
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Alqahtani, Saeed Ibrahim and Li, Shujun (2017) PPAndroid-Benchmarker: Benchmarking Privacy
Protection Systems on Android Devices. In: Fischer, Mathias, ed. Proceedings of the 12th International
Conference on Availability, Reliability and Security. ACM, New York, NY, USA Article No.
19. ISBN 978-1-4503-5257-4.

DOI

https://doi.org/10.1145/3098954.3098984

Link to record in KAR

https://kar.kent.ac.uk/69561/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/189721806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PPAndroid-Benchmarker:
Benchmarking Privacy Protection Systems on Android Devices

Saeed Ibrahim Alqahtani
University of Surrey, UK

Taibah University, Saudi Arabia
s.alqahtani@surrey.ac.uk

Shujun Li
University of Surrey, UK
shujun.li@surrey.ac.uk

h�p://www.hooklee.com/

ABSTRACT

Mobile devices are ubiquitous in today’s digital world. While peo-

ple enjoy the convenience brought by mobile devices, it has been

proven that many mobile apps leak personal information with-

out user consent or even awareness. �at can occur due to many

reasons, such as careless programming errors, intention of devel-

opers to collect private information, infection of innocent apps by

malware, etc. �us, the research community has proposed many

methods and systems to detect privacy leakage and prevent such

detected leakage on mobile devices. �is is a to do note at mar-

gin While it is obviously essential to evaluate the accuracy and

e�ectiveness of privacy protection systems, we are not aware of

any automated system that can benchmark performance of privacy

protection systems on Android devices. In this paper, we report

PPAndroid-Benchmarker, the �rst system of this kind, which can

fairly benchmark any privacy protection systems dynamically (i.e.,

in run time) or statically. PPAndroid-Benchmarker has been re-

leased as an open-source tool and we believe that it will help the

research community, developers and even end users to analyze,

improve, and choose privacy protection systems on Android de-

vices. We applied PPAndroid-Benchmarker in dynamic mode to

165 Android apps with some privacy protection features, selected

from variant app markets and the research community, and showed

e�ectiveness of the tool. We also illustrate two components of

PPAndroid-Benchmarker on the design level, which are Automatic

Test Apps Generator for benchmarking static analysis based tools

and Recon�gurability Engine that allows any instance of PPAndroid-

Benchmarker to be recon�gured including but not limited to adding

and removing information sources and sinks. Furthermore, we give

some insights about current status of mobile privacy protection

and prevention in app markets based upon our analysis.

KEYWORDS

Android, mobile apps, privacy leakages, privacy protection, bench-

marking, performance evaluation, static analysis, dynamic analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ARES ’17, Reggio Calabria, Italy

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5257-4/17/08. . . $15.00
DOI: 10.1145/3098954.3098984

ACM Reference format:

Saeed Ibrahim Alqahtani and Shujun Li. 2017. PPAndroid-Benchmarker:

Benchmarking Privacy Protection Systems on Android Devices. In Pro-

ceedings of ARES ’17, Reggio Calabria, Italy, August 29 – September 1, 2017,

10 pages.

DOI: 10.1145/3098954.3098984

1 INTRODUCTION

Mobile devices’ usage has increased rapidly over the recent years.

�ewide range of mobile devices’ possession has been accompanied

by the rise of mobile apps e.g. Google Play is now o�ering over 3

million apps as the time of this writing [1]. Mobile users can enjoy

a variety of apps, which provide appropriate services and a�ractive

features by making use of smart devices’ capabilities.

Undoubtedly, the advance in mobile technologies opens the door

for new privacy issues and concerns. �e consequences of privacy

violations on individuals have led research and industry to focus

heavily on user privacy. In some cases, malicious identities may

exploit users’ data to steal or uncover personal information about

them. In some other cases, intruders may misuse collected sensitive

data to �nancially or socially harm users. Moreover, data can be

used by companies to identify personal information about users

without their consent. Consequently, the research community has

proposed many solutions to overcome privacy and security obsta-

cles. Many protection mechanisms and detective approaches have

been o�ered to detect and prevent mobile privacy leakages.

However, existing solutions have limitations. For instance, static

analysis basedmethodsmostly require access to source code. On the

other hand, dynamic analysis based approaches are time-consuming

and normally cannot cover all possible privacy leakages [10]. An-

other common limitation is that many of these tools use a limited

and static list of information sources, leaving other sources uncov-

ered.

For each new privacy protection solution, there is always a prob-

lem of how to evaluate its performance against existing solutions.

Similarly, given a number of candidate solutions, a user has the

need to know which solution is the best for her speci�c needs. For

researchers, a proper benchmarking system is also desired so that

insights about how to improve exist solutions can be gained and

the performance of any new solution can be properly evaluated.

While such benchmarking systems are very important, surprisingly,

we could not �nd any such systems in the research or commercial

worlds, not mentioning open-source tools. Instead, currently re-

searchers and developers either depend on bespoke performance

evaluation apps or collections of test apps to conduct such bench-

marking tasks (e.g. DroidBench [2, 23]).

1

ARES ’17, August 29 – September 1, 2017, Reggio Calabria, Italy Saeed Ibrahim Alqahtani and Shujun Li

In this paper, we present PPAndroid-Benchmarker, a system

for benchmarking mobile privacy protection systems on Android

devices, which to our best knowledge is the �rst of this kind.

PPAndroid-Benchmarker is designed to be oblivious to details of

mobile privacy protection systems, and can detect performance

of combined mobile privacy protection apps in run time – this is

why we use the term “systems” rather than “apps”. It is e�ectively

a system 1) simulating di�erent kinds of tester-con�gurable pri-

vacy leakage activities; 2) capturing what leakage a�empts were

successful; 3) supporting a high level of automation for the whole

benchmarking life-cycle; and 4) providing a good user interface for

testers to con�gure benchmarking tasks. Moreover, this paper also

highlights two additional components of PPAndroid-Benchmarker

at the design level (which have not been implemented in our proto-

type): 1) an Automatic Test Apps Generator for benchmarking static

analysis based privacy protection systems; and 2) a Recon�gurabil-

ity Engine allowing PPAndroid-Benchmarker to be recon�gured

such as adding and removing information sources and sinks. Al-

though we implemented a prototype system for Android OS only,

the framework is generic enough to be applied to other mobile oper-

ating systems such as iOS. We tested PPAndroid-Benchmarker with

165 selected Android privacy protection apps, and report our �nd-

ings and some insights about current status and future directions

of mobile privacy protection and prevention tools.

