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Abstract

We consider the appearance of primes in a family of linear recurrence sequences
labelled by a positive integer n. The terms of each sequence correspond to a particular
class of Lehmer numbers, or (viewing them as polynomials in n) dilated versions of the
so-called Chebyshev polynomials of the fourth kind, also known as airfoil polynomials.
We prove that when the value of n is given by a dilated Chebyshev polynomial of the
first kind evaluated at a suitable integer, either the sequence contains a single prime,
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or no term is prime. For all other values of n, we conjecture that the sequence contains
infinitely many primes, whose distribution has analogous properties to the distribution
of Mersenne primes among the Mersenne numbers. Similar results are obtained for
the sequences associated with negative integers n, which correspond to Chebyshev
polynomials of the third kind, and to another family of Lehmer numbers.

1 Introduction

Consider the linear recurrence of second order given by

sk+2 − n sk+1 + sk = 0, (1)

together with the initial conditions

s0 = 1, s1 = n+ 1. (2)

For each integer n, this generates an integer sequence that begins

1, n+ 1, n2 + n− 1, n3 + n2 − 2n− 1, n4 + n3 − 3n2 − 2n+ 1,
n5 + n4 − 4n3 − 3n2 + 3n+ 1, . . . .

(3)

The sequence can also be extended backwards to negative indices k, so that in particular
s−1 = −1 = −s0, which implies that it has the symmetry

sk(n) = −s−k−1(n) (4)

for all k. In this way we obtain a sequence that we denote by ( sk(n) )k∈Z, where the argument
denotes the dependence on n.

We can also interpret this as a sequence of polynomials in the variable n, with the integer
sequences being obtained by substituting particular values for the argument. From this point
of view, it is apparent from the recursive definition that, for each k ≥ 0, sk(n) is a monic
polynomial of degree k in n with integer coefficients. In fact, these are rescaled (or dilated)
versions of polynomials that are used to determine the pressure distribution in linear airfoil
theory, being given by

sk(n) = Wk(n/2), Wk(cos θ) =
sin
(

(2k + 1)θ/2
)

sin(θ/2)
, (5)

where Wk are known as the Chebyshev polynomials of the fourth kind [18], or the airfoil
polynomials of the second kind (see [5], where the notation uk is used in place of Wk). As a
function of θ, the expression on the far right-hand side of (5) is known as the Dirichlet kernel
in Fourier analysis, where it is usually denoted Dk(θ) [8]. Compared with those of the third
and fourth kinds, the properties of Chebyshev polynomials of the first and second kinds are
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much better known, and in what follows we will make extensive use of connections with the
latter two sets of polynomials.

The primary goal of this article is to describe the case where n is a positive integer,
but before proceeding, we consider the sequences obtained for some particular small val-
ues of |n| ≤ 2, which will mostly be excluded from subsequent analysis, but are relevant
nevertheless. In the case n = 0, the sequence ( sk(0) ) begins

1, 1,−1,−1, . . . , (6)

and repeats with period 4; we mention this case because it is equivalent to the sequence
( sk(n) mod n ). When n = 1 the sequence has period 6, being specified by the six initial
terms

1, 2, 1,−1,−2,−1, . . . , (7)

and for n = −1 the sequence repeats the values

1, 0,−1 (8)

with period 3. For n = 2 the sequence grows linearly with k, beginning with

1, 3, 5, 7, 9, 11, . . . , (9)

and consists of the odd integers, that is

sk(2) = 2k + 1, (10)

while for n = −2 the sequence has period 2, being given by

sk(−2) = (−1)k. (11)

For each integer n ≥ 3 the sequence increases monotonically for k ≥ 0 and grows exponen-
tially with k (see below for details).

Sequence A269254 in the Online Encyclopedia of Integer Sequences (OEIS) [27] records
the first appearance of a prime term in ( sk(n) ).

Definition 1. (Sequence A269254.) For each integer n ≥ 1, if the sequence of terms
( sk(n) )k≥0 with non-negative indices contains a prime, then let an be the smallest value
of k ≥ 1 such that sk(n) is prime; or otherwise, if there is no such term, let an = −1.

There is also sequence A269253, whose nth term is given by the first prime to appear in
( sk(n) )k≥0, or by −1 if no prime appears.

To illustrate the above definition, let us start with n = 1: since the first prime term in
the sequence (7) is s1(1) = 2, it follows that a1 = 1. Similarly, for n = 2, the first prime
in (9) is s1(2) = 3, so a2 = 1; but for n = 3, the sequence ( sk(3) ) begins 1, 4, 11, . . ., so
a3 = 2. In cases where a prime term has appeared in the sequence ( sk(n) ), the value of
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an is immediately determined. The sequence (an)n≥1 begins with the following terms for
1 ≤ n ≤ 34 :

1, 1, 2, 1, 2, 1,−1, 2, 2, 1, 2, 1, 2,−1, 2, 1, 3, 1, 2, 2, 2, 1,−1, 2, 6, 2, 3, 1,
3, 1, 2, 9, 9,−1, . . . .

(12)

All of the positive values above can be checked very rapidly, and it turns out that all values
of an > 0 are of the form (p− 1)/2, where p is an odd prime: this is a direct consequence of
Lemma 26 below. What is less easy to verify is the negative values a7 = a14 = a23 = a34 = −1
displayed above, indicating no primes. For instance, when n = 7, the sequence ( sk(7) ) begins
with

1, 8, 55, 377, 2584, 17711, 121393, 832040, 5702887, . . . , (13)

and it can be verified that none of these first few terms are prime; but to show that a7 = −1
it is necessary to prove that sk(7) is composite for all k > 0: a proof of this fact can be found
in section 3, while another proof appears in section 5 in a broader setting.

In fact, in order to understand the family of sequences ( sk(n) ) with positive n, it will be
natural to consider negative integer values of n as well. In that case, it is helpful to define
the family of sequences ( rk(n) ) given by

rk(n) = (−1)k sk(−n). (14)

It is straightforward to show by induction that, for fixed n, the sequence ( rk(n) ) satisfies
the same recurrence (1) but with different initial conditions, namely

rk+2 − n rk+1 + rk = 0,

together with
r0 = 1, r1 = n− 1. (15)

For integer n, this generates an integer sequence that begins

1, n− 1, n2 − n− 1, n3 − n2 − 2n+ 1, n4 − n3 − 3n2 + 2n+ 1,
n5 − n4 − 4n3 + 3n2 + 3n− 1, . . . .

(16)

Up to rescaling n by a factor of 2, this sequence of polynomials arises in describing the
downwash distribution in linear airfoil theory, and in this context they are referred to as the
airfoil polynomials of the first kind [5], denoted tk; with the alternative notation Vk they are
also referred to as the Chebyshev polynomials of the third kind [18], so that

rk(n) = Vk(n/2), Vk(cos θ) =
cos
(

(2k + 1)θ/2
)

cos(θ/2)
. (17)

Since n = 2 cos θ, the identity (14) can also be obtained immediately by taking θ → θ+ π in
(5), and comparing with (17).

There is another OEIS sequence that is relevant here, corresponding to the first appear-
ance of a prime in the sequence defined by (14) for each positive integer n.
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Definition 2. (Sequence A269252.) For each integer n ≥ 1, if the sequence of terms
( rk(n) )k≥0 with non-negative indices contains a prime, then let ãn be the smallest value
of k ≥ 1 such that rk(n) is prime; or otherwise, if there is no such term, let ãn = −1.

There is also sequence A269251, whose nth term is given by the first prime to appear in
( rk(n) )k≥0, or by −1 if no prime appears.

For comparison with A269254, note that the first few terms of A269252 for 1 ≤ n ≤ 34
are given by

−1,−1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 14, 1, 2, 2, 3, 1, 2, 5, 2, 36,
2, 1, 2, 1, 15,−1, . . . .

(18)

The two initial −1 values that appear above for n = 1, 2 clearly correspond to (8) and (11),
respectively, while the first non-trivial case to consider is the value −1 that appears for
n = 34, corresponding to the sequence ( rk(34) ), which begins with

1, 33, 1121, 38081, 1293633, 43945441, 1492851361, 50713000833, . . . ; (19)

again it can be verified that none of these first few terms are prime, while a proof that all
terms with k > 0 are composite for this and certain other values of n is given in section 5.

Aside from the connection with Chebyshev polynomials, the numbers sk(n) and rk(n)
also correspond to particular instances of Lehmer numbers with odd index, which are closely
related to sequences of Lucas numbers. Prime divisors in sequences of Lucas and Lehmer
numbers have been studied for some time; see e.g., [1, 25, 26, 29] for some general results,
or see [10] for a more elementary introduction to primitive divisors. However, to the best of
our knowledge, the question of when such sequences are without prime terms, or of where
the first prime appears in such sequences, has not been considered in detail before, except
in the case n = 6.

The case n = 6 corresponds to the so-called NSW numbers, named after [19] (sequence
A002315). An NSW number q can be characterized by there being some r such that the pair
of positive integers (q, r) satisfies the Diophantine equation

q2 + 1 = 2r2.

The sequence of NSW numbers is given by q = sk(6) for k ≥ 0, with the corresponding
solution to the above equation being (q, r) = (sk(6), rk(6)). The subsequence of prime NSW
numbers is of particular interest in relation to finite simple groups of square order: the
symplectic group of dimension 4 over the finite field Fq has a square order if and only if q is
a prime NSW number, with the order being (q2(q2 − 1)r)2. The first prime NSW number is
s1(6) = 7, and the symplectic group of dimension 4 over F7 is of order 117602.

For an arbitrary linear recurrence relation of second order, that is

xk+2 = a xk+1 + b xk, (a, b) ∈ Z2,
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the general question of whether it generates a sequence without prime terms has been con-
sidered for some time. If either the coefficients a, b or the two initial values x0, x1 have a
common factor then it is obvious that all terms xk for k ≥ 2 have the same common factor,
so the main case of interest is where gcd(a, b) = 1 = gcd(x0, x1). In the case of the Fibonacci
recurrence with a = b = 1, the groundbreaking result was due to Graham, who found a
sequence whose first two terms are relatively prime and which consists only of composite
integers [11]. This result was generalized to arbitrary second-order recurrences by Somer
[28] and Dubickas et al. [6].

