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Abstract  

The rhodium (III) hydrogarnets Ca3Rh2(OH)12 and Sr3Rh2(OH)12 crystallise as polycrystalline 

powders under hydrothermal conditions at 200 °C from RhCl3·3H2O and either Ca(OH)2 or Sr(OH)2 

in either 12 M NaOH or KOH. Rietveld refinements against synchrotron powder X-ray diffraction 

(XRD) data allow the first crystal structures of the two materials to be determined. If BaO2 is used as 

a reagent and the concentration of hydroxide increased to hydroflux conditions (excess NaOH) then 

single crystals of a new complex rhodium hydroxide, BaNaRh(OH)6, are formed in a phase-pure 

sample, with sodium included from the flux. Structure solution from single-crystal XRD data reveals 

isolated octahedral Rh centres that share hydroxides with 10-coordinate Ba and two independent 8-

coordinate Na sites. 23Na magic-angle spinning NMR confirms the presence of the two 

crystallographically distinct Na sites and also verifies the diamagnetic nature of the sample, expected 

for Rh(III). The thermal behaviour of the hydroxides on heating in air was investigated using X-ray 

thermodiffractometry, showing different decomposition pathways for each material. Ca3Rh2(OH)12 

yields CaRh2O4 and CaO above 650 °C, from which phase-pure CaRh2O4 is isolated by washing with 

dilute nitric acid, a material previously only reported by high-pressure or high-temperature synthesis. 

Sr3Rh2(OH)12 decomposes to give a less crystalline material with a powder XRD pattern that is 

matched to the 2H-layered hexagonal perovskite Sr6Rh5O15, which contains mixed-valent Rh3+/4+, 

confirmed by Rh K-edge XANES spectroscopy. On heating BaNaRh(OH)6 a complex set of 

decomposition events takes place via transient phases. 
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Introduction 

Oxides and hydroxides of rhodium have been rather less studied than those of other 4d and 

5d metals, which may be in part due to the scarcity and expense of the metal, but also the smaller 

range of accessible oxidation states under moderate reaction conditions makes synthesis more 

challenging. Primarily trivalent, rhodium forms corundum-type Rh2O3, though high-temperature and 

high-pressure polymorphs are known.1-3 RhO2 can be prepared, by using high oxygen pressure,4-5 and 

adopts the rutile structure, a common structure type of metal dioxides, including those of other 

platinum-group metals, such as RuO2 and IrO2. Just over ten years ago Müller-Buschbaum surveyed 

the various ternary and higher oxides of rhodium known at that time and this confirmed the 

commonplace occurence of the +3 oxidation state of rhodium, in ternary oxides such as in the double 

rutiles ARhO4 (A = Sb, Nb, Ta) and the delafossites BRhO2 (B = Na, Ag, Cu).6 Nevertheless the +4 

oxidation state can be stabilised by using the covelancy of a partner metal in a ternary oxide, such as 

in the hexagonal perovskite 4H-BaRhO3
7 and mixed-valent Ba9Rh8O24,8 and various materials based 

upon the K2NiF4 structure, such as Sr2RhO4
9 and Sr3Rh2O7,10 although often high pressure is needed 

during synthesis. Exploring new synthesis conditions allows more unusual oxidation states to be 

accessed, for example Rh5+ is stablised in Sr3MRhO6 (M = Na, Li) by a molten alkali flux synthesis 

at a low temperature of 600 °C.11 Zur Loye and co-workers have more recently prepared a number of 

lanthanide-platinum-group metal oxides from hydroxide fluxes, including some complex hexagonal 

perovskites containing rhodium.12 In terms of properties, since Rh3+ is invariably octahedral and 

hence low-spin 4d6, magnetism in rhodium oxides is only found for the higher oxidation states: for 

example, the mixed-valent hexagonal perovskite Sr6Rh5O15 (Rh3+/4+) shows low-temperature 

magnetic order.13 Some rhodates have other interesting properties arising from their electronic 

structure: Sr2RhO4 is a two-dimensional conductor,9 while hydrated NaxRhO2 materials have been 

