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Abstract 

Graph drawing, or the automatic layout of graphs, is a challenging problem. There are several 

search-based methods for graph drawing that are based on optimising a fitness function which 

is formed from a weighted sum of multiple criteria. This thesis proposes a new neighbourhood 

search-based method that uses a tabu search coupled with path relinking in order to optimise 

such fitness functions for general graph layouts with undirected straight lines. None of these 

methods have been previously used in general multi-criteria graph drawing. Tabu search uses 

a memory list to speed up searching by avoiding previously tested solutions, while the path 

relinking method generates new solutions by exploring paths that connect high quality 

solutions. We use path relinking periodically within the tabu search procedure to speed up the 

identification of good solutions.  

We have evaluated our new method against the commonly used neighbourhood search 

optimisation techniques: hill climbing and simulated annealing. Our evaluation examines the 

quality of the graph layout (fitness function’s value) and the speed of the layout in terms of the 

number of the evaluated solutions required to draw a graph. We also examine the relative 

scalability of our method. Our experimental results were applied to both random graphs and a 

real-world dataset. We show that our method outperforms both hill climbing and simulated 

annealing by producing a better layout in a lower number of evaluated solutions. In addition, 

we demonstrate that our method has greater scalability as it can lay out larger graphs than the 

state-of-the-art neighbourhood search-based methods. Finally, we show that similar results can 

be produced in a real world setting by testing our method against a standard public graph 

dataset. 

 

 

 

 



ii 

 

 

Acknowledgements 

First and foremost, I would like to express my sincerest gratitude to my supervisor, Dr. 

Peter Rodgers, for his encouragement and guidance over the duration of my PhD. His 

constructive feedback and advice were the main reasons for the successful completion of 

this work. I have learned invaluable research skills under his supervision. I also thank him 

for giving me the opportunity to participate in a Dagstuhl seminar which was a memorable 

experience that I will always treasure.  

My gratitude also goes out to Prof. Sally Fincher, Prof. Alex Freitas, and Dr. David 

Barnes for the valuable feedback and advice they provided during all the review sessions 

that improved the quality of my work. I would like to extend my gratitude to all the 

administrative staff in the School of Computing at the University of Kent for all the 

facilities they offer to students.  

Special thanks go to Dr. Mahamed Omran for his recommendations in the early stages 

of this work. Those recommendations had opened the door for implementing the key 

algorithm discussed in this work. 

Finally, and most importantly, I am really grateful to my parents, my sister, my 

brother, my wife, and my lovely daughter, who had supported me and inspired me in all 

my endeavours. Without their emotional support, prayers and love, I could have never 

made it this far. Many thanks to all of them for always being there whenever I needed 

them the most. May GOD bless you. 

 

 

 

 

 

 



iii 

 

 

Contents 

Abstract .............................................................................................................. i 

Acknowledgements ........................................................................................... ii 

Contents ........................................................................................................... iii 

List of Tables .................................................................................................. vii 

List of Figures .................................................................................................. xi 

List of Algorithms .......................................................................................... xix 

Chapter 1 Introduction .................................................................................... 1 

1.1 Motivation and Objectives ........................................................................................2 

1.2 Contributions ..............................................................................................................5 

1.3 Publications .................................................................................................................6 

1.4 Software Implementation and Online Resources ....................................................6 

1.5 Overview of Chapters ................................................................................................7 

1.6 Summary .....................................................................................................................9 

Chapter 2 Background and Related Work ................................................... 10 

2.1 Introduction ..............................................................................................................10 

2.2 Definitions .................................................................................................................11 

2.3 Overview of Graph Drawing ...................................................................................11 

2.4 Graph Drawing Aesthetics ......................................................................................13 

2.5 Graph Drawing Approaches ...................................................................................18 

2.5.1 Force-directed Approaches .................................................................................18 

2.5.2 Search-based Approaches ...................................................................................22 

2.5.3 Multi-level Approaches ......................................................................................23 

2.6 Population-based Methods ......................................................................................24 

2.6.1 Genetic Algorithms.............................................................................................24 



iv 

 

 

2.6.2 Ant Colony .........................................................................................................26 

2.7 Neighbourhood Search-based Methods .................................................................27 

2.7.1 Simulated Annealing ..........................................................................................28 

2.7.2 Hill Climbing ......................................................................................................30 

2.8 Tabu Search ..............................................................................................................32 

2.9 Path Relinking ..........................................................................................................40 

2.10 Summary ...................................................................................................................47 

Chapter 3 A Visualisation Tool ..................................................................... 48 

3.1 Operations Frame ....................................................................................................48 

3.2 Parameters and Aesthetic Measures Frame ..........................................................53 

3.3 Summary ...................................................................................................................54 

Chapter 4 Neighbourhood Search-based Graph Drawing including Our 
Proposed Tabu Search Algorithm ................................................................. 55 

4.1 Normalisation of Metrics .........................................................................................57 

4.2 Common Procedures between Graph Drawing Algorithms ................................59 

4.2.1 Local Search Space .............................................................................................60 

4.2.2 Parameter Tuning Procedure ..............................................................................60 

4.3 Hill Climbing ............................................................................................................62 

4.3.1 Algorithm............................................................................................................62 

4.3.2 Parameter Tuning ...............................................................................................63 

4.4 Simulated Annealing ................................................................................................70 

4.4.1 Algorithm............................................................................................................70 

4.4.2 Parameter Tuning ...............................................................................................73 

4.5 Tabu Search ..............................................................................................................84 

4.5.1 Algorithm............................................................................................................85 

4.5.2 Parameter Tuning ...............................................................................................87 

4.6 Summary .................................................................................................................107 

Chapter 5 Experimental Results of Comparing Hill Climbing, Simulated 
Annealing, and Tabu Search ....................................................................... 108 

5.1 Introduction ............................................................................................................108 



v 

 

 

5.2 Experiments on Random Graph Datasets ...........................................................110 

5.2.1 Phase I...............................................................................................................110 

5.2.2 Phase II .............................................................................................................117 

5.2.3 Phase III ............................................................................................................120 

5.2.4 Statistical Tests .................................................................................................124 

5.3 Experiments on Real World Graph Datasets ......................................................129 

5.4 Threats to Validity .................................................................................................135 

5.5 Summary .................................................................................................................136 

Chapter 6 Coupling Tabu Search with Path Relinking ............................. 138 

6.1 Why Path Relinking? .............................................................................................138 

6.2 Coupling Tabu Search with Path Relinking for Graph Drawing .....................139 

6.2.1 Algorithm..........................................................................................................140 

6.2.2 Parameter Tuning .............................................................................................144 

6.3 Variation of Path Relinking ..................................................................................155 

6.3.1 Proper Selection of Initial and Guiding Solutions ............................................156 

6.3.2 Improved Neighbourhood Searching Strategy .................................................159 

6.3.3 Parameter Tuning .............................................................................................168 

6.4 Summary .................................................................................................................183 

Chapter 7 Experimental Results for Comparing Tabu Search with Path 
Relinking Versus Simulated Annealing....................................................... 184 

7.1 Introduction ............................................................................................................184 

7.2 Experiments on Random Graph Datasets ...........................................................186 

7.2.1 Phase I...............................................................................................................186 

7.2.2 Phase II .............................................................................................................192 

7.2.3 Phase III ............................................................................................................195 

7.2.4 Statistical Tests .................................................................................................200 

7.3 Experiments on Real World Graph Datasets ......................................................205 

7.4 Scalability and Performance Analysis ..................................................................211 

7.5 Summary .................................................................................................................217 

Chapter 8 Conclusions ................................................................................. 218 



vi 

 

 

8.1 Objectives and Contributions ...............................................................................218 

8.2 Future Work ...........................................................................................................220 

Bibliography ................................................................................................. 223 

Appendix A Sample Layouts from Hill Climbing, Simulated Annealing, and 
Our Proposed Tabu Search-based Algorithm ............................................ 235 

A.1 Sample Layouts from Datasets of Table 5.1 .............................................................236 

A.2 Sample Layouts from Datasets of Table 5.2 .............................................................240 

Appendix B Sample Layouts from Simulated Annealing, Our Proposed 
Tabu Search-based Algorithm, and Path Relinking Coupled with Tabu 
Search ............................................................................................................ 244 

B.1 Sample Layouts from Datasets of Table 7.1 .............................................................245 

B.2 Sample Layouts from Datasets of Table 7.2 .............................................................249 

  



vii 

 

 

List of Tables 

Table 4.1 The characteristics of graph datasets used in parameter tuning for the hill climbing algorithm

 ......................................................................................................................................................... 64 

Table 4.2 Hill Climbing - Fitness value when squareReduction = 2 (phase II) .................................... 68 

Table 4.3 Hill Climbing - Fitness value when squareReduction = 4 (phase II) .................................... 68 

Table 4.4 Hill Climbing - Fitness value when squareReduction = 6 (phase II) .................................... 69 

Table 4.5 Hill Climbing - Fitness value when squareReduction = 8 (phase II) .................................... 70 

Table 4.6 Simulated Annealing - Fitness values with the maxIterations parameter (phase III) ............ 80 

Table 4.7 Simulated Annealing - Fitness values with the iterPerTemp parameter (phase III) .............. 81 

Table 4.8 Simulated Annealing - Fitness values with the initialTemp parameter (phase III) ............... 82 

Table 4.9 Simulated Annealing - Fitness values with the coolDown parameter (phase III) ................. 83 

Table 4.10 Tabu Search - Fitness values with the maxIterations parameter (phase III) ....................... 97 

Table 4.11 Tabu Search - Fitness values with the initialCutOff parameter (phase III) ......................... 98 

Table 4.12 Tabu Search - Fitness values with the intensifyCutOff parameter (phase III) .................... 99 

Table 4.13 Tabu Search - Fitness values with the intensifyIterations parameter (phase III) ............... 100 

Table 4.14 Tabu Search - Fitness values with the duration parameter (phase III) .............................. 101 

Table 4.15 Tabu Search - Fitness values with the maxIterations parameter (phase IV) ..................... 102 

Table 4.16 Tabu Search - Fitness values with the initialCutOff parameter (phase IV) ...................... 103 

Table 4.17 Tabu Search - Fitness values with the intensifyCutOff parameter (phase IV) .................. 104 

Table 4.18 Tabu Search - Fitness values with the intensifyIterations parameter (phase IV) .............. 105 

Table 4.19 Tabu Aearch - Fitness values with the duration parameter (phase IV) ............................. 106 

 

Table 5.1 Characteristics of the graphs in the 1st category ................................................................ 109 

Table 5.2 Characteristics of the graphs in the 2nd category ............................................................... 110 

Table 5.3 Statistical analysis of the fitness function for HC, SA, TS when applied on the graphs of both 

categories (phase I) ......................................................................................................................... 116 

Table 5.4 Statistical analysis of number of evaluated solutions obtained by HC, SA, TS when applied 

on the graphs of both categories (phase I) ........................................................................................ 116 

Table 5.5 Statistical analysis of the average overall number of evaluated solutions obtained by HC, SA, 

TS when applied on the graphs of the two categories together (phase II) .......................................... 119 

Table 5.6 Statistical analysis of the average overall fitness function values obtained by HC, SA, TS 

when applied on the graphs of the two categories together (phase III) .............................................. 122 



viii 

 

 

Table 5.7 Effect size and p-values for the fitness function values after conducting the Bonferroni test 

on HC, SA, TS when applied on the graphs of the 1st category (phase I) .......................................... 127 

Table 5.8 Effect size and p-values for the fitness function values after conducting the Bonferroni test 

on HC, SA, TS when applied on the graphs of the 2nd category (phase I) ......................................... 127 

Table 5.9 Effect size and p-values for the number of evaluated solutions after conducting the 

Bonferroni test on HC, SA, TS when applied on the graphs of the 1st category (phase I) .................. 127 

Table 5.10 Effect size and p-values for the number of evaluated solutions after conducting the 

Bonferroni test on HC, SA, TS when applied on the graphs of the 2nd category (phase I) ................. 127 

Table 5.11 Effect size and p-values for the number of evaluated solutions after conducting the 

Bonferroni test on HC, SA, TS when applied on the graphs of the 1st category (phase II) ................. 128 

Table 5.12 Effect size and p-values for the number of evaluated solutions after conducting the 

Bonferroni test on HC, SA, TS when applied on the graphs of the 2nd category (phase II) ................ 128 

Table 5.13 Effect size and p-values for the fitness function values after conducting the Bonferroni test 

on HC, SA, TS when applied on the graphs of the 1st category (phase III) ........................................ 129 

Table 5.14 Effect size and p-values for the fitness function values after conducting the Bonferroni test 

on HC, SA, TS when applied on the graphs of the 2nd category (phase III) ....................................... 129 

Table 5.15 Real world graph datasets characteristics and sources ..................................................... 130 

Table 5.16 Average tie-breaks percentage for 40 random graphs ..................................................... 136 

 

Table 6.1 Graph datasets used in parameter tuning for path relinking ............................................... 145 

Table 6.2 Path relinking fitness with the PRmaxIterations parameter (phase III) .............................. 151 

Table 6.3 Path relinking fitness with the refSize parameter (phase III) ............................................. 152 

Table 6.4 Path relinking fitness with the pathLength parameter (phase III) ...................................... 153 

Table 6.5 Path relinking fitness with the pathSqrSize parameter (phase III) ..................................... 154 

Table 6.6 Characteristics of the graphs used in the experiment of selecting initial/guiding solutions . 157 

Table 6.7 Characteristics of the graphs used in the experiment of comparing strategies (a) and (d) for 

selecting solutions ........................................................................................................................... 158 

Table 6.8 Characteristics of the graph datasets used for choosing proper values for the 

acceleratioPeriod and accelerationRate parameters .......................................................................... 161 

Table 6.9 Characteristics of the graph datasets used in the comparison between the two strategies for 

moving along the path ..................................................................................................................... 165 

Table 6.10 Characteristics of the graph datasets used in tuning the parameters of our improved TS+PR 

graph drawing algorithm ................................................................................................................. 168 



ix 

 

 

Table 6.11 Fitness values reaching a target value by the improved drawing algorithm when tuning the 

PRmaxIterations parameter (phase III) ............................................................................................ 176 

Table 6.12 Fitness values reaching a target value by the improved drawing algorithm when tuning the 

refSize parameter (phase III) ........................................................................................................... 177 

Table 6.13 Fitness values reaching a target value by the improved drawing algorithm when tuning the 

pathLength parameter (phase III) ..................................................................................................... 178 

Table 6.14 Fitness values reaching a target value by the improved drawing algorithm when tuning the 

pathSqrSize parameter (phase III).................................................................................................... 179 

Table 6.15 Fitness values reaching a target value by the improved drawing algorithm when tuning the 

accelerationPeriod parameter (phase III) .......................................................................................... 180 

Table 6.16 Fitness values reaching a target value by the improved drawing algorithm when tuning the 

accelerationRate parameter (phase III)............................................................................................. 182 

 

Table 7.1 Characteristics of the graphs in the 1st category used in comparing PR+TS, TS, and SA ... 185 

Table 7.2 Characteristics of the graphs in the 2nd category used in comparing PR+TS, TS, and SA .. 185 

Table 7.3 Statistical analysis of the fitness function for TS, SA, PR+TS when applied on the graphs of 

both categories (phase I) ................................................................................................................. 191 

Table 7.4 Statistical analysis of number of evaluated solutions obtained by TS, SA, PR+TS when 

applied on the graphs of both categories (phase I) ............................................................................ 192 

Table 7.5 Statistical analysis of the average overall number of evaluated solutions obtained by TS, SA, 

PR+TS when applied on the graphs of the two categories together (phase II) ................................... 194 

Table 7.6 Statistical analysis of the average overall fitness function values obtained by TS, SA, PR+TS 

when applied on the graphs of the two categories together (phase III) .............................................. 197 