�e rest of the paper is organized as follows. Section II discusses

related work. �e design of our system is described in Section III.

Section IV presents the experimental set-up we followed and Sec-

tion V illustrates the results and analysis. Section VI discusses the

implications of the �ndings and some limitations. Lastly, Section VII

concludes the paper and illustrates some future work.

2 RELATED WORK

�is section is divided into two subsections, mobile privacy pro-

tection techniques and mobile privacy benchmarking systems. In

the former subsection, several privacy protection approaches are

presented for the purpose of understanding how privacy protec-

tion systems work. �e la�er subsection illustrates a few similar

systems and related works from research.

2.1 Application Analysis Based Approaches

�e research community has proposed various techniques of mobile

application analysis many of which are based on static, dynamic

and hybrid analysis of computer programs.

In static analysis based approaches, the analysis is carried out

statically (i.e., without running the app) with (source code anal-

ysis) or without source code (binary code analysis). Almost all

mobile detection tools that follow this approach retrieve the target

app’s source code using a decompiler, and rely on its precision. For

instance, ScanDal [15] proposed by Kim et al. is an example of

the static analysis category, and there are many others [13, 27].

ScanDal implements a static analysis to detect data leakages by con-

verting a given app package from Dalvik byte-code to a pre-de�ned

intermediate language. Using abstract interpretations, suspicious

�ows can be detected. Kim et al. analyzed 90 free apps, and they

found 11 of them leak private data. �ey reported many location

leakages to remote ad servers, namely AdMob and AdSenseSpec.

Besides location data, many apps were found to leak IMEI to their

app servers.

On the other hand, dynamic analysis is based on observing dy-

namic behaviors of the target app in run time. By performing

di�erent kinds of dynamic analysis techniques such as data �ow

analysis (DFA) in mobile platforms, dynamic tools monitor sensitive

data sources and detect data leaks once the target app is executed.

TaintDroid [7] is one of the most well-known tools in this category.

Many other tools are built on top of TaintDroid by adding new

features, such as MockDroid [4], TISSA [28] and AppFence [14].

TaintDroid, applies a speci�c dynamic analysis technique called

taint tracking to detect potential data leaks. Sensitive information

sources are identi�ed and tainted. Using DFA, TaintDroid monitors

how apps handle tainted information and notify the user if sensitive

data is leaked outside the device. One problem of TaintDroid and

some other dynamic analysis based mobile privacy protection tools

is that it requires changes to mobile operating systems, which may

not be possible or di�cult in some applications. To overcome this

problem, Rastogi et al. proposed Uranine [21], a system for instru-

menting existing apps so that taint tracking can be done without

changes to mobile operating systems.

In hybrid analysis methods, static and dynamic analysis tech-

niques are combined to improve privacy leakage detection [18]. For

instance, SmartDroid [26] combines static and dynamic analysis

in a two-level process. At the �rst level, it utilizes a static path

selector to identify activity switch paths through analyzing activity

and function call graphs. At the second level, SmartDroid imple-

ments a dynamic analysis to traverse each UI element and explore

the UI interaction paths towards sensitive APIs.

In addition to code analysis and dynamic app behavior monitor-

ing, the app package manifest �le is another important source of

information for inferring potential privacy problems in mobile apps.

�e app package manifest �le contains permission labels and some

other useful information. Mobile platforms apply a permission

framework that allows users to control mobile apps’ access to sensi-

tive information and resources such as geo-locations and help them

to make proper decisions prior to app installation. Researchers

have proposed many methods of identifying suspicious apps by

analyzing permissions they request. Enck et al. proposed Kirin, a

system that can detect potentially malicious apps by matching some

pre-de�ned security rules with information in the package manifest

�le [8]. A similar system called Stowaway was proposed by Felt et

al. [11], which identi�es malicious apps based on over-privileges.

�ey analyzed 956 apps from Google Play where they found that

most common unnecessarily requested permissions are accessing

the Internet and reading phone state.

In another work [12], Gates et al. proposed a permission analysis

based approach to producing risk signals and risk scores for apps

to help users identify risky apps. Zhang et al. presented VetDroid

[25] which falls in the same category. It is a tool that reconstructs

sensitive apps behaviors from a permission use perspective. It

applies a dynamic analysis approach and presents a systematic

framework in constructing permission use behaviours.

Yet another way of capturing suspicious behaviors is by moni-

toring and analyzing network tra�c associated with an app. For in-

stance, AntMonitor [16] is a tra�c monitoring system for passive

monitoring, collection, and analysis of network tra�c of Android

2

PPAndroid-Benchmarker ARES ’17, August 29 – September 1, 2017, Reggio Calabria, Italy

devices. Using a VPN service and a special interface, AntMonitor

can analyze all outgoing tra�c from apps to hosts, as well as in-

coming packets from hosts. AntClient, a component of AntMonitor

running from the user’s device, lets the user know if installed apps

are leaking her personally identi�able information. AGRIGENTO

[6] is another example falling in this category. �is system is mainly

designed to detect privacy violations using a black-box di�erential

analysis technique. By creating a network behavior baseline of

each app and modifying information sources, AGRIGENTO can

capture privacy leaks (i.e., deviations from the baseline behavior)

in the resulting network tra�c.

Some researchers also paid a�ention to justi�able sensitive infor-

mation transmission as part of an app’s functionality. For instance,

Chen and Zhu proposed DroidJust [5], an automated technique

that can di�erentiate justi�able sensitive information transmission

and privacy leakage by malicious apps. In [9], Fan et al. proposed

four metrics (possibility, severity, crypticity, and manipulability) to

quantitatively analyze privacy leak behaviour. �e authors showed

the e�ectiveness of the proposed metrics in revealing apps’ charac-

teristics in several aspects.

2.2 Mobile Privacy Benchmarking Systems

In order to help users decide what tools to use and how to use them,

privacy protection tools need to be carefully validated and their

performance compared with each other. Surprisingly, while there is

a lot of work on developing mobile privacy protection tools, there

is very li�le work on benchmarking mobile privacy protection

tools. �is subsection focuses on DroidBench, the closest work

comparing to the system we propose in this paper. In addition, we

also introduce some other loosely related work.

DroidBench [2] is a collection of di�erent Android apps from

various categories that deliberately leak many types of data. Addi-

tionally, some apps without data leakages are also included to allow

detection of false positives. DroidBench tests if Android privacy

protection tools could detect such privacy leaks when they occur

or the privacy-leaking apps before any leakage a�empts take place.