An outline of the paper is as follows. The next section serves to set up notation and
provide a rapid introduction to the properties of dilated Chebyshev polynomials of the first
and second kinds, which will be used extensively in the sequel, and also contains the re-
quired definitions of the corresponding sequences of Lucas and Lehmer numbers that appear
subsequently. Section 3 provides a very brief review of some standard facts about linear
recurrence sequences and products of such sequences, before a presentation of examples and
preliminary results about values of n for which the terms sk(n) factor into a product of two
linear recurrence sequences; this serves to illustrate and motivate the results which appear
in section 5. As preparation for the latter, section 4 contains a collection of various general
properties of the sequences ( sk(n) ). The main results of the paper, on the factorization of
( sk(n) ) and ( rk(n) ) when n is a dilated Chebyshev polynomial of the first kind evaluated
at integer argument (Chebyshev values), are presented in section 5. Section 6 considers the
appearance of primes in these sequences in the case that n is not one of the Chebyshev
values, and gives heuristic arguments and numerical evidence to support a conjecture to the
effect that the behaviour is analogous to that of the sequence of Mersenne primes. Some
conclusions are made in the final section, and there are two appendices: the first is a collec-
tion of data on prime appearances, and the second is a brief catalogue of related sequences
in the OEIS.

This paper arose out of a series of posts to the SeqFan mailing list, with contributions
from many people, both professional and recreational mathematicians. Our aim throughout
has been to make the presentation as explicit as possible, and for the sake of completeness
we have stated several standard facts and definitions, as well as providing direct, elementary
proofs of almost every statement (even when some of them are particular cases of more
general results in the literature). We hope that in this form it will be possible for our work
to be appreciated by sequence enthusiasts of every persuasion.

2 Dilated Chebyshev polynomials and Lehmer num-

bers

The families of Chebyshev polynomials arise in the theory of orthogonal polynomials, and
have diverse applications in numerical analysis [18]. There are four such families, and while
the Chebyshev polynomials of the first and second kinds are well studied in the literature,
those of the third and fourth kinds are not so well known, and some of their connections to
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arithmetical problems have only been considered quite recently [13].
In order to define scaled versions of the standard Chebsyhev polynomials in terms of

trigonometric functions, let
n = 2 cos θ = λ+ λ−1,

so that we may write

λ =
n+

√
n2 − 4

2
= eiθ, (20)

where i =
√
−1. Then the formulae

Tk(2 cos θ) = 2 cos(kθ), Uk(2 cos θ) =
sin ((k + 1)θ)

sin θ
(21)

define Tk, Uk as polynomials in n, for all k ∈ Z. In [21, Chapter 18] these polynomials are
referred to as the dilated Chebyshev polynomials of the first and second kinds, and they are
denoted by Ck, Sk respectively. In standard notation, the classical Chebyshev polynomials
of the first and second kinds are written as Tk and Uk, and their precise relationship with
the dilated polynomials used here is as follows:

Tk(n) = 2Tk

(n

2

)

, Uk(n) = Uk

(n

2

)

.

It is straightforward to show from the definitions (21) that the dilated Chebyshev poly-
nomials of the first and second kinds satisfy the same recurrence (1) as the sequence ( sk(n) ),
but with different initial values. For example, to verify that the sequence (Uk(n) ) satisfies
the recurrence, it is sufficient to note that

Uk(n)− nUk−1(n) + Uk−2(n) = sin((k+1)θ)−2 cos θ sin(kθ)+sin((k−1)θ)
sin θ

, (22)

and then observe that the right-hand side above vanishes as a consequence of the addition
formula for sine in the form

sin(θ + φ) + sin(θ − φ) = 2 sin θ cosφ. (23)

For comparison with other texts, we note that the sequence of dilated first kind polynomials
begins thus:

( Tk(n) ) : 2, n, n2 − 2, n3 − 3n, n4 − 4n2 + 2, n5 − 5n3 + 5n, . . . . (24)

In contrast, the sequence of dilated second kind polynomials begins as

(Uk(n) ) : 1, n, n2 − 1, n3 − 2n, n4 − 3n2 + 1, n5 − 4n3 + 3n, . . . . (25)

For future reference, we note the standard identities

Tab(n) = Ta(Tb(n)) (26)
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and
Uab−1(n) = Ua−1(Tb(n))Ub−1(n), (27)

which follow from the trigonometric definitions above.
In order to get a formula for the coefficients of the polynomials sk(n), we present an

explicit expansion for the dilated Chebyshev polynomials of the second kind. Although
this can be found elsewhere in the literature (cf. equations (5.74) and (6.129) in [12]), for
completeness we present an elementary proof.

Proposition 3. The dilated Chebyshev polynomials of the second kind are given by

Uk(n) =

⌊ k
2⌋
∑

i=0

(−1)i
(

k − i

i

)

nk−2i. (28)

Proof. First note that for k = 0, 1 the sum on the right-hand side of (28) agrees with the
initial terms U0 = 1, U1 = n. Then, upon substituting the sum formula into the recurrence
(22) and comparing powers of n, after dividing by (−1)i we see that the coefficient of nk−2i

yields the identity
(

k − i

i

)

−
(

k − i− 1

i

)

−
(

k − i− 1

i− 1

)

= 0

for binomial coefficients. Thus the sequences defined by the left-hand and right-hand sides of
(28) satisfy the same recurrence with the same initial conditions, so they must coincide.

For use in what follows, we also define Lehmer numbers. Given a quadratic polynomial
in X with roots α, β, that is

X2 −
√
RX +Q = (X − α)(X − β), Q,R ∈ Z, (29)

where it is assumed that Q,R are coprime and α/β is not a root of unity, there are two
associated sequences of Lehmer numbers, which (adapting the notation of [9]) we denote by
L−
k (
√
R,Q) and L+

k (
√
R,Q), where

L−
k (
√
R,Q) =

{

αk−βk

α−β
, if k odd;

αk−βk

α2−β2 , if k even,
(30)

and

L+
k (
√
R,Q) =

{

αk+βk

α+β
, if k odd;

αk + βk, if k even.
(31)

The sequences of Lehmer numbers can be viewed as generalizations of Lucas sequences.
Assuming that R is a perfect square, so P =

√
R ∈ Z, the two types of Lucas sequences

associated to the quadratic X2 − PX +Q = (X − α)(X − β) are given by

ℓ−k (P,Q) =
αk − βk

α− β
, ℓ+k (P,Q) = αk + βk; (32)
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the corresponding Lehmer numbers L±
k (P,Q) are obtained from the Lucas numbers ℓ±k (P,Q)

by removing trivial factors.
From the above definitions, there is a clear link between Chebyshev polynomials and

Lucas/Lehmer numbers, which can be summarized in the following

Proposition 4. For integer values n, the sequences of dilated Chebyshev polynomials of the
first and second kinds coincide with particular Lucas sequences, that is

Tk(n) = ℓ+k (n, 1), Uk−1(n) = ℓ−k (n, 1), (33)

while the sequences generated by (1) with initial values (15) and (2) consist of Lehmer num-
bers with odd index, namely

rk(n) = L+
2k+1

(√
n+ 2, 1

)

, sk(n) = L−
2k+1

(√
n+ 2, 1

)

(34)

respectively, for all k.

Proof. The formulae for Tk and Uk follow immediately from comparison of (21) with (32),
requiring from (20) that α = λ = eiθ = β−1 in (29). For the proof of the second part of the
statement, note that taking k = 0, 1 gives L−

1 (
√
n+ 2, 1) = 1 and L−

3 (
√
n+ 2, 1) = n + 1,

while a short calculation shows that L−
2k+1(

√
n+ 2, 1) satisfies the same recurrence (1) as

sk(n), and similarly for the other sequence given by rk(n) = (−1)ksk(−n); so for each
equation in (34), the sequences given by their left/right-hand sides coincide.

Remark 5. There are also expressions for rk(n) and sk(n) in terms of dilated Chebyshev
polynomials of the first/second kinds, respectively, with argument

√
n+ 2: see (74) and (53)

below.

By writing the roots of the polynomial X2 −
√
n+ 2X + 1 as

α±1 =

√
n+ 2±

√
n− 2

2
, (35)

we have an alternative way to identify the terms in sequence A269254.

Corollary 6. (Alternative characterization of sequence A269254.) For each n ≥ 3, if α is
defined by (35), then an is that positive integer k yielding the smallest prime of the form

α2k+1 − α−(2k+1)

α− α−1
, (36)

or an = −1 if no such k exists.

The sequence A269252 can be identified in terms of the characteristic roots of (35) in a
similar way.

Corollary 7. (Alternative characterization of sequence A269252.) For each n ≥ 3, if α is
defined by (35), then ãn is that positive integer k yielding the smallest prime of the form

α2k+1 + α−(2k+1)

α + α−1
, (37)

or ãn = −1 if no such k exists.
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3 Some surprising factorizations

In this section we briefly recall some basic facts about sequences generated by linear recur-
rences, before looking at some special properties of the family of sequences ( sk(n) ). We
assume that all recurrences are defined over the field C of complex numbers. (In the next
section we will also consider recurrences in finite fields or residue rings.) For a broad review
of linear recurrences in a more general setting, the reader is referred to [9].

For what follows, it is convenient to make use of the forward shift, denoted S, which is a
linear operator that acts on any sequence (fk) with index k according to

S fk = fk+1.

With this notation, the fact that a sequence (xk) satisfies a linear recurrence relation of order
N with constant coefficients can be expressed in the form

F (S) xk = 0, (38)

where F (of degree N) is the characteristic polynomial of the recurrence.