Table 7.7 Effect size and p-values for the fitness function values after conducting the Bonferroni test 

on TS, SA, PR+TS when applied on the graphs of the 1st category (phase I) .................................... 201 

Table 7.8 Effect size and p-values for the fitness function values after conducting the Bonferroni test 

on TS, SA, PR+TS when applied on the graphs of the 2nd category (phase I) ................................... 202 

Table 7.9 Effect size and p-values for the number of evaluated solutions after conducting the 

Bonferroni test on TS, SA, PR+TS when applied on the graphs of the 1st category (phase I) ............ 202 

Table 7.10 Effect size and p-values for the number of evaluated solutions after conducting the 

Bonferroni test on TS, SA, PR+TS when applied on the graphs of the 2nd category (phase I) ........... 202 

Table 7.11 Effect size and p-values for the number of evaluated solutions after conducting the 

Bonferroni test on TS, SA, PR+TS when applied on the graphs of the 1st category (phase II) ........... 203 



x 

 

 

Table 7.12 Effect size and p-values for the number of evaluated solutions after conducting the 

Bonferroni test on TS, SA, PR+TS when applied on the graphs of the 2nd category (phase II) .......... 203 

Table 7.13 Effect size and p-values for the number of evaluated solutions after conducting the 

Bonferroni test on TS, SA, PR+TS when applied on the graph layouts of the two categories together 

(Phase II) ........................................................................................................................................ 203 

Table 7.14 Effect size and p-values for the fitness function values after conducting the Bonferroni test 

on TS, SA, PR+TS when applied on the graphs of the 1st category (phase III) .................................. 204 

Table 7.15 Effect size and p-values for the fitness function values after conducting the Bonferroni test 

on TS, SA, PR+TS when applied on the graphs of the 2nd category (phase III) ................................. 204 

Table 7.16 Effect size and p-values for the fitness function values after conducting the Bonferroni test 

on TS, SA, PR+TS when applied on the graph layouts of the two categories together (Phase III) ..... 204 

Table 7.17 Characteristics of the graph datasets used in scalability testing ....................................... 212 

Table 7.18 Normalised values of each aesthetic when the methods were applied on graph dataset 3 

(listed in Table 5.15) ....................................................................................................................... 216 

Table 7.19 Normalised values of each aesthetic when the methods were applied on graph dataset 5 

(listed in Table 5.15) ....................................................................................................................... 216 

 

  



xi 

 

 

List of Figures 

Figure 1.1 Path relinking tunnels through areas between initial and guiding graph layout solutions ..... 4 

 
Figure 2.1 Sample graph layout ......................................................................................................... 11 

Figure 2.2 Two symmetric layouts for the same graph (Kamada & Kawai 1989) ............................... 13 

Figure 2.3 Node distribution .............................................................................................................. 15 

Figure 2.4 Uniform edge length ......................................................................................................... 15 

Figure 2.5 Edge crossings ................................................................................................................. 16 

Figure 2.6 Node-edge occlusion ........................................................................................................ 16 

Figure 2.7 Angular resolution ............................................................................................................ 17 

Figure 2.8 Randomised graph of a complete graph with 6 nodes ........................................................ 19 

Figure 2.9 Embedded graph of a complete graph with 6 nodes using the basic spring embedder ........ 19 

Figure 2.10 An example of a graph layout using the algorithm proposed in Davidson & Harel (1996)29 

Figure 2.11 A flowchart of a simple tabu search procedure ................................................................ 34 

Figure 2.12 Hierarchical Diagraph (Laguna et al. 1997) ..................................................................... 38 

Figure 2.13 Bipartite sample drawing (Martı́ & Laguna 2003) ........................................................... 40 

Figure 2.14 Path relinking: original path (solid line) and one possible relinked path (dotted line) in the 
solution space ................................................................................................................................... 41 

 
Figure 3.1 A screen shot of the drop-down menu of available operations in our visualisation tool ...... 48 

Figure 3.2 Adding nodes to the canvas .............................................................................................. 49 

Figure 3.3 Adding edges between the nodes shown in Figure 3.2 ....................................................... 50 

Figure 3.4 Moving nodes and stretching / shrinking edges shown in Figure 3.3 ................................. 50 

Figure 3.5 A frame prompting the user to enter number of nodes required in the random graph layout51 

Figure 3.6 A frame prompting the user to enter the required density (showing the minimum value that 
can be entered) .................................................................................................................................. 52 

Figure 3.7 A randomly generated graph layout .................................................................................. 52 

Figure 3.8 A different layout of the graph shown in Figure 3.7 .......................................................... 53 

Figure 3.9 A screen shot of the frame which allows the user to control the value of the parameter of 
each method and the weight of each measure..................................................................................... 54 

 



xii 

 

 

Figure 4.1 The points around the square represent the candidate solutions at each node ..................... 60 

Figure 4.2 Hill Climbing - Fitness value when squareReduction = 2 (phase I) .................................... 65 

Figure 4.3 Hill Climbing - Fitness value when squareReduction = 4 (phase I) .................................... 65 

Figure 4.4 Hill Climbing - Fitness value when squareReduction = 6 (phase I) .................................... 66 

Figure 4.5 Hill Climbing - Fitness value when squareReduction = 8 (phase I) .................................... 66 

Figure 4.6 Hill Climbing -Number of evaluated solutions when squareReduction = 2 (phase II) ........ 68 

Figure 4.7 Hill Climbing - Number of evaluated solutions when squareReduction = 4 (phase II) ....... 69 

Figure 4.8 Hill Climbing - Number of evaluated solutions when squareReduction = 6 (phase II) ....... 69 

Figure 4.9 Hill Climbing - Number of evaluated solutions when squareReduction = 8 (phase II) ....... 70 

Figure 4.10 Simulated Annealing - Fitness values with the maxIterations parameter (phase I)............ 74 

Figure 4.11 Simulated Annealing - Fitness values with the iterPerTemp parameter (phase I) ............. 75 

Figure 4.12 Simulated Annealing - Fitness values with the initialTemp parameter (phase I) ............... 76 

Figure 4.13 Simulated Annealing - Fitness values with the coolDown parameter (phase I) ................. 76 

Figure 4.14 Simulated Annealing - Fitness values with the maxIterations parameter (phase II) .......... 77 

Figure 4.15 Simulated Annealing - Fitness values with the iterPerTemp parameter (phase II) ............ 78 

Figure 4.16 Simulated Annealing - Fitness values with the initialTemp parameter (phase II) ............. 79 

Figure 4.17 Simulated Annealing - Fitness values with the coolDown parameter (phase II) ............... 79 

Figure 4.18 Simulated Annealing – Number of evaluated solutions with the maxIterations parameter 
(phase III) ......................................................................................................................................... 81 

Figure 4.19 Simulated Annealing – Number of evaluated solutions with the iterPerTemp parameter 
(phase III) ......................................................................................................................................... 82 

Figure 4.20 Simulated Annealing – Number of evaluated solutions with the initialTemp parameter 
(phase III) ......................................................................................................................................... 83 

Figure 4.21 Simulated Annealing – Number of evaluated solutions with the coolDown parameter 
(phase III) ......................................................................................................................................... 84 

Figure 4.22 Tabu Search - Fitness values with the maxIterations parameter (phase I) ......................... 88 

Figure 4.23 Tabu Search - Fitness values with the initialCutOff parameter (phase I) .......................... 89 

Figure 4.24 Tabu Search - Fitness values with the intensifyCutOff parameter (phase I)...................... 90 

Figure 4.25 Tabu Search - Fitness values with the intensifyIterations parameter (phase I) .................. 91 

Figure 4.26 Tabu Search - tabu list accesses with the intensifyIterations parameter (phase I) ............. 91 

Figure 4.27 Tabu Search - Fitness values with the duration parameter (phase I) ................................. 92 

Figure 4.28 Tabu Search - tabu list accesses with the duration parameter (phase I) ............................ 92 

Figure 4.29 Tabu Search - Fitness values with the maxIterations parameter (phase II) ....................... 93 



xiii 

 

 

Figure 4.30 Tabu Search - Fitness values with the initialCutOff parameter (phase II) ......................... 94 

Figure 4.31 Tabu Search - Fitness values with the intensifyCutOff parameter (phase II) .................... 94 

Figure 4.32 Tabu Search - Fitness values with the intensifyIterations parameter (phase II) ................. 95 

Figure 4.33 Tabu Search - Fitness values with the duration parameter (phase II) ................................ 96 

Figure 4.34 Tabu Search – Number of evaluated solutions with the maxIterations parameter (phase III)
 ......................................................................................................................................................... 97 

Figure 4.35 Tabu Search – Number of evaluated solutions with the initialCutOff parameter (phase III)
 ......................................................................................................................................................... 98 

Figure 4.36 Tabu Search – Number of evaluated solutions with the intensifyCutOff parameter (phase 
III) .................................................................................................................................................... 99 

Figure 4.37 Tabu Search – Number of evaluated solutions with the intensifyIterations parameter (phase 
III) .................................................................................................................................................. 100 

Figure 4.38 Tabu Search – Number of accesses to the tabu list with the duration parameter (phase III)
 ....................................................................................................................................................... 101 

Figure 4.39 Tabu Search – Number of evaluated solutions with the maxIterations parameter (phase IV)
 ....................................................................................................................................................... 102 

Figure 4.40 Tabu Search – Number of evaluated solutions with the initialCutOff parameter (phase IV)
 ....................................................................................................................................................... 103 

Figure 4.41 Tabu Search – Number of evaluated solutions with the intensifyCutOff parameter (phase 
IV) .................................................................................................................................................. 104 

Figure 4.42 Tabu Search – Number of evaluated solutions with the intensifyIterations parameter (phase 
IV) .................................................................................................................................................. 105 

Figure 4.43 Tabu Search – Number of evaluated solutions with the duration parameter (phase IV) .. 106 

 

Figure 5.1 Bar chart with 95% confidence interval of the fitness function obtained by HC, SA, TS 
when applied on the graphs of the 1st category (phase I) .................................................................. 111 

Figure 5.2 Bar chart with 95% confidence interval of the fitness function obtained by HC, SA, TS 
when applied on the graphs of the 2nd category (phase I) .................................................................. 112 

Figure 5.3 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by 
HC, SA, TS when applied on the graphs of the 1st category (phase I) ............................................... 112 

Figure 5.4 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by 
HC, SA, TS when applied on the graphs of the 2nd category (phase I) .............................................. 113 

Figure 5.5 Bar chart with 95% confidence interval of the execution time (in seconds) obtained by HC, 
SA, TS when applied on the graphs of the 1st category (phase I) ...................................................... 113 

Figure 5.6 Bar chart with 95% confidence interval of the execution time (in seconds) obtained by HC, 
SA, TS when applied on the graphs of the 2nd category (phase I) ..................................................... 114 



xiv 

 

 

Figure 5.7 Bar chart with 95% confidence interval of the average overall fitness function obtained by 
HC, SA, TS when applied on the graphs of both categories (phase I) ............................................... 115 

Figure 5.8 Bar chart with 95% confidence interval of the average overall number of evaluated solutions 
obtained by HC, SA, TS when applied on the graphs of both categories (phase I) ............................ 115 

Figure 5.9 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by 
HC, SA, TS when applied on the graphs of the 1st category (phase II) .............................................. 118 

Figure 5.10 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by 
HC, SA, TS when applied on the graphs of the 2nd category (phase II) ............................................. 118 

Figure 5.11 Bar chart with 95% confidence interval of the average overall number of evaluated 
solutions obtained by HC, SA, TS when applied on the graphs of the two categories together (phase II)
 ....................................................................................................................................................... 119 

Figure 5.12 Bar chart with 95% confidence interval of the fitness function values obtained by HC, SA, 
TS when applied on the graphs of the 1st category (phase III) .......................................................... 121 

Figure 5.13 Bar chart with 95% confidence interval of the fitness function values obtained by HC, SA, 
TS when applied on the graphs of the 2nd category (phase III) .......................................................... 121 

Figure 5.14 Bar chart with 95% confidence interval of the average overall fitness function values 
obtained by HC, SA, TS when applied on the graphs of the two categories together (phase III)........ 122 

Figure 5.15 Example of connected graph layout with 10 nodes and 19 edges drawn within the canvas 
of our visualization tool by the three methods: HC, SA, TS ............................................................. 123 

Figure 5.16 Example of connected graph layout with 12 nodes and 17 edges drawn within the canvas 
of our visualization tool by the three methods: HC, SA, TS ............................................................. 124 

Figure 5.17 Bar chart of the fitness function values obtained by HC, SA, TS when applied on the graph 
datasets in Table 5.15 (phase I) ....................................................................................................... 131 

Figure 5.18 Bar chart of the number of evaluated solutions obtained by HC, SA, TS when applied on 
the graph datasets in Table 5.15 (phase I) ........................................................................................ 132 

Figure 5.19 Bar chart of the number of evaluated solutions obtained by HC, SA, TS when applied on 
the graph datasets in Table 5.15 (phase II) ....................................................................................... 132 

Figure 5.20 Bar chart of the fitness function values obtained by HC, SA, TS when applied on the graph 
datasets in Table 5.15 (phase III) ..................................................................................................... 133 

Figure 5.21 Layout of graph dataset 1 (listed in Table 5.15) produced by HC, SA, TS drawn within the 
canvas of our visualization tool ....................................................................................................... 134 

Figure 5.22 Layout of graph dataset 2 (listed in Table 5.15) produced by HC, SA, TS drawn within the 
canvas of our visualization tool ....................................................................................................... 135 

 

Figure 6.1 Our path relinking strategy in moving from the initial solution to the guiding solution .... 143 

Figure 6.2 Path relinking fitness with the PRmaxIterations parameter (phase I) ............................... 146 

Figure 6.3 Path relinking fitness with the refSize parameter (phase I) .............................................. 147 



xv 

 

 

Figure 6.4 Path relinking fitness with the pathLength parameter (phase I) ........................................ 147 

Figure 6.5 Path relinking fitness with the pathSqrSize parameter (phase I) ....................................... 148 

Figure 6.6 Path relinking fitness with the PRmaxIterations parameter (phase II) .............................. 149 

Figure 6.7 Path relinking fitness with the refSize parameter (phase II) ............................................. 149 

Figure 6.8 Path relinking fitness with the pathLength parameter (phase II) ...................................... 150 

Figure 6.9 Path relinking fitness with the pathSqrSize parameter (phase II) ..................................... 150 

Figure 6.10 Path relinking number of evaluated solutions with the PRmaxIterations parameter (phase 
III) .................................................................................................................................................. 152 

Figure 6.11 Path relinking number of evaluated solutions with the refSize parameter (phase III) ...... 153 

Figure 6.12 Path relinking number of evaluated solutions with the pathLength parameter (phase III)154 

Figure 6.13 Path relinking number of evaluated solutions with the pathSqrSize parameter (phase III)
 ....................................................................................................................................................... 155 

Figure 6.14 Fitness values with 95% confidence interval of the strategies for selecting initial/guiding 
solutions ......................................................................................................................................... 157 

Figure 6.15 Number of evaluated solutions with 95% confidence interval of the strategies for selecting 
initial/guiding solutions ................................................................................................................... 158 

Figure 6.16 Number of evaluated solutions with 95% confidence interval performed when strategies 
(a) and (d) run to reach a set fitness value ........................................................................................ 159 

Figure 6.17 Fitness values produced with 95% confidence interval when strategies (a) and (d) run for a 
set number of solutions ................................................................................................................... 159 

Figure 6.18 Fitness values of the layouts for the datasets in Table 6.8 when examining the values of the 
accelerationPeriod parameter (1st round) .......................................................................................... 161 

Figure 6.19 Number of solutions for drawing the layouts for the datasets in Table 6.8 when examining 
the values of the accelerationPeriod parameter (1st round)................................................................ 162 

Figure 6.20 Fitness values of the layouts for the datasets in Table 6.8 when examining the values of the 
accelerationRate parameter (1st round) ............................................................................................. 163 

