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Abstract 

Cell-free transcription-translation is an expanding field in synthetic biology as a rapid 

prototyping platform for blueprinting the design of synthetic biological devices. 

Exemplar efforts include translation of prototype designs into medical test-kits for on-

site identification of viruses (Zika, Ebola), whilst gene circuit cascades can be tested, 

debugged and re-designed within rapid turnover times. Coupled with mathematical 

modelling, this discipline lends itself towards the precision engineering of new 

synthetic life. The next stages of cell-free look set to unlock new microbial hosts that 

remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that 

the development of such systems will provide new tools to aid the transition from 

cell-free prototype designs to functioning synthetic genetic circuits and engineered 

natural product pathways in living cells. 

 

 

 

 

 

 

 

 

 

 

  



Introduction 

Cell-free systems represent a historically important component during the founding 

of the field of biochemistry. Ever since the pioneering efforts of the Nobel laureate 

Eduard Buchner (Nobel Prize in Chemistry in 1907) and his discovery of 

fermentation in yeast cell-extracts[1], cell-free systems have been repurposed 

towards the further understanding of biological processes. Indeed, arguably one of 

the most notable biological discoveries of the 20th century was the unravelling of the 

genetic code by Marshall Nirenberg and colleagues[2–4], which was underpinned by 

the use of E. coli cell-extracts to study coupled transcription-translation (TX-TL). 

Together with Har Khorana and Robert Holley this resulted in a shared Novel Prize 

in Physiology or Medicine in 1968. On this theme, the efforts of Alfred Goldberg led 

to the unveiling of an ATP-dependent mechanism for protein degradation by ubiquitin 

in a mammalian cell-free system[5]. 

 

Cell-Free Synthetic Biology 

Today, with the rise of synthetic biology and the design and construction of synthetic 

life[6], cell-free systems have yet again found a niche towards the understanding of 

biological networks and biosynthetic pathways[7,8]. Indeed, by isolating the cellular 

components of core metabolism and the TX-TL network within a test-tube, this 

allows the synthetic biologist to study systems without the regulatory constraints and 

limitations of a dividing, evolving or adapting living cell. This mini-review summarises 

the efforts of recent cell-free synthetic biology research and the opportunities it 

provides for the future.  

 

Cell-free coupled TX-TL uses the core machinery of RNA polymerase holoenzyme, 

the translation apparatus (ribosomes, tRNA-synthetases and translation factors) and 

energy regeneration enzymes to amplify a set of DNA instructions into the target 

protein(s) of choice (Figure 1A). Therefore, the study of cell-free presents an enticing 

opportunity to the synthetic biologist to design and engineer living systems from the 

bottom-up as prototype designs. Exemplar demonstrations of cell-free synthetic 

biology include their use as biomolecular ‘breadboards’[9,10], healthcare 

biosensors[11,12] and enzyme cascades[13–16]. Coupled with the aid of computational 



design approaches[10,17–19], these early developments in cell-free synthetic biology 

will aid the engineering of more complex systems. We shall now summarise the cell-

free platforms available, with a specific focus to its use in prototyping genetic circuits. 

 

E. coli cell-free - PURE or crude cell-extract? 

The choice of a well characterised cell-free system almost entirely resides with E. 

coli platforms, which are based on either a crude cell-extract[20–23] or a system of 

purified recombinant elements (PURE)[24,25]. A vital area of importance to cell-free 

systems is the process of energy regeneration, which represents the major cost 

factor and limitation for both the PURE and cell-extract based routes. Firstly, 

transcription requires nucleotide triphosphates (NTPs - ATP, UTP, GTP, CTP), with 

each mRNA transcript utilised multiple times for protein synthesis[26]. Protein 

translation is the major energy cost factor and requires two high energy phosphate 

bond equivalents for tRNA aminoacylation and two high energy phosphate bond 

equivalents per peptide bond formed[27]. In addition, a single high energy phosphate 

bond equivalent is required for each of the initiation and termination steps. 

Therefore, a small sized 25 kDa protein costs approximately 35-44 mM of ATP to 

synthesise 1 mg/mL under batch synthesis[27]. 

 

Firstly, in respect to the PURE system[25], this includes the purified components (108 

in total) of the entire E. coli translation machinery including ribosomes, 22 tRNA 

synthetases, initiation factors, elongation, release and termination factors, which 

when combined with T7 RNA polymerase, tRNA, energy regeneration enzymes, 

substrates (amino acids, creatine phosphate) and synthetic DNA instructions, this 

reconstitutes the entire TX-TL network within a test-tube. This rather remarkable 

engineering feat is commercially available as the PURExpress® kit (New England 

Biolabs). Whilst the high cost of the system prohibits scaled-up applications, a 

variety of cell-free researchers use the PURExpress® system to study the dynamics 

and kinetics of TX-TL[24,28–32]. The major advantage of the PURE system is it’s high 

efficiency due to an absence of competing side-reactions such as nonspecific 

phosphatases[24], which rapidly degrade the energy source. 

