. In this

case, there exists a largest 1 ≤ k < n for which ACk is binding. As stated in Remark

5, Lemma 4 is valid. Thus, (q̃ni (y))1≤i≤k is part of the solution for problem X̃k (0) and

hence q̃n1 (y) ≤ q̃n2 (y) ≤ · · · ≤ q̃nk (y) by the induction assumption. By definition of k,

none of the assured claim constraints ACi, k + 1 ≤ i < n, are binding, and hence (from

10) σ̃i = 0 for k + 1 ≤ i < n. Thus, g̃ni (y) = g̃nk (y), µ̃i = fi − g̃nk (y) . This implies, by

the first-order condition corresponding to (11) for X̃n (y) , that q̃
n
i (y) = qi (g

n
k (y)) for all

k+1 ≤ i ≤ n−1. Together with Assumption B and Lemma 4, the latter and the definition

of k imply that q̃nk (y) < qk+1 (g
n
k (y)) ≤ qk+2 (g

n
k (y)) ≤ · · · ≤ qn (g

n
k (y)). Accordingly, in

both cases, we obtain that (g̃ni (y))1≤i≤n satisfies all the monotonicity constraints. Overall,

the solution to X̃n (y) is hence, by uniqueness (Theorem 1), the solution to Xn (y) . This

completes the proof.

Our last Lemma is:

Lemma 9 Suppose that (Uni (y) , q
n
i (y))1≤i≤n is the solution to the optimization problem

X̃n (y). Then
k∑

i=1

si (Wi (q
n
i (y))− Uni (y)) ≤ 0

for any k < n and the restricted solution (Uni (y) , q
n
i (y))1≤i≤k is the solution to X̃k (y

′) ,

where

y′ ≡ −
k∑

i=1

si
sk
(Wi (q

n
i (y))− Uni (y)) .
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Proof. The inequality follows as in the first part of the proof of Lemma 4

Moving to the proof of the second part of the Lemma, note first that

(Uni (y) , q
n
i (y))1≤i≤k is admissible for X̃k (y

′). Suppose that (Uni (y) , q
n
i (y))1≤i≤k is not

a solution to X̃k (y
′). There is, then, a solution to X̃k (y

′) where type k’s utility Ǔkk is

higher than Unk (y). Therefore,

Ǔkk > Unk (y) ≥ Unk+1 (y)− ψk
(
qnk+1 (y)

)

By the maximum theorem we can thus find a solution to the problem X̃k (y
′ − ε) with

ε > 0, denoted by
((
Uki (y

′ − ε) , qki ((y
′ − ε))

))
1≤i≤k

, such that Ukk (y
′ − ε) > Unk (y) for

sufficiently small ε. Clearly, Ukk (y
′ − ε) ≥ Unk+1(y) − ψk

(
qnk+1(y)

)
. The new contract

defined by
(
Ûni , q̂

n
i

)
=





(
Uki (y

′ − ε) , qki (y
′ − ε)

)
for i ≤ k

(Uni (y), q
n
i (y)) for i > k

is thus admissible for problem X̃n (y) and has a slack participation constraint. The

former is by construction, while the latter follows directly from the definitions of y′ and

(Uni (y), q
n
i (y))1≤i≤N and

(
Uki (y

′ − ε) , qki (y
′ − ε)

)
1≤i≤N

. The new contract is also optimal

since it gives, by construction, utility Unn (y) to type n. This and the slackness of the par-

ticipation constraint, under the new contract, of the problem X̃n (y) contradict Lemma 2.