Definition 8. A decimation of a sequence (xk)k∈Z is any subsequence of the form (xi+dk)k∈Z,
for some fixed integers i, d, with d ≥ 2. A particular name for the case d = 2 is a bisection,
d = 3 is a trisection, and in general this is a decimation of order d.

Remark 9. The case of decimations of linear recurrences defined over finite fields is considered
in [7].

Since, at least in the case that all the roots λ1, λ2, . . . , λN of F are distinct, the general
solution of (38) can be written as a linear combination of kth powers of the λj, it is apparent

that the terms of a decimation of order d are given by xi+dk =
∑N

j=1 Aj λ
dk
j , for some

coefficients Aj. Hence the decimation satisfies the linear recurrence

N
∏

j=1

(S− λd
j ) xi+dk = 0. (39)

(The recurrence for the decimation has the same form in the case of repeated roots.) Deci-
mations of the sequence ( sk(n) ) will be considered in Proposition 23 in the next section.

Given two sequences (xk), (yk) that satisfy linear recurrences of order N,M respectively,
the product sequence

(zk) = (xkyk)

also satisfies a linear recurrence. The following result is well known.

Theorem 10. The product (zk) = (xkyk) of two sequences that satisfy linear recurrences of
order N,M satisfies a linear recurrence of order at most NM .
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To prove the theorem in the generic situation where the recurrences for (xk), (yk) both
have distinct characteristic roots, given by λi, 1 ≤ i ≤ N and µj, 1 ≤ j ≤ M respectively,
observe that each product νi,j = λiµj is a characteristic root for the linear recurrence satisfied
by (zk), that is

∏

i,j

(S− νi,j) zk = 0, (40)

where the sum is over a maximum set of i, j that give distinct νi,j; so if the νi,j are all
different from each other then the order of the recurrence is exactly MN , but the order
could be smaller if some of the νi,j coincide. For the general situation with repeated roots,
see [33].

We now consider an observation concerning the sequences ( sk(n) ) for the special values
n = j2− 2 where j ∈ Z, which includes the cases n = 7, 14, 23, 34 that have an = −1 in (12).
The fact is that for all these values, there is a factorization of the form

sk(j
2 − 2) = rk(j)sk(j), (41)

where both factors on the right-hand side above satisfy a linear recurrence of second order.
This is surprising, because in the light of Theorem 10 one would naively expect such a
product to satisfy a recurrence of order 4.

Theorem 11. For the values n = j2 − 2, the terms of the sequence ( sk(n) ) admit the
factorization (41), where rk(j) satisfies the same recurrence as sk(j), that is

rk+2(j)− j rk+1(j) + rk(j) = 0, (42)

with the initial values
r0(j) = 1, r1(j) = j − 1. (43)

Thus for all j ∈ Z the formula (41) expresses sk(j
2 − 2) as a product of two integers.

Proof. In the case n = j2−2, the formula (35) fixes the characteristic roots of the recurrence
(1) as λ = α2, λ−1 = α−2, where α = (j +

√

j2 − 4)/2; so α + α−1 = j, and the square root
of α can be fixed so that α1/2 + α−1/2 =

√
j + 2. Then, by applying the difference of two

squares to the numerator and denominator of (36), it follows that

sk(j
2 − 2) =

(

α(2k+1)/2 + α−(2k+1)/2

α1/2 + α−1/2

) (

α(2k+1)/2 − α−(2k+1)/2

α1/2 − α−1/2

)

(44)

which is the factorization (41) with rk(j) and sk(j) given by making the replacement n → j
in (34). (For an alternative expression for these factors, see (55) in Remark 16 below.) Each
of the factors above is a linear combination of kth powers of the characteristic roots α, α−1,
and rk(j) = (−1)ksk(−j) as in (14), so they each satisfy the same recurrence (42) with an
appropriate set of initial values.
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Remark 12. Generically, the product of any two solutions of the recurrence (42) would have
three characteristic roots, namely α2, α−2, 1, giving a recurrence of order 3 in (40), but the
potential root 1 cancels from the product (44), giving the second-order recurrence (1) with
n = j2 − 2. An inductive proof of the preceding result was given by Klee in a post to
the Seqfan mailing list: see [16] for details. However, the factorization (44) in the form
L−
2k+1(j, 1) = L+

2k+1(
√
j + 2, 1)L−

2k+1(
√
j + 2, 1) appears to be well known in the literature

on Lehmer numbers; see e.g., [4] and references.2

Example 13. In the case n = 7, there is the factorization

sk(7) = rk(3) sk(3),

where the first terms of the factor sequences are

( rk(3) ) : 1, 2, 5, 13, 34, 89, 233, 610, 1597, . . . ,
( sk(3) ) : 1, 4, 11, 29, 76, 199, 521, 1364, 3571, . . . ,

which multiply together to give the terms in (13). Since both ( rk(3) ) and ( sk(3) ) are strictly
increasing sequences, it follows that sk(7) is composite for all k ≥ 1, and hence a7 = −1, as
asserted previously.

As a consequence of the factorization (41), one can show similarly that for all integers
j ≥ 3, the terms sk(j

2 − 2) are composite for k ≥ 1, and thus aj2−2 = −1 for all j ≥ 3 (for
full details, see the proof of Theorem 38 below). In particular, Theorem 11 accounts for all
the values n = 7, 14, 23, 34 with an = −1 that are shown in the list (12).

The question is now whether there are other cases with an = −1, for which n 6= j2 − 2
for some j. It turns out that the answer to this question is affirmative, and the first case
with an = −1 that does not fit into the above pattern is n = 110 [15].

Example 14. The sequence ( sk(110) )k≥0, beginning with

1, 111, 12209, 1342879, 147704481, 16246150031, 1786928798929,
196545921732159, . . . ,

(45)

appears as number A298677 in the OEIS. To see that none of the terms are prime, first of
all note that the sequence ( sk(110) mod 111 ) is periodic with period 3: it is equivalent to
the sequence (8); this observation is a special case of Lemma 27 below. Thus it is helpful to
consider the three trisections ( s3k+i(110) ) for i = 0, 1, 2, each of which satisfy the second-
order recurrence

s3(k+2)+i(110)− 1330670 s3(k+1)+i(110) + s3k+i(110) = 0, (46)

2In particular, see http://primes.utm.edu/top20/page.php?id=47 for a sketch of a proof of Theorem
11.
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as follows by applying the formula (39). The easiest case is i = 1, since s3k+1 ≡ 0 (mod 111)
for all k; so in this subsequence, the first term 111 = 3 × 37 is composite, and subsequent
terms 147704481 = 111 × 1330671, 196545921732159 = 111 × 1770683979569, etc. are all
multiples of 111. The trisection ( s3k(110) ) is the subsequence beginning with s0(110) = 1,
and then s3(110) = 1342879 = 9661× 139, s6(110) = 1786928798929 = 116876761× 15289,
and by induction it can be shown that each of these terms is divisible by the corresponding
one for the sequence ( s3k(5) ) = 1, 139, 15289, . . ., so that

s3k(110) = R3k(5) s3k(5), (47)

where the integer sequence of prefactors satisfies the third order recurrence

R3(k+3)(5)− 12099
(

R3(k+2)(5)−R3(k+1)(5)
)

−R3k(5) = 0. (48)

Similarly, for the remaining trisection, namely ( s3k+2(110) ), one has

s3k+2(110) = R3k+2(5) s3k+2(5), (49)

where the prefactor sequence (R3k+2(5) ) consists of integers and satisfies the same recurrence
(48). In fact, it is not necessary to consider this trisection separately, since its properties
follow immediately from extending ( s3k(110) ) to k < 0 and using the symmetry (4). These
observations show that all the terms in (45) are composite for k > 0, confirming that
a110 = −1 as claimed. Moreover, for all k there is a factorization

sk(110) = Rk(5) sk(5), (50)

where
Rk+3(5)− 24

(

Rk+2(5)−Rk+1(5)
)

−Rk(5) = 0, (51)

but the prefactors making up the full sequence (Rk(5) )k≥0, that is

1,
37

2
, 421, 9661,

443557

2
, 5091241, 116876761,

5366148517

2
, . . . ,

are only integers in the cases (47) and (49), and not when k ≡ 1 (mod 3).

The values of n with an = −1 mentioned so far all have one thing in common: they
correspond to values of dilated Chebyshev polynomials of the first kind. Indeed, the four -1
terms displayed in (12) appear at the index values

7 = T2(3), 14 = T2(4), 23 = T2(5), 34 = T2(6),

and Theorem (11) implies that sk(n) is composite for all k ≥ 1 when n = T2(j), j ≥ 3, while

110 = T3(5).

13



It turns out that for any Chebyshev value n = Tp(j) with p > 1, there is a factorization
analogous to (41) or (50): see Theorem 37 below. Due to the identity (26), it is sufficient to
consider the case of prime p only.

The curious reader might wonder why the values n = 18 = T3(3) and n = 52 = T3(4) are
missing from the discussion. The reason is that, although there is a factorization analogous
to (50) for these values of n, there are the prime terms s1(18) = 19 and s1(52) = 53, which
imply that a18 = 1 = a52; but it turns out that there are no other primes in the sequences
( sk(n) )k≥0 for n = 18 or 52. See Theorem 38 for a more general statement which includes
all these Chebyshev values.

4 General properties of the defining sequences

By writing the general solution of (1) in terms of the roots of its characteristic quadratic,
and using various expressions for the dilated Chebyshev polynomials, as in section 2, we
immediately obtain a number of equivalent explicit formulae for the sequence ( sk(n) ).