Stanford SecuriBench [19] is very similar to DroidBench but

include Java web-based applications rather than Android apps. It

consists of eight open-sourceWeb-based Java applications that have

intentional security �aws. �ey purposely su�er from a number of

vulnerabilities, including SQL injections, cross-site scripting, HTTP

spli�ing and path traversal a�acks. �is tool is meant to serve

as test cases for researchers and practitioners to study solutions

against such applications with security �aws.

�ere have been some e�orts in benchmarking ad hoc privacy

protection tools or techniques onmobile platforms. InAnti-TaintDroid

(also called ScrubDroid) [22] Sarwar et al. investigated the limita-

tions of TaintDroid in tracking sensitive information leaks on An-

droid mobile devices. Multiple a�acks on TaintDroid were demon-

strated using a number of generic classes of anti-taint methods.

3 DESIGN AND IMPLEMENTATION

�is section illustrates the design and some implementation details

of the proposed benchmarking system.

3.1 Overall Design

�emain purpose of PPAndroid-Benchmarker is to evaluate privacy

leakage detection applications in an automated manner. As stated

earlier, the Android platform is targeted in this work. PPAndroid-

Benchmarker is composed of three basic components, the bench-

marker app, the drop-in server and the PC-based mobile device

manager (MDM). Figure 1 shows the architecture of PPAndroid-

Benchmarker. Firstly, the benchmarker is programmed to simulate

leakages of di�erent types of private information. It has a pro�le

creator that allows the user to de�ne di�erent benchmarking tasks.

Secondly, the drop-in server is used to receive leaked information

from the benchmarker. Lastly, the MDM handles automatic instal-

lation and uninstallation of tested apps during the benchmarking

process.

Drop-in Server

Android Testing

Benchmark

PC-based

Android Device

Manager

Storage of Leaked

Information

Figure 1: PPAndroid-Benchmarker’s overall design.

3.2 PPAndroid-Benchmarker Components

Figure 2 shows how PPAndroid-Benchmarker’s di�erent compo-

nents interact with each other as data �ows between them, where

the user is also shown as a “component” as his/her interactions

with several components are needed. In the following, we explain

the three key components with greater details.

�e Pro�le Creator allows a user (who wants to tests some

privacy protection apps) to create the actual benchmarking task

(i.e., a benchmarking pro�le). Any pro�les created can be stored in

a pro�le database so that they can be reused in future. �e pro�le

database can also retrieve app-related information from an Apps

Repository which will also work with the MDM (to be explained

below). �e Pro�le Creator interacts with the user to collect infor-

mation about a benchmarking pro�le and feed the created pro�le

to the Benchmarker App for execution. �e pro�les are stored

as XML �les to make them accessible from other components and

external applications more easily. �e Pro�le Creator can be made

part of the Benchmarker App or be implemented as a PC-based

3

ARES ’17, August 29 – September 1, 2017, Reggio Calabria, Italy Saeed Ibrahim Alqahtani and Shujun Li

Drop-in

Server

Profile

Creator

Apps

Repository

Leak

info

Profile data

Save

downloaded

apps

Benchmarking

profiles

Results DB

Profiles DB
Result data

Android App

MDM Benchmarker

Contextual

info

App profile

Profile info
Possible user

intervention

Figure 2: PPAndroid-Benchmarker’s components and data

�ow map.

application which communicate with the Benchamarker App via

USB or a wireless channel.

�e Benchmarker App is the core of PPAndroid-Benchmarker

and its main purpose is to simulate leakages of di�erent types of

private information. It is programmed to collect a variety of private

information from the hosting mobile device. �us, this app needs

to be granted with all required permissions in order to access all

data sources. �is is not an issue as the benchmarker is used for

testing purposes only, and can run on a dedicated testing device

or within an emulator. �e Benchmarker App is programmed to

leak information to aDrop-in Server, which is a web server set up

to simulate an a�acker’s information collection server. �e Drop-

in Server is designed to collect all needed information to create

results of each benchmarking pro�le, which are stored in aResults

Database for further (o�-line) analysis. �e Benchmarker App is

connected to the MDM in order to facilitate the automation of the

benchmarking process.

Furthermore, the Benchmarker App is facilitated with many anti-

tainting tricks. Many designed dynamic analysis tools apply taint

tracking technique, e.g., TaintDroid, MockDroid, AppFence and

many others. �erefore, we added several tricks, which are con-

structed to bypass dynamic taint tracking. In our current implemen-

tation, we include the following tricks reported in Anti-TaintDroid

[22], which were veri�ed to be still valid for the Android and Taint-

Droid versions we tested.

• simple encoding trick

• shell command trick

• �le+shell hybrid trick

• time keeper trick

• count-to-X trick

• �le length trick

• clipboard trick

• exception/error trick

• remote control trick

• �le last modi�ed trick

�e Mobile Device Management (MDM) is a PC-based An-

droid device manager handling automatic installation and unin-

stallation of each tested privacy protection app during the testing

process. We implemented the MDM to communicate with the

Benchmarker App via a TCP port, although other communication

channels can also be used. When it receives an app download

link, it downloads it and installs it to the mobile device using ADB

(Android Device Bridge). A�er the benchmarking process ends at

the Benchmarker App’s side, the MDM will receive a request of

uninstalling the tested app.

Drop-in Server: In order to simulate the complete information

leakage process, a sink is required to allow information to go out

of the mobile device. In PPAndroid-Benchmarker, the Internet

connection is used as the sink. To simulate the case of information

leaked through the Internet, we need to set up a server that receives

leaked information. A number of server-side scripts (wri�en in

PHP in our implementation) are used to handle received leakage

information, some are used to receive leaked �les, and some others

to create the results as XML �les.

We implemented a prototype of PPAndroid-Benchmarker in-

cluding all the above components. At the time of this writing, our

prototype supports the following information sources:

• Device IDs: IMEI, IMSI, Android ID

• Personal data: SMS messages, contacts, call logs and

browsing history

• Sensor data: camera, microphone, accelerometer axes

data, last known geolocation by GPS device or the ISP

(Internet service provider)

• Files on the mobile device’s external memory storage

�e above list is not supposed to be complete, but used as a rep-

resentative start of our prototype system. Adding more sources

is a ma�er of improving the tool itself. To simplify our prototype

system, we do not apply any advanced processing of information

leaked (e.g. encryption and steganography) other than some tricks

specially added to circumvent taint tracking techniques. Adding

more advanced information processing operations to information

leaked will not be di�cult, but require a proper interface to allow

easy recon�guration (see below).