shown to possess favourable thermoelectric behaviour at temperatures relevant for power generation 

from waste heat,14 and recently AgRhO2 has been shown to be active for photoelectrochemical water 

splitting with visible light.15 
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We have peviously used hydrothermal chemistry to prepare a number of novel oxides of 

ruthenium and iridium: this makes use of very mild conditions in which metal salt precursors are 

heated in water at around 200 °C to crystallise polycrystalline powders of ternary oxides directly from 

solution.16-18 In the case of ruthenium, a number of interesting materials were thus discovered, 

including the layered hexagonal honeycomb SrRu2O6, which has an abnormally high 

antiferromagnetic ordering temperature,19 the oxyhydroxide Ba4Ru3O10.2(OH)1.8 with a novel variant 

of a hexagonal perovskite structure,20 and mixed ruthenate-iridate pyrochlores that can act as 

electrocatalysts for oxygen evolution from water.21 Jansen and co-workers have also used related 

hydrothermal conditions to prepare novel silver ruthenates.22-23 Given the recent interest in the 

chemistry of platinum-group metal oxides in applications such as catalysis24 and the wider focus on 

the magnetic and electronic properties of oxides of the 4d and 5d metals by the physics community,25 

we have extended our exploration of hydrothermal chemistry of such metals to rhodium. In this case, 

we find that hydroxides are formed, rather than oxides, but thermal decomposition of these provides 

a convenient route to the ternary oxide CaRh2O4, previously only prepared using extreme pressure,26 

or by heating at 1400 K in pure oxygen,27 and a mixed oxide of Sr and Rh that contains some Rh4+. 

To our knowledge the only report of the hydrothermal synthesis of rhodium oxides used supercritical 

conditions in sealed gold vessels at 600 C and 1-2 kbar to form RhO2 and RhOOH from Rh2O3 

precursors.28 

 

Experimental  

To synthesise Ca3Rh2(OH)12 0.10 g (0.38 mmol) RhCl3·3H2O (Precious Metals Online, 99%) and 

0.04 g (0.57 mmol) Ca(OH)2 (Aldrich; 96%) were added to 10 mL 12 M KOH solution with stirring. 

The mixture was sealed in a 23 mL PTFE-lined steel autoclave and heated to 200 °C for 24 hours in 

a preheated fan oven. The autoclave was then cooled to room temperature and the resulting precipitate 
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was recovered by suction filtration to yield a brown powder. The material was washed with acetone 

and dried in air at room temperature. 

Sr3Rh2(OH)12 was prepared using 0.1 g (0.38 mmol) RhCl3·3H2O (Precious Metals Online, 99%) and 

0.023 g (0.19 mmol) Sr(OH)2 (Aldrich; 95%), which were added to 10 mL 12 M NaOH solution with 

stirring. The mixture was sealed in a 23 mL PTFE-lined steel autoclave and heated to 200 °C for 24 

hours in a preheated fan oven. The autoclave was then cooled to room temperature and the resulting 

precipitate was recovered by suction filtration to yield a bright yellow powder. The material was 

washed with acetone and dried in air at room temperature. 

Polycrystalline BaNaRh(OH)6 was synthesised by adding 0.1 g (0.38 mmol) RhCl3·3H2O (Precious 

Metals Online, 99%) and 0.032 g (0.10 mmol) Ba(OH)2·8H2O (BDH; 97%) to 10 mL 12 M NaOH 

solution with stirring. The mixture was sealed in a 23 mL PTFE-lined steel autoclave and heated to 

200 °C for 24 hours in a preheated fan oven. The autoclave was then cooled to room temperature and 

the resulting precipitate was recovered by suction filtration to yield a gold coloured powder. To grow 

single crystals of BaNaRh(OH)6, 0.1 g (0.38 mmol) RhCl3·3H2O (Precious Metals Online, 99%), 

0.032 g (0.19 mmol) BaO2 (Aldrich; ≥95%) and 4.0 g (0.1 mol) NaOH (Fischer, ≥97%) were added 

to a PTFE-lined steel autoclave and 2 mL distilled water was added without stirring. The autoclave 

was sealed and placed in an oven set to ramp to 200 °C at 300 °C h–1, held for 24 hours and then 

cooled to room temperature at 6 °C h–1. The crystals formed were separated from the flux using hot 

water, aided by gentle stirring, followed by vacuum filtration with acetone used to dry the crystals. 