Proposition 15. The terms of the sequence generated by (1) with the initial values (2) are
given explicitly by

sk(n) =
λk+1 − λ−k

λ− 1
= Uk−1(n) + Uk(n), (52)

where λ is given in terms of n according to (20), and by

sk(n) = U2k(
√
n+ 2) =

sin
(

(2k + 1)θ/2
)

sin(θ/2)
, (53)

and they have the generating function

G(X,n) :=
∞
∑

j=0

sj(n)X
j =

1 +X

1− nX +X2
. (54)

Proof. The first formula in (52) is equivalent to (36), with λ = α2, and the other one
follows by rewriting the Chebyshev polynomials as linear combinations of λk and λ−k,
which generically provide two independent solutions of (1).3 For the latter set of identi-
ties, let m =

√
n+ 2, and note that T2(m) = n, so θ can always be chosen such that

m = 2 cos(θ/2). The expression on the far right-hand side of (53) is obtained by by applying
(23) to the last equality in (52), or by setting α = eiθ/2 in (36), and this expression equals
U2k(2 cos(θ/2)) = U2k(m). The generating function (54) follows from using the first formula
in (52) and summing a pair of geometric series.

3The first equality is invalid when n = ±2, due to repeated roots λ = λ
−1 = ±1, cf. (10) and (11).
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Remark 16. The last formula in (52) together with (14) shows that the terms on the right-
hand side of the factorization (41) in the case n = T2(j) = j2 − 2 can also be written as

rk(j) = Uk(j)− Uk−1(j), sk(j) = Uk(j) + Uk−1(j). (55)

If 5/2 < n ∈ R then λ > 2, so λ−k/(λ− 1) < 1 for all k ≥ 0, and so we have

Corollary 17. For all real n > 5/2, the terms sk(n) for k ≥ 0 are given by

sk(n) =

⌊

λk+1

λ− 1

⌋

.

The recurrence (1) can also be rewritten in matrix form, as

vj = Avj−1, (56)

where

A =

(

0 1
−1 n

)

, vj =

(

sj(n)
sj+1(n)

)

,

hence for all j the terms of the sequence are given in terms of the powers of A by

vj = Aj v0.

By a standard method of repeated squaring, this allows rapid calculation of the terms of the
sequence.

Proposition 18. The jth power of the matrix A is given explicitly by

Aj =

(

−Uj−2(n) Uj−1(n)
−Uj−1(n) Uj(n)

)

, (57)

and this can be calculated in O(log j) steps.

Proof. The formula (57) follows by induction, noting that the columns of the matrix on the
right-hand side satisfy the same recurrence (56) as the vector vj, and it is trivially true for

j = 0. To calculate the powers of A quickly, compute the binary expansion j =
∑d−1

i=0 bi 2
i,

where bd−1 = 1 and d = log2 j+1 is the number of bits, then use repeated squaring to obtain
the sequence Ãi = A2i for i = 0, 1, . . . , d− 1, and finally evaluate Aj =

∏d−1
i=0 Ã

bi
i .

There are other useful representations for the terms sk(n), two of which we record in the
following

Proposition 19. For k ≥ 0, the terms of the sequence ( sk(n) ) admit the expansion

sk(n) =

⌊ k
2⌋
∑

i=0

(−1)i
(

k − i

i

)

nk−2i +

⌊ k−1

2 ⌋
∑

i=0

(−1)i
(

k − i− 1

i

)

nk−2i−1 (58)
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in powers of n, and the expansion

sk(n) =
1

2
T0(n) +

k
∑

i=1

Ti(n) (59)

in terms of dilated Chebyshev polynomials of the first kind.

Proof. The first expansion (58) follows from the expression on the far right-hand side of (52),
together with equation (28). The second expansion (59) corresponds to a standard identity
for the Dirichlet kernel; it can be proved by noting that dilated first/second kind Chebyshev
polynomials are related via the identity Tk(n) = 2Uk(n)− nUk−1(n), which is easily verified.
Taken together with the recurrence (22), as well as the last expression in (52), this gives

sk(n)− sk−1(n) = Tk(n). (60)

Thus the expansion (59) is obtained by starting from s0 = 1 = 1
2
T0 and then taking the

telescopic sum of the first difference formula (60).

Remark 20. A different form of series expansion for the airfoil polynomials of the second
kind is given in [5].

Proposition 21. For any odd integer p,

sk+p(n)− sk(n) = Tk+ p+1

2

(n) s(p−1)/2(n). (61)

Proof. This follows from the trigonometric expression on the far right-hand side of (53), by
applying the addition formula (23).

Remark 22. The formula (60) is the particular case p = 1 of the above identity.

Proposition 23. Any decimation ( si+dk(n) ) of the sequence of order d, satisfies the linear
recurrence

si+d(k+1)(n)− Td(n) si+dk(n) + si+d(k−1)(n) = 0. (62)

Proof. By the first formula for sk(n) in (52), the terms of the decimated sequence can be
written as linear combinations of kth powers of λd and λ−d, so from the formula (39) we find

(

S2 − (λd + λ−d) S + 1
)

si+dk(n) = 0,

and by using (20) we see that λd + λ−d = 2 cos(dθ) = Td(n), which verifies (62).

It is worth highlighting some particular cases of the preceding two results, namely the
formulae

s2j(n) + 1 = sj(n) Tj(n), s2j+1(n)− 1 = sj(n) Tj+1(n), (63)

of which the first arises by setting i = 0, k = 1, d = j in (62), while the second comes from
taking k = 0, p = 2j + 1 in (61). For primality testing of a number q, it is often useful to
have a factorization, or a partial factorization, of either q − 1 or q + 1 [2, 22], and each of
the identities in (63) also has an analogue where the sign of the ±1 term on the left-hand
side is reversed.
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Proposition 24. For any integer j,

s2j(n)− 1 = (n+ 2) rj(n)Uj−1(n), s2j+1(n) + 1 = (n+ 2) rj(n)Uj(n). (64)

Proof. For the first identity in (64), using λ = α2 with α = eiθ/2 and n = λ+λ−1 yields n+2 =
(α + α−1)2, and then from (37) and the definition of the dilated Chebyshev polynomials of
the second kind it follows that (n+ 2)rj(n)Uj−1(n) is equal to

(α + α−1)2
(

α2j+1 + α−(2j+1)

α + α−1

) (

α2j − α−2j

α2 − α−2

)

=

(

α4j+1 − α−(4j+1)

α− α−1

)

− 1

which is precisely s2j(n)− 1, by (36). The proof of the second identity is similar.

Another basic fact we shall use is that, with a suitable restriction on n, sk(n) is monotone
increasing with k.

Proposition 25. For each real n ≥ 2, the sequence ( sk(n) ) is strictly increasing, and grows
exponentially with leading order asymptotics

sk(n) ∼
1

2

(

1 +

√

n+ 2

n− 2

)

(

n+
√
n2 − 4

2

)k

as k → ∞,

for all n > 2.

Proof. For real n ≥ 2, from (20) we can set

τ = iθ = log

(

n+
√
n2 − 4

2

)

,

which defines a bijection from the interval n ∈ [2,∞) to τ ∈ [0,∞). The inverse is

n = 2 coshτ =⇒ dn

dτ
= 2 sinhτ > 0,

and we have

Tk(n) = 2 cosh(kτ) =⇒ d

dτ
Tk(n) = 2k sinh(kτ) > 0

for τ > 0; hence, for all fixed k, Tk(n) is a strictly increasing function of n for n ≥ 2.
Similarly, d

dk
Tk(n) = 2τ sinh(kτ) so for all fixed n > 2, the sequence ( Tk(n) )k≥0 is also

strictly increasing with k. Then since Tk(2) = 2 for all k, it follows that, for all k,

Tk(n) ≥ 2 ∀n ≥ 2, (65)

so from (60) we have
sk(n)− sk−1(n) ≥ 2.

Upon taking the leading term of the explicit expression in terms of λ in (52) and rewriting
it as a function of n, the asymptotic formula results.
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We can now use the explicit formulae above to derive various arithmetical properties of
the integer sequences defined by sk(n) for positive integers n. This will culminate in Lemma
29 below, which describes coprimality conditions on the terms, as well as Lemma 32 and its
corollaries, which constrain where particular prime factors can appear. To begin with we
describe where primes can appear in the sequence.

Lemma 26. For all integers n ≥ 2, if sk(n) is prime then k = (p−1)/2 for p an odd prime.

Proof. If 2k+1 = ab is composite, for some odd integers a, b ≥ 3, then the identity (27) can
be applied to the middle expression in (53), to write sk(n) as the product

sk(n) = Ua−1

(

Tb(
√
n+ 2)

)

Ub−1(
√
n+ 2)

= s(a−1)/2

(

Tb(
√
n+ 2)2 − 2

)

s(b−1)/2(n).

Then, since T2(j) = j2 − 2, by using (26) we have

sk(n) = s(a−1)/2

(

T2b(
√
n+ 2)

)

s(b−1)/2(n)
= s(a−1)/2 (Tb(n)) s(b−1)/2(n),

(66)

and each factor above is an integer greater than 1.

Henceforth we will consider only integer values of n. It is well known that all linear
recurrence sequences defined over Z are eventually periodic mod m for any modulus m [32];
and for the recurrence (1) we can say further that it is strictly periodic modm, because
the linear map (sk, sk+1) 7→ (sk+1, sk+2) defined by the matrix A in (56) is always invertible
modm (since detA = 1). However, in order to obtain coprimality conditions, we need a
lemma that explicitly describes the periodicity of the terms sk(n) mod sj(n) for fixed j.

Lemma 27. For all integers n ≥ 2 and any odd number p ≥ 3, the sequence of residues
sk(n) mod s(p−1)/2(n) is periodic with period p, and sk(n) ≡ 0 (mod s(p−1)/2(n)) if and only
if k ≡ (p− 1)/2 (mod p).

Proof. The identity (61) implies that, for all k,

sk+p(n) ≡ sk(n) (mod s(p−1)/2(n)),

so the residues repeat with period p. By the monotonicity result in Proposition 25,

1 = s0(n) < s1(n) < · · · < s(p−3)/2(n) < s(p−1)/2(n).

Then the symmetry (4) implies that the residues mod s(p−1)/2(n) are non-zero in the range
−(p− 1)/2 ≤ k ≤ (p− 3)/2, so the rest of the statement follows from the periodicity.