Our design also considers two other major conceptual compo-

nents, the Automatic Test Apps Generator and the Recon�g-

urability Engine, which have not been implemented in our cur-

rent prototype system yet but will be added in future versions of

PPAndroid-Benchmarker prototype.

3.3 Automatic Test Apps Generator

PPAndroid-Benchmarker is designed to benchmark privacy pro-

tection apps more in a dynamic way. To support benchmarking

of static analysis tools, an automatic Test Apps Generator can

be developed to allow generation of apps with di�erent privacy

4

PPAndroid-Benchmarker ARES ’17, August 29 – September 1, 2017, Reggio Calabria, Italy

leakage capabilities. �e Test Apps Generator will take the source

code of the Benchmarker App as the source and the user’s descrip-

tions of the test apps wanted, and generate a number of apps with

requested privacy leakage capabilities. �e process of generating

test apps can contain random factors so that a large number of test

apps can be generated, which will produce much more test cases

for static analysis based tools than other solutions can provide. �e

generated apps (in the form of apk �les) can be used to benchmark

any static analysis based privacy protection systems. �is compo-

nent can be achieved in several ways such as embedding a compiler

that can automatically convert the source code of the Benchmarker

App into a subset representing the needed privacy leakage pro�le

and then compile the resulting source code to a mobile app. �e

compiler may be implemented as part of the MDM as well.

3.4 Recon�gurability Engine

Any instance of PPAndroid-Benchmarker can only cover a limited

number of sources and sinks and limited se�ings for benchmarking

pro�les. To allow extension of supported features and recon�gura-

tion of the system (including removing some unwanted features), a

Recon�gurability Engine can also be developed.

A major part of the Recon�gurability Engine is addition and

removal of sources and sinks. �is can be achieved by de�ning

a dynamic list of sources and sinks for PPAndroid-Benchmarker

to process. �e dynamic list needs to support both descriptions

of sources and sinks and also code for accessing the sources and

sinks. One way of supporting such a dynamic list is to have an XML

�le for the sources and another one for the sink, and the binary

code for accessing each source and sink is provided in the form

of an executable plug-in following a de�ned API. Another way of

achieving this is to provide source code of new sources and sinks

directly with description �les, and a compiler is used to re-compile

the whole system into a new instance of PPAndroid-Benchmarker.

Another part of the Recon�gurability Engine is changing how

the system behaves e.g. how to automatically con�gure some pri-

vacy protection apps requiring human intervention, which can

be achieved by de�ning other con�guration �les or APIs so that

di�erent types of plug-ins can be added.

Another major part of the Recon�gurability Engine is to add

and recon�gure more information processing operations and tricks

against static and dynamic analysis techniques. Our prototype has

included a number of tricks mainly for testing TaintDroid. Adding

more will require a di�erent type of API and plug-in system so that

any operation can be added between any pair of source and sink,

which will need to work along with the API/plug-in systems for

sources and sinks.

3.5 Interaction between Components

�e interactions between di�erent components can be explained

by how a typical benchmarking task looks like. At the beginning,

the user will �ll a test pro�le to tell the benchmarker about details

of the test. It will include information such as types of leaked data,

mobile device speci�cations, privacy apps to be tested and others.

�e pro�les are wri�en in XML as stated. �e pro�le creator keeps

XML �les in the Pro�les Database in order to be used for analysis.

�en the Benchmarker App starts communicating with the MDM

to request installing each tested app. �e MDM searches for the

required app and installs it. MDM keeps records of installed apps

in the Apps Repository for future use. Once the Benchmarker App

receives a signal of starting the test, it will initiate leakage a�empts

to the Drop-in Server. �e la�er keeps the results as XML pro�les

in the Results Database.

4 EXPERIMENTAL SETUP

In this section, the method we followed to set up the experiment is

explained. It starts with describing how tested apps were collected,

followed by how special apps were handled. Lastly, an explanation

of variant se�ings and implementation is provided.

4.1 Selection of Privacy Protection Apps

�e �rst step of the experiment was to identify and collect An-

droid apps with some real-time privacy protection features. �ese

tools were collected from variant sources. Many of them were

gathered from Google Play store as it is the main source for An-

droid apps. �e following steps were taken to collect the apps.

Firstly, Google’s search engine was used to look for related privacy

apps. Many keywords were used in this step. For example, we

used “privacy”, “security”, “private”, “protection”, “leak”, “dynamic

analysis”, “static analysis”, “leakages” and several others. Secondly,

some major third-party Android markets have been explored such

as Amazon Appstore, GetJar, Slide ME, F-Droid, Samsung Galaxy

Apps, AppsLib, Mobogenie and a few others. �irdly, many related

apps have been collected from cyber security product vendors and

service providers. �e list of these vendors were taken from AV-

Comparatives website [3]. �ere are around 50 mobile security

companies like AVG, AegisLab, Bitdefender, etc. Lastly, some data

leakage protection and Android forensics tools are included such

as TaintDroid, NowSecure forensic tool [20], PrivacyProtecter app

reported in [17]. We wanted to test all privacy protection apps we

found but not all of them are available or provide real-time protec-

tion. At the time of this writing, in total 165 privacy protection apps

have been collected and tested. According to the sources, these

tools can be categorized as follows:

• Apps dedicated for privacy protection (from Google Play),

• security appswith privacy protection features (fromGoogle

Play),

• apps from third-party markets,

• security vendors’ apps (those not covered in the above

categories),

• privacy related apps developed by researchers.

Functionally speaking, those tools can be categorized into three

di�erent groups:

(1) apps that try to detect privacy violations at installation

time,

(2) apps that detect privacy violations based on blocking access

to sensitive information sources,

(3) real-time dynamic monitoring tools requiring changes to

the Android system.

5

ARES ’17, August 29 – September 1, 2017, Reggio Calabria, Italy Saeed Ibrahim Alqahtani and Shujun Li

4.2 Testing Procedure and Settings

In our experiment, the testing procedure covers three di�erent

scenarios: fully automated testing without user intervention, semi-

automated testing with user intervention, and testing access-related

analysis apps. For the fully automated scenario, the tester (as a

user) is involved to select target apps for testing and de�ne the

benchmarking tasks only. For the semi-automated scenario, the

tester is also involved in the process of installing process because

some apps require manual con�guration before they can run prop-

erly. For the last scenario, the Benchmarker App will a�empt to

access private sources �rst. �en, if the access is granted, the app

will proceed with the actual leakage.