We also need Theorem 7 in Myerson (1983), which we state for convenience (in terms

of our set up) next. First, note that an undominated mechanism for weights (τ i)1≤i≤N is

a feasible mechanism that maximizes
∑

i τ iUi. Let with some abuse of notation ψij (q) =

Ci (q)− Cj (q) ; that is, ψi(q) = ψi,i+1(q). We have:

Proposition 4 (Myerson) A feasible mechanism (Ui, qi)1≤i≤N is a neutral optimum if

and only if there exist sequences {{τ νi }
N
i=1, {µ

ν
ii′}

N
i,i′=1, γ

ν , {ωνi }
N
i=1}}

∞
ν=1, with τ

ν
i > 0, µ

ν
ii′ ≥

0, γν ≥ 0, ωνi scalars, such that

(
τ νi +

∑

j

µνij

)
ωνi −

∑

j

µνjiω
ν
j = γνsiV S

ν
i ≡

(
γνsiWi (q

ν
i )−

∑

j

µνjiψji (q
ν
i )

)
(18)
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and

lim
ν→∞

supωνi ≤ Ui

where qνi , µ
ν
ij, 1 ≤ i, j ≤ N, and γν are evaluated at the optimal solution of the problem

that determines the undominated allocation for given weights τ νi , 1 ≤ i ≤ N .

Equation (18) corresponds to equation (8.8) in Myerson (1983). To interpret this

theorem, Myerson refers to (ωνi )1≤i≤N as the warranted claim allocation (for a given ν),

and notes that the warranted claim allocation is the utility profile of a strong solution

in an extension of the given model that has more mechanisms available than the original

model. Thus, Theorem 7 in Myerson (1983) states, in effect, that neutral optimum is an

undominated mechanism that dominates the limit of a sequence of abstract mechanisms

that are strong solutions in an extended model which has more mechanisms available than

the original model.

We are now ready to prove Theorem 5:

Proof of Theorem 5. We assume that Assumption B holds. Hence, by Lemma 8, any

solution to a problem Xn (y) for any y features output q
n
i (y) which is nondecreasing in i,

and so we can ignore the monotonicity constraints qi ≤ qi+1 in the following. Thus, we

can assume that all multipliers ρi are zero, and only the multipliers σi and µi appear in

the Lagrangian for the derivation of the assured allocation.

The virtual surplus associated with this solution is

V Sni (y) =
1

si

[
µni−1 (y)ψ

n
i−1 (q

n
i (y)) + siWi (q

n
i (y))

]
(19)

Corresponding to equation (18) we can define the warranted claims ωni (y) for problem

Xn (y) inductively over i by

(σni (y) + µ
n
i (y))ω

n
i (y)− µni−1 (y)ω

n
i−1(y) = siV S

n
i (y) (20)

Notice that the ωni (y) are uniquely determined by Theorem 1. A solution to the problem

Xn (y) can now overall be described by (Uni (y) , q
n
i (y) , σ

n
i (y) , µ

n
i (y))1≤i≤n and has the

assured claims (ωni (y))1≤i≤n associated with it.

We prove next the following claims for all l ≤ n and all y ≥ 0 by induction on n:
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1. ωli (y) ≤ U li (y) for 1 ≤ i ≤ l.

2. For all 1 ≤ i ≤ l we have ωll (0) = Vl. Moreover, ω
l
i (y) = Vi for all y ≥ 0 whenever

σli (y) > 0.

3. A solution to Xl (0) is a neutral optimum for the restricted type set {1, · · · , l}.

Note that all these claims are true for any y ≥ 0 when n = l = 1: the solution to X1 (0)

is the first best, hence a strong solution and therefore a neutral optimum according to

Myerson (1983). Therefore (3) holds. Since ω11 (y) = W1 (q
1
1 (y)) ≤ W1 (q

1
1 (y))+y = U11 (y)

also (1) and the first part of (2) hold, while the second part is vacuously true.

Let n > 1 and suppose that all three claims hold for all l < n and y ≥ 0. We prove

them now for l = n and y = 0.