Lemma 28. For each integer n ≥ 2 and any odd integer p ≥ 3, sk(n) is coprime to s(p−1)/2(n)
if and only if (p− 1)/2− k is coprime to p.
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Proof. Once again, we drop the argument n for the purposes of the proof, and perform
induction on the odd integers p ≥ 3. With p fixed, for each k it will be convenient to
consider

m = (p− 1)/2− k. (67)

For the base case p = 3, note that the sequence of sk mod s1 repeats with period 3, by
Lemma 27, and clearly gcd(s0, s1) = 1 = gcd(s−1, s1) so the pattern is sk ≡ −1, 1, 0 (mod s1)
for k ≡ −1, 0, 1 (mod 3); hence gcd(sk, s1) = 1 if and only if the quantity m = 1 − k 6≡ 0
(mod 3), which is the required result in this case. Now we will assume that the result is true
for all odd q with 3 ≤ q < p, and proceed to show that it is true for p.

Firstly, if for some k the corresponding value of m, given by (67), is not coprime to p,
then there is some odd q with 3 ≤ q ≤ p, q|m and q|p. Therefore we have

(q − 1)/2− k = (q − p)/2 +m ≡ (q − p)/2 ≡ 0 (mod q).

So by Lemma 27, both sk ≡ 0 (mod s(q−1)/2) and s(p−1)/2 ≡ 0 (mod s(q−1)/2), hence sk and
s(p−1)/2 are not coprime.

Thus it remains to show that

gcd(m, p) = 1 =⇒ gcd(s(p−1)/2−m, s(p−1)/2) = 1.

Observe that, by Lemma 27, it is sufficient to verify this for values of m between 1 and p− 1
(i.e., the non-zero residue classes mod p). First consider k = (p−1)/2−m lying in the range
0 ≤ k ≤ (p − 3)/2: this can be written as k = (q − 1)/2 for some odd positive integer q,
and gcd(m, p) = 1 is equivalent to the requirement that gcd(q, p) = 1; so either q = 1 and
gcd(s0, s(p−1)/2) = 1 is trivially true, or 3 ≤ q < p− 2 and gcd(s(q−1)/2, s(p−1)/2) = 1 holds by
the inductive hypothesis. Now for the range −(p− 1)/2 ≤ k ≤ −1, the result follows by the
symmetry k → −1− k, using (4). Hence, by applying the shift k → k+ p and using Lemma
27, the result is true for all integers k such that gcd((p− 1)/2− k, p) = 1.

In fact, it is possible to make a stronger statement about the common factors of the terms
of the sequence.

Lemma 29. For all integers n ≥ 2 and j, k ≥ 0,

gcd
(

sj(n), sk(n)
)

= sm(n), where 2m+ 1 = gcd(2j + 1, 2k + 1).

Proof. Given any j, k, suppose that 2m + 1 = gcd(2j + 1, 2k + 1). The case m = 0 follows
from Lemma 28, taking p = 2j + 1. If m > 0, then by writing 2j + 1 = (2m + 1)(2j′ + 1),
2k + 1 = (2m+ 1)(2k′ + 1) with gcd(2j′ + 1, 2k′ + 1) = 1, and applying (66), we have

gcd
(

sj(n), sk(n)
)

= sm(n) gcd
(

sj′(T2m+1(n)), sk′(T2m+1(n))
)

= sm(n),

by applying Lemma 28 once again.
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Remark 30. The preceding result is a special case of a result on the greatest common divisor
of a pair of Lehmer numbers: see Lemma 3 in [29].

Remark 31. Since the argument n plays a passive role in most of the above, it is clear that,
mutatis mutandis, Lemmas 27, 28 and 29 also apply to the sequence of polynomials ( sk(n) )
in Z[n]. Analogous divisibility properties for the Chebyshev polynomials of the first kind are
described in [23].

The preceding results allow the periodicity of the sequence modulo any prime to be
described quite precisely. The notation

( ·
·
)

is used below to denote the Legendre symbol.

Lemma 32. Let n ≥ 2 be fixed, and for any prime q let π(q) denote the period of the sequence
(sk(n) mod q). Then π(2) = 3 if and only if n is odd, in which case sk(n) is even ⇐⇒ k ≡ 1
(mod 3), while π(2) = 1 and all sk(n) are odd when n is even. Moreover, for q an odd prime,
one of three possibilities can occur: (i)

(

n2−4
q

)

= ±1 and π(q)|q ∓ 1; (ii) n ≡ 2 (mod q) and

π(q) = q with sk(n) ≡ 0 (mod q) ⇐⇒ q|2k + 1; (iii) n ≡ −2 (mod q) and π(q) = 2 with
sk(n) ≡ (−1)k (mod q).

Proof. When n is even, then since s0(n) = 1 and s1(n) = n+1 are both odd, it follows from
(1) that sk(n) is odd for all k, so π(2) = 1. For n odd, s1(n) is even, so by Lemma 28, sk(n)
is even if and only if k ≡ 1 (mod 3), and π(2) = 3.

Now let q be an odd prime. For case (i) it is most convenient to consider the behaviour
of (sk mod q) in terms of the equivalent sequence defined by the recurrence (1) in the finite
field Fq. In that case we have n > 2, and when

(

n2−4
q

)

= 1 it follows that n2−4 is a quadratic

residue mod q, so the first formula in (52), which can be rewritten as

sk(n) =
λ−k(λ2k+1 − 1)

λ− 1
, (68)

remains valid in terms of λ ∈ Fq, with λ 6= ±1, and λq−1 = 1 in Fq by Fermat’s little theorem.
The terms of the sequence repeat with period π(q) = ord(λ) > 2, the multiplicative order of
λ in the group F∗

q, and this divides q − 1 by Lagrange’s theorem. The case
(

n2−4
q

)

= −1 is

similar, but now n2 − 4 is a quadratic nonresidue mod q, so λ is not defined in Fq and the
formula (68) should be interpreted in the field extension Fq[

√
n2 − 4] ≃ Fq2 . The Frobenius

automorphism λ → λq exchanges the roots of the quadratic X2−nX+1 = (X−λ)(X−λ−1),
hence λq = λ−1. Thus λq+1 = 1, and now the sequence given by (68) repeats with period
π(q) = ord(λ), the order of λ in F∗

q2 , which divides q+1. In case (ii), the sequence sk(n) mod q
is the same as the sequence (10) mod q, which first vanishes when k = (q− 1)/2 and repeats
with period q, and in case (iii) the sequence is equivalent to (11), which is never zero mod
q.

At this stage it is convenient to introduce the notion of a primitive prime divisor (some-
times just referred to as a primitive divisor), which is a prime factor q that divides sk(n) but
does not divide any of the previous terms in the sequence [10], and by convention does not
divide the discriminant n2 − 4 either [1, 26].
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Definition 33. Let the product of the discriminant and the first k terms be denoted by

Πk(n) = (n2 − 4) s1(n)s2(n) · · · sk(n). (69)

A primitive prime divisor of sk(n) is a prime q|sk(n) such that q 6 |Πk−1(n).

Case (i) of Lemma 32 is the most interesting one. In that case it is clear from (68) that a
prime q|sk(n) for some k whenever λ2k+1 = 1 in Fq2 ⊃ Fq, and then π(q) = ord(λ) = 2k∗ +1
must be odd, where k∗ = (π(q) − 1)/2 > 0 is the smallest k for which this happens; and if
π(q) is even then this cannot happen. If we include q = 2, then we can rephrase the latter
by saying that the prime factors q appearing in the sequence ( sk(n) ) are precisely those q
which have an odd period π(q) > 1, and this consequence of Lemma 32 can be restated in
terms of primitive prime divisors.

Corollary 34. A prime q is a primitive divisor of sk(n) if and only if k = (π(q) − 1)/2
where π(q) is odd. Moreover, if q is odd and

(

n2−4
q

)

= ±1 then q = 2aπ(q) ± 1 for some
positive integer a.

The latter statement just says that an odd primitive divisor of sk(n) has the form q =
2a(2k+1)±1 for some a ≥ 1, so the minus sign with a = 1 gives the lower bound q ≥ 4k+1.
Hence the primes that do not appear as factors in the sequence can also be characterized.

Corollary 35. If a prime q < 4k + 1 is not a factor of Πk−1(n), then it never appears as a
factor of sj(n) for j ≥ k, and π(q) is even.

So far we have concentrated on properties of sk(n) for fixed n and allowed k to vary.
However, if one is interested in finding factors of sk(n) for large n, then it may also be
worthwhile to consider other values of n, as the following result shows.

Proposition 36. Suppose that an integer f |sk(n) for some k, n. Then f |sk(m) whenever
m ≡ n (mod f).

Proof. If m ≡ n (mod f) then mj ≡ nj (mod f) for any exponent j ≥ 0, and since sk(m) is
a polynomial in m with integer coefficients, it follows that sk(m) ≡ sk(n) ≡ 0 (mod f), as
required.

5 Generic factorization for Chebyshev values

The sequence ( sk(n) ) has special properties when n is given by a dilated Chebyshev poly-
nomial of the first kind evaluated at an integer value of the argument.