Figure 6.21 Fitness values of the layouts for the datasets in Table 6.8 when examining the values of the 
accelerationPeriod parameter (2nd round) ......................................................................................... 164 

Figure 6.22 Fitness values of the layouts for the datasets in Table 6.8 when examining the values of the 
accelerationRate parameter (2nd round) ............................................................................................ 164 

Figure 6.23 Fitness values with 95% confidence interval for the layouts of the datasets in Table 6.9 
when applying the two strategies of moving along the path.............................................................. 165 

Figure 6.24 Number of solutions with 95% confidence interval for the layout of the graph datasets in 
Table 6.9 when applying the two strategies of moving along the path .............................................. 166 

Figure 6.25 Fitness values of the improved drawing algorithm when tuning the PRmaxIterations 
parameter (phase I) ......................................................................................................................... 169 



xvi 

 

 

Figure 6.26 Fitness values of the improved drawing algorithm when tuning the refSize parameter 
(phase I) .......................................................................................................................................... 170 

Figure 6.27 Number of evaluated solutions of the improved drawing algorithm when tuning the refSize 
parameter (phase I) ......................................................................................................................... 171 

Figure 6.28 Fitness values of the improved drawing algorithm when tuning the pathLength parameter 
(phase I) .......................................................................................................................................... 172 

Figure 6.29 Fitness values of the improved drawing algorithm when tuning the pathSqrSize parameter 
(phase I) .......................................................................................................................................... 172 

Figure 6.30 Fitness values of the improved drawing algorithm when tuning the accelerationPeriod 
parameter (phase I) ......................................................................................................................... 173 

Figure 6.31 Number of evaluated solutions of the improved drawing algorithm when tuning the 
accelerationPeriod parameter (phase I) ............................................................................................ 174 

Figure 6.32 Fitness values of the improved drawing algorithm when tuning the accelerationRate 
parameter (phase I) ......................................................................................................................... 175 

Figure 6.33 Number of evaluated solutions of the improved drawing algorithm when tuning the 
PRmaxIterations parameter (phase III) ............................................................................................ 177 

Figure 6.34 Number of evaluated solutions of the improved drawing algorithm when tuning the refSize 
parameter (phase III) ....................................................................................................................... 178 

Figure 6.35 Number of evaluated solutions of the improved drawing algorithm when tuning the 
pathSqrSize parameter (phase III).................................................................................................... 179 

Figure 6.36 Number of evaluated solutions of the improved drawing algorithm when tuning the 
accelerationPeriod parameter (phase III) .......................................................................................... 181 

Figure 6.37 Number of evaluated solutions of the improved drawing algorithm when tuning the 
accelerationRate parameter (phase III)............................................................................................. 182 

 

Figure 7.1 Bar chart with 95% confidence interval of the fitness function obtained by TS, SA, PR+TS 
when applied on the graphs of the 1st category (phase I) .................................................................. 187 

Figure 7.2 Bar chart with 95% confidence interval of the fitness function obtained by TS, SA, PR+TS 
when applied on the graphs of the 2nd category (phase I) .................................................................. 187 

Figure 7.3 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by 
TS, SA, PR+TS when applied on the graphs of the 1st category (phase I) ......................................... 188 

Figure 7.4 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by 
TS, SA, PR+TS when applied on the graphs of the 2nd category (phase I) ........................................ 188 

Figure 7.5 Bar chart with 95% confidence interval of execution time (in seconds) obtained by TS, SA, 
PR+TS when applied on the graphs of the 1st category (phase I) ...................................................... 189 

Figure 7.6 Bar chart with 95% confidence interval of execution time (in seconds) obtained by TS, SA, 
PR+TS when applied on the graphs of the 2nd category (phase I) ..................................................... 189 



xvii 

 

 

Figure 7.7 Bar chart with 95% confidence interval of the average overall fitness function obtained by 
TS, SA, PR+TS when applied on the graphs of both categories (phase I) ......................................... 190 

Figure 7.8 Bar chart with 95% confidence interval of the average overall number of evaluated solutions 
obtained by TS, SA, PR+TS when applied on the graphs of both categories (phase I) ...................... 191 

Figure 7.9 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by 
TS, SA, PR+TS when applied on the graphs of the 1st category (phase II) ........................................ 193 

Figure 7.10 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by 
TS, SA, PR+TS when applied on the graphs of the 2nd category (phase II) ....................................... 193 

Figure 7.11 Bar chart with 95% confidence interval of the average overall number of evaluated 
solutions obtained by TS, SA, PR+TS when applied on the graphs of the two categories together 
(phase II) ........................................................................................................................................ 194 

Figure 7.12 Bar chart with 95% confidence interval of the fitness function values obtained by TS, SA, 
PR+TS when applied on the graphs of the 1st category (phase III) .................................................... 195 

Figure 7.13 Bar chart with 95% confidence interval of the fitness function values obtained by TS, SA, 
PR+TS when applied on the graphs of the 2nd category (phase III) ................................................... 196 

Figure 7.14 Bar chart with 95% confidence interval of the average overall fitness function values 
obtained by TS, SA, PR+TS when applied on the graphs of the two categories together (phase III).. 196 

Figure 7.15 Example of connected graph layout with 10 nodes and 19 edges drawn within the canvas 
of our visualization tool by the three methods: SA, TS, PR+TS ....................................................... 198 

Figure 7.16 Example of connected graph layout with 12 nodes and 17 edges drawn within the canvas 
of our visualization tool by the three methods: SA, TS, PR+TS ....................................................... 199 

Figure 7.17 Example of connected graph layout with 15 nodes and 24 edges drawn within the canvas 
of our visualization tool by the three methods: SA, TS, PR+TS ....................................................... 200 

Figure 7.18 Bar chart of the fitness function values obtained by TS, SA, PR+TS when applied on the 
graph datasets in Table 5.15 (phase I) .............................................................................................. 205 

Figure 7.19 Bar chart of the number of evaluated solutions obtained by TS, SA, PR+TS when applied 
on the graph datasets in Table 5.15 (phase I) ................................................................................... 206 

Figure 7.20 Bar chart of the number of evaluated solutions obtained by TS, SA, PR+TS when applied 
on the graph datasets in Table 5.15 (phase II) .................................................................................. 206 

Figure 7.21 Bar chart of the fitness function values obtained by TS, SA, PR+TS when applied on the 
graph datasets in Table 5.15 (phase III) ........................................................................................... 207 

Figure 7.22 Layout of graph dataset 1 (listed in Table 5.15) produced by TS, SA, PR+TS drawn within 
the canvas of our visualization tool .................................................................................................. 208 

Figure 7.23 Layout of graph dataset 2 (listed in Table 5.15) produced by TS, SA, PR+TS drawn within 
the canvas of our visualization tool .................................................................................................. 209 

Figure 7.24 Layout of graph dataset 3 (listed in Table 5.15) produced by TS, SA, PR+TS drawn within 
the canvas of our visualization tool .................................................................................................. 210 



xviii 

 

 

Figure 7.25 Layout of graph dataset 5 (listed in Table 5.15) produced by TS, SA, PR+TS drawn within 
the canvas of our visualization tool .................................................................................................. 211 

Figure 7.26 Bar chart of the fitness values obtained by PR+TS and SA when applied on graph datasets 
in Table 7.17 (phase I) for scalability testing ................................................................................... 213 

Figure 7.27 Bar chart of the number of evaluated solutions obtained by PR+TS and SA when applied 
on graph datasets in Table 7.17 (phase I) for scalability testing ........................................................ 213 

Figure 7.28 Bar chart of execution time in seconds obtained by PR+TS and SA when applied on graph 
datasets in Table 7.17 (phase I) for scalability testing ...................................................................... 214 

Figure 7.29 Box plot chart of the overall fitness values obtained by PR+TS and SA when applied on 
graph datasets with an increasing number of nodes and edges (Table 7.17) ...................................... 214 

Figure 7.30 Box plot chart of the overall number of evaluated solutions obtained by PR+TS and SA 
when applied on graph datasets with an increasing number of nodes and edges (Table 7.17) ............ 215 

Figure 7.31 Box plot chart of the overall time in seconds obtained by PR+TS and SA when applied on 
graph datasets with an increasing number of nodes and edges (Table 7.17) ...................................... 215 

Figure 7.32 The change of the fitness value as the number of evaluated solutions increases ............. 216 

 
Figure A.1.1 Sample layouts from group 1A in Table 5.1 ................................................................ 236 

Figure A.1.2 Sample layouts from group 2A in Table 5.1 ................................................................ 237 

Figure A.1.3 Sample layouts from group 3A in Table 5.1 ................................................................ 238 

Figure A.1.4 Sample layouts from group 4A in Table 5.1 ................................................................ 239 

 
Figure A.2.1 Sample layouts from group 1B in Table 5.2 ................................................................ 240 

Figure A.2.2 Sample layouts from group 2B in Table 5.2 ................................................................ 241 

Figure A.2.3 Sample layouts from group 3B in Table 5.2 ................................................................ 242 

Figure A.2.4 Sample layouts from group 4B in Table 5.2 ................................................................ 243 

 
Figure B.1.1 Sample layouts from group 1C in Table 7.1 ................................................................. 245 

Figure B.1.2 Sample layouts from group 2C in Table 7.1 ................................................................. 246 

Figure B.1.3 Sample layouts from group 3C in Table 7.1 ................................................................. 247 

Figure B.1.4 Sample layouts from group 4C in Table 7.1 ................................................................. 248 

 
Figure B.2.1 Sample layouts from group 1D in Table 7.2 ................................................................ 249 

Figure B.2.2 Sample layouts from group 2D in Table 7.2 ................................................................ 250 

Figure B.2.3 Sample layouts from group 3D in Table 7.2 ................................................................ 251 

Figure B.2.4 Sample layouts from group 4D in Table 7.2 ................................................................ 252 



xix 

 

 

List of Algorithms 

Algorithm 2.1 Simple tabu search approach (Glover 1989; Glover 1990) ........................................... 35 

Algorithm 2.2 Simple path relinking algorithm (Rahimi-Vahed et al. 2013) ....................................... 42 

 

Algorithm 4.1 Hill climbing graph drawing algorithm ....................................................................... 63 

Algorithm 4.2 Simulated annealing graph drawing algorithm ............................................................ 72 

Algorithm 4.3 Our tabu search graph drawing algorithm ................................................................... 86 
 

 
Algorithm 6.1 Tabu search and path relinking coupling algorithm for graph drawing ....................... 142 

Algorithm 6.2 PathRelinking() procedure ........................................................................................ 144 

Algorithm 6.3 MoveAlongPath() procedure ..................................................................................... 144 

Algorithm 6.4 Improved PathRelinking() procedure ........................................................................ 167 

Algorithm 6.5 Improved MoveAlongPath() procedure ..................................................................... 167 

 



1 

 

 

Chapter 1 Introduction   

This thesis addresses the problem of automated graph drawing for general graphs with 

undirected straight lines based on weighted sum multi-criteria optimisation. Graph drawing is 

the process of transforming a graph into a visual representation that is called a graph layout (di 

Battista et al. 1999). The graph layout depends on different aesthetic measures that could give a 

better understanding of graphs. Such aesthetic include edge crossings, edge length, node-to-

node and node-to-edge occlusions, graph symmetry, angular resolution, and others (di Battista 

et al. 1999; Davidson & Harel 1996; Stott et al. 2011; Eades 1984). These aesthetics are 

measured and combined to form a multi-criteria weighted sum fitness function that measures 

the quality of a graph and is then optimised by search-based methods (optimisation methods). 

 Search-based methods can be placed into two categories according to the number of 

solutions examined at the same time: neighbourhood search-based methods and population-

based methods. While neighbourhood search methods work on a single solution at a time, 

population-based methods evolve a set of points in the search space (Blum & Roli 2003). These 

methods can produce good solutions, but they have great potential for improvement. For 

example, in the case of neighbourhood search methods, simulated annealing adds an element of 

non-determinism in order to escape from local optima in the search space. This slows down the 

performance of the algorithm since this stochastic behaviour means that a large number of 

iterations can be required to reach a good solution (Davidson & Harel 1996). Hill climbing is 

generally faster in reaching a final layout, but the final result is not always the best as it is more 

likely to get trapped in a local optima (Talbi & Muntean 1993). Population-based methods, 

such as genetic algorithms, typically have an even slower rate of convergence compared to 

simulated annealing and hill climbing as they involve a wider search of the problem space. In 

addition, they often require large memory to maintain the population and can require additional 

algorithms to spread the solutions (Nam & Park 2000). 

 Our work in this field aims to address the problem of multi-criteria graph layout with a 

weighted sum fitness function from the perspective of neighbourhood search-based methods. 

To achieve this we have explored improved techniques that overcome the disadvantages of the 

current state of the art in neighbourhood search techniques. We propose a new neighbourhood 
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search-based method that uses tabu search coupled with path relinking for drawing general 

graph layouts with undirected straight lines. None of these methods have been previously used 

in general multi-criteria graph drawing. Our method has two main features that distinguish it 

from other techniques: the use of a memory list to speed up searching by avoiding previously 

tested solutions; and the generation of new solutions by exploring paths that connect high 

quality solutions. We show that our method outperforms the current state of the art in 

neighbourhood search methods when being applied on randomly generated datasets and real 

world datasets.     

1.1 Motivation and Objectives 

Automatic graph layout is a topic in computer science that can be used in different applications 

from different fields. For example, Cerebral (Barsky et al. 2008) is a system that uses a 

biologically guided graph layout and incorporates experimental data directly into the graph 

display. Systems biology is a model for biological experimentation affected by the behaviour of 

thousands of biological entities that influence each other. These interactions are modelled as a 

graph, where the nodes represent biomolecules such as proteins and genes, and the edges 

represent interactions between them. Cerebral is used to lay out the graph model to interpret the 

results of experiments that will help biologists further refine the model. Our visualisation tool, 

described in Chapter 3, can be used as a replacement graph drawing back-end in tools such as 

Cerebral.  

 Many graph layout algorithms in the literature used neighbourhood search-based methods 

for drawing multi-criteria graph layouts, such as simulated annealing (Davidson & Harel 1996; 

Brank 2004; Lin et al. 2011; Gibson et al. 2013) and hill climbing (Stott et al. 2011; Talbi & 

Muntean 1993; Rosete-Suárez et al. 1999). Tabu search and path relinking were used in the 

field of graph drawing as well, but for single-criterion graph layouts (Marti 1998; Laguna & 

Marti 1999). On the other hand, population-based methods have also been used in drawing 

multi-criteria graph layouts with genetic algorithms (Kosak et al. 1991; Kosak et al. 1994; 

Branke et al. 1996; Eloranta & Mäkinen 2001).    

 Another popular type of automatic layout is the class of force-directed approaches. These 

differ considerably from search-based methods. Here, interactions between nodes are applied, 
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such as the attraction of connected nodes and the repulsion of disconnected nodes, where the 

method attempts to find an equilibrium layout (Noack 2007; Gansner et al. 2013; Jacomy et al. 

2014; Ortmann et al. 2016). In addition, systems such as Pajek draw large networks using 

spring embedders and eigenvectors (Batagelj & Mrvar 1998). However, aesthetics can only be 

indirectly coded in force-directed approaches, whereas search-based methods have the 

advantage of allowing tuneable combinations of directly coded metrics to meet user 

preferences.  

 We are not interested in finding the best possible layout, but enhancing the search 

mechanism is our main motivation. We want to improve the efficiency and effectiveness of 

neighbourhood search methods for drawing general graph layouts with undirected straight lines 

based on a weighted sum multi-criteria optimisation. The objective of our work is concerned 

with developing a new graph drawing search method based on tabu search and path relinking. 

These methods have not been used before to lay out general graphs with multi-criteria 

optimisation. 