By Lemma 9 the solution to Xn (0) induces the solution Xn−1 (y) with y determined

by sn−1y = −
∑n−1

i=1 si (Wi (q
n
i (0))− Uni (0)) ≥ 0. We thus have ωni (0) = ωn−1i (y) ≤

Un−1i (y) = Uni (0) for all i < n, after using also claim (1) of the induction assumption

and because we can choose the same Lagrange multipliers in both problems. This proves

claim (1) for y = 0 and all i < l = n.We also have σni (0) = σn−1i (y). Hence, we have by a

similar argument ωni (0) = ωn−1i (y) = Vi for all 1 ≤ i < n−1 which satisfy σn−1i (y) > 0 by

claim (2) of our induction assumption. If σnn−1 (0) > 0, then necessarily y = 0 by Lemmas

2 and 4 and hence ωnn−1 (0) = ωn−1n−1 (0) = Vn−1 again by the induction assumption. This

proves the second part of claim (2) for y = 0 and l = n. Per construction and from the

definition of assured claims for y = 0,

n−1∑

i=1

σni (0)ω
n
i (0) + (σ

n
n (0) + µ

n
n (0))ω

n
n(0) =

n∑

i=1

siV S
n
i (0) (21)

Equating the right-hand sides in (7) and (8), which both describe the Lagrangian we

obtain for y = 0

(σnn (0) + µ
n
n (0))U

n
n (0) = −

n−1∑

i=1

σni (0)Vi +

n∑

i=1

siV S
n
i (0) (22)

Above we use the complementarity conditions for an optimum to simplify the right-hand

side of (7) and we use the first order condition (10) to simplify (8), recalling that all ρi
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are zero. Since Vn = Unn (0) by definition we obtain from (21) and (22)

n−1∑

i=1

σni (0)ω
n
i (0) + (σ

n
n (0) + µ

n
n (0))ω

n
n(0) =

n−1∑

i=1

σni (0)Vi + (σ
n
n (0) + µ

n
n (0))Vn

We conclude, after using the second part of claim (2) for y = 0 and i < n, overall that

ωnn (0) = Vn = Unn (0). This proves claims (1) and the first part of (2) for y = 0 and

i = l = n.

Next, we construct a sequence (Uni (0, εν) , q
n
i (0, εν) , σ

n
i (0, εν) , µ

n
i (0, εν) , ω

n
i (0, εν))1≤i≤n

for εν > 0, limν→∞ εν = 0 which converges to (Uni (0) , q
n
i (0) , σ

n
i (0) , µ

n
i (0) , ω

n
i (0))1≤i≤n

such that the first-order conditions for the Lagrangian and the complementarity condi-

tions always hold, where the ωni (0, εν) are defined as above with respect to the “virtual

surpluses” V Sενi and where σni (0, εν) , µ
n
i (0, εν) ≥ εν . Namely, set εν = 1/ν for any integer

ν sufficiently large and set σni (0, εν) = σni (0) if σ
n
i (0) > 0 and σ

n
i (0, εν) = εν otherwise.

Set gενi =
∑i

j=1 σ
n
j (0, εν). Then µ

n
i (0, εν) = fi − gενi is non-negative for sufficiently large

ν. The qni (0, εν) are then uniquely determined by µ
n
i−1 (0, εν) from the condition (11)

using ρi = ρi−1 = 0. The “virtual surpluses”V Sενi are then derived from the formula

(19) and the “warranted claims” ωni (0, εν) from (20). Continuity and the uniqueness

of the solution implies as ν → ∞ that ωni (0, εν) → ωni (0), µ
n
i−1 (0, εν) → µni−1 (0) etc.

The σni (0, εν) , σ
n
i (0) and ωni (0) etc. play hereby the role of the utility weights τ

ν
i ,

limν→∞τ
ν
i , and the warranted allocation ωi, etc. in the characterization of neutral optima

in Proposition 4 when the type space is restricted to the types i = 1, · · · , n and the prior

for each type is si/fi. Thus, from claim (1) with y = 0 the n-assured allocation is a

neutral optimum by Theorem 7 in Myerson (1983) and so claim (3) holds for l = n.

It remains to show claim (1) and the second part of claim (2) for l = n and y > 0.