PPAndroid-Benchmarker has been equipped with some options

to increase the con�guration power. For instance, the user can

set time-outs for the evaluation test. Moreover, the user can set

wait times between data acquisition by the benchmarker and data

leaking a�empts.

�e architecture of PPAndroid-Benchmarker is intended to work

in an automated manner as much as possible including automati-

cally downloading and installing a target app. However, download

links of some apps cannot be automatically determined, so the

apk �les must be provided manually by the user Moreover, some

apps are marked for manual con�guration and initialization. For

instance, some apps require manual registration, accepting terms or

connecting to the cloud. To ensure all target apps were tested with

the most appropriate con�guration se�ings, we tested se�ings with

and without user intervention manually and then labelled each app

with the best se�ing accordingly.

While testing apps which require Root access, we noticed that

there is a need of di�erent se�ings. In this case, PPAndroid-Benchmarker

is programmed to also record if access to each target data source is

blocked. �at allows PPAndroid-Benchmarker to know if a recorded

failure of a privacy leakage a�empt was blocked at the access level

or at a later stage.

Most apps can be tested with PPAndroid-Benchmarker with-

out a special treatment. However, there are a few tools that must

be tested using a di�erent procedure or special se�ings. For ex-

ample, TaintDroid does not work as a stand-alone application. It

involves building a custom-built operating system on the tested

device/emulator. �us, a customized version of Android was built

to test TaintDroid against our system in an emulator. Accordingly,

we tested Anti-TaintDroid (ScrubDroid) in the same environment,

too.

In our experiment, we chose not to test apps based on tra�c

analysis. Testing such apps requires some signi�cant changes to

the architecture and procedures of PPAndroid-Benchmarker, and

we leave this as our future work.

4.3 Special Benchmarking Pro�les

In this subsection, we discuss some special benchmarking pro�les

we used in our experiment.

Baseline Benchmarking Pro�le: �e Android system itself

may already has some privacy protection mechanism so that some

privacy leakage a�empts can be detected and blocked at the oper-

ating system level. In our experiment, we always ran a baseline

pro�le without any third-party privacy protection app �rst. When

each privacy protection app was tested, only those new successes in

detecting privacy leakages were counted. For the Android version

we ran our experiment, none of the privacy leakage a�empt was

detected by the Android system, but this may change in future

versions.

Probing Phase: As mentioned above, some apps may require

user intervention. A probing phase was therefore added to test

if an app behaves di�erently with and without user intervention.

Figure 3 shows how this phase was conducted.

Leak

info

Profile data

Result data

Android App

Contextual

info

Profile info
Possible user

intervention

Figure 3: PPAndroid-Benchmarker in probing phase.

Access-Based Apps: Some apps block privacy leakages by

blocking access to sensitive information sources. �erefore, a spe-

cial benchmarking task is added to test if a privacy leakage a�empt

is blocked at the source access level or a�erwards. �e Benchmarker

App will access each sources in the benchmarking pro�le and check

if there is a response from the tested app, and if the access goes

through it will proceed with the actual leaking a�empt.

5 RESULTS & ANALYSIS

�is section presents the analysis results gathered from testing

collected apps and tools. We report the results for the three func-

tional categories of privacy protection apps, respectively, since the

behaviors of apps in each category are similar.

5.1 Probing Phase Results

During the study, we noticed that some apps need to be con�gured

before using to ensure all included privacy protection means and

se�ings are enabled. A small experiment was conducted for nine

apps, selected from distinct categories. Seven out of nine asked

for user input in variant ways. For example, some asked the user

to accept terms, to slide a few ad pages, to register on-line or to

wait for con�guration. We also calculated the time spent to set up

each app a�er installation. Table 3 shows the �ndings of this small

pilot study. As a consequence, the actual benchmarking tasks were

6

PPAndroid-Benchmarker ARES ’17, August 29 – September 1, 2017, Reggio Calabria, Italy

Table 1: Testing Installation-Time Privacy Apps

Apps Category
Sensitive Information Source

Device IDs Accelerometer Contacts Location SMS Files Web History Call Log Camera

Installation-time apps F F F F F F F F F

‘F’ means the tested app failed in detecting the leakage a�empt.

Table 2: Testing Privacy Apps that Require Root Access

App Name Vendor/Developer

Sensitive Information Source

Device IDs Accelerometer Contacts Loc. SMS Files Web Call Camera

data details History Logs

SECUREit Lenovo F F B B B F B B F

X Privacy Marcel Bokhorst B+ F B B B F B B B

LBE Privacy Guard Lamian B F B B B F F B B

360 Mobile Safe Qihoo 360 B F B B B F F B B

PrivacyProtecter Li et al. B F F F F F F F B

‘F’ means the tested app failed in detecting the leakage a�empt.

‘B’ indicates that the privacy system blocked access to the information source.

‘B+’ refers that the privacy system is able to go beyond blocking access via faking the leaked information.

conducted in two approaches depending on if user intervention

is needed: fully automated without user intervention and semi-

automated with user intervention.

Table 3: Probing Apps Requirement of User-Intervention

App Set-up Interac- Type

No. time in tion of interaction

seconds required

1 16.1 Yes Accept terms/ Connect to cloud

2 26.5 Yes Accept policy/ Con�gurations

3 8.5 No -

4 22.5 Yes Slide some ads/ Con�gurations

5 8.8 Yes Accept policy/ Con�gurations

6 13.0 Yes Accept terms/ Upgrade o�er

7 76.3 Yes Accept terms/ Set a code/ Register

8 57.4 Yes Click start/ Se�ing/ Slide ads

9 18.0 No -

5.2 Benchmarking Results

Static analysis based apps: A majority of the mobile privacy pro-

tecting applications collected from di�erent app markets belong to

the �rst category. Apps in this group are only capable of inspecting

privacy-related features of an app at installation time. �ey either

apply a permission analysis, statically analyze installed apps or

upload examined app to a sandbox to test it dynamically. Some

tools notify the user of reported malicious apps if installed. Never-

theless, none of them reported the Benchmarker App of PPAndroid-

Benchmarker as a malicious app. �erefore, all tested apps did

not block or detect any of the leaking a�empts. Table 1 clari�es

that where ‘F’ indicates the failure of tested apps to detect privacy

violation. �e results are expected and demonstrated PPAndroid-

Benchmarker worked as designed.