Samples were initially screened using powder XRD measured using a Siemens D5000 diffractometer 

(Cu KĮ1/2 radiation) operating in Bragg-Brentano geometry. Non-ambient powder XRD 

measurements were made using a Bruker D8 Advance diffractometer equipped with Cu KĮ1/2 

radiation and a VÅNTEC-1 high-speed detector. Powders were heated in situ using an Anton Paar 

XRK 900 reaction chamber controlled through a TCU 750 temperature unit. High-resolution powder 

XRD patterns were measured at room temperature using beamline I11 at the Diamond Light Source, 



5 
 

UK,29 from samples held in thin-walled quartz capillaries with 0.82482 Å X-rays. The Multi-Analyzer 

Crystal (MAC) detector and the MYTHEN position-sensitive detector were used. Powder XRD 

patterns were analysed using the TOPAS (version 4.1) software implemented with jEdit.30 The quality 

of the Rietveld fits was verified by analysing the resultant structural models using the bond-valence 

sum method as an independent check of the chemical plausibility of the refined crystal structures. 

BaNaRh(OH)6 single crystal XRD data were recorded using MoKĮ (Ȝ = 0.71073 Å). A suitable 

crystal was selected and mounted on a glass fibre with Fromblin oil and placed on a Rigaku Oxford 

Diffraction SuperNova diffractometer with a duel source (Cu at zero) equipped with an AtlasS2 CCD 

area detector. The crystal was kept at 150(2) K during data collection. Using Olex2, the structure was 

solved with the ShelXT structure solution program31 using intrinsic phasing and refined with the 

ShelXL refinement package32 using least squares minimisation. 

Rh K-edge X-ray absorption near edge structure (XANES) spectra were collected on Beamline B18, 

at Diamond Light Source, UK.33 Samples were diluted with polyethylene powder and pressed into 

pellets approximately 1 mm thick to optimise absorption. Data were collected in transmission mode 

and spectra were normalized using the ATHENA software.34  

Combined thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) was 

performed using a Mettler Toledo Systems TGA/DSC 1 instrument under a constant flow of air (50 

mL min–1).  

Scanning electron microscopy (SEM) images were recorded using a ZEISS GEMINI. A small amount 

of sample was placed on to a carbon tape prior to analysis. Transmission electron microscopy (TEM) 

was performed using a JEOL 2000FX instrument with samples placed on holey carbon copper grids 

via dispersion in acetone.  

The solid-state 23Na NMR spectrum of BaNaRh(OH)6 was recorded using a Bruker Avance III 

spectrometer equipped with 9.4 T wide-bore superconducting magnet. The sample was packed in a 4 
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mm zirconia rotor and rotated at the magic angle at a rate of 14 kHz. The magic angle spinning (MAS) 

spectrum was recorded with a short flip angle (~ 18°) pulse and signal averaging for 4096 transients 

with a recycle interval of 2 s. Spectral resolution was improved by the application of high-power 

continuous wave (CW) decoupling of 1H during acquisition. Chemical shifts are reported in ppm 

relative to 0.1 M NaCl in D2O using an external sample of solid NaCl (iso = 7.2 ppm) as a secondary 

reference.  