 Tabu search is a neighbourhood search-based technique which proceeds on the assumption 

that selecting an inferior solution is not beneficial unless it is necessary such as escaping from a 

local optimum (Lim & Chee 1991). Tabu search keeps information on the itinerary through the 

last solutions visited. The role of this is to restrict the choice of some subsets in the 

neighbourhood by forbidding moves to some neighbour solutions that have already been visited 

(Hertz, et al. 1995).   

 Path relinking integrates intensification and diversification strategies (Glover et al. 2000). 

This approach generates new solutions by exploring paths that connect high quality solutions 

(elite solutions from the reference set) by starting from one of these solutions, called the 

initiating solution, and generating a path in the neighbourhood space that leads toward another 

solution, called the guiding solution. Note that the initiating and the guiding solutions represent 

the starting and the ending points of the path. This is accomplished by selecting moves that 

introduce attributes contained in the guiding solutions (Laguna & Marti 1999). A crucial 

difference between evolutionary algorithms, such as genetic algorithms, and path relinking is 

that the former uses a factor of randomness to create offspring from parent solutions, whereas 
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the latter uses systematic and deterministic rules to combine elite solutions. The main principle 

of its deterministic behaviour is the gradual introduction of attributes from the guiding solution 

to intermediate solutions. These attributes should have fewer characteristics from the initial 

solution and more characteristics from the guiding solution as the search moves along the path 

(Ho & Gendreau 2006).  Path relinking has been considered to be particularly appropriate to 

tabu search, as it allows for ‘tunnelling’ through infeasible regions formed from the tabu list 

(Glover 1997). Figure 1.1 demonstrates our interpretation to the path relinking process in the 

context of graph drawing. Initial and guiding solutions are two different layouts chosen during 

the execution of tabu search algorithm. Then, the path relinking procedure performs a 

“tunnelling” operation in the solution space between the two solutions.     

 

Figure 1.1 Path relinking tunnels through areas between initial and guiding graph layout solutions 

 In order to reach our objective, we had to implement and evaluate our method against the 

two commonly used alternative neighbourhood search-based methods for graph drawing. The 

comparison was based on the three types of evaluations that were carried out: finding the best 

layout that can be achieved; how long it takes to draw a graph to a particular level of quality; 

and how good the quality of the graph is after a fixed optimisation time.  
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1.2 Contributions 

The major contribution of this thesis is proposing a novel neighbourhood search-based graph 

drawing algorithm that improves the current state of the art in neighbourhood search for 

drawing general graph layouts with undirected straight lines based on a weighted sum multi-

criteria optimisation. This contribution can be broken down into several smaller contributions:  

1. The development of a piece of software that can be used for testing the methods on 

random graph layouts based on Erdos-Renyi model (Erdos & Rényi 1960; Daudin et al. 

2008), and real world datasets. It also allows the user to control the values of the 

parameters for each method and the weight of each aesthetic criterion in the fitness 

function. This section of the work is described in Chapter 3. 

2. The implementation of a novel neighbourhood search-based method that improves the 

current state of the art in neighbourhood search methods. We started with proposing a 

tabu search-based approach for graph drawing and we compared it with hill climbing 

and simulated annealing. The method searches for the best positions of the nodes that 

minimise the value of the fitness function, and draws a nice graph layout accordingly. 

Tabu search forbids moves that have been previously examined which may be 

considered poor potential solutions, making it a more effective layout method than hill 

climbing. We show that tabu search alone outperforms hill climbing, but not simulated 

annealing. This section of work is described in Chapters 4 and 5, and a description of an 

initial version was published (Dib & Rodgers 2014).  

3. An improvement to the proposed method by combining it with path relinking which 

outperformed simulated annealing. The tabu search algorithm outperforms hill climbing 

in minimising the value of the fitness function and the number of evaluated solutions 

used to draw a graph layout. The addition of applying path relinking within the tabu 

search procedure speeds up the identification of good solutions and outperforms 

simulated annealing by producing graph layouts with better values of the fitness 

function. We also demonstrate that when targeting a particular value of a fitness 

function, the combination of tabu search and path relinking achieves the goal in a 

smaller number of evaluated solutions. Note that the criteria of comparisons between 
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the methods are based on the number of evaluated solutions required to draw a layout 

(as that is a machine independent criterion), and the value of the fitness function of that 

layout. In addition, we present an execution time comparison when we test the 

scalability of the methods. We use the execution time to formulate a realistic conclusion 

of the run time for applying the methods. Statistical significance tests and effect size 

measurements that confirm the results of our experiments are also conducted. Finally, 

we show that similar results can be produced in a real world setting by testing our 

method against a standard public graph dataset. This section of the work is described in 

Chapters 6 and 7, and it was published (Dib & Rodgers 2018).  

1.3 Publications 

The following is a list of publications along with their related chapters and contributions:  

•  Refereed journal article: A tabu search-based approach for graph layout, in the Journal 

of Visual Languages and Computing (JVLC) (Dib & Rodgers 2014). This paper was 

accepted at the 2014 international workshop on Visual Languages and Computing 

(VLC) as part of the 2014 international conference on Distributed Multimedia Systems 

(DMS). Papers accepted at the DMS were published in a special issue of the JVLC 

after an additional round of reviews. The work in this paper appears in Chapters 3, 4, 

and 5 (Contributions 1 and 2). My contribution in this article included: conceiving and 

proposing the graph drawing algorithm, implementing the algorithm, performing the 

experimentation, and writing-up the article.  

•  Refereed journal article: Graph drawing using tabu search coupled with path 

relinking, in PLoS ONE (Dib & Rodgers 2018). The work in this paper appears in 

Chapters 3, 6, and 7 (Contributions 1 and 3). My contribution in this article included: 

conceiving and proposing the graph drawing algorithm, implementing the algorithm, 

performing the experimentation, and writing-up the article. 

1.4 Software Implementation and Online Resources 

In order to test the performance of all the drawing methods on graph layouts with multiple 

metrics and in terms of time and quality, we implemented our own software visualisation tool 
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using Java. The tool consists of a graphical interface that includes a drop-down menu with 

different options, where nodes and edges can be created and manipulated. The tool provides 

the feature of importing/exporting graphs from/to text files. Moreover, the feature of 

generating random connected graphs, based on Erdos-Renyi model, is provided using the 

built-in random function in Java. The graph generator accepts the number of nodes and the 

density of the graph to be generated and then the generator produces a random connected 

graph accordingly. The user can select the preferred neighbourhood search-based technique to 

apply on the imported graph layout.  

In multi-criteria graph drawing, the weight of each metric could change for each layout as 

it depends on the metric in which the user prefers to focus on. Therefore, we facilitate the 

parameter tuning process for each method and the selection of weight for each aesthetic metric 

by providing a smaller frame that contains text fields where these values can be controlled. 

The frame also shows the value of each individual aesthetic measure after optimisation, in 

addition to the value of the weighted sum of the fitness function. 

A detailed description of our visualisation tool is provided in Chapter 3 of this thesis. The 

code and data related to this research can be accessed at the Dryad Digital Repository: 

https://doi.org/10.5061/dryad.k082rv8.  

1.5 Overview of Chapters 

This thesis is divided into several chapters, as described below:  

Chapter 2 

It includes a literature review on graph drawing and the aesthetic of graph layouts. A number 

of different graph drawing techniques, such as force-directed approaches and search-based 

approaches (including population-based and neighbourhood search-based approaches), that 

were introduced in the literature are highlighted. It also introduces the background of tabu 

search and path relinking as search-based techniques and it shows their effectiveness in many 

graph applications and multi-criteria optimisation problems. 

Chapter 3 
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It describes the features of our visualisation tool along with the operations that can be 

performed in order to test our graph drawing algorithms and perform all the experiments 

conducted in this research.   

Chapter 4 

It describes the basic neighbourhood search-based graph drawing algorithms along with the 

parameters’ tuning process for hill climbing and simulated annealing, followed by our tabu 

search-based approach for drawing general graph layouts with straight lines that have multiple 

aesthetic criteria which are used in a weighted fitness function to measure the quality of the 

graph layout. The process that we used for normalising the values of each aesthetic measure is 

also described.  

Chapter 5 

It demonstrates the experimental results of applying hill climbing, simulated annealing, and 

our graph drawing version of tabu search on random graph datasets and real world graph 

datasets. It also shows our analysis and conclusions to the results. 

Chapter 6 

It describes the proposed algorithm by showing the process of integrating path relinking 

within tabu search along with the calibration of parameters. The reason behind choosing path 

relinking is clarified. It also discusses different variations of path relinking that can improve 

the performance of the algorithm.  

Chapter 7 

It demonstrates the effect of coupling the tabu search graph drawing algorithm with path 

relinking. A comparison with simulated annealing is made by applying the methods on 

random and real world graph datasets. It also shows the process we followed for analysing the 

performance of our method and for testing its scalability.  

Chapter 8 

It summarises the objectives, contributions, and findings of this thesis, and covers a number of 

ideas for future research in this area.  
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1.6 Summary 

In this chapter, we described the motivation behind conducting this research along with the 

objectives that we needed to achieve. We also demonstrated our contributions and their related 

publications. A brief description of our visualisation tool that had been used in our 

experiments was shown. In the next chapter, we review the background material relevant to 

this thesis.   
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Chapter 2 Background and Related Work   

This chapter describes the background material relevant to the research in this thesis. It starts 

with introducing the concept of graph drawing and diagram visualisation. Then, it describes 

the aesthetics of graphs and their importance in improving the human understanding of graph 

layouts. Also, a number of different graph drawing techniques, such as force-directed 

approaches and search-based approaches (including population-based and neighbourhood 

search-based approaches) that have been introduced in the literature, are highlighted. Lastly, it 

introduces the background of tabu search and path relinking as search-based techniques and it 

shows their effectiveness in many graph applications and multi-criteria optimisation problems. 

2.1 Introduction 

Graphs are commonly used data structures in many fields of computer science, such as state 

graphs, networks, data-flow diagrams, and entity-relationships diagrams. A graph can be 

defined as a set of nodes and a set of edges. Two nodes are said to be adjacent if they are 

connected by an edge. The edge connecting two nodes represents the existence of a 

relationship between them. This relationship could be symmetric or asymmetric based on the 

type of the edge whether it is undirected or directed. In this research, we focus on undirected 

graphs.  

In this data structure, relationships can be represented in a tabular form using an adjacency 

matrix or adjacency lists. Visualising a graph can help gain a better understanding of those 

relationships. The way of drawing a graph has a significant impact on how humans understand 

the relationships between the nodes of the graphs. Therefore, the layout and the arrangement 

of the nodes highly affect the interpretation and the readability of the relationships in the 

graph (Purchase et al. 1996; Purchase 1997). In order to lay out a graph automatically, graph 

drawing algorithms are required to rearrange the nodes in a way that emphasises the 

relationships without misleading the user of the generated layout. 

We begin with definitions and notations of the terms for graph concepts that will be used 

throughout this work.      
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2.2 Definitions 

A graph is denoted by G=(V,E) where V is a set of nodes and E ⊆	(V×V) is a set of edges. 

The number of nodes and the number of edges are denoted by |V| and |E|, respectively. For the 

purpose of this work, it is assumed that G is connected, undirected, and simple (i.e. has neither 

self-loop edges nor multi-edges between any two nodes). When embedded in the plane, the 

nodes have x and y coordinates (x,y), and the edges are straight lines joining the coordinates of 

the two nodes. ��� represents the Euclidean distance between two nodes i and j, whereas 

deg(v) denotes the degree of a node v (i.e. the number of edges incident to v). A layout of a 

graph G is a bijective function that maps each node v to a distinct point layout[v], and each 

edge (u, v) to a distinct edge with endpoints layout[u] and layout[v].        

2.3  Overview of Graph Drawing 

Graph drawing is the process of turning an abstract graph into a graph with an embedding in 

the plane that is called a graph layout. A sample graph layout is shown in Figure 2.1. This 

representation should aid the analysis and understanding of the graph. Graph drawing is an 

area of computer science which combines graph theory and information visualisation. Graph 

layouts are not only used in the field of computer science. For example, they are used in: 

physics and chemistry in modelling the interaction between particles, social sciences in 

drawing graphs of group interaction, and electrical engineering in representing circuits. 

However, the drawing process is a significant challenge. Firstly, it depends on what we refer 

to as a nice graph and secondly, it depends on the efficiency of its automated implementation. 

Many sophisticated algorithms were proposed to address the problem of displaying 

complicated graphs of high complexity in structure and size (Huang et al. 2007; Dogrusoz et 

al. 2007; Dogrusoz et al. 2009).  

 

Figure 2.1 Sample graph layout 
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Many graph drawing algorithms were implemented taking into account one or more 

aesthetic criteria that would increase the readability of the drawing (di Battista et al. 1999). 

There are several multi-criteria approaches to layout graphs discussed in the literature, a 

number of which are investigated later in this work. They are based on explicit cost functions 

that combine the explicit measurements of graph quality. Generally, all graph drawing 

approaches aim to enhance the readability of the graph and to convey the information that the 

graph contains. In some approaches, the positions of the nodes are restricted, e.g. they are 

placed on grid points (Batini et al. 1986; Tamassia et al. 1988), concentric circles (Carpano 

1980), or parallel lines (Sugiyama et al. 1981). The edges, on the other hand, can be drawn as 

straight lines, curves, or polygonal lines.  

Graph layouts depend on different aesthetic qualities that could aid a better understanding 

of graphs and consequently build more effective systems. Purchase (1997) performed 

experiments on general graphs which showed a strong evidence to support minimising edge 

crossings for increasing the readability of a graph layout in addition to an effect of maximising 

the minimum angles between two incident edges to a single node. Additional aesthetics were 

discussed in Purchase (2002). However, aesthetic selection is a subjective process that makes 

the field of graph drawing more challenging. In fact, Blythe et al. (1995) asserted that there is 

no best way to draw a graph and that a layout simply depends on the criteria of the graph we 

wish to highlight. These might include specific aspects of the structure of the graph itself, 

particular measures of centrality, or certain attributes of the nodes or edges (Gibson et al. 

2013). For example, Figure 2.2 represents two symmetric graph layouts. But the users find the 

layout on the left easier to understand than the one on the right although the latter has no edge 

crossings (Gibson et al. 2013).  
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Figure 2.2 Two symmetric layouts for the same graph (Kamada & Kawai 1989) 

In the next section, we describe the most commonly used aesthetic criteria of graphs 

discussed in the literature that have an effect on the readability of the graph.  

2.4 Graph Drawing Aesthetics 

Graph drawing aesthetics are quality measures that determine the readability and usability of 

graphs. A good layout can clearly deliver information, whereas a poor layout can mislead 

(Purchase et al. 1996). Graph layout algorithms typically conform to one or more aesthetic 

criteria. Metrics are used to measure these criteria in a weighted sum to quantify the quality of 

the graph layout. These aesthetic metrics can be used for the definition of fitness functions for 

search-based techniques, such as simulated annealing and hill climbing. These criteria include 

edge crossings, edge length, edge bends, node-to-node and node-to-edge occlusions, graphs 

symmetry, the angular resolution of the incident edges, and octilinearity (edges should be 

drawn horizontally, vertically, or diagonally) (Eades 1984; Kosak et al. 1991; di Battista et al. 

1999; Davidson & Harel 1996; Stott et al. 2011). Formal continuous metrics for measuring the 

aesthetic presence in a graph drawing for seven common aesthetic criteria applicable to any 

graph drawing of any size were presented by Purchase (2002). Metrics can be continuous or 

discrete. Analysing the graph layout with continuous metrics would not be considered a binary 

decision, but it would indicate the percentage in which the drawing conforms to the aesthetic.    



14 

 

 

An empirical study was conducted by Purchase et al. (1996) on the human understanding 

of the undirected graphs drawn using three commonly used graph drawing aesthetics: 

symmetry, minimising edge crossings, and minimising bends in polylines. The study 

confirmed that increasing the number of edge crossings and the number of edge bends would 

decrease the readability of the graph. Therefore, minimising these two aesthetics is justified. 