 

In contrast, a crude cell-extract provides an inexpensive route to protein synthesis. In 

addition, unlike the PURE system, reactions are scalable into high-volume 



fermentation conditions [33,34]. However, with the presence of other primary and 

secondary pathway enzymes (phosphatases, amino acid biosynthesis), this leads to 

undesirable side reactions during catabolism of the starting energy source. 

Importantly, based on improvements in energy regeneration schemes by the groups 

of Swartz[27,35–37], Jewett[38,39] and Noireaux[40–42], powerful cell-extract based batch 

systems can now reach recombinant protein yields of up to 2.34 mg/mL[33,40], whilst 

extended steady-state synthesis can be achieved through the use of a semi-

permeable dialysis membrane device, thus elevating protein yields up to 6 mg/mL[40]. 

In addition, inexpensive energy sources such as glucose[27], glutamate[33], 

maltose/maltodextrin[41] and succinate[43] can be used to reduce the cost of energy 

regeneration in cell-free systems (Figure 1B). To this end, various cell-extract 

protocols have been developed and are based on the harvesting of cells at 

exponential phase, when typically intracellular translation is at its peak. Standardised 

protocols involve washing the cells, mechanical lysis[38] and activation of the extract 

through a run-off reaction, a process believed to degrade endogenous mRNA 

transcripts and genomic DNA that can reduce cell-free translation efficiency[23]. 

Additional dialysis can also remove inhibitory small molecules, but the requirement of 

this varies between E. coli strains and user preference[38]. 

 

Cell-Free Prototyping 

Cell-free TX-TL provides the ability to study gene expression in isolation with the 

timescale from DNA to experimental results taking a few hours[10,44,45], whereas 

depending on the host chassis, an in vivo based approach can take several days to 

weeks. Thus, cell-free provides a prototyping approach (Figure 2) for rapid cycling 

between circuit experimental design and debugging[9]. For gene expression, to 

enable cell-free prototyping, fluorescence tags that monitor both mRNA and protein 

synthesis can be studied in real-time[29,40,46,47], thus providing dual microscale 

quantitative data of the TX-TL cascade that can be difficult to achieve within in a 

living cell. In addition, the starting concentration of the substrates and relative 

enzyme stoichiometry can be determined[40], thus aiding system identification and 

mathematical modelling of the chemical reaction dynamics[9,17,18]. These models can 

be used to inform future circuit designs as part of an iterative design process. In vivo, 

the cellular components are constantly being diluted by cell growth and division as 



well as being synthesised. In contrast, batch cell-free reactions are closed systems 

starting with a limited set of initial resources. These differences make direct 

comparisons between in vivo and cell-free reaction dynamics of complex multi-

promoter circuits difficult. One method to combine the rapid prototyping benefits of 

cell-free while emulating the conditions found in living cells is to use microfluidic 

devices to allow the continuous dilution and replenishment of the reaction substrates 

that extend the steady-state of protein synthesis up to 30 hours[29]. This method was 

used to design three and five node ring oscillators in cell-free, based on the use of 

PCR products to test initial prototypes, before a model-inspired design-build-test 

cycle led to circuit designs that were also found to function in cells[48]. In this way, 

cell-free therefore provides a simplified dynamic biochemical model system that can 

be accurately described mathematically[49].  

In another context, cell-free prototyping can also be useful towards the design of 

synthetic cells. At the systems level, central to this effort is the further understanding 

of cellular compartmentalisation. Due to its difficulty, especially at the structural level, 

a perhaps understudied area of biology is the dynamics of protein folding in the lipid 

membrane bilayer. Cell-free uniquely provides an opportunity to study the folding of 

membrane proteins[50], whilst in synthetic microfluidic based liposomes, enzymes 

and substrates can be transported from one cell to another, demonstrating a simple 

recreation of membrane trafficking[51]. Towards complexity, cell-free systems have 

also begun to be implemented for the assembly of large protein complexes. A 

classically studied system is the T7 bacteriophage that invades E. coli cells and 

hijacks the native host’s TX-TL apparatus for replication[52]. Through cell-free, it has 

now been shown possible that the 40 kbp dsDNA genome of the T7 bacteriophage, 

which constitutes 57 genes, can be reconstituted in vitro to demonstrate the 

assembly of a natural protein compartment[53]. This is also expandable to other 

bacteriophage systems[40]. Moving beyond biological compartmentalisation, cell-free 

has applications at the interface of nanotechnology for studying gene expression and 

the synthesis of protein nanotube on biochips[54]. Together these examples of 

compartmentalisation demonstrate an extra level of complexity in cell-free systems 

for prototype designs, which may aid in the design of new synthetic cells in the 

future. 