In this group, approximately %75 of the apps were tested semi-

automatically with user intervention and the others tested fully

automatically.

Privacy apps requiring Root access: �e second category

covers apps that block access to de�ned sensitive data sources on

mobile devices. All apps in this group require the Root access in or-

der to reject other apps’ requests of accessing sensitive information

sources. In our testing, �ve commercial apps were found to provide

such a functionality: SECUREit, X Privacy, Pdroid Privacy Protection,

LBE privacy guard and 360 Mobile Safe. �e last two apps are only

available in Chinese. One research app developed by Li et al. [17]

also falls into this category.

Table 2 shows the result of testing apps in this category. �ose

apps are di�erent in terms of how much they protect the user. As

illustrated, each app has its own �xed list of prede�ned private

7

ARES ’17, August 29 – September 1, 2017, Reggio Calabria, Italy Saeed Ibrahim Alqahtani and Shujun Li

Table 4: Testing TaintDroid against PPAndroid-Benchmarker

Anti-Taint
Sensitive Information Source

Trick Device IDs Accelerometer Contacts Location SMS Files Web History Call Log Camera

None S S S S S F S F S

simple encoding F F F F F F F F -

shell command F F F F F F F F -

�le+shell hybrid F F F F F F F F -

time keeper F F F F F F F F -

count-to-X F F F F F F F F -

�le length F F F F F F F F -

clipboard F F F F F F F F -

exception/error F F F F F F F F -

remote control F F F F F F F F -

�le last modi�ed F F F F F F F F -

direct bu�er S S S S S F S F -

lookup table S S S S S F S F -

‘F’ means the tested app failed in detecting the leakage a�empt.

‘S’ means the tested app succeeded in detecting the leakage a�empt.

‘-’ anti-taint tricks cannot be applied to camera photos, as they are designed to process strings only.

information sources. �e table shows how each app responded

to privacy leaks of variant sources. ‘F’ indicates that the app did

not react against that leakage, where ‘B’ means the a�empt was

blocked. X Privacy clearly is more diverse than others in covering

many sensitive sources. It is also capable of faking the mobile device

identi�er IMEI (represented as ‘B+’ in Table 2). �is app is the only

one in this group able of providing an option beyond blocking

a�empts. Hence, X Privacy gives three options when the IMEI is

being accessed: block, fake, and allow. All the apps in this group

were tested in the semi-automated with user interaction mode on a

rooted device. �e reason is that they need to be granted with root

access to function. Additionally, most of them require the user to

set up the app and interact with some interfaces before they are

ready.

Real-time privacymonitoring apps: �e last category covers

only a few apps developed by researchers. For this category we

tested TaintDroid since it is the basis of many other solutions.

Table 4 illustrates the result of benchmarking TaintDroid with our

system. It shows that TaintDroid succeeded in detecting privacy

leakages in real time, as ‘S’ shows in the table, for its prede�ned

list of sensitive information sources. Each time we tried to leak a

piece of sensitive information, TaintDroid triggered a noti�cation

showing the tainted tracked data alongside with the leaking app

and some other details. Some information sources, notably ‘�les’,

‘call log’ and ‘camera’, are not included in TaintDroid’s list, so the

privacy leakage a�empts were not detected. When the information

leakage was a�empted using anti-tainting tricks, most of leakage

a�empts were not detected, especially for the ‘direct bu�er’ and

‘lookup table’ tricks.

TaintDroid in this work was tested in a customized emulator

since it requires a modi�ed version of Android operating system to

run. We tested TaintDroid in a fully automatically manner since

no user intervention is required in the benchmarking process.

6 DISCUSSIONS

In brief, our experiments proved that PPAndroid-Benchmarker is

e�ciently and correctly working as designed. �e overall results

from the benchmarking experiment can be summarized as follows:

static analysis based apps tested all failed to detect any real-time

leakage a�empts, privacy apps that require Root access could block

access to some sensitive information sources, and TaintDroid (rep-

resenting dynamic analysis based methods) could detect most of

the leakage a�empts except for three information sources tested

but it failed when most anti-tainting tricks were applied.

As a general observation, the more “intrusive” a privacy protec-

tion tool is, the more powerful it can do to detect and prevent pri-

vacy leakage a�empts. By “intrusive” we mean how much changes

a tool requires from the operating system, ranging from the most

intrusive to the least: rebuilding the operating system, requesting

Root access to the operating system, hooking into the operating

system for checking new apps at the installation time. However,

even for the most intrusive tool, TaintDroid, there are still privacy

leakages that cannot be detected. �is implies that the best ap-

proach is for the operating system itself to provide native support

on privacy leakage detection and prevention, so that the intrusive-

ness will not be an issue any more. If that happens, PPAndroid-

Benchmarker will still be able to benchmark the built-in privacy

protection mechanism since it simple simulates what malicious

8

PPAndroid-Benchmarker ARES ’17, August 29 – September 1, 2017, Reggio Calabria, Italy

apps are doing. As a ma�er of fact, in our current implementa-

tion, a baseline benchmarking pro�le is always run without any

third-party privacy protection apps so that we know what privacy

leakage a�empts can be detected by the Android system itself.

Some could argue, why PPAndroid-Benchmarker does not give

a numeric or categorical rating for tested apps. Having a way of

rating privacy protection mobile apps in terms of their general

performance can be very useful for end users, and is a topic for our

future research. A possible way of giving scores or ratings through

our system is to count how many sensitive sources are protected

by the tested tool, but some issues need to be carefully considered.

First, not all sensitive information leakages are considered privacy

violation [24]. Some sensitive information is transmi�ed out of

the device for the sake of providing be�er services for the user.

For instance, collecting users’ precise location can help an app

give more personalized and contextualized recommendations, and

collecting some user details help mobile app vendors to provide

extra functionalities and more personalized services. Another issue

is that it can be very challenging to cover all means of collecting

sensitive information sources from the mobile device, so any rat-

ings based on a limited coverage can be inaccurate or biased. In

addition, it is not trivial to give a single rating for so many di�erent

information sources and ways to leak information. It may be bene-

�cial to produce multiple ratings representing di�erent aspects of

the privacy protection level. For each rating, there is also issues

around how to aggregate results of all covered information sources

and sinks together, which is not trivial, either. �erefore, rating

mobile privacy protection apps could be a very complicated task,

and requires further work beyond this paper’s scope.