Results and Discussion 

The hydrogarnets Ca3Rh2(OH)12 and Sr3Rh2(OH)12 have previously been reported in the 

literature but a full structural characterisation of each has not been undertaken. Sr3Rh2(OH)12 was 

studied by Ivanov-Emin et al.,35 whilst Ca3Rh2(OH)12 features only in a table of silicon-free 

hydrogarnets published by Morán-Miguélez et al.,36 and in each case only the cubic lattice parameter 

was reported. Figure 1 shows the final Rietveld fit achieved for each material and Table 1 shows the 

final fitted parameters. In each case, the crystal structure of Sr3Fe2(OH)12
37

 was used as a starting 

point and the variable coordinates of the oxygen positions were allow to vary along with isotropic 

temperature factors and the cubic lattice parameter. An impurity phase of Ca(OH)2 was observed in 

Ca3Rh2(OH)12 and this was included in the refinement as a second phase: the relative amounts of the 

hydrogarnet and Ca(OH)2 from the Rietveld refinement were estimated as 70% and 30%, 

respectively, from the refined scale factors. Attempts to be prepare samples free from Ca(OH)2 by 

using stoichiometric amounts of Ca reagent, led to Rh metal present as an impurity.  

 Ca3Rh2(OH)12 was previously reported from a low-temperature, high-pressure 

hydrothermal synthesis (150 °C, 1000 bar) using rhodium oxide as the rhodium precursor.36 Its 

structure, however, was not refined, with only a list of observed reflections provided. The refined 

lattice parameter we determine here of a = 12.76000(9) Å is similar to the value of 12.743(2) Å 

reported by Morán-Miguélez et al.36 for the same composition, but smaller than that of Sr3Fe2(OH)12 

(a = 13.202 Å),37  as expected for the presence of the smaller alkaline-metal cation. The refined lattice 
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parameter of Sr3Rh2(OH)12 a = 13.18643(5) Å is only slightly smaller than that reported for 

Sr3Fe2(OH)12  but considering that 6-coordinate high spin Fe3+ and 6-coordinate Rh3+ are similar in 

size (0.645 Å cf. 0.665 Å)38 this is not unexpected; it is also very similar to the value of 13.156(2) Å 

reported by Morán-Miguélez et al.36 Bond valence sums39 confirm the presence of trivalent rhodium 

in the two materials, with values determined as 2.84 and 3.02 for Ca3Rh2(OH)12 and Sr3Rh2(OH)12, 

respectively.  

 

Figure 1: Final Rietveld plots ( = 0.82482 Å) for (a) Ca3Rh2(OH)12 and (b) Sr3Rh2(OH)12. The 

insets are expanded regions of the main plots. In (a) the lower set of tick marks represent the 

Ca(OH)2 impurity. See Table 1 for refined crystallographic parameters. 



8 
 

 

Table 1: Refined crystal data for Ca3Rh2(OH)12 and Sr3Rh2(OH)12 from powder XRD 

 Ca3Rh2(OH)12. Space group ܽܫത͵݀, a = 12.76000(9) Å. Rp = 4.02%, wRp = 5.99%. 

Wyckoff 

Site 

 Atom x y z Occupancy Beq / Å2 

16a  Rh 0 0 0 1.0 0.46(4) 

24c  Ca 0.125 0 0.25 1.0 1.11(9) 

96h  O 0.0319(3) 0.0598(5) 0.6472(4) 1.0 0.4 

96h  H 0.180 0.081 0.789 1.0 0.4 

 

Sr3Rh2(OH)12. Space group ܽܫത͵݀, a = 13.18643(5) Å. Rp = 8.68%, wRp = 13.48%. 

Wyckoff 

Site 

 Atom x y z Occupancy Beq / Å2 

16a  Rh 0 0 0 1.0 0.47(3) 

24c  Sr 0.125 0 0.25 1.0 0.41(3) 

96h  O 0.0324(2) 0.0521(3) 0.6424(2) 1.0 0.4 

96h  H 0.180 0.081 0.789 1.0 0.4 

*The H parameters were not refined, but set at the values for the Fe analogue. 