Suppose that σni (0) = 0 for any i < n in the solution to Xn (0) . It is immediately seen

that (
Uni (0) +

sny

n
, qni (0) , 0, µ

n
i (0)

)

1≤i≤n

is a solution to the problem Xn(y) for all y > 0 because U
n
i (y) = Uni (0) +

sny

n
> Uni (0) ≥

Vi (and hence σ
n
i (y) = 0) for all i ≤ n and (qni (0) , µ

n
i (0))1≤i≤n satisfy the first-order

conditions of the problem Xn (y) . Clearly, then, the second part of claim (2) is trivially
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satisfied and, furthermore, ωni (y) = ωni (0) . Thus, given ω
n
i (0) ≤ Uni (0) by claim (1) for

y = 0, we have Uni (y) > ωni (y) for any y > 0 and i ≤ n.

Suppose next that there is some i < n such that σni (0) > 0 in the solution to Xn (0)

and let k < n be the largest such index. By continuity, as we increase y we will have

σnk (y) > 0 in some maximal interval 0 ≤ y < ȳ, which can easily be shown to be of finite

length. In this interval we will first show that all Uni (y) for i > k are strictly increasing in

y. Hence the assured claim constraints Uni (y) ≥ Vi cannot become binding for k < i < n.

At ȳ the largest index k′ for which σnk′ (ȳ) > 0 is thus necessarily smaller than k. We will

also show that claim (1) and the second part of claim (2) hold for all 0 ≤ y < ȳ. One

can now apply exactly the same arguments on the maximal interval ȳ ≤ y < ȳ′ where

σk′ (y) > 0 as on the interval 0 ≤ y < ȳ.

Proceeding by induction in this way one will eventually arrive at a level of ỹ from

which onwards all σni (y), i < n, are zero. From there onwards a further increase in y does

not affect the multipliers µni (y) , i < n, anymore, which are now at their maximal value

µni (y) = fi. Hence, neither q
n
i (y) nor the virtual surpluses nor ω

n
i (y) change as y increases.

Only the Uni (y) are increased, all in the same way because all incentive constraints ICi

are binding (recall Lemma 2). Thus, once all σni (y) are zero for i < n they remain so for

all y′ ≥ y, and if ωni (y) ≤ Uni (y) holds in addition, this remains so for all y
′ ≥ y. Hence,

claim (1) and the second part of (2) hold for all y ≥ ȳ if they hold for y < ȳ.

To complete, given this outline, the proof, we now show (a) that Uni (y) , for i > k,

are strictly increasing in y, and (b) that claim (1) and the second part of (2) hold for all

0 ≤ y < ȳ.

Since Unk (y) = Vk in the solution to Xn (y), for all 0 ≤ y < ȳ, the solution in question

induces by Lemma 4 the solution to Xk (0) , and so we have ω
n
i (y) = ωki (0) ≤ Uki (0) =

Uni (y) for all 0 ≤ y < ȳ and i ≤ k. Moreover, Uni (y) = Uki (0) = Vi = ωki (0) = ωni (y) for

all i ≤ k which satisfy σki (0) = σni (y) > 0, in particular for i = k. Thus, claim (1) and the

second part of (2) are proved in the interval for all i ≤ k. None of these variables change as

we vary y in the interval. Since, by Lemma 4, µnl (y) = fl− g
n
k (y) = fl− g

n
k−1 (0)−σ

n
k (y) ,

a marginal change in y affects σnk (y) and thereby affects all µ
n
l (y), l ≥ k, in the same way,
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i.e.
dµnl
dy