Theorem 37. For all integers p ≥ 2, when n = Tp(j) for some integer j the terms of the
sequence ( sk(n) ) can be factorized as a product of rational numbers, that is

sk(Tp(j)) = Rk(j) sk(j), (70)
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where the prefactors Rk(j) ∈ Q are given by

Rk(j) =
Up−1(T2k+1(

√
j + 2))

Up−1(
√
j + 2)

(71)

and satisfy a linear recurrence of order p. In particular, for p = 2 the prefactor is Rk(j) =
rk(j) ∈ Z, as given in Theorem 11, while for all odd p the prefactor can be written as

Rk(j) =
s(p−1)/2(T2k+1(j))

s(p−1)/2(j)
∈ Q, (72)

and satisfies the recurrence

(S− 1)

(p−1)/2
∏

i=1

(S2 − T2i(j) S + 1)Rk(j) = 0. (73)

Proof. Upon introducing φ such that ℓ =
√
j + 2 = 2 cos(φ/2), the formula (53) gives

Rk(j) =
sk(Tp(j))

sk(j)
=

sin
(

(2k + 1)pφ/2
)

sin(φ/2)

sin(pφ/2) sin
(

(2k + 1)φ/2
) ,

and the definition of the dilated Chebyshev polynomials of the second kind in (21) produces
(71). For integer j, Rk(j) is a ratio of integers, so it is a rational number (positive for j ≥ 2).
In the case p = 2, Rk(j) = rk(j), which can be written in the form

rk(j) =
T2k+1(

√
j + 2)√

j + 2
, (74)

which is an integer, as follows from the fact that U1(ℓ) = ℓ, and this ratio is an even
polynomial of degree 2k in ℓ with integer coefficients, hence it is a polynomial of degree k in
j; and by (65) it is positive for real j ≥ 2, and takes positive integer values for integers j in
this range. In the case that p is odd, the expression (72) is found by applying the formula
(53) to the numerator and denominator of (71).

To see that Rk(j) satisfies a linear recurrence of order p, note that, upon setting µ =
exp(iφ) and applying the first formula in (52) with λ = µp, the factorization (70) can be
seen as a consequence of the elementary algebraic identity

µp(k+1) − µ−pk

µp − 1
=

(

∑p−1
j=0 µ

(k+1)(p−1)−(2k+1)j

µp−1 + µp−2 + · · ·+ 1

)

(

µk+1 − µ−k

µ− 1

)

, (75)

where the first factor on the right-hand side above is just Rk(j). Thus the denominator of the
expression for Rk(j) in (75) is

∑p−1
j=0 µ

j, which is independent of k, while the numerator is a
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linear combination of kth powers of the characteristic roots µ(p−1), µ(p−3), . . . , µ−(p−3), µ−(p−1),
giving a total of p distinct roots. When p is even, the roots come in p/2 pairs, namely µ±(2i−1)

for i = 1, . . . , p/2, which gives the characteristic polynomial

F (λ) =

p/2
∏

i=1

(λ2 − T2i−1(j)λ+ 1),

so that, in particular, for p = 2 the recurrence satisfied by Rk(j) is (42), while for p odd there
are the pairs µ±2i for i = 1, . . . , (p− 1)/2 together with the root 1, which yields (73).

Theorem 38. Let (an)n≥1 be the sequence specified by Definition 1. If n = T2(j) for some
j ≥ 3, then an = −1. Furthermore, if n = Tp(j) for some j ≥ 3 with p an odd prime, then
either s(p−1)/2(n) is not prime and an = −1, or s(p−1)/2(n) is the only prime in the sequence
( sk(n) )k≥0 and an = (p− 1)/2.

Proof. First of all, consider the factorization (70) when p = 2, with prefactor rk(j) as in
Theorem 11, given by (74). When j = 2 this is not interesting, because it gives rk(j) = 1
for all j. However, note the property (mentioned in passing in the proof of Proposition 25),
that for real n > 2, the sequence ( Tk(n) )k≥0 is strictly increasing with the index. Hence, for
all k > 0, T2k+1(

√
j + 2) >

√
j + 2 = T1(

√
j + 2). Thus for all j ≥ 3 and k ≥ 1, both factors

rk(j), sk(j) are greater than 1, so sk(T2(j)) can never be prime, and an = −1.
Now for any odd prime p, note that, a priori, the prefactor Rk(j) in (70) is a positive

rational number, and the formula (72) gives

sk(Tp(j)) =
sk(j) s(p−1)/2(T2k+1(j))

s(p−1)/2(j)
. (76)

However, according to Lemma 27, s(p−1)/2(j)|sk(j) whenever k ≡ (p− 1)/2 (mod p). On the
other hand, for all values of k 6≡ (p−1)/2 (mod p), Lemma 28 gives gcd(sk(j), s(p−1)/2(j)) =
1. Therefore s(p−1)/2(j) divides s(p−1)/2(T2k+1(j)) and Rk(j) ∈ Z. Thus, for all k, the terms
sk(Tp(j)) can be written as a product of two integers, that is

sk(Tp(j)) =

{

R̂k(j) s(p−1)/2(T2k+1(j)), if k ≡ (p− 1)/2 (mod p);

Rk(j) sk(j), otherwise,
(77)

where Rk(j) is given by (72) as above, and

R̂k(j) =
sk(j)

s(p−1)/2(j)
= si(Tp(j)) for k = (p− 1)/2 + ip, (78)

with the latter formula being obtained from (66). In the first case of (77) above, for k =
(p− 1)/2 the prefactor is R̂(p−1)/2(j) = 1, while R̂k(j) > 1 for all k = (p− 1)/2 + ip, i ≥ 1,
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by Lemma 25, and the other factor is s(p−1)/2(T2k+1(j)) > 1 for all these values of k. In the
second case, for k > 0, we can use (59) together with (26) to write

s(p−1)/2(T2k+1(j)) = 1
2
T0 +

∑(p−1)/2
i=1 Ti(T2k+1(j))

= 1
2
T0 +

∑(p−1)/2
i=1 T(2k+1)i(j)

> 1
2
T0 +

∑(p−1)/2
i=1 Ti(j) = s(p−1)/2(j),

so s(p−1)/2(T2k+1(j))/s(p−1)/2(j) > 1. Hence both factors Rk(j), sk(j) are greater than 1 in
the second case of (77). Thus the only term that can be prime is s(p−1)/2(Tp(j)), and the
result is proved.

Remark 39. For any odd p = 2i + 1, the identity (76) can be rewritten in the symmetric
form

si(j) sk(T2i+1(j)) = sk(j) si(T2k+1(j)). (79)

Remark 40. Similarly to the remark after Lemma 29, the formula (77) also corresponds to
factorizations of the corresponding polynomials in Z[j], according to whether k ≡ (p− 1)/2
(mod p) or not.

It is clear from the factorizations (77) that in the second case, sk(Tp(j)) ≡ 0 (mod sk(j))
whenever k is not congruent to (p− 1)/2 mod p. It turns out that an explicit expression for
sk(Tp(j)) mod sk(j) can be given in the first case as well. Before doing so, it is convenient
to define some more polynomials, which are shifted versions of the airfoil polynomials.

Definition 41. Polynomials Pk(z) are defined as elements of Z[z] by

Pk(z) = sk(2− z),

or equivalently by

Pk(4 sin
2 θ) =

sin
(

(2k + 1)θ
)

sin θ
. (80)

They satisfy the linear recurrence

Pk+1(z) + (z − 2)Pk(z) + Pk−1(z) = 0, (81)

and for k ≥ 0 their expansion in powers of z takes the form

Pk(z) = 2k + 1− c
(1)
k z + c

(2)
k z2 + · · ·+ (2k + 1)(−z)k−1 + (−z)k. (82)

with

c
(1)
k =

k(k + 1)(2k + 1)

3!
, c

(2)
k =

k(k − 1)(k + 1)(2k2 + 5k + 2)

5!
.

24



Theorem 42. For all odd integers p,

sk(Tp(j)) = si(Tp(j))P(p−1)/2

(

(2− j) sk(j)
2
)

for k = (p− 1)/2 + ip, (83)

and in particular,
sk(Tp(j)) ≡ p si(Tp(j)) (mod (j − 2) sk(j)

2)

holds in that case.

Proof. Upon setting p = 2q + 1, by using (78) together with the first formula in (77), we
have

sk(Tp(j))/si(Tp(j)) = sin
(

(2q + 1)(2k + 1)φ/2
)

/

sin
(

(2k + 1)φ/2
)

= Pq(z), where z = 4 sin2
(

(2k + 1)φ/2
)

,

and (with the same notation as in the proof of Theorem 37) we also have j = 2 cosφ.
Comparing the expressions for z and j gives z = 4 sin2(φ/2) sk(j)

2 = (2 − j) sk(j)
2, which

yields the identity (83) in terms of the shifted airfoil polynomial P(p−1)/2. The terms displayed
in the expansion (82) are easily obtained from the recurrence (81), or by substituting n = 2−z
in (58), and the leading term gives the reduction of (83) mod sk(j)

2.

We now turn to the sequences ( rk(n) ) for n > 0, which are associated with negative
values of n via (14). It turns out that these sequences also admit factorizations for certain
Chebyshev values of n. The case of n = Tp(j) for odd index p can be inferred immediately
from Theorem 37 together with (14), since Tp is an odd function of its argument in that
case. However, the even case n = T2(j) does not translate directly to the sequences ( rk(n) ),
and requires a separate treatment. That there should be a significant difference for values of
even Chebyshev polynomials is also apparent from comparison of the fact that a7 = a14 =
a23 = a34 = −1 in (12), but ã1 = ã2 = ã34 = −1 in (18), while ã7, ã14 and ã23 are all positive.

The following analogue of Theorem 11 for the sequences ( rk(n) ) only provides a factor-
ization of the terms for a particular subset of the values n = T2(j) .