One of the key design goals of the presented work is to increase

the level of automation to streamline the benchmarking processes.

However, since Google Play’s Terms of Services does not allow

automated download of mobile apps, that feature cannot be fully

achieved for our prototype. �e system has to run in away such that

the tester is asked to provide the apk �le of the tested app. Never-

theless, PPAndroid-Benchmarker currently mitigates this problem

by building an Apps Repository so that known apps can be re-

trieved directly from the database without any user intervention.

Note that this limitation is not a technical issue but a legal one. If

PPAndroid-Benchmarker is adopted by Google, this issue will go

away naturally.

As we mentioned before, due to the need to set up and con�gure

initial se�ings, it is not possible to fully automate the benchmarking

process without any human intervention. However, given enough

information about what kinds of human interventions are needed,

such interventions can be avoided by adding needed human in-

teractions into the Apps Repository and then using some system

services to emulate the actions done by human users. For instance,

some system services for accessibility purposes have provided ways

to automate clicks of bu�ons on the user interface, which may be

incorporated in further versions of PPAndroid-Benchmarker.

To allow further development and validation of PPAndroid-

Benchmarker by the wider research community, we decided to

release our current implementation as an open-source tool at h�ps:

//github.com/SaeedAlqahtani/PPAndroid-Benchmarker. As men-

tioned before, we plan to add some new components and APIs into

the current implementation. We also welcome other researchers

and developers to contribute to PPAndroid-Benchmarker, by con-

ducting more tests, adding new add-ons to it and porting it to other

mobile operating systems.

7 CONCLUSION & FUTUREWORK

In this paper, we present PPAndroid-Benchmarker, a benchmark-

ing system for evaluating performance of mobile privacy protec-

tion apps. �is system allows to benchmark privacy protection

apps designed for the Android platform. To the best of our knowl-

edge, PPAndroid-Benchmarker is the �rst of its kind. We tested

PPAndroid-Benchmarker on 165 privacy protection apps belonging

to three di�erent functional categories to demonstrate PPAndroid-

Benchmarker’s e�ectiveness in evaluating their performance in

detecting privacy leakage a�empts. We believe that the experiment

we conducted is also the �rst of the kind as many previous e�orts

are about benchmarking privacy risks of normal apps rather than

privacy protection apps. �e results showed that real-time dynamic

monitoring tools like TaintDroid is the best approach, which is

not a surprise since such tools require the most changes to the

underlying operating system.

For future work, there are a number of improvements we can

make on PPAndroid-Benchmarker. �e most important compo-

nents to add to our prototype are the Test Apps Generator and the

Recon�gurability Engine discussed in Sections 3.3 and 3.4. Adding

these two components is not technically di�cult, although we will

need to decide carefully how to make them more usable to end

users of PPAndroid-Benchmarker. Another interesting feature to

add is to incorporate the system with an O�-line Analyzer. �is

component can be designed to collect both testing pro�les and

benchmarking results with the aim of producing more visualized

results to facilitate understanding of tested privacy protection apps

and comparing their performance. It can also produce one or more

ratings to re�ect the level of privacy protection of each tested app.

Furthermore, another future work is to add a benchmarking pro�le

for dynamic behaviour apps. Some privacy protection apps have

dynamic behaviors. �ere are some privacy protection apps con-

nected to a cloud and update their data every while. Other apps

may have an intelligent way of adapting their behaviors, e.g. it

may use machine learning techniques and improve its responses to

privacy leakage a�empts of malicious apps. To properly benchmark

such apps, PPAndroid-Benchmarker need to run the benchmarking

task for a signi�cantly long period of time and capture a number of

snapshots of the tested app’s behavior, and then see if some changes

can be observed.

ACKNOWLEDGMENTS

We would like to thank authors of [22] and [17] for providing more

information about their work. �anks also go to Haiyue Yuan of

the University of Surrey, for his ideas and help in testing some of

the apps. Saeed Alqahtani’s work is �nancially sponsored by a PhD

scholarship of the Taibah University, Saudi Arabia.

REFERENCES
[1] AppBrain. 2017. Android Statistics: Number of Android applications.

h�p://www.appbrain.com/stats/number-of-android-apps. (2017). Accessed: June
17, 2017.

9

https://github.com/SaeedAlqahtani/PPAndroid-Benchmarker
https://github.com/SaeedAlqahtani/PPAndroid-Benchmarker

ARES ’17, August 29 – September 1, 2017, Reggio Calabria, Italy Saeed Ibrahim Alqahtani and Shujun Li

[2] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. 49, 6 (2014), 259–269. Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’14).

[3] AV-Comparatives. 2015. List of Mobile Security Vendors. h�p://www.
av-comparatives.org/list-mobile/. (2015). Accessed: 2015-10-02.

[4] Alastair R Beresford, Andrew Rice, Nicholas Skehin, and Ripduman Sohan. 2011.
MockDroid: trading privacy for application functionality on smartphones. In
Proceedings of the 12th Workshop on Mobile Computing Systems and Applications
(HotMobile 2011). ACM, 49–54.

[5] Xin Chen and Sencun Zhu. 2015. DroidJust: Automated functionality-aware
privacy leakage analysis for Android applications. In Proceedings of the 8th ACM
Conference on Security & Privacy in Wireless and Mobile Networks. ACM, 5.

[6] Andrea Continella, Yanick Fratantonio, Martina Lindorfer, Alessandro Pucce�i,
Ali Zand, Christopher Kruegel, and Giovanni Vigna. 2017. Obfuscation-Resilient
Privacy Leak Detection for Mobile Apps �rough Di�erential Analysis. (2017).

[7] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth.
2014. TaintDroid: An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. ACM Transactions on Computer Systems 32, 2 (2014),
Article No. 5.

[8] William Enck, Machigar Ongtang, and Patrick McDaniel. 2009. On Lightweight
Mobile Phone Application Certi�cation. In Proceedings of the 16th ACM Confer-
ence on Computer and Communications Security (CCS 2009). ACM, 235–245.

[9] Lejun Fan, Yuanzhuo Wang, Xiaolong Jin, Jingyuan Li, Xueqi Cheng, and
Shuyuan Jin. 2013. Comprehensive �antitative Analysis on Privacy Leak
Behavior. PloS ONE 8, 9 (2013), e73410.

[10] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Singh Gaur,
Mauro Conti, and Mu�ukrishnan Rajarajan. 2015. Android Security: A Survey
of Issues, Malware Penetration, and Defenses. IEEE Communications Surveys &
Tutorials 17, 2 (2015), 998–1022.