 Using CaO2 or SrO2 in place of the corresponding hydroxide in the hydrothermal reactions 

yielded the same hydrogarnets and not oxide materials, in contrast to what has been observed for 

other hydrothermal reactions with platinum-group metals Ru and Ir where complex oxides containing 

the metal in the +4 and/or +5 oxidation states are formed when peroxides are used as reagents.18 This 

reflects the difficulty in oxidising Rh to the higher oxidation states. In the case of barium, a 

hydrogarnet was not synthesised through analogous reactions and this is likely due to the large size 

of the cation; indeed barium hydrogarnets have only been observed containing a larger trivalent 

partner metal cation, such as scandium and indium.40 Instead, using either Ba(OH)2 or BaO2 under 

similar hydrothermal conditions in NaOH gave the new material BaNaRh(OH)6 as a polycrystalline 

powder. To aid structure solution we investigated the preparation of single crystals sufficiently large 
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for single-crystal XRD and used conditions named ‘wet hydroflux’ by zur Loye and co-workers,41 

where a large excess of NaOH is used and a small volume of water: the excess hydroxide is readily 

washed away with additional water following the synthesis. Figure 2a shows an SEM micrograph of 

typical crystals formed by this method, while Figures 2b and 2c show views of the crystal structure.  

 

Figure 2: (a) SEM micrograph of BaNaRh(OH)6, (b) view of the structure of BaNaRh(OH)6 

showing 6-coordinate Rh as yellow polyhedra and 10-coordinate Ba as blue polyhedra with Na 

as green spheres and (c) the two crystallographically distinct 8-coordinate Na sites with oxygens 

as red spheres and with the two pairs of bond lengths in each indicated by shading.  
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Table 2: Refined single crystal parameters for BaNaRh(OH)6 space group ࡼ૝૛Ȁ࢔, (no. 86), 
a = 8.28420 Å, c = 8.41980 Å. 

Wyckoff 

site 

Atom x y z Occupancy Uiso / Å2 

4e Ba 0.25 0.25 0.79014 1.0 0.009 

4d Rh 0.5 0.5 0.5 1.0 0.006 

2b Na1 0.25 0.25 0.75 1.0 0.014 

2a Na2 0.25 0.25 0.25 1.0 0.026 

8g O1 0.45356 0.26059 0.54711 1.0 0.010 

8g O2 0.44558 0.45874 0.26546 1.0 0.010 

8g O3 0.26183 0.54071 0.54598 1.0 0.011 

 

BaNaRh(OH)6 contains isolated Rh-centred octahedra that share hydroxides with 10-

coordinate Ba, with Ba-O bond distances ranging from 2.69 – 3.09 Å and an average bond length of 

2.86 Å, close to expected Ba-O distances in mixed-metal hydroxides.42 Sodium occupies two different 

sites in the crystal structure, both with 8 coordination. The Na-O bond distances fall is two pairs: 

2.402 and 2.960 Å for Na1 with an average distance of 2.681 Å, and 2.373 and 3.018 Å for Na2 with 

an average bond distance of 2.696 Å. Bond valence sums were used to confirm the oxidation states 

in BaNaRh(OH)6: this gave values of 2.97, 2.08, 0.96, 1.00 for Rh, Ba, Na1 and Na2, respectively. 

The phase purity of the polycrystalline sample of BaNaRh(OH)6 was confirmed using powder XRD 

(Supporting Information) while 23Na solid-state NMR spectroscopy was used to verify the presence 

of two Na sites in the material, as shown in Figure 3. Two resonances are observed with isotropic 

chemical shifts (iso) of 0.7 and –0.2 ppm, consistent with 8-coordinate Na. However, the quadrupolar 

coupling constants (CQ) of the two resonances are very different, at 2.9 and 4.5 MHz, indicating that 

the second resonance corresponds to Na in a considerably more distorted coordination polyhedron 
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than the first. From the values of CQ, it is possible to assign the resonances as shown in Table 3. The 

quadrupolar asymmetry parameter (Q) of both resonances is 0.0, indicating axial symmetry. 

 

Figure 3: 23Na{1H} (9.4 T 14 kHz MAS) NMR spectrum of BaNaRh(OH)6. The red line indicates 

the spectrum simulated with the parameters given in Table 3 and the grey lines show the 

individual contributions to the spectrum. The asterisk denotes a spinning sideband. 