Theorem 43. When n = T2(j) = j2 − 2 with j = 2(ℓ2 − 1) for integer ℓ ≥ 2, the terms of
the sequence ( rk(n) ) admit the factorization

rk(j
2 − 2) = f+

k (j) f
−
k (j), (84)

where

f±
k (j) =

ℓrk(j)± δk
ℓ± 1

∈ Z, δk = (−1)⌊ k+1

2 ⌋. (85)

Proof. Since δ2k = 1 and rk(j) = (j + 2)−1/2
(

α(2k+1)/2 + α−(2k+1)/2
)

, using α1/2 + α−1/2 =√
j + 2 as in (44), it follows that

f+
k (j) f

−
k (j) = (ℓ2rk(j)

2 − 1)/(ℓ2 − 1) = j−1
(

(j + 2)rk(j)
2 − 2

)

=
(

(

α(2k+1)/2 + α−(2k+1)/2
)2 − 2

)

/(α + α−1),
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which coincides with the formula (37) for rk(n) with n = j2−2 = 4ℓ4−8ℓ2+2 in this case. To
see that each factor f±

k (j) is an integer for all k, note that (S2−jS+1)rk(j) = 0, and checking
the sequence of signs +1,−1,−1,+1 for k = 0, 1, 2, 3 shows that (S2 − jS + 1)δk = jδk−1.
Hence the factors in (41) each satisfy an inhomogeneous linear recurrence of second order,
that is

f±
k+2(j)− j f±

k+1(j) + f±
k (j) = 2(±ℓ− 1)δk−1. (86)

From (85) it can be seen that
f±
−1(j) = f±

0 (j) = 1

provide integer initial values for (86) in each case, so these two sequences consist entirely of
integers.

Example 44. For ℓ = 2, the above result gives j = T2(2
√
2) = 6 and n = T2(6) = 34 , with

the sequence ( rk(34) ) = ( f+
k (6) f

−
k (6) ) beginning

1, 33, 1121, 38081, 1293633, . . . , (87)

where the factors are

( f+
k (6) ) : 1, 3, 19, 113, 657, . . . , ( f−

k (6) ) : 1, 11, 59, 337, 1969, . . . , (88)

and these satisfy the inhomogeneous recurrences

f+
k+2(6)− 6 f+

k+1(6) + f+
k (6) = 2(−1)⌊ k

2⌋,
f−
k+2(6)− 6 f−

k+1(6) + f−
k (6) = 6(−1)⌊ k

2⌋+1.

For the case where n = Tp(j) for p odd, the formula (72) can be applied, together with
(14), to yield the factorization

rk(Tp(j)) = R̃k(j) rk(j), (89)

where

R̃k(j) = Rk(−j) =
r(p−1)/2(T2k+1(j))

r(p−1)/2(j)
(90)

satisfies the same recurrence (73) as Rk(j).

Example 45. When n = T3(3) = 18, the sequence ( rk(18) ) begins

1, 17, 305, 5473, 98209, 1762289, 31622993, 567451585, . . . , (91)

so that ã18 = 1 since r1(18) = 17 is prime. By adapting Theorem 37, the terms can be
factored as

rk(18) = R̃k(3) rk(3),
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where the sequence ( rk(3) ) begins with

1, 2, 5, 13, 34, 89, 233, 610, . . . , (92)

and ( R̃k(3) ) is a sequence of rational numbers, starting with

1,
17

2
, 61, 421,

5777

2
, 19801, 135721,

1860497

2
, . . . ,

which satisfies the third order recurrence

R̃k+3(3)− 8
(

R̃k+2(3)− R̃k+1(3)
)

− R̃k(3) = 0.

The prefactors R̃k(3) are integers whenever k ≡ 0 or 2 (mod 3), so rk(3) divides rk(18) for
all such k, while the terms of the trisection ( r3k+1(18) ) are all divisible by r1(18), which is
the only prime in the sequence ( rk(18) )k≥0.

Having described the situation for even Chebyshev values, and given the above example
of an odd Chebyshev value, the analogue of Theorem 38 for ( rk(n) ) can now be stated.

Theorem 46. Let (ãn)n≥1 be the sequence specified by Definition 2. If n = T2(j) where
j = 2(ℓ2 − 1) for some ℓ ≥ 2, then ãn = −1. Furthermore, if n = Tp(j) for some j ≥ 3 with
p an odd prime, then either r(p−1)/2(n) is not prime and ãn = −1, or r(p−1)/2(n) is the only
prime in the sequence ( rk(n) )k≥0 and ãn = (p− 1)/2.

Proof. For the case n = T2(j), j = 2(ℓ2 − 1) with ℓ ≥ 2, note that each factor in (84) is
an integer, and r0(T2(j)) = f±

0 (j) = 1. Now as noted in the proof of Lemma 25, for fixed
argument the sequence of Chebyshev polynomials of the first kind is strictly increasing with
the index k ≥ 0, so from (74) it follows that ( rk(j) )k≥0 is strictly increasing. Thus, from
their explicit expressions in (85), both sequences ( f±

k (j) ) are strictly increasing as well.
Hence, for these values of j, rk(T2(j)) is composite for k ≥ 1. Hence there are no primes in
the sequence ( rk(n) )k≥0 for any of these even Chebyshev values of n.

When n = Tp(j), j ≥ 2 with p an odd prime, there is the factorization (89), with
R̃k(j) ∈ Q given by (90). Just as for the sequences ( sk(n) ), it is necessary to consider
whether k ≡ (p− 1)/2 (mod p) or not. One can show that the analogue of Lemma 27 holds
for the sequences ( rk(n) ), n ≥ 3, so that when k ≡ (p − 1)/2 (mod p) the denominator
of R̃k(j) divides sk(j); or, by using (14) together with (66), one can write the explicit
factorization

rk(Tp(j)) = ri(Tp(j)) r(p−1)/2(T2k+1(j)) for k = (p− 1)/2 + ip, (93)

where both integer factors above are greater than 1 for i > 0. On the other hand, for the
case k 6≡ (p− 1)/2 (mod p), one can show that the analogue of Lemma 28 also holds for the
sequences ( rk(n) ), so in that case the denominator in (90) must divide the numerator; hence
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Figure 1: Plot of log log skN (n) against N for the first 43 primes in the sequence for n = 3.

R̃k(j) ∈ Z and both factors in (89) are integers. Then, similarly to the proof of Lemma 25,
setting

√
j + 2 = 2 coshτ for real j ≥ 2 in (74) gives

rk(j) =
cosh((2k + 1)τ)

coshτ
=⇒ d

dτ
rk(j) =

2k sinh((2k + 1)τ)

coshτ
+

sinh(2kτ)

cosh2τ
> 0

for k > 0, τ > 0, implying that rk(j) is a strictly increasing function of j for j ≥ 2. Hence
R̃k(j) > 1 for j > 2, so when 0 < k 6≡ (p − 1)/2 (mod p), both integer factors in (89) are
greater than 1. Thus r(p−1)/2(Tp(j)) is the only term that can be prime.

6 Appearance of primes for non-Chebyshev values

Theorem 38 says that for the values n = Tp(j) with prime p and integer j ≥ 3, the sequence
( sk(n) )k≥0 contains at most one prime term, and this can only occur if p is an odd prime,
in which case s(p−1)/2(Tp(j)) is the only term that may be prime. It seems likely that these
cases are exceptional, and for non-Chebyshev values of n one would expect infinitely many
prime terms, in line with general heuristic arguments for linear recurrence sequences [9].

Conjecture 47. Let n > 1 be a positive integer. The sequence ( sk(n) )k≥0 contains infinitely
many primes if and only if n 6= Tp(j) for some prime p and some integer j ≥ 3.

In order to consider the distribution of primes in the sequence ( sk(n) ), it is helpful to
introduce some notation. Define a subsequence (kN)N≥1 of the positive integers by requiring
that

skN (n) = Nth prime term in ( sk(n) )k≥0,
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Figure 2: Plot of log log skN (n) against N for the first 23 primes in the sequence for n = 4.

and, for fixed n, let

Sk(n) = { prime q | q < 4k + 1 } ∪ { prime q | q|Πk−1(n) },

where Πk−1(n) is the product in (69).

Conjecture 48. If n ≥ 3 and n 6= Tp(j) for some prime p and some integer j ≥ 3, then, as
N → ∞,

log log skN (n) ∼ C N, with C = e−γ log
√
λ, (94)

where λ = n+
√
n2−4
2

, and γ is the Euler–Mascheroni constant.

The above assertion is analogous to a conjecture of Wagstaff regarding Mersenne primes
[31]. If MN is the Nth prime of the form 2k − 1, then the heuristic arguments of Wagstaff
suggest that

log logMN ∼ C ′ N, with C ′ = e−γ log 2.

A very clear exposition of the statistical properties of Mersenne primes, with many plots, can
be found on Caldwell’s website [4].4 When n is a non-Chebyshev value, a heuristic derivation
of the corresponding asymptotics of primes in the sequences ( sk(n) ) can be obtained in a
similar way, as we now describe.

By Lemma 26, if sk(n) is prime then 2k + 1 is prime, and by Lemma 28, sk(n) is then
coprime to sj(n) for all 1 ≤ j ≤ k − 1, and for large enough k it is also coprime to the
discriminant n2 − 4, hence it is coprime to Πk−1(n). On the other hand, by Corollary 35, if
p = 2k + 1 is prime then sk(n) is coprime to all primes q < 4k + 1: such primes are either

4More specifically, see the page https://primes.utm.edu/notes/faq/NextMersenne.html
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primitive divisors of lower terms sj(n) with j < k, or they do not appear as divisors of the
sequence at all. Thus no prime q ∈ Sk(n) can be a factor of sk(n) when 2k + 1 is prime.
Then from the prime number theorem, for k large,

Prob(2k + 1prime) ∼ 2/ log(2k + 1);

and, given that 2k + 1 is prime, the probability that sk(n) is prime is estimated by dividing
by the probability that sk(n) is indivisible by primes q that either divide lower terms in the
sequence, or are forbidden from being divisors of sk(n) due to Corollary 35, to yield

Prob(sk(n) prime|2k + 1prime) ∼ 1
log sk(n)

∏

q∈Sk(n)

(

1− 1
q

)−1

∼ 1
k log λ

∏

q∈Sk(n)

(

1− 1
q

)−1

,

where the latter expression comes from the asymptotics in Proposition 25. By multiplying
these two probabilities together, and using the limit

lim
k→∞

log k
∏

q prime

q≤k

(

1− 1

q

)

= e−γ,

which is one of Mertens’ theorems (see section 22.8 in [14]), gives

lim
k→∞

log(2k + 1)
∏

q prime

q<4k+1

(

1− 1

q

)

∏

prime q∈Sk(n)

q≥4k+1

(

1− 1

q

)

= e−γ

which produces the estimate

|{prime terms sk(n) for 0 < k ≤ x}| ∼ 1

e−γ log
√
λ

∑

k≤x

1

k
∼ C−1 log x,

so if skN (n) is the Nth prime term in the sequence then the formula (94) follows from taking

x = kN ∼ log skN (n)

log λ
.