The study was unable to conduct any conclusive assessment of the effectiveness of the local 

symmetry hypothesis. Each aesthetic was considered separately by comparing graphs with the 

extremes of the same aesthetic. Further empirical tests were conducted by Purchase (1997) 

that resulted in showing strong evidence for minimising edge crossings and weaker evidence 

for minimising the number of bends and maximising perceptual symmetry. The study also 

concluded that maximising the orthogonal structure of the drawing and maximising the angles 

between incident edges appear to have little effect on understanding the graph. 

In this work, a list of aesthetics for measuring a graph layout quality was determined. The 

list includes: nodes distribution, edge lengths, edge crossings, node-to-edge occlusions, and 

angular resolution. The following is a description of the metrics used to measure the quality of 

each aesthetic as described by Davidson and Harel (1996) and Stott et al. (2011):  

a. Node distribution (m1) 

Spreading the nodes out evenly on the drawing space makes the graph look nice and 

readable. The distances between close nodes should be increased (minimising the 

inverse), or in other words, the nodes should not be too close to each other (see Figure 

2.3). This criterion is measured using the following formula that should be minimised:  

� � 1
���	 			
ℎ��	� ≠ �

�∈��∈�
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Figure 2.3 Node distribution 

b. Uniform edge length (m2) 

Edges of similar lengths would make the graph look pleasant in many cases (Stott et al. 

2011). The purpose of this aesthetic is to make a consistent length of all edges. A specific 

length (len) is defined, then all the edges would be adjusted in order to obtain the required 

length (len) (i.e. to penalise shorter and longer edges) using the following formula (see 

Figure 2.4):  

�(� − ���)	
�∈�

 

 

Figure 2.4 Uniform edge length 

c. Edge crossings (m3) 

Planar graphs are most likely nice graphs. Minimising the number of crossing edges will 

lead to a planar graph layout (if the graph under study is planar). Algorithms for producing 

crossing-free graphs do exist (Eades & Wormald 1994; Leighton & Rao 1999; Chuzhoy 

2011). However, we would like to retain the other criteria as well. Therefore, in this 
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measure, we focus on finding the number of edge intersections and we try to minimise that 

number (see Figure 2.5).  

 

Figure 2.5 Edge crossings 

d. Node-edge occlusion (m4) 

The edge crossings criterion does not take into consideration the nodes that can be 

positioned on edges. Therefore, the distances between the nodes and edges should be taken 

into account (see Figure 2.6). These distances should be increased (minimising the 

inverse) according to the following formula:  

� � 1
���	

�∈��∈�
 

where die is the Euclidean distance between node i and the closest point on edge e (note 

that i does not equal to any of the end points of edge e).   

 

 

Figure 2.6 Node-edge occlusion 
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e. Angular resolution (m5)  

In order to have a graph where edges with a common node are not too close to each other, 

we should increase the distance between the incident edges (see Figure 2.7). This measure 

is computed as follows:  

� � � 2�
���(�) − �(�1, �2)�

{�∀,�#}∈�%∈�
 

where θ(e1,e2) is the angle in radians between two adjacent edges e1 and e2 incident to 

node v.  

 

Figure 2.7 Angular resolution 

Metrics are usually defined objectively, and they are not intended to take human value 

judgements based on the perception of what appears to be a good graph layout into account. 

However, the validity of human value judgements requires more extensive empirical studies 

and should not be based on personal opinions (Purchase 2002).  

All these metrics contribute in the graph quality weighted sum fitness function that could 

be computed as follows (Davidson & Harel 1996):  

fitness = w1*m1 + w2*m2 + w3*m3 + w4*m4 + w5*m5 

where wi and mi are the weight and the measure for criterion i respectively. Note that, 

increasing the value of wi compared to other weights would give the corresponding criterion a 

higher priority when optimising the graph given that the measures are normalised.  
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2.5 Graph Drawing Approaches 

Graph drawing is a difficult problem (Garey & Johnson 1983; Miller & Orlin 1985). 

Therefore, acceptable heuristics are generally required to find good drawings and layouts of 

graphs. Several graph drawing techniques work better on graphs belonging to specific classes 

(di Battista et al. 1999). Next, we present two main divisions of graph drawing algorithms: 

force-directed approaches and search-based approaches. 

2.5.1 Force-directed Approaches 

Force-directed algorithms use a physical analogy to model the graph layout problem. They 

represent the graph as a system of bodies (nodes) with forces (edges) acting between the 

bodies. The algorithms seek for a configuration (layout) of the bodies, where each body has a 

position such that the sum of forces on each body is zero (i.e. a configuration where the 

energy is locally minimal). As forces tend to apply equally for all nodes, graphs drawn with 

these algorithms tend to have consistent edge lengths.  

Force-directed approaches are commonly used because they are easy to understand and 

relatively easy to code. Moreover, the experiments with force-directed approaches show that 

they often give good results and can produce nice layouts of some of the well-known graphs in 

graph theory (di Battista et al. 1999). 

A force-directed approach consists of two components: the model and the algorithm. The 

model is a force or an energy model that measures the goodness of a graph layout. It is usually 

a quantification of the graph layout aesthetics. The algorithm, on the other hand, is an 

optimisation technique for finding an equilibrium configuration of the system (i.e. locally 

optimal layout).   

Many force-directed algorithms have been proposed and tested. They differ in both the 

formulation of the force or energy model, and in the optimisation technique used to find an 

optimal energy configuration. The spring embedder (Eades 1984) uses a model of springs and 

electrical forces. Nodes are modelled as equally charged rings that repel each other (repulsive 

force), and edges are modelled as springs attached to the rings (attractive force). The force of 

the spring that is calculated in terms of the logarithm of the distance between the nodes, makes 
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connected nodes attract each other. A repulsive force is also applied using an inverse square 

law. These two forces contribute to drawing edges of roughly similar length and ensuring that 

non-adjacent nodes are kept apart.   

The algorithm works as follows: Firstly, the rings are placed in random locations forming 

an initial layout. Secondly, a process for calculating the force on each ring and moving the 

rings accordingly is repeated several times until the spring force on the rings moves the 

system to a minimal energy state. Note that the experiments indicated that repeating the 

process 100 times is enough in most of the cases to reach a minimal energy state. Calculating 

the force on each node takes time proportional to the square of the number of nodes in the 

graph: each iteration of the spring embedder runs with time O(n2). Figure 2.8 and Figure 2.9, 

as described by Eades (1984), show how the spring embedder lays out the complete graph 

with six nodes, K6.   

 

Figure 2.8 Randomised graph of a complete 
graph with 6 nodes 

 

Figure 2.9 Embedded graph of a complete 
graph with 6 nodes using the basic spring 

embedder 

The algorithm showed an acceptable running time for graphs with a small number of 

nodes. However, there are some classes of graphs for which the algorithm does not produce a 

good layout, such as: dense graphs or graphs with dense sub-graphs, and graphs with a small 

number of bridges (Eades 1984).  

The spring embedder model has been modified by eliminating the electrical charges and 

instead associating a spring with every pair of nodes rather than just with the edges (Kamada 

& Kawai 1989). This modified model has been conceptualised in terms of energy rather than 

forces and it has been used for drawing undirected graphs and weighted graphs for human 

understanding. This approach uses the relation between the graph theoretic distance and the 

geometric Euclidean distance between nodes to produce good layouts.  
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The algorithm transforms the graph layout problem into a virtual dynamic system, such 

that every two nodes are connected by a virtual spring of desirable distance. Hence, the 

optimal layout of the graph is the state in which the total spring energy is minimal. The total 

balance condition is computed as the square summation of the differences between the 

desirable distances and the geometric distances for all pairs of nodes.  

This approach differs from the one presented by Eades (1984) in its optimisation 

algorithm. Instead of moving all the nodes at once, the algorithm moves only one node in the 

drawing per iteration. In each iteration, the algorithm moves the node experiencing the 

greatest net energy, by solving partial derivatives of the energy function, to a point of locally 

minimal energy using a variation of the Newton-Raphson method (Rowe et al. 1987).   

The algorithm works particularly well for symmetric graphs and is relatively good at 

minimising edge crossings. The main disadvantage of this approach is its time complexity. 

The model requires a pre-processing step that computes the shortest paths for every pair of 

nodes. The time complexity of this step is O(n3) which makes this approach impractical for 

large graphs (Rowe et al. 1987).  

An improved algorithm for the spring embedder model was presented by Fruchterman & 

Reingold (1991). The main goals for the proposed method were speed and simplicity. Many 

graphs were drawn in less than a second, but measures were taken to restrict the graphs to a 

maximum of 100 nodes. The method strives for uniform edge lengths, and it also performs 

well in terms of distributing nodes evenly and reflecting symmetry.   

In Fruchterman & Reingold (1991), a better cooling schedule could have significantly 

improved the algorithm. Therefore, an enhancement was made by Frick et al. (1995) by 

proposing an adaptive schedule with local and global temperatures and the algorithm is known 

by the Graph EMbedder algorithm (GEM). The algorithm was able to match or even improve 

the quality of the results obtained by other widely used implementations while running 

consistently faster than them. The algorithm was tested to produce graph layouts with evenly 

distributed nodes and edges with equal lengths. Although the GEM was not designed to 

explicitly minimise edge crossings, it can often avoid crossings.  
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Van Ham & Van Wijk (2004) proposed a new force model with continuous visual 

abstraction that combines both explicit clustering and visual clustering for drawing graph 

layouts that better reflect the natural cluster structure of small world graphs. The model uses 

the concept of force annealing, which combines force-directed algorithms that model a graph 

as a physical system, then it attempts to find positions for all nodes such that the total energy 

in the model is minimal, using a method of optimisation that starts with a random 

configuration. This method showed better results compared with conventional force-directed 

approaches when being applied on a cross referenced database of 500 artists (Van Ham & Van 

Wijk 2004). Force annealing models were also used in other applications such as preventing 

nodes from crossing edges (Simonetto et al. 2011).  

Maaten & Hinton (2008) presented a t-distributed Stochastic Neighbour Embedding (t-

SNE) which is a non-linear dimensionality reduction visualisation technique used to visualise 

high-dimensional data by assigning each data-point a location in a two or three dimensional 

map. The visualisations produced by t-SNE were better than those produced by other non-

parametric visualisation techniques such as Isomap (Balasubramanian & Schwartz 2002).  

Graph drawing with force-directed approaches that are based on virtual physical models is 

still considered a hot topic that has been addressed in many recent research studies (Noack 

2007; Gansner et al. 2013; Jacomy et al. 2014; Ortmann et al. 2016).  

Force-directed approaches typically produce aesthetically pleasing layouts. They are fast 

when being applied on small and medium size graphs, where the speed is highly beneficial for 

use in interactive systems, but they are often unable to escape local optima due to their 

physical model. These approaches are computationally expensive to find a minimum energy 

state using general energy functions. A disadvantage of these techniques is that new criteria 

can only be enforced by applying additional forces to the nodes causing them to move 

differently. This makes it very difficult to strongly enforce additional criteria as nodes are 

moved by summing all their forces in each iteration. Hence, the resulting composite force 

satisfies none of the applied criteria, and nodes are moved to non-optimal positions. 

Furthermore, force-directed approaches are usually selected to draw graph layouts when we 

want to obtain uniform edge lengths and show symmetries in the graph (Eades 1984; 
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Fruchterman & Reingold 1991). However, these forces may introduce a lot of edge crossings 

which is an aesthetic measure that cannot be turned into a force (Bertault 1999). General 

search-based approaches, such as simulated annealing, genetic algorithms, and hill climbing 

are more favourable techniques for general and discrete cost functions.  

2.5.2 Search-based Approaches 

The graph layout problem can also be modelled as an optimisation problem. Unlike force-

directed approaches, where aesthetics can only be indirectly coded; search-based approaches 

have the advantage of allowing tuneable combinations of metrics to meet user preferences. 

Here, layout involves minima of the fitness measure that represents the desired graph 

aesthetics. The spring embedder approaches, described previously, mainly focus on 

distributing nodes and edge lengths. Both criteria were measured using a simple and 

continuous function of the locations of the nodes. However, many of the important aesthetic 

criteria, such as the minimisation of the number of edge crossings, are not continuous. 

Therefore, we can broaden the set of graph aesthetics by directly measuring them in the 

layout. 

When an algorithm attempts to draw a graph layout according to several graph aesthetic 

criteria, some of these criteria might conflict with each other. Hence, we can use a fitness 

function that linearly combines a number of measures. The weighted sum method allows the 

multi-objective optimisation problem to be transformed as a single objective optimisation 

function that is constructed as a sum of objective functions fi (measures) multiplied by 

weighting coefficients wi (Grodzevich & Romanko 2006). The problem is formulated as 

follows:  

∋�� � 
�(� 	,												
)

�∗+
	
ℎ��	
� ≥ 0, ∀� = 1, …	, 1. 

The functions might include both continuous functions (like those used in the spring 

embedder approaches) and discrete functions. In this way, the fitness function would measure 

the quality of the graph layout (di Battista et al. 1999).  
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The problem with using general fitness functions is that it might be computationally 

expensive to find a minimum fitness value. Since the overall fitness function could include 

both continuous and discrete functions, some general search-based approaches, such as 

population-based methods including genetic algorithms, and neighbourhood search-based 

methods such as simulated annealing, and hill climbing, were used in order to find a minimum 

fitness value. However, they are computationally expensive and not suitable for interactive 

systems (di Battista et al. 1999). The main difference between these methods is the number of 

solutions examined at the same time. While neighbourhood search methods work on a single 

solution at a time, population-based methods evolve a set of points in the search space (Blum 

& Roli 2003). Parameter tuning for all these methods plays an important role in increasing 

their efficiency.  

2.5.3 Multi-level Approaches 

Multi-level graph drawing methods are frequently applied to clustered graphs (i.e. graphs with 

recursive clustering structures over the nodes) (Eades & Feng 1996). The technique repeatedly 

groups the nodes to form clusters which in turn are used to define a new graph. The coarsest 

graph is then partitioned where each partition is refined on all the graphs starting from the 

coarsest and ending with the original (Walshaw, 2000). This type of graph is commonly 

visualised at multiple abstraction levels such as a three dimensional drawing where each level 

is drawn on a plane at different z-coordinate while the clustering structure is drawn as a tree in 

three dimensions. This representation preserves the mental map between abstraction levels as 

it gives a better visualisation of the graph at different depth of abstractions and tracks the 

abstractions from one level to another (Eades & Feng 1996). Walshaw (2000) proposed a fast 

multi-level algorithm that outpeformed conventional force-directed placement and spring 

embedder algorithms.  

Hachul & Jünger (2004) presented a fast force-directed method that is based on a 

combination of a multi-level scheme and a startegy for approximating the repulsive forces in 

the system. The algorithm managed to visualise the structures of large graphs (with up to 

100000 nodes) that were challenging to visualise with some other methods.  
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Archambault et al. (2007) proposed a multi-level framework to draw undirected graphs 

based on the topological features they contain. It was the first multi-level approach that 

partitioned the graph into topological features. It contained a stage that reduced the number of 

node-edge overlaps and edges crossings and another stage to eliminate all node-node overlaps. 

The algorithm was compared against four other multi-level algorithms on a variety of datasets 

and it demonstrated improvements in terms of speed and visual quality.   

2.6 Population-based Methods 

Population-based methods are well-known searching methods that perform search processes 

that demonstrate the evolution of a set of points in the search space (Blum & Roli 2003). They 

provide a natural way for the exploration of the search space. The performance of these 

methods is strongly dependent on the way of manipulating the population. Genetic algorithms 

and ant colony optimisation are two popular stochastic methods which belong to this category. 

Finding near-optimal solutions with these methods is secured, however, a global convergence 

is not always guaranteed.  