 

Table 3: 23Na NMR parameters for BaNaRh(OH)6 

Site iso (ppm) CQ / MHz Q 

Na1 0.7(1) 2.9(1) 0.0(1) 

Na2 –0.2(1) 4.5(1) 0.0(1) 

 

The thermal behaviour of the three hydroxides was investigated using thermodiffraction, 

Figure 4. This reveals that each hydroxide collapses on heating above 300 C. Complementary TGA 

performed on heating in flowing air (Supporting Information) shows that this temperature 

corresponds to an abrupt mass loss for each material, which most likely corresponds to 

dehydroxylation.  
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Figure 4: Thermodiffraction data (Cu K) for (a) Ca3Rh2(OH)12, (b) Sr3Rh2(OH)12 and (c) 

BaNaRh(OH)6 on heating in flowing air. 
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In the case of Ca3Rh2(OH)12, the material produced after continued heating to 800 C contains 

the ternary oxide CaRh2O4 along with CaO (Supporting Information), but after washing with 2 M 

nitric acid CaO is removed to produce a phase-pure sample of CaRh2O4, as proven by Rietveld 

analysis of powder XRD data, Figure 5c and Table 4. The lattice parameters obtained from the 

refinement are similar to those obtained from a previous single-crystal XRD structure refinement, 

which was also carried out at room temperature: a = 9.0354(3) Å, b = 3.0340(1) Å, c = 10.7062(3) 

Å.26 The material CaRh2O4 contains both edge- and corner-shared Rh-O octahedra, each of which 

edge share with 8-coordinate Ca, and is isostructural with CaFe2O4. Previous reports of the synthesis 

of CaRh2O4 used a high-pressure solid-state synthesis from powders of binary oxides at 6 GPa and 

temperature of 1000 C for polycrystalline products and 1500 C for single crystals,26 or heating of 

component oxides at 1400 K for 6 days in dry oxygen.27 Our synthetic route is therefore a much more 

convenient method and, furthermore, produces a fine-grained powder of crystallites with submicron 

dimensions, Figures 5a and 5b.  
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Figure 5: Characterisation of CaRh2O4 prepared by thermal decomposition of Ca3Rh2(OH)12. 

(a) Transmission electron micrograph, (b) Scanning electron micrograph and (c) Rietveld fit to 

powder XRD pattern (= 1.5406 Å).  
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Table 4: Refined crystal parameters for CaRh2O4 from powder XRD. Space group ࢇ࢓࢔ࡼǡ 
a = 9.0603(2) Å, b = 3.09854(7) Å, c = 10.7809(3) Å. Rp = 14.7%, wRp = 20.5% 

Wyckoff 

Site 

 Atom x y z Occupancy Beq / Å2 

4c  Ca 0.2405(8) 0.25 0.3375(7) 1.0 0.3 

4c  Rh 0.0894(3) 0.25 0.5992(3) 1.0 0.3 

4c  Rh 0.0558(3) 0.25 0.1151(3) 1.0 0.3 

4c  O 0.300(2) 0.25 0.6737(16) 1.0 0.3 

4c  O 0.363(2) 0.25 –0.0430(16) 1.0 0.3 

4c  O 0.463(2) 0.25 0.2193(17) 1.0 0.3 

4c  O 0.110(2) 0.25 –0.0795(15) 1.0 0.3 

 

Thermal decomposition of Sr3Rh2(OH)12 was described by Ivanov-Emin et al. who reported 

thermogravimetric analysis.35 This led the authors to conclude the decomposition product was 

SrRh2O4, supported by a similarity of the powder XRD pattern to orthorhombic SrSc2O4. However, 

we find for Sr3Rh2(OH)12 the ultimate product on heating to 800 C is rather different. Comparing 

the observed data of the strontium rhodium hydrogarnet decomposition product against strontium 

rhodates reported in the literature shows that the decomposition product most closely resembles 

Sr6Rh5O15, Figure 6. There are other possible candidates for the decomposition product that all have 

related 2H-perovskite structures and contain mixed-valent Rh3+/4+ (Supporting Information). We note 

that the Sr:Rh ratio in Sr6Rh5O15 is slightly different to the hydrogarnet and would imply loss of a 

small amount of Sr in a byproduct. Although the sample formed by thermal decomposition never 

gave a diffraction pattern of sufficient quality to allow a full structure refinement, evidence for the 

higher oxidation state of Rh is provided by Rh K-edge XANES spectroscopy, Figure 7. This shows a 

distinctive shift in edge position to higher energy from that of materials that contain octahedral Rh3+. 