[11] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wag-
ner. 2011. Android Permissions Demysti�ed. In Proceedings of 2011 18th ACM
Conference on Computer and Communications Security (CCS 2011). ACM, 627–638.

[12] Christopher S. Gates, Ninghui Li, Hao Peng, Bhaskar Sarma, Yuan Qi, Rahul
Potharaju, Cristina Nita-Rotaru, and Ian Molloy. 2014. Generating Summary
Risk Scores for Mobile Applications. IEEE Transactions on Dependable and Secure
Computing 11, 3 (2014), 238–251.

[13] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang. 2012.
Riskranker: scalable and accurate zero-day android malware detection. In Pro-
ceedings of the 10th international conference on Mobile systems, applications, and
services. ACM, 281–294.

[14] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David
Wetherall. 2011. “�ese Aren’t the Droids You’re Looking For”: Retro��ing
Android to Protect Data from Imperious Applications. In Proceedings of the 18th
ACM Conference on Computer and Communications Security (CCS 2011). ACM,
639–652.

[15] Jinyung Kim, Yongho Yoon, Kwangkeun Yi, and Junbum Shin. 2012. ScanDal:
Static Analyzer for Detecting Privacy Leaks in Android Applications. Proceedings
of 2012 Workshop on Mobile Security Technologies (MoST 2012) (2012).

[16] Anh Le, Janus Varmarken, Simon Langho�, Anastasia Shuba, Minas Gjoka, and
Athina Markopoulou. 2015. AntMonitor: A System for Monitoring from Mobile
Devices. In Proceedings of the 2015 ACM SIGCOMM Workshop on Crowdsourcing
and Crowdsharing of Big (Internet) Data. ACM, 15–20.

[17] Shancang Li, Junhua Chen, �eodoros Spyridopoulos, Panagiotis Andriotis,
Robert Ludwiniak, and Gordon Russell. 2015. Real-Time Monitoring of Privacy
Abuses and Intrusion Detection in Android System. In Human Aspects of Infor-
mation Security, Privacy, and Trust: �ird International Conference, HAS 2015,
Held as Part of HCI International 2015, Los Angeles, CA, USA, August 2-7, 2015.
Proceedings (Lecture Notes in Computer Science), Vol. 9190. Springer, 379–390.

[18] Jialiu Lin. 2013. Understanding and capturing people’s mobile app pri-
vacy preferences. Ph.D. Dissertation. Carnegie Mellon University.
h�p://cmuchimps.org/uploads/publication/paper/132/understanding and
capturing people s mobile app privacy preferences.pdf

[19] V. Benjamin Livshits and Monica S. Lam. 2005. Finding Security Errors in
Java Programs with Static Analysis. In Proceedings of the 14th USENIX Security
Symposium. USENIX Association, 271–286.

[20] NowSecure. 2015. �e Mobile App Security Company. h�ps://www.nowsecure.
com/. (2015). Accessed: 2015-10-20.

[21] Vaibhav Rastogi, Zhengyang�, Jedidiah McClurg, Yinzhi Cao, and Yan Chen.
2015. Uranine: Real-time Privacy Leakage Monitoring without System Modi�ca-
tion for Android. In Security and Privacy in Communication Networks: 11th EAI
International Conference, SecureComm 2015, Dallas, TX, USA, October 26-29, 2015,
Proceedings (Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering), Vol. 164. Springer, 256–276.

[22] Golam Sarwar, Olivier Mehani, Roksana Boreli, and Mohamed Ali Kaafar. 2013.
On the E�ectiveness of Dynamic Taint Analysis for Protecting against Private
Information Leaks on Android-based Devices. In Proceedings of 2013 10th Inter-
national Conference on Security and Cryptography (SECRYPT 2013). 461–468.

[23] Secure So�ware Engineering at Paderborn University and TU Darmstadt. 2017.
DroidBench - Benchmarks. h�ps://blogs.uni-paderborn.de/sse/tools/droidbench/.
(2017). Accessed: June 18, 2017.

[24] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X Sean Wang.
2013. AppIntent: Analyzing Sensitive Data Transmission in Android for Privacy
Leakage Detection. In Proceedings of 2013 ACM SIGSAC Conference on Computer
& Communications Security (CCS 2013). ACM, 1043–1054.

[25] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning,
X Sean Wang, and Binyu Zang. 2013. Ve�ing Undesirable Behaviors in Android
Apps with Permission Use Analysis. In Proceedings of the 2013 Conference on
ACM Computer & Communications Security (CCS 2013). ACM, 611–622.

[26] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xinhui Han,
and Wei Zou. 2012. SmartDroid: an Automatic System for Revealing UI-based
Trigger Conditions in Android Applications. In Proceedings of the Second ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM 2012).
ACM, 93–104.

[27] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, you, get o� of
my market: detecting malicious apps in o�cial and alternative android markets..
In NDSS, Vol. 25. 50–52.

[28] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent W Freeh. 2011. Tam-
ing Information-Stealing Smartphone Applications (on Android). In Trust and
Trustworthy Computing: 4th International Conference, TRUST 2011, Pi�sburgh, PA,
USA, June 22-24, 2011. Proceedings. Lecture Notes in Computer Science, Vol. 6740.
Springer, 93–107.

10

http://www.av-comparatives.org/list-mobile/
http://www.av-comparatives.org/list-mobile/
http://cmuchimps.org/uploads/publication/paper/132/understanding_and_capturing_people_s_mobile_app_privacy_preferences.pdf
http://cmuchimps.org/uploads/publication/paper/132/understanding_and_capturing_people_s_mobile_app_privacy_preferences.pdf
https://www.nowsecure.com/
https://www.nowsecure.com/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Application Analysis Based Approaches
	2.2 Mobile Privacy Benchmarking Systems

	3 Design and Implementation
	3.1 Overall Design
	3.2 PPAndroid-Benchmarker Components
	3.3 Automatic Test Apps Generator
	3.4 Reconfigurability Engine
	3.5 Interaction between Components

	4 Experimental Setup
	4.1 Selection of Privacy Protection Apps
	4.2 Testing Procedure and Settings
	4.3 Special Benchmarking Profiles

	5 Results & Analysis
	5.1 Probing Phase Results
	5.2 Benchmarking Results

	6 Discussions
	7 Conclusion & Future Work
	Acknowledgments
	References

