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Abstract: Progress will be presented in adapting supercontinuum sources to a variety of applications  

with emphasis on signal processing procedures. These are customised to alleviate noise and take full 

advantage of the large bandwidth and large power spectral density of modern supercontinuum 

sources. 
OCIS codes: (060.3510) Lasers, fiber; (170.4500) Optical coherence tomography 
 

1.  A diversity of applications 

1.! Due to large bandwidth1 that can lead to optical coherence tomography (OCT) operation with microns axial 

resolution at long wavelengths and submicron axial resolution for short wavelengths, exquisite high resolution 
images of tissue and phantoms will be presented. As reported recently2, the unprecedented high axial resolution 

allows delineation of dermo-epidermal junction, capillaries in the dermal papillae and the vellus hairs. Also, the 

high resolution achievable opens new avenues in non destructive testing, such as testing the quality of printouts 

produced by a 3D printer3. Comparison of resolution and noise achievable with a SC source and with a widely 

used Titanium–Sapphire laser (TiSaL) has demonstrated that SC can achieve similar performance with the 

TiSaL4. The main impediment in performing OCT using a SC source has been noise but here we demonstrate 

that shot noise limited performance can also be achieved with SC sources. Two avenues have been considered, 

increasing the pulsation frequency in the pump and increasing the averaging time in the detection. 

1.1.! Low noise SC using a high repetition pump, as implemented in the NKT EXR-9, using 320 MHz5. 

1.2.! Low noise OCT using integration on the spectrometer6. While using a commercially available, Q-switched SC 

source (SuperK Compact, NKT Photonics), operating at a low repetition rate of 22 kHz, S/N was improved by 
acquiring many camera scans, as reproduced in Fig. 1. Such a SC source is of lower cost than the customary 

mode locked versions. 

2.! Spectroscopic analysis. Spectral split detection allows spectroscopic OCT imaging, conditioned by a suitably 
chosen trade-off between the number of spectral windows and axial resolution7. 

3.! Compatibility with the other OCT modality, based on sweeping a narrow band, selected by a tunable filter. This 

allows not only OCT imaging by sweeping8 but also spectroscopic analysis.  

4.! Photoacoustic operation9 is allowed by using a long, ns pulse, delivered by a SC source with sufficient spectral 

energy density. In this way, a single SC source10 can be used to perform multimodal imaging. The 2-octave 

bandwidth (475-2300 nm) makes the SC source suitable for optical OCT as well as for multispectral photoacoustic 

microscopy (MPAM). The IR band centered at 1310 nm may be chosen for OCT to penetrate deeper into tissue 

while the 500-840 nm band can be allocated for MPAM. The source is equipped with the ability to select the 

central wavelength as well as the spectral bandwidth. An energy of more than 35 nJ within a less than 50 nm 

  

Fig.	1.	Example	B-scans6	from	a	healthy	volunteer	hand	palm	skin	of	1.6	mm	x	4	mm,	obtained	using	(a,d):	the	NKT	EXR-9	(mode	

Locked-SC)	and	using	(e,	h):	SuperK	Compact,	NKT	Photonics	(Q-Switched-SC).	Exposure	time	in	(e)	was		20	µs	and	in	(h)	150	µs	

(scale	bar	450	µm).	Due	to	the	low	repetition	rate	of	the	pump	in	(e),	the	image	is	fragmented.	This	is	corrected	in	(h)	by	enlarging	

the	integration	time.	



bandwidth is achieved on the sample for wavelengths longer than 500 nm. In-vitro  mouse ear B-scan images are 

presented together with PAM are images in Fig. 2. 

5.! Dispersion measurement. The large bandwidth allows via a time domain OCT principle and an acousto-optic 

tunable filter (AOTF) to evaluate spatial difference between the position of coherence gate peaks at extreme 

wavelengths within the spectrum generated. This measurement leads directly to group velocity dispersion11. 
6.! Time stretch capabilities. A SC operating at tens of MHz can act as an ultra fast swept source for OCT if equipped 

with a wavelength dependent delay element. It is known that SC pulse trains exhibit a large shot-to-shot fluctuation 

and poor temporal coherence12 and this requires more studies for reducing the noise. Several principles have been 

reported recently for pulsed broadband lasers such as the breathing laser inertia free swept source (BLISS) at 1.06 

µm, 28 MHz13 and compact fibre lasers producing ultrashort pulses using semiconductor saturable absorber mirrors 

(SESAM)14 for 2 µm emission at 50 MHz. 
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(a)                          (b)                            (c)                        (d) 

Fig. 2. In vitro mouse ear (a) OCT summed voxel projection along axial direction for 2 mm in air, (b) PAM maximum 

amplitude projection at 550 nm with 50 nm bandwidth, (c) OCT B-scan, (c) superposition of OCT B-scan (grey) and PAM 

B-scan at 550 nm with 50 nm bandwidth (red), (d) superposition of PAM B-scans for bandwidths covering 500-600 nm and 

600-840 nm (green and blue, respectively). Scale bar: 0.5 mm 

 