Numerical evidence for small values of n suggests that the log log plot of the prime terms
in the sequence ( sk(n) ) is approximately linear (see e.g., Figure 1 for the case n = 3), and
gives some support for the proposed value of C. Moreover, it is expected that the appearance
of prime terms should behave like a Poisson process, in complete analogy with Wagstaff’s
observations on the sequence of Mersenne primes [31]. The first appendix below contains a
list of the indices k for the first probable primes that appear in the sequences ( sk(n) ) for
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n = 3, 4, 5, 6, and as well as including the log log plots, in each of these cases a linear best
fit value of C is found, with the ratio

ρ(n) =
C

log
√
λ

being compared with the value
e−γ ≈ 0.561459

coming from Mertens’ theorem.
An analogous behaviour should be observed in the sequences ( rk(n) ) for positive n.

Conjecture 49. Let n > 2 be a positive integer. The sequence ( rk(n) )k≥0 contains infinitely
many primes if and only if n 6= Tp(j) for some prime p, where the integer j ≥ 3 takes one of
values specified in Theorem 46.

The first few prime terms in the sequence ( rk(3) )k≥0 are plotted in Figure 5; for more
details see the first appendix.

7 Conclusions

It seems highly likely that Theorem 38 identifies all those values of n ≥ 3 such that the se-
quence ( sk(n) )k≥0 contains at most one prime, and Theorem 46 does the same for ( rk(n) )k≥0.
The sequences corresponding to all other values of n should have infinitely many prime terms,
but proving this should be at least as difficult as proving that there are infinitely many
Mersenne primes. For Lehmer numbers, the most sophisticated results currently available
concern primitive divisors [1, 30].

The statistics of prime appearances for non-Chebyshev values of n suggests a close analogy
with Mersenne primes. For Mersenne primes, the Lucas-Lehmer test is extremely efficient
[3]. The ideas from [24, 25] can be adapted to yield a necessary condition for primality of
q = sk(n), which can be tested efficiently, but to provide sufficient conditions requires the use
of a Lucas test or one of its generalizations [2, 22], for which the formulae (63) and (64) are
useful, since they provide partial factorizations of q ± 1. In future we would like to consider
some of the large primes that appear in these sequences, extending the approach that was
applied to the case n = 6 in [19].
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Appendix A: Sequences of prime appearances

In order to study the appearance of prime terms when n is a non-Chebyshev value, for
some particular small values of n we calculated the possible prime terms q = s(p−1)/2(n)
when p = 3, 5, 7, 11, . . . is an odd prime, and then tested them for primality using the Maple
isprime command. This uses a probabilistic test, which excludes certain composite values
of q, while remaining q are only pseudoprimes. For all but the largest values of the index
k = (p − 1)/2, we also checked the computations with Mathematica’s PrimeQ[q] command,
as well as performing a Lucas-Lehmer style test for pseudoprimes of our own, and verified
that the answer was the same,

For n = 3, the list of the first 43 values k for which sk(3) appear to be prime is OEIS
sequence A117522, beginning

2, 3, 5, 6, 8, 9, 15, 18, 20, 23, 26, 30, 35, 39, 56, 156, 176, 251, 306, 308, 431, 548,
680, 2393, 2396, 2925, 3870, 4233, 5345, 6125, 6981, 7224, 9734, 17724, 18389,
22253, 25584, 28001, 40835, 44924, 47411, 70028, 74045.

The (probable) primes sk(3) corresponding to these values of k are listed in sequence A285992.
The log log plot of these terms is given in Figure 1. The slope of the best fit line for these
points is

C = 0.2553739565.

For n = 4, the list of the first 23 values k for which sk(4) appear to be prime is

1, 2, 3, 6, 9, 14, 18, 146, 216, 293, 704, 1143, 1530, 1593, 2924, 7163, 9176, 9489,
11531, 39543, 50423, 60720, 62868,

which are listed in OEIS sequence A299100, while the corresponding values sk(4) are given
in A299107. The log log plot of these terms is given in Figure 2. The best fit line for this
set of points has slope

C = 0.5196737962.

For n = 5, the list of the first 24 values k for which sk(5) appear to be prime is

2, 3, 5, 6, 8, 9, 15, 18, 23, 53, 114, 194, 564, 575, 585, 2594, 3143, 4578, 4970,
9261, 11508, 13298, 30018, 54993,

as listed in OEIS sequence A299101, with the corresponding values of sk(5) listed as sequence
A299109. The log log plot of these terms is given in Figure 3. The best fit line for this set
of points has slope

C = 0.4568584420.
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Figure 3: Plot of log log skN (n) against N for the first 24 primes in the sequence for n = 5.

Figure 4: Plot of log log skN (n) against N for the first 19 primes in the sequence for n = 6.
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Figure 5: Plot of log log rkN (n) against N for the first 31 primes in the sequence for n = 3.

For n = 6, the list of the first 25 values k for which sk(6) appear to be prime is

1, 2, 3, 9, 14, 23, 29, 81, 128, 210, 468, 473, 746, 950, 3344, 4043, 4839, 14376,
39521, 64563, 72984, 82899, 84338, 85206, 86121,

as given in OEIS sequence A113501, with the corresponding values of sk(6) given in sequence
A088165 (the prime NSW numbers [19]). In our initial submission of this paper, we obtained
the first 19 of these values independently, before we were aware of sequence A113501, and
made the log log plot of these terms is as in Figure 4. The best fit line for these points has
slope

C = 0.5434911190.

Subsequently we found the web page [20], where the last six indices above are listed sepa-
rately, together with their date of discovery by Weisstein. However, on that page it is stated
unequivocally that all of the corresponding numbers sk(6) are prime, whereas presumably
the largest of these values were obtained using Mathematica’s probabilistic primality test,
so the most that can be claimed is that they are pseudoprimes.

Assuming that the heuristic arguments given in section 6 above are correct, and that the
small number of points plotted really gives an accurate picture of the behaviour for large N ,
the predicted values for the ratio ρ(n) = C/ log

√
λ in each case are

ρ(3) ≈ 0.530689, ρ(4) ≈ 0.789203, ρ(5) ≈ 0.583174, ρ(6) ≈ 0.616641.

Apart from the case n = 4, all of these values are reasonably close to the number e−γ ≈
0.561459 obtained from Mertens’ theorem. The value for n = 4 seems anomalous: there are
fewer prime terms than predicted in this case. However, it may be unreasonable to expect
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close agreement with the predicted value, given the rather small number of data points
plotted in each case.

One can also consider the prime terms in the sequences ( rk(n) ), n ≥ 3, corresponding
to negative values of n in sk(n). The list of the first 31 values k for which rk(3) appear to
be prime is

1, 2, 3, 5, 6, 8, 11, 14, 21, 23, 41, 65, 68, 179, 215, 216, 224, 254, 284, 285, 1485,
2361, 2693, 4655, 4838, 7215, 12780, 15378, 17999, 18755, 25416.

Figure 5 is the log log plot of these terms. Note that ( rk(3) ) is a bisection of the Fibonacci
sequence, for which the prime terms are listed as OEIS sequence A005478. The slope of the
best fit line for these points is

C = 0.3409264905.

Dividing this value by log
√
λ = log

(

(1 +
√
5)/2

)

gives

ρ(−3) ≈ 0.708475,

which is rather large compared with the value of e−γ expected from Mertens’ theorem,
suggesting that the number of primes in this sequence is initially somewhat lower than
would be expected from the heuristic argument in section 6.

Appendix B: Related sequences from the OEIS

Here we briefly mention some other sequences in the OEIS which are related to the consid-
erations in this paper.

Sequence A294099 contains the array of values sk(n) for n ≥ 1, k ≥ 0, while A299045 is
the array of sk(−n) for the same range of n and k.

Sequence A002327 consists of primes of the form n2 − n− 1, and after sending n → −n
this corresponds to prime values of the polynomial s2(n) = n2+n−1, for which the relevant
values of n are given by sequence A045546.

Sequence A000032 begins

2, 1, 3, 4, 7, 11, 18, 29, 47, . . . ,

and consists of the Lucas numbers denoted ℓ+k (1,−1) in section 2, which satisfy the Fibonacci
recurrence ℓ+k+2(1,−1) = ℓ+k+1(1,−1) + ℓ+k (1,−1). This coincides with an interlacing of two
sequences, namely

T0(3), s0(3), T1(3), s1(3), T2(3), s2(3), T3(3), . . . ,

so its two distinct bisections are ( Tk(3) ) and ( sk(3) ), given by A005248 and A002878 re-
spectively. Similarly, the Fibonacci sequence A000045 itself coincides with the interlacing

U−1(3), r0(3),U0(3), r1(3),U1(3), r2(3),U2(3), . . .
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obtained from (Uk(3) ) and ( rk(3) ), given by A001906 and A001519 respectively.
There are other values of n for which the OEIS entry for the sequence of terms sk(n)

has not been mentioned so far: ( sk(4) )k≥0 is A001834, ( sk(5) )k≥0 is A030221, ( sk(7) )k≥0 is
A033890, ( sk(8) )k≥0 is A057080, and ( sk(9) )k≥0 is A057081.

A008865 is the sequence of values of T2(j) for j = 1, 2, 3, . . .; the array of values Tk(n)
for k ≥ 1, n ≥ 1 is rendered as sequence A298675. The values Tp(n) for prime p are listed
in sequence A298878, while the values Tp(n) with p an odd prime which are not also of the
form T2(m) for some m are given in A299071.
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