2.6.1 Genetic Algorithms 

The genetic algorithms approach was applied to the graph layout problem as it is considered to 

be a good global optimiser for many optimisation problems. Genetic algorithms are stochastic 

global search methods that work with a population of candidate solutions and try to optimise 

these by means of three basic principles: selection, recombination, and mutation. The initial 

population is randomly chosen. Then, in every subsequent generation, new candidate solutions 

are produced by selecting two solutions, with higher probability of selection for better 

solutions, recombining parts of these solutions to form one or two offspring, and mutating the 

resulting offspring. Finally, the offspring is inserted into the population and the worst solution 

is deleted (Dorigo & Di Caro 1999).  

Genetic algorithms have been successfully adapted in many single criterion and multi-

criteria optimisation problems (Fonseca & Fleming 1993; Murata et al. 1996; Konak et al. 

2006; Coello et al. 2006). This search-based technique has also targeted the graph drawing 

problem. Kosak et al. (1991) and Kosak et al. (1994) proposed a genetic algorithm-based 

approach for drawing graphs under a number of visual constraints. The proposed algorithm 
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produces graphs with good quality in addition to its flexibility. It can be easily adapted to take 

new layout aesthetics into account. However, the major problem in this algorithm is its slow 

rate of convergence. It initially makes rapid progress towards a solution, but then it converges 

very slowly to a global optimum (or at least to a good local one).  

A genetic algorithm-based approach that minimises the number of edge crossings in 

bipartite graphs, when the order of the nodes in one of the node subsets is fixed, was proposed 

in Mäkinen & Sieranta (1994). The experimental results show that the proposed algorithm 

outperforms some well-known heuristics that were previously applied on the bipartite graph 

drawing problem, such as the barycentre heuristic and the median heuristic, especially when 

applied on sparse graphs.   

Branke et al. (1996) presented a genetic algorithm with a local fine tuner, based on the 

spring algorithm, for the drawing of undirected graphs with straight-line edges. According to 

some preliminary results, the algorithm shows its ability to produce layouts with a minimal 

number of edge crossings on all tested graphs. The algorithm benefits from the combination of 

the genetic algorithm and the spring algorithm to produce good layouts for a large class of 

graphs with implicit symmetry, similar spring lengths, and even distribution of nodes. Varying 

the weights of the criteria in the fitness function gives some control over the final appearance 

of the graph layout.  

The layouts found by the algorithm have good general structures, but they require some 

fine tuning. Moreover, the comparatively long running time of the algorithm is its main 

disadvantage. One reason for the high time complexity of the algorithm comes from the 

crossover operator that was used to solve the competing conventions problem which states 

that a recombination of two good parents may yield a very poor offspring (Branke et al. 1996).  

A similar work was introduced by Eloranta & Mäkinen (2001). This work proposed a 

genetic algorithm that nicely draws undirected graphs of moderate size. But the algorithm still 

suffers from the lack of a proper crossover operation that would speed up its computations by 

decreasing the number of generations needed.  



26 

 

 

Vrajitoru (2009) proposed a multi-criteria optimisation approach, using genetic 

algorithms, to the graph drawing problem. The study addressed the problem of building 

consistent graph layouts for weighted graphs following a specific geometric shape. The 

proposed genetic algorithm was compared to force-based algorithms. For this problem in 

particular, force-based algorithms were faster and more efficient in terms of performance. 

However, with the genetic algorithm approach, geometric shapes that present interesting 

geometric properties were obtained and they were visually more pleasing compared to force-

based algorithms. 

In summary, genetic algorithms have been successfully used for single-criterion and multi-

criteria graph drawing. However, there are two major drawbacks: the slow rate of convergence 

to global optimum; and the long execution time due to the lack of a proper crossover operator.   

2.6.2 Ant Colony 

Ant colony optimisation is another population-based method that was also applied in the field 

of graph layout but it is not as common as genetic algorithms. This method takes inspiration 

from the foraging behaviour of some ant species (Dorigo et al. 2006). These ants deposit a 

substance on the ground to guide other members in the colony to follow a favourable path. 

The chemical substance trails enable ants to find short paths between their colony and food 

sources. The ant colony system exploits a similar technique for solving optimisation problems.  

In the field of graph drawing, ant colony optimisation was applied to draw a special type 

of graphs related to business process diagrams (Jancauskas et al. 2012). This problem is 

defined as redrawing the lines that represent the sequence flow for fixed flow objects and 

defined sequence flow, in a pleasant layout. The problem was reformulated as a multi-criteria 

combinatorial optimisation problem, where aesthetic criteria, such as the length of lines and 

the number of line crossings and bends, were considered in a fitness function that should be 

minimised. The ant colony was applied on randomly generated test problems with different 

complexities. The experimental results showed that ant colony optimisation is a promising 

technique to solve this type of problem.  

The automatic schematising of transport network data sets is another application where ant 

colony optimisation was used (Ware & Richards 2013). The problem is defined as generating 
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an alternative network from an initial network layout by moving its vertices, reorienting 

edges, and increasing or decreasing the lengths of its edges. An ant colony system was 

implemented for the purpose of producing better results and in order to ensure a faster 

execution time compared to the other search-based techniques which were used for 

schematising transport networks. The system was tested and evaluated empirically. The results 

of the experiments showed that the ant colony system can be effectively used in schematising 

transportation maps since it outperformed previous algorithms which were applied for the 

same purpose, in terms of the quality of the generated maps and algorithm’s execution time.   

Ant colony optimisation was broadly applied to many multi-criteria optimisation 

problems. These problems include: the vehicle routing problem with time window constraints 

(Gambardella et al. 1999), the transportation problem with bi-objective combined in a 

weighted sum (Parragh et al. 2008), the bi-objective scheduling problem (Iredi et al. 2001), 

portfolio optimisation (Doerner et al. 2006), and the quadratic assignment problem (López-

Ibánez et al. 2004).  

In summary, the ant colony approach is not widely used in the field of graph drawing, but 

it showed promising results in the graph drawing applications in which it was used in. The 

long running time was its major disadvantage (Jancauskas et al. 2012).   

2.7 Neighbourhood Search-based Methods 

Unlike the population-based methods which perform searching processes that describe the 

evolution of a set of points in the search space, neighbourhood search-based methods work on 

a single solution at a time. This searching technique describes a trajectory (path) in the search 

space during the search process starting from a single solution (Blum & Roli 2003). Hill 

climbing, simulated annealing, tabu search, and path relinking, are four different optimisation 

techniques that go under the umbrella of neighbourhood search methods. Many graph layout 

algorithms in the literature used neighbourhood search-based methods, such as simulated 

annealing and hill climbing which are considered the most popular neighbourhood search 

methods. In the following subsections, we demonstrate different graph drawing and multi-

criteria applications where simulated annealing and hill climbing were used. Then, we 
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dedicate separate sections for describing tabu search and path relinking as they form the core 

of the algorithm proposed in this research.   

2.7.1 Simulated Annealing 

Simulated annealing is a search-based technique that has been widely used in a variety of 

optimisation problems. It is inspired by the process of cooling and freezing a metal into a 

crystalline structure with minimum energy. The annealing process was firstly proposed by 

Metropolis et al. (1953). This search-based approach models the physical process of heating a 

material and then slowly cooling the temperature to decrease defects that minimises the 

system energy. It is usually used for large-scale combinatorial optimisation problems and 

implemented in a way that tries to escape from a local minimum to a global minimum by 

applying uphill moves (moves that spoil, rather than improve, the temporary solution). These 

moves allow the approach to escape from a local minimal solution but with no guarantee that a 

global minimum can be reached eventually. This technique was applied on many single-

criterion applications (Christensen et al. 1995; Ware et al. 2003) and multi-criteria 

applications (Ulungu et al. 1998; Suman & Kumar 2006; Smith et al. 2008; Li & Landa-Silva 

2011).  

The simulated annealing approach was firstly used for the graph layout problem by 

Davidson & Harel (1996) to draw general undirected graphs with straight line edges taking 

into account several drawing aesthetics: distributing nodes evenly, making edge lengths 

uniform, minimising edge crossings, and placing nodes not too close to edges. All these 

criteria were combined into a meaningful function that could be subject to the general 

optimisation fitness function.  

The algorithm starts by choosing an initial configuration (initial graph layout) and initial 

temperature. Then it repeats the following steps for a fixed number of times: a new 

configuration is chosen from the neighbourhood of the current configuration (i.e. moving only 

one node in the current configuration to a new location in a range of perimeter for a circle 

which becomes smaller with time to get more accurate results). The fitness function of the 

new configuration is computed and compared to the current configuration’s fitness function. 

The configuration changes according to the one with the minimum value of the fitness 
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function. Once no improvements are made, the temperature is decreased and the process is 

repeated until a termination rule is satisfied.  Fine tuning iterations are applied on the fitness 

function by adding the criteria that deal with distances between the nodes and edges.  

The algorithm produces nice graph layouts for small size graphs, and it also has a similar 

computational performance to the spring embedder approaches described earlier. However, 

the algorithm does not perform well for graphs of larger sizes. Another drawback of this 

approach is that it finds values very close to the global minimum but seldom does it detect the 

global minimum itself (Davidson & Harel 1996). An example of a graph layout produced by 

this algorithm is shown in Figure 2.10.  

 

Figure 2.10 An example of a graph layout using the algorithm proposed in Davidson & Harel (1996) 

An adjustment to the simulated annealing approach was made in the algorithm proposed 

by Brank (2004). The algorithm applies a few adjustments to the simulated annealing 

approach discussed in Davidson & Harel (1996) so that the fitness function can be minimised 

using partial differentiation and minimisation using the gradient descent. Since the fitness 

function is partially differentiable with respect to all its independent variables, its gradient 

vector can be computed. This vector, once computed on a specific node, represents the 

direction in which the node should move to increase the value of the fitness function. Thus, 

this algorithm should move the node to the opposite direction to minimise the value of the 

fitness function.  

Applying the gradient descent technique has some challenges. For example, the fitness 

function should be expressed explicitly in terms of coordinates, as its derivative will be found. 
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Also some criteria, such as minimising edge crossings, are discontinuous and not 

differentiable. In Brank (2004), the gradient descent chooses a reasonable minimum length of 

each step to prevent the algorithm from falling into a local minimum too early. But the 

algorithm is still slow when being applied on larger graphs.  

Lin et al. (2011) proposed an effective simulated annealing-based algorithm for drawing 

mental-map-preserving graphs with straight lines of general undirected graphs including six 

aesthetic criteria. Mental-map-preservation is about keeping the positions of the nodes as 

stable as possible as the graph changes. Preserving a mental map is an important aspect in 

graph drawing, as it allows the user to recognise the redrawn layout of the modified graph 

using an external visual representation instead of relying entirely on memory (Coleman & 

Parker 1996; Archambault & Purchase 2013). Similar to Davidson & Harel (1996), the 

implementation includes flexibility in terms of the weights of the graph aesthetics since the 

user can manually change those weights according to his/her preferences. Also, the algorithm 

incorporates multi-criteria simultaneously in one objective function for graph layout unlike 

previous works using a mental map which only included a single criterion at a time (Böhringer 

& Paulisch 1990; Misue et al. 1995; He & Marriott 1998). The algorithm guarantees the 

reduction of time required to relearn the modified drawing, but it is limited to graphs with a 

small size only. In addition to the experimental evaluation, the work includes a student-based 

questionnaire analysis for a better justification of the performance of the proposed algorithm.  

In summary, simulated annealing is widely used in the field of graph drawing. It works 

successfully with small graphs but it is too slow when applied to large graphs. It adds an 

element of non-determinism in order to escape from local optima in the search space that 

requires a large number of iterations to obtain a good solution. Our proposed approach in this 

thesis should overcome this drawback by introducing a memory-based structure which 

excludes previously visited solutions and low quality solutions, consequently speeding up the 

execution time of the drawing process.  

2.7.2 Hill Climbing 

The second search-based approach that has been used in the field of graph drawing is hill 

climbing. Hill climbing is one of the simplest search-based algorithms used in the field of 
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artificial intelligence. It is good for finding a local optimum but it is not guaranteed to find the 

global optimum out of all possible solutions. It works by iteratively improving a given 

solution that is often selected in a random way, by applying a transformation (variation) in the 

current solution or picking any solution in its neighbourhood. Then, the new solution is 

compared to the old one. If the new solution is better than the old one, the new solution 

substitutes the old one. This process is repeated until no more improvement is recognised on 

the current solution.  

Hill climbing has been previously used in targeting single-criterion and multi-criteria 

optimisation problems (Díaz & Suárez 2001; Coello et al. 2006; Yıldız 2009; Bandyopadhyay 

& Saha 2012). In Flower et al. (2003), an aesthetic-based hill climbing method to draw Euler 

diagrams was proposed. The work concluded that it is possible to enhance the understanding 

of Euler diagrams with good layouts, using hill climbing, by defining a suitable set of metrics.  

Hill climbing has also been used in the field of graph drawing to minimise the number of 

edge crossings (Rosete-Suárez et al. 1999). The experiments conducted on random graphs of 

different sizes showed that stochastic hill climbing outperforms efficient and popular search-

based techniques, such as evolution strategies and genetic algorithms.       

Stott et al. (2011) used the hill climbing approach in implementing an automatic 

mechanism for drawing metro maps. A good metro map layout could be evenly spaced 

stations, running lines at regular angles and placing labels in unambiguous locations. 

Therefore, Stott et al. (2011) applied multi-criteria optimisation using five different aesthetics 

(angular resolution, average edge length, balanced edge length incident to the same station, 

line straightness, and octilinearity) in a weighted sum to measure the esthetical quality of the 

graph. In addition to these criteria, the following rules were taken into account for each 

station: restricting the movement of stations to be bounded within a certain area, maintaining 

the relative positions of the stations, avoiding node-edge occlusions, and preserving the 

ordering of edges incident to a station. A hill climbing algorithm was used to reduce the value 

of the weighted sum and find improved map layouts. Since hill climbing does not guarantee 

finding the global minimum and in order to avoid local minima Stott et al. (2011) applied a 

clustering technique to the map. The hill climber moves both stations and clusters when 
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finding improved layouts. The mechanism produced good map layouts and in some cases 

better than both published and distorted layouts. However, the performance of the algorithm 

was slow. To speed it up, Stott et al. (2011) suggested avoiding the comparison between nodes 

that are far away from each other and reusing the calculations from previous iterations. 

Many graph drawing algorithms in the literature that use search-based techniques, such as 

simulated annealing, genetic algorithms and hill climbing, produce good layouts but they have 

great potential for improvement. For example, simulated annealing adds an element of non-

determinism in order to escape from local minima in the search space. This would slow down 

the performance of the algorithm since this stochastic behaviour means that a larger number of 

iterations would be necessary to reach a minimum in the search space.  Genetic algorithms, on 

the other hand, have a slower rate of convergence compared to simulated annealing and hill 

climbing. It initially makes rapid progress towards a solution, but then it converges very 

slowly to a global optimum. The main problem with hill climbing is that it gets trapped in 

local optima. Our proposed approach in this thesis uses an intensification technique based on a 

combination of tabu search and path relinking that improves the quality of solutions and 

speeds up the algorithm’s execution time.  

2.8 Tabu Search 

Tabu search is a general technique that was proposed by Fred Glover (Glover 1986; Glover & 

Greenberg 1989; Glover 1989) for finding good solutions to combinatorial optimisation 

problems. Many approaches were proposed to tackle this type of problems, and the majority 

thereof were based on local search. In these approaches, the quality of solutions and the 

algorithm’s computing time are dependent on the number of neighbourhood moves performed 

in each iteration (Gendreau & Potvin 2014).  