 



Non-model Cell-Free Platforms 

Viewed from a different perspective, synthetic biology has begun to examine the 

prospects of engineering non-model microbial hosts[55] that can provide unique 

advantages for biotechnological application, such as rapid growth with inexpensive 

substrates, growth in extreme conditions or unique enzyme machinery, which in 

some cases can only accessed within non-standard microbial hosts. However, the 

greatest disadvantage of such cultivatable microbes is a combination of one or more 

of the following traits, such as a general lack of characterised gene expression tools, 

poor genetic tractability or insufficient knowledge towards the microbe’s metabolism. 

Whilst cell-free cannot directly address genetic competence, it could provide a 

starting point to understanding the host’s inherent TX-TL kinetics, genetic tools and 

enzymology, without the time-limitations associated with direct engineering of the 

host. Noticeably, the methodology for cell-free extract preparation[42,56] has shown 

universal application to a variety of microbial cell-free platforms such as 

Saccharomyces cerevisiae[57,58], Streptomyces spp[59–63] and Bacillus spp[43,64]. Such 

interest in the use and application of alternative cell-free systems as a prototyping 

device is likely to grow, however, the cooperative development of synthetic biology 

tools with translational application into live cells may provide the greatest opportunity 

to access the design space of traditionally difficult to engineer microbes. In particular 

reference to the Streptomyces family, the high G+C (%) soil bacteria, it has long 

been appreciated that these hosts provide a unique and well characterised platform 

for the assembly of a rich repertoire of natural products[65]. Focusing on 

Streptomyces cell-free, the recently developed high-yielding Streptomyces lividans 

and Streptomyces venezuelae host platforms[59,62] can potentially provide an 

opportunity to access high G+C (%) enzymes from secondary metabolism directly 

within a test-tube for combinatorial biosynthesis. With further advances in efficiency 

and yield, Streptomyces cell-free could be used for incorporating non-natural or 

potentially toxic substrates into natural products, thus expanding the chemical space 

of biosynthesis. A proof of concept of how cell-free can be used to incorporate non-

natural amino acids into protein backbones was demonstrated for creating modified 

forms of the model protein GFP in E. coli cell-free[66]. Whilst this technology is in its 

infancy, it is also possible to engineer this in living cells in high-yield[67], which has 

been made available through the multiplex automated genome engineering (MAGE) 

technology[68]. However, this methodology is currently only accessible in engineered 



strains of E. coli. Thus with further developments, cell-free potentially provides a 

novel route to prototype and engineer the application of novel chemistry in natural 

product biosynthesis[69]. 

 

Conclusions 

The emergence of cell-free systems from its historical links in foundational 

biochemistry has provided a platform to this expanding field in synthetic biology. 

Perhaps the greatest challenge of cell-free studies is to establish and define the 

boundaries and limitations of mimicking cellular biology within cell-free systems. One 

understudied area is the impact of molecular crowding on enzyme velocities[70,71] and 

spatial organisation[72], which can only be artificially controlled in cell-free reactions. 

Cell-free systems are reminiscent of primordial biology[73], whereby enzymes (or 

ribozymes) and chemicals once freely tumbled without the restrictions of biological 

compartmentalisation and the regulatory control of the genome. With the growing 

interest in the design of a minimal synthetic cell[74–76], cell-free systems can provide a 

base towards the design of synthetic life from individual components. We anticipate 

that the prototyping and modelling of gene expression and enzyme machinery from 

understudied non-model microbes will place important new tools at the cell-free 

synthetic biologist’s disposal. 

  



 

Figure 1. Summary of cell-free transcription-translation. A, Transcription (TX) 

and translation (TL) process and requirements of nucleotide triphosphates (NTPs) 

and substrates (ATP, GTP, tRNA and amino acids). B, Energy regeneration cycle for 

central metabolism. ATP is synthesised through the formation of inverted vesicles, 

which spontaneously form during cell-disruption[37]. Abbreviations: MQ, 

menaquinone; MQH2, reduced menaquinone.  

  



 

Figure 2. Prototyping cell-free TX-TL systems. A workflow for the prototyping of 

new microbial platforms, coupled with genetic design, testing and computational 

modelling. 
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