=
dµnj
dy

= −
dσnk
dy

for all l, j ≥ k

We abbreviate dµ

dy
=

dµn
l

dy
for l ≥ k. All incentive constraints ICl must be binding for l > k

by Lemma 2. Therefore, Unl (y) = Unk (y) +
∑l

i=k+1 ψi−1 (q
n
i (y)). When we now slightly

increase y we obtain

dUnl (y)

dy
=

l∑

i=k+1

ψ′i−1 (q
n
i (y))

dqni (y)

dy

The first-order condition for qni (y) is µ
n
i−1 (y)ψ

′
i−1 (q

n
i (y)) + siW

′
i (q

n
i (y)) = 0. Differenti-

ation yields

dµ

dy
ψ′i−1 (q

n
i (y)) +

[
µni−1 (y)ψ

′′
i−1 (q

n
i (y)) + siW

′′
i (q

n
i (y))

] dqni (y)
dy

= 0

dqni (y)

dy
= −

ψ′i−1 (q
n
i (y))

µni−1 (y)ψ
′′
i−1 (q

n
i (y)) + siW

′′
i (q

n
i (y))

dµ

dy
,

which has the same sign as dµ/dy by the second-order conditions, and hence

dUnl (y)

dy
=

(
−

l∑

i=k+1

(
ψ′i−1 (q

n
i (y))

)2

µni−1 (y)ψ
′′
i−1 (q

n
i (y)) + siW

′′
i (q

n
i (y))

)
dµ

dy

where the term in brackets is positive. For l = n we obtain dµ

dy
> 0 since an increase in y

slackens the participation constraint and hence Unn (y) must increase. (Formally
dUnn (y)
dy

> 0

follows by applying the envelope theorem to the Lagrangian.) We see, in turn, that all

Unl (y) are strictly increasing for all 0 ≤ y < ȳ and k < l < n. Therefore, all assured claim

constraints remain slack. In particular, σni (y) = 0 for all i > k and, hence, the second

part of claim (2) is proved for all 0 ≤ y < ȳ and 1 ≤ i < l = n.

We continue with the proof of claim (1). For l > k we have for the assured claims34

µnl (y)ω
n
l (y)− µnk (y)ω

n
k (y) =

l∑

i=k+1

[
µni−1 (y)ψi−1 (q

n
i (y)) + siWi (q

n
i (y))

]

34For this calculation it is convenient to set σnn (y) = 0.
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We obtain

d

dy
[µnl (y)ω

n
l (y)− µnk (y)ω

n
k (y)] =

dµ

dy
(ωnl (y)− ωnk (y)) + µ

n
l (y)

dωnl
dy

=

[
l∑

i=k+1

ψi−1 (q
n
i (y))

]
dµ

dy

where the first and second term are equal because ωnk (y) = Vk is constant in y while the

first and the third term are equal by the product rule and by using the first order condition

for qni (y) maximizing the virtual surplus. Therefore

dωnl
dy

=

[
l∑

i=k+1

ψi−1 (q
n
i (y)) + ω

n
k (y)− ωnl (y)

]
dµ

dy
/µnl (y)

Since ωnk (y) = Unk (y) , by the second part of claim (2) and because Unk (y) = Vk, and

Unl (y) = Unk (y) +
∑l

i=k+1 ψi−1 (q
n
i (y)) by the incentive constraints, it follows that

dωnl
dy

= (Unl (y)− ωnl (y))
dµ

dy
/µnl (y) .

The proof is now concluded by showing the following statement to be true.

Consider the maximal interval [0, ȳ) of all values of y for which σnk (y) > 0. Then

ωnl (y) ≤ Unl (y) for all l > k and for all y in this interval.

The proof of the statement is by contradiction. Suppose Unl (y) < ωnl (y) for some

0 ≤ y < ȳ. Let ŷ = inf {y|Unl (y) < ωnl (y)}. For y = ŷ we have Unl (y) = ωnl (y) because

both functions are continuous and Unl (0) ≥ ωnl (0). Hence
dωn

l

dy |y=ŷ
= 0. Since

dUn
l

dy
> 0 we

have
d(Unl −ωnl )

dy |y=ŷ
> 0. It follows that Unl (y) > ωnl (y) for all small y > ŷ, in contradiction

to the definition of ŷ.
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