Attempts improve the crystallinity and resolve the peaks to confirm the phase identification of the 

product, by heating at above 900 °C in air, resulted in further oxidation to give some Sr2RhO4 

(Supporting Information), while heating under N2 resulted in decomposition into rhodium metal. 

Sr6Rh5O15 was previously reported to be synthesised as a polycrystalline powder by a solid-state 
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reaction at 1150 °C for 9 days13 and as single crystals in a molten potassium carbonate flux at 1050 

°C.43 The different behaviour of the calcium and strontium rhodium hydrogarnets on thermal 

decomposition is noteworthy, and despite the fact that SrRh2O4 is known in two polymorphs, with 

the -SrRh2O4 formed on heating SrCO3 and Rh metal in air,44 instead a mixed-valent Rh3+/Rh4+ 

strontium oxide is formed. The great covalency of strontium compared to calcium may be the origin 

of the stabilisation of the higher rhodium oxidation state.  

 

Figure 6: Pawley fit to the powder XRD pattern (Cu K) of the Sr-Rh oxide produced by 

decomposition of Sr3Rh2(OH)12 using the published single crystal structure model43 of 

Sr6Rh5O15. a = 9.5989(14) Å, c = 13.255(3) Å, R32. Rwp = 14.7%; Rp = 11.4%. An unindexed 

impurity peak is indicated by the asterisk.  
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Figure 7: Rh K-edge XANES spectroscopy of the Sr-Rh oxide produced by decomposition of 

Sr3Rh2(OH)12, along with Rh3+ reference materials and Rh2+ acetate dimer.  

The thermal decomposition of BaNaRh(OH)6 is more complex than for the hydrogarnets. The 

thermodiffraction data show the emergence of a transient phase between 325 °C and 500 °C (Figure 

4a). A third phase can be seen to form at around 400 °C and remains the only stable phase after 

heating to 810 °C. As yet, no candidate structure for this last material has been identified, though the 

observed reflections are similar in position and intensity to Sr6Rh5O15, but shifted to lower angle 

consistent with the presence of the larger Ba2+ cation in a similar hexagonal perovskite structure.  

Conclusions 

Investigtaion of the hydrothermal chemistry of Rh3+ in alkali solutions allows the 

crystallisation of mixed-metal hydroxide materials, including some hydrogarnets and a new barium-

sodium-rhodium hydroxide. The same phases are formed even if peroxides are used as the reagents, 

which contrasts with the chemistry of other platinum-group materials, such as Ru or Ir, where higher 

oxidation states are stabilised in oxide products under similar conditions. The complex rhodium 

hydroxides can, however, be decomposed under moderate temperatures to yield oxide phases that 

have only previously been reported to form under extreme conditions of high pressure and/or 

temperature in oxygen atmosphere (in the case of CaRh2O4) and molten fluxes (in the case of 

hexagonal strontium rhodate perovskites). As well as a potential route to materials with interesting 
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properties, this widens the possibility of using the formation of metastable mixed-metal hydroxides 

to isolate difficult-to-prepare, or new, oxide materials under moderate reaction conditions and in 

future work extending these ideas to more chemically diverse systems, such as mixed 3d-4d oxides, 

could be fruitful.  

Supporting Information Available: further powder diffraction data and thermogravimetric analysis.  
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Subcritical hydrothermal reactions of Rh3+ in alkali-earth hydroxides yields various mixed-metal 

rhodium hydroxides whose structures have been determined: subsequent thermal decomposition at 

moderate temperatures forms ternary rhodium oxides that usually require extreme temperatures or 

oxygen atmospheres by conventional solid-state synthesis.  