Tabu search could be considered as a neighbourhood search method (like simulated 

annealing) but it takes a more aggressive approach. It proceeds on the assumption that there is 

no value in choosing an inferior solution unless it is necessary, as in the case of escaping from 

a local optimum (Lim & Chee 1991). In other words, tabu search improves the efficiency of 

the exploration process by keeping track of local information (like the current value of the 

objective function) along with some information related to the exploration process. This 
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systematic use of memory is an essential property of this searching technique. In addition to 

saving the value of the best solution visited so far (like most exploration techniques), tabu 

search also keeps information on the itinerary through the last solutions visited. This 

information will be used to guide the move from solution i to the next solution j to be chosen 

in the set of neighbourhood solutions to i. The role of the memory is to restrict the choice of 

some subset of the neighbourhood set of node i, by forbidding moves to some neighbour 

solutions (Hertz et al. 1995). At each iteration of the exploration process, it selects the best 

neighbourhood solution. This is unlike hill-climbing, as it might make a down-hill move. 

Therefore, this technique does not run out of choices for the next move. However, this might 

lead in cycling by trapping the algorithm at locally optimal solutions. This problem has been 

resolved by introducing two structures called Tabu lists and aspiration functions which are 

used to keep information about past moves in order to respectively constrain and diversify the 

search for good solutions (Lim & Chee 1991). A flow chart that demonstrates a simple tabu 

search procedure is given in Figure 2.11.  

The structure of tabu lists might vary from one problem to another depending on the 

nature of the problem. However, the most simplified form of tabu list is a linear list that stores 

the k most recent moves. The purpose of this list is to constrain the direction of search by 

preventing the algorithm from going back to a state that was reached previously. Using this 

structure might avoid being trapped in any local optimum. Tabu conditions are satisfied if the 

current move tries to undo a move previously made that is still in the tabu list. Another 

structure has been introduced called the aspiration function which has the ability to overrule 

tabu conditions by accepting some moves in the tabu list that look attractive in spite of their 

statuses. A tabu move is said to be attractive when applied on a current solution if it gives a 

better solution than the best found so far. Such a move might be accepted in spite of its status. 

This helps to diversify the search and encourage the exploration of new regions in the search 

space (Lim & Chee 1991).  

The memory used in tabu search is both explicit and attributive (Glover & Laguna 1997). 

The explicit memory records complete solutions, typically consisting of elite solutions visited 

during the search. An extension of this memory records highly attractive but unexplored 

neighbours of elite solutions. The memorised elite solutions (or their attractive neighbours) are 
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used to expand the local search. On the other hand, tabu search uses attributive memory for 

guiding purposes. This type of memory records information about solution attributes that 

change in moving from one solution to another. 

 

Figure 2.11 A flowchart of a simple tabu search procedure 

An additional feature of tabu search is applying intensification and diversification. In the 

search process, it might be useful to intensify the exploration in some region because it may 

contain some acceptable solutions. This can be obtained by introducing a new term in the 

objective function that assigns a high priority to the solutions in that region that have common 

features with the current solution (i.e. penalise solutions far from the current one). This should 

be done within a limited number of iterations and then the search process should move to 

another region. Diversification will be responsible for moving the exploration process over 

different regions. Additional terms can be introduced in the objective function that penalises 
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solutions that are close to the current one (i.e. to force the search process to jump to different 

regions) (Hertz et al. 1995). Algorithm 2.1 is an outline of a simple tabu search approach 

(Glover 1989; Glover 1990).  

Tabu search can be applied on our problem for drawing a multi-criteria graph layout, but 

the following major points should be thoroughly investigated:  

•  The generation process of neighbourhood solutions. 

•  The structure of tabu lists and how solutions are added and deleted to/from the lists 

(intensification process).   

•  The definition of the aspiration function and how to update it (diversification process).  

•  The convergence properties of tabu search. 

 
1. Select an initial solution x ∈ X.  

Let x* = x, where x* denotes the best solution currently found.   

Set the iteration counter i = 0  

Begin with an empty set of tabu moves T 

2. If S(x) - T is empty, go to Step 4, where S(x) is the set of all possible neighbourhood moves. Otherwise, 

set i = i + 1 and select si ∈ S(x) - T such that si(x) is OPTIMUM(s(x):s ∈ S(x) - T). 

3. Let x = si(x). 

If C(x) < C(x*) let x* = x, where C is an objective function. 

4. If a chosen number of iterations has elapsed either in total or since x* was last improved, or if S(x) = ∅ 

upon reaching this step directly from Step 2, stop. Otherwise, update T by adding x if it satisfies tabu 

conditions and return to Step 2.  

Algorithm 2.1 Simple tabu search approach (Glover 1989; Glover 1990) 

Tabu search was used in solving multi-objective optimisation problems (Baykasoglu et al. 

1999). The proposed algorithm was used to solve four different applications in different areas. 
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In every application, the algorithm’s solution was at least as good as, if not better than, the 

reported results using different search-based techniques.  

The solution structure of tabu search, in working with more than one solution 

(neighbourhood solutions) at a time, enables this approach to be applied to multiple objective 

optimisation problems. The main stages of the basic tabu search algorithm are: initial solution, 

generation of neighbours, selection and updating. These stages are typical for any tabu search 

approach that works on single-objective optimisation problems. However, to enable the tabu 

search algorithm to work with more than one objective, the selection and updating stages were 

redefined. In addition to the tabu list, two lists were defined, the Pareto list and the candidate 

list. The Pareto list collects the selected non-dominated solutions found by the algorithm. The 

candidate list, on the other hand, collects all other non-dominated solutions that were not 

selected as Pareto optimal solutions in the current iteration. These solutions may become seed 

solutions if they maintain their non-dominated status in later iterations. The candidate list 

gives the opportunity to diversify the searching process (Baykasoglu et al. 1999). 

Gandibleux et al. (1997) presented an algorithm based on the tabu search approach for 

solving multi-objective combinatorial optimisation problems, and was able to determine the 

efficient set of non-dominated solutions or at least a good inner approximation set of 

solutions. 

It is always possible to use all basic tabu search techniques in multi-objective optimisation 

(Hansen 1997). The aspiration criterion allows the searching process to select neighbourhood 

solutions that can contribute to the non-dominated set even if they are the results of tabu 

moves, instead of only checking the best, non-tabu neighbour. Also, the neighbours resulting 

from tabu moves can be accepted, in some cases, as best neighbours.  

In basic tabu search, whenever there is a badly connecting neighbourhood function or 

when the neighbourhood function induces wide valleys in the objective space, it might be 

needed once in a while to sample new solutions in order to be able to search the whole feasible 

set. This can be done by creating new, randomly generated solutions instead of duplicating 

existing solutions. But it can be more effective, in a systematic or probabilistic fashion, to use 
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more than one neighbourhood function so that these connect the whole feasible set (Hansen 

1997).  

Moreover, the neighbourhood function might lead to generating many neighbours for each 

solution. Therefore, it is more efficient to make moves based on a probabilistic or systematic 

sampling of the neighbourhood, or to reduce the neighbourhood size. This would be useful in 

multi-objective optimisation problems because they have an n-dimensional objective 

boundary to discover and it is also time consuming to remain too long at each locality. 

Choosing the appropriate neighbourhood function might make it possible to locate the best 

neighbour without explicitly having to generate all the neighbours (Hansen 1997).   

In Thakur & Dhiman (2011), it was concluded that tabu search can easily handle the 

complicating constraints that could be found in real-life applications. However, this searching 

technique might fail for two main reasons: an insufficient understanding of the basic concepts 

of the tabu search method besides a lack of understanding of the problem at hand. Selecting a 

proper search space and an effective neighbourhood strategy requires significant problem 

knowledge. Tabu search, like all meta-heuristic methods, needs to achieve both depth and 

breadth in its searching process; depth search is usually not a problem for tabu search, as it 

generally finds quite good solutions early in the searching process, whereas breadth search can 

be a critical issue. Therefore, it is extremely important to develop an effective diversification 

scheme. 

Other research studies and applications that used tabu search as a technique for optimising 

problems with multi-criteria can be found in Brandao & Mercer (1997), Grandinetti et al. 

(2012), Cordeau & Maischberger (2012), and Escobar et al. (2013).  

Tabu search was previously used in the field of graph drawing with a single criterion. An 

approach was proposed in Laguna et al. (1997) to minimise edge crossings in multi-layer 

hierarchical digraphs. The nodes of these diagraphs must lie on a set of equally spaced 

horizontal or vertical lines (layers) and all the edges flow in the same direction, as shown in 

Figure 2.12. Garey & Johnson (1983) proved that this problem is NP-hard even if the digraph 

has two layers only. The proposed tabu search approach searches for optimal or near-optimal 

orderings of a single layer in between its adjacent layers whose orderings are fixed 
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(intensification phase). The algorithm also diversifies the search by applying an importance 

sampling procedure, based on the degree of each node, where layers are treated differently 

according to their level of importance.  Then a switching procedure is performed on a 

randomly selected node in a certain layer (diversification phase).   

Two versions of the proposed algorithm were deployed such that the first version focuses 

on the computational time when compared to methods based on simple ordering rules, 

whereas the second version tries to find high-quality solutions within a reasonable computing 

time. The only difference between the two versions was the termination criterion of the 

algorithm. The experiments were conducted on a set of 200 randomly generated graphs and 

the comparisons were made with effective techniques that were previously used in the field of 

edge crossings minimisation such as the barycentric and the semi media methods with 

switching. The experiments showed that the proposed tabu search approach is quite 

competitive in terms of computational time and it also produces graphs with better quality, 

although the difference becomes smaller at graphs with higher densities. 

 

Figure 2.12 Hierarchical Diagraph (Laguna et al. 1997) 
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Many heuristic approaches (including tabu search) were developed to solve the bipartite 

drawing problem which is a special case of multi-layer hierarchical graphs (Valls et al. 1996; 

Marti 1998; Laguna & Marti 1999). In Martı́ & Laguna (2003), extensive computational 

experiments were conducted to explore the behaviour of the most relevant heuristic and meta-

heuristic approaches developed to solve the problem of bipartite drawing, such as the 

Barycenter method (Sugiyama et al. 1981), the median heuristic method (Eades & Wormald 

1994), Tabu search method (Marti 1998), greedy randomised adaptive search procedure 

(GRASP) with path relinking (Laguna & Marti 1999), and others. It is a 2-layer graph where 

nodes are partitioned into two disjoint subsets (left and right layers), and edges are connecting 

nodes between the two layers. In that work, the directions of the edges were omitted as they 

have no effect on crossings. A bipartite graph drawing is specified with a unique y-coordinate 

for each node, as shown in Figure 2.13. The experiments used around 3000 randomly 

generated graphs to compare between the methods. The research concluded that the tabu 

search method is more appropriate to use in solving the bipartite drawing problem as the 

density of graph increases with a reasonable computational time. On the other hand, the 

GRASP with path relinking produced better results with sparse graphs.  

Tabu search has shown good results for large instances of many NP-hard problems in a 

reasonable amount of time (Friden et al. 1989; Hertz & De Werra 1989). It has produced 

comparably fast solutions in some graph theory applications, such as graph partitioning (Lim 

& Chee 1991; Rolland et al. 1996; Benlic & Hao 2011), graph colouring (Hertz & De Werra 

1989), and weighted maximal planar graphs (Osman 2006). It has also outperformed many 

existing heuristics for solving the vehicle routing problem (Gendreau et al. 1994; Cordeau et 

al. 1997; Escobar et al. 2014). 
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Figure 2.13 Bipartite sample drawing (Martı́ & Laguna 2003) 

2.9 Path Relinking 

Path relinking has been proposed as an approach to integrate intensification and diversification 

strategies (Glover & Laguna 1997; Glover et al. 2000). This approach generates new solutions 

by exploring paths that connect high-quality solutions (elite solutions from the reference set) 

by starting from one of these solutions, called an initiating solution, and generating a path in 

the neighbourhood space that leads toward other solutions, called guiding solutions where 

initiating and guiding solutions represent the starting and ending points of the path. This is 

accomplished by selecting moves that introduce attributes contained in the guiding solutions 

(Laguna & Marti 1999). An illustration of a simple path is given in Figure 2.14. Unlike other 

evolutionary approaches, such as genetic algorithms, where randomness is a key factor in the 

creation of offspring from parent solutions, path relinking utilises systematic, deterministic 

rules for combining elite solutions. Attributes from the guiding solution are gradually 

introduced into the intermediate solutions, so that these solutions contain a limited number of 
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characteristics from the initial solution and more from the guiding solution while moving 

along the path.  

Path relinking is a fairly new approach and it has been applied in several computational 

problems with great success (Aiex et al. 2003; Resende & Ribeiro 2003; Ghamlouche et al. 

2004; Oliveira et al. 2004; Souza et al. 2004; Aiex et al. 2005).  

The following three components are crucial in the design of the path relinking technique 

(Ho & Gendreau 2006):  

•  Building the reference set,  

•  Choosing the initial and guiding solutions,  

•  Constructing a neighbourhood structure for moving along paths between initial and 

guiding solutions.   

 

Figure 2.14 Path relinking: original path (solid line) and one possible relinked path (dotted line) in the 
solution space 

Algorithm 2.2 shows a simple path relinking procedure that demonstrates how these 

components interact (Rahimi-Vahed et al. 2013).  
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1. Generate a starting set of solutions.  

2. Designate a subset of solutions to be included in the reference set. 

while the cardinality of the reference list > 1  

•  Select two solutions for the reference set 

•  Identify the initial and guiding solutions 

•  Remove the initial solution for the reference set 

•  Move from the initial solution toward the guiding solution, generating intermediate solutions 

•  Update the reference list 

3. Verify stopping criterion: Stop or go to 1.   

Algorithm 2.2 Simple path relinking algorithm (Rahimi-Vahed et al. 2013) 

Note that using path relinking periodically in a search procedure is intended to speed up 

the identification of good solutions. Combining tabu search with path relinking is motivated 

by the desire to tunnel through blocked off areas created by the tabu solutions (Glover 1997). 

The proposed method in Ho & Gendreau (2006) for solving the vehicle routing problem 

produced computational results that show that tabu search with path relinking is able to 

generate better solutions than pure tabu search using considerably less computing time. Each 

of the three components of path relinking used in the proposed method can be implemented in 

different strategies as described in Ghamlouche et al. (2004). We summarise these 

components as follows:   

i. Building the reference set 

The quality of generated solutions is affected by the quality and diversity of the solutions 

included in the reference set. The algorithm builds the reference set during the tabu search 

phase and is enriched during the path relinking phase. Ghamlouche et al. (2004) proposed 

several strategies for building the reference set such as:  

a. It is built with the solutions that at some point during tabu search become the best 

overall solutions (i.e. linking the overall improving solutions).  
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b. It contains the best local minima encountered during the tabu search phase, because 

usually local minimum solutions share some common characteristics with optimum 

solutions.  

c. It is built by selecting local minimum solutions that have a better objective function 

value than those already in the reference set. The time aspect is introduced into the 

selection process since the better solutions are usually encountered when the search 

has been proceeding for some time. This strategy considers less local minima obtained 

at that stage and consequently good solutions are found early during the searching 

process. 

d. This strategy ensures both the quality and the diversity of the solutions when building 

the reference set. Starting with a large set of good solutions S, the reference set is 

partially filled with the best solutions found in S to ensure the quality of the solutions. 

Then, the reference set is extended with solutions that significantly differ from those 

that already exist in the set.  

ii.  Choosing the initial and guiding solutions  

The quality of the new generated solutions during the path relinking phase is highly 

dependent upon the initial and the guiding solutions selected from the reference set R. 

Ghamlouche et al. (2004) suggested five criteria for choosing the initial and guiding 

solutions:  

a. The guiding and initial solutions are defined as the best and worst solutions in R, 

respectively. 

b. The guiding solution is chosen to be the best solution in R, while the initial solution is 

the second best one.  

c. The guiding and initial solutions are chosen randomly in R. 

d. The guiding solution is chosen as the best solution in R, while the initial solution is 

defined as the solution with maximum Hamming distance from the guiding solution. 
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e. The guiding and initial solutions are chosen as the most distant solutions in R.  

iii.  Constructing a neighbourhood structure for moving along paths between initial and 

guiding solutions   

The aim of the path relinking phase is to progressively introduce the attributes of the 

guiding solution into the solutions obtained by moving away from the initial solution. In 

the path relinking phase, the algorithm must ensure that a progress towards the guiding 

solution is made. Similarities and differences in the structure of the initial and guiding 

solutions should be properly identified. Identical parts of the two solutions should remain 

unchanged during the process.  To clarify the importance of this phase, we highlight the 

algorithm proposed in Ho & Gendreau (2006) for solving the vehicle routing problem. 

Two neighbourhood methods were used. The first neighbourhood, N1(x), is made up of all 

the potential solutions that can be reached from x by moving customers from their current 

route to another while taking into account the structure of the guiding solution. The second 

neighbourhood, N2(x) is defined similarly as the set of all potential solutions that can be 

reached from x by exchanging two customers i and j between their respective routes while 

taking into account the structure of the guiding solution.    

In Ho & Gendreau (2006), the path relinking procedure is triggered within tabu search for 

a predefined number of times. In each call, path relinking generates several paths with 

different initial and guiding solutions from the reference set such that the initial and guiding 

solutions are chosen according to one of the criteria described earlier. When the path is longer, 

the chance of producing good solutions is better. After the path relinking phase is finished, 

tabu search continues with the solution it had before path relinking was triggered. A 

calibration process was performed to adjust the frequency of triggering the path relinking 

procedure. This calibration process is important because if path relinking is performed too 

frequently, the search will tend to focus on a small portion of the search space. However, if it 

is performed very rarely, its impact will be negligible. Thus, it was important to find a balance 

between these two extremes.  

A path relinking-based algorithm combined with a greedy randomised adaptive search 

procedure (GRASP) has been proposed to target the max-min diversity problem (Resende et 
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al. 2010). It is an NP-hard problem, where subsets of elements should be selected from a given 

set such that the diversity among the selected elements is maximised. The main purpose of 

that work was to extensively introduce path relinking as a competitive search-based method 

for solving combinatorial problems. A comparison was performed with simulated annealing 

and tabu search that were previously proposed to target the max-min diversity problem. The 

results of the comparison were in favour of a variant of path relinking combined with GRASP.   

The combination of tabu search and path relinking was also used to tackle the job shop 

scheduling problem (Peng et al. 2014). The experimental results show that this combination 

produces competitive results compared to state of the art algorithms for the job shop 

scheduling problem in the literature demonstrating its effectiveness in terms of solution 

quality and computational efficiency. Both techniques operate interchangeably, such that path 

relinking is used to generate solutions on the path from the initial solution to the guiding 

solution, while the purpose of tabu search is to improve the generated solution to a local 

optimum.    

The algorithm starts by generating a random population of a predefined size of feasible 

solutions. Tabu search is used to optimise each solution in the population to become a local 

optimum. The optimisation of each solution stops when the optimal solution is found or no 

improvement on the best objective value is made after a given number of iterations. The 

reference set is updated by selecting a solution (from the initial improved population) that 

gives the minimum value of the objective function. Then, a pair of two solutions (initial and 

guiding) is randomly selected from this population. A path relinking procedure is applied on 

the selected solutions and returns the best solution in the path from the initial solution to the 

guiding solution. The returned solution is passed to a tabu search procedure with long 

iterations that will be compared afterwards to the solutions in the reference set and update it 

accordingly. The new generated solution is added to the reference set and the worst solution is 

removed. This process is repeated until a stopping criterion is met.  

A study that shows the effect of using path relinking in the context of multi-criteria 

optimisation problems was presented in Martí et al. (2015). A comparison between different 

variants of GRASP with path relinking was made with the best methods that were previously 
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applied on two hard bi-objective combinatorial problems. The comparison considered three 

different ways of implementation: firstly, each criterion is optimised independently; secondly, 

each criterion is optimised sequentially by alternating to guide the search; and thirdly, all 

criteria are combined into a single weighted objective function. The study concluded that 

some variants of path relinking were favoured compared to other heuristic methods.    

Path relinking demonstrated efficient performance when being applied coupled with 

neighbourhood search-based methods and population-based methods (Ribeiro & Resende 

2012). In addition to tabu search and GRASP, path relinking was successfully used in 

conjunction with different search-based methods, such as variable neighbourhood search, 

genetic algorithms, and scatter search (Canuto et al. 2001; Festa et al. 2002; Resende & 

Werneck 2004; Scaparra & Church 2005; Ribeiro & Vianna 2009).     

Path relinking has also been applied to specialist graph drawing tasks. In Laguna & Marti 

(1999), path relinking was coupled with a greedy randomised adaptive search procedure 

(GRASP) for the problem of minimising straight-line crossings in a 2-layer graph (bipartite 

graph) to search for improved solutions. According to the results, the most influential factor 

on the performance of the algorithm was the density of the tested graphs. With reference to the 

experiments which were performed in Martı́ & Laguna (2003) to compare between 14 

different heuristics, as described in the previous section, the combination of GRASP and path 

relinking produced better results for relatively low density graphs. The relinking process 

implemented in this algorithm could be summarised as follows:  

During the first three iterations of the GRASP, the set of elite solutions is formed. Starting 

from the fourth iteration, each generated solution is considered as an initiating solution and it 

is subject to a relinking process by performing moves on the path from the initial solution to a 

randomly chosen elite solution. A move along the path is made by choosing a node from the 

initial solution and placing it in the position occupied by the same node in the guiding 

solution. Afterwards, a sequence of position exchanges of nodes, that are one position away 

from each other, is performed until no more improvement in the crossings minimisation is 

found. Once this neighbourhood process is explored, the relinking continues from the solution 

defined before the exchanges were performed. The relinking process stops when the initial 
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solution matches the guiding solution. Note that, it is inefficient to apply the neighbourhood 

exploration process at each step of relinking since the two generated consecutive solutions 

after the relinking step differ only in the position of two nodes. Hence, a number of parameters 

that control the process of exchanges mechanism were introduced.   

2.10 Summary 

Throughout this chapter we have covered the area of graph drawing including graph layout 

aesthetics and graph drawing techniques. Existing research in each of these fields has been 

explored. We have discussed several search-based techniques that were previously used in the 

field of graph drawing. We have also described two neighbourhood search-based techniques 

(tabu search and path relinking) that were not previously applied to lay out multi-criteria 

general graphs with straight lines, and we have highlighted their effectiveness in many 

applications that involve multi-criteria optimisation. In the next chapter, we describe the 

features of our visualisation tool along with the operations that can be performed in order to 

test our graph drawing algorithms and perform all the experiments conducted in this research.
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Chapter 3 A Visualisation Tool 

In this chapter, we describe the visualisation tool that was used to perform all the experiments 

discussed in this thesis. The software was implemented using Java programming language 

(version 1.7.0; Java HotSpot™ 64-Bit Server VM 21.0-b17 on Windows 7). It consists of two 

main graphical frames: a frame that includes all the operations that can be performed such as 

drawing graphs, loading and saving graphs, generating random graphs, and running several 

neighbourhood search-based graph drawing algorithms; and another frame that allows the user 

to control the value of the parameter of each method and the weight of each aesthetic measure. 

We give a detailed description of each frame in the following two sections. Note that, the code 

can be accessed at the Dryad Digital Repository: https://doi.org/10.5061/dryad.k082rv8.  

3.1  Operations Frame 

The visualisation tool allows the user to choose from a list of operations displayed in a drop-

down menu inside a frame as shown in Figure 3.1. The list contains the following operations:  

 

Figure 3.1 A screen shot of the drop-down menu of available operations in our visualisation tool 
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•  Add nodes – This option allows the user to draw nodes. The user should place the 

mouse’s cursor on the required position within the canvas and then he clicks the 

mouse. The node will be displayed as a small square with a side-length of 12 pixels. 

An automatic ID (starting from 1) will be also assigned to the drawn node (see Figure 

3.2).  

 

Figure 3.2 Adding nodes to the canvas 

•  Add edges – This option allows the user to draw edges between nodes. The user clicks 

the mouse over the two nodes that form the end points of the edge to be drawn (see 

Figure 3.3).  Note that, our tool allows the user to draw simple graphs only. Self-

sourcing edges and multiple edges are not allowed. 
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Figure 3.3 Adding edges between the nodes shown in Figure 3.2 

•  Move nodes – This option allows the user to move nodes of a graph displayed within 

the canvas. The user clicks the mouse over the node that he wants to move and drags it 

to a new position (the edge will stretch and shrink accordingly as shown in Figure 3.4). 

Using this option, the user can change the layout of a drawn graph. For example, the 

user can change the initial layout of a given graph to test its effect on the drawing 

algorithms.  

 

Figure 3.4 Moving nodes and stretching / shrinking edges shown in Figure 3.3 
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•  Load and store graphs – These two options allow the user to load and save graphs 

from/to text files within a local directory. The file’s content begins with the number of 

nodes in the graph followed by the coordinates of each node (i.e. the first pair of 

numbers represents the horizontal and vertical coordinates of the node with ID 1; the 

second pair of numbers represents the horizontal and vertical coordinates of the node 

with ID 2; and so forth). Then, the information of edges comes after. Number of nodes 

that are adjacent to node number 1 along with their IDs are listed first, then the same 

information is listed for node number 2, and so forth.   

•  Generate random graphs – This option allows the user to generate simple random 

connected graphs. The random graph generator is based on the Erdos-Renyi model 

(Erdos & Rényi 1960; Daudin et al. 2008). It generates randomly connected graphs. 

The parameters to the generator are the number of nodes (see Figure 3.5) and the 

density of the graph. Once the user enters the number of nodes, the tool will calculate 

the minimum density (i.e. minimum number of edges required to keep the graph 

connected which equals to number of nodes minus one) and will show it to the user 

(see Figure 3.6). Note that, if the user enters a value larger than the maximum density, 

the tool will consider the graph as a complete graph (i.e. there is an edge between 

every pair of nodes). Random locations for the nodes are generated based on the size 

of the canvas where the graph is displayed. Then, the generator chooses random nodes 

as the end points of the edges. All random values were generated using the random 

method in Java. Self-sourcing edges and multiple edges between the same pair of 

nodes are not allowed. Finally, the graph generator tests the connectivity of the 

generated graph. Only connected graphs are accepted. A sample of a randomly 

generated graph with 4 nodes and 4 edges (i.e. density = 0.67) is shown in Figure 3.7.  

 

Figure 3.5 A frame prompting the user to enter number of nodes required in the random graph layout 
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Figure 3.6 A frame prompting the user to enter the required density (showing the minimum value that can 
be entered) 

 

Figure 3.7 A randomly generated graph layout 

In our implementation, once the random graph is displayed on the canvas, the user has the 

option to change the layout to another random layout by clicking on the canvas (see Figure 

3.8).  
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Figure 3.8 A different layout of the graph shown in Figure 3.7 

•  Select a graph drawing algorithm – The user has the option to select a drawing 

algorithm from a list of four neighbourhood search-based graph drawing algorithms: 

hill climbing, simulated annealing, tabu search, and path relinking (coupled with tabu 

search). The new layout is displayed on the canvas after applying the selected drawing 

algorithm. The values of parameters of each drawing algorithm can be controlled by 

the user using the other frame discussed in Section 3.2.   

•  Run on multiple graphs – This option allows the user to run a drawing algorithm on a 

file which contains information of multiple graph layouts. Then, it generates an output 

file that includes information about the fitness value of the drawn layout, the number 

of evaluated solutions and the execution time (in seconds) of the drawing algorithm. 

This operation was used in most the experiments discussed throughout this thesis. This 

option currently works for one drawing algorithm at a time. In order to switch to 

another drawing algorithm, it requires few lines of code to edit. We are planning to 

offer the user an easier way of algorithm’s selection in the future.    

3.2  Parameters and Aesthetic Measures Frame  

In multi-criteria graph drawing, the weight of each metric could change for each layout as it 

depends on the metric in which the user prefers to focus on. Therefore, we facilitate the 

parameter tuning process for each method and the selection of weight for each aesthetic metric 

by providing another frame that contains text fields where these values can be controlled by 
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the user (see Figure 3.9). The frame also shows the value of each individual aesthetic measure 

after optimisation, in addition to the value of the weighted sum of the fitness function. 

Additional information, such as number of nodes and number of edges of the graph displayed 

within the canvas, are also provided inside the frame. Note that, the number of evaluated 

solutions and the execution time (in seconds) of the drawing algorithm are displayed inside an 

alert box once the algorithm finishes execution. We will try to add these two values within this 

frame in the future.      

 

Figure 3.9 A screen shot of the frame which allows the user to control the value of the parameter of each 
method and the weight of each measure 

3.3 Summary 

In this chapter, we described the operations and the features of our visualisation tool that we 

used to perform all the experiments discussed in this thesis. In the next chapter, we introduce 

our proposed tabu search-based technique and we demonstrate how we apply it to draw graph 

layouts. Then, we compare it to the most popular neighbourhood search-based algorithms: hill 

climbing and simulated annealing.  
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Chapter 4 Neighbourhood Search-based Graph Drawing 
including Our Proposed Tabu Search Algorithm 

As discussed earlier in Chapter 2 (Section 2.5.2), there are several multi-criteria methods for 

graph drawing that are based on explicit cost functions that combine several metrics of graph 

layout quality. This approach has the advantage of allowing explicit, tuneable combinations of 

metrics to meet user preferences. However, such methods work slowly, typically taking a 

considerable time to lay out the graph. In this chapter, we want to show that we can improve 

the performance of such neighbourhood search-based systems by introducing the features of 

tabu search. This is the first time tabu methods have been applied to general graph drawing.  

 The main goal in this chapter is to improve the efficiency of neighbourhood search-based 

graph drawing algorithms by speeding up the drawing process using tabu search without 

sacrificing the layout quality. We are not looking for the global optimum solution, but aim to 

obtain a good solution quickly. Our contribution is to propose a tabu search-based approach as 

described in Section 4.5. But, in order to prove the efficiency of our method and its competence 

in relation to other neighbourhood search methods, a comparison was made with hill climbing 

and simulated annealing. Therefore, we introduce the implementation and parameter tuning of 

those two approaches first in this chapter using similar algorithms applied in Stott et al. (2011) 

for hill climbing and in Davidson & Harel (1996) for simulated annealing. In addition to the 

fact that these two methods are the most popular neighbourhood search-based methods, we 

chose these two methods because hill climbing is considered as one of the fastest search-based 

techniques to reach equilibrium, whereas simulated annealing allows more extensive search for 

the optimal solution and consequently usually produces better solutions compared to hill 

climbing (Talbi & Muntean 1993). Moreover, our tabu search method is close in concept to 

these methods as they share a large amount of code. In fact, the basic tabu search can be seen as 

simply the combination of hill climbing with short-term memories (Glover 1986). This means 

that it is more likely to be a fair comparison, with a low amount of bias in terms of 

implementation efficiency.   

 In this chapter, we describe the different search-based approaches which we applied in 

order to draw general graphs with straight lines. This is achieved by implementing 
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neighbourhood search-based methods which draw general graphs with multiple aesthetic 

criteria that are used in a weighted sum fitness function to measure the quality of the graph 

layout. The smaller the value of the fitness function, the better the quality of the graph layout. 

Whilst there have been empirical studies of what may be the most effective layout criteria 

(Purchase 2002), we are not overly concerned with the particular criteria or their weights. 

Increasing the value of the weight of a metric for a certain aesthetic means that we want to 

show the importance of that quality measure against the other aesthetics and expecting it to be 

visualised in the generated layout, while the opposite is the case when the value of the weight is 

decreased (Davidson & Harel 1996). In our experiment, the values of the weights in the fitness 

function have been fixed and are the same in all approaches. With reference to the time 

complexity analysis performed in Davidson & Harel (1996), increasing or decreasing the value 

of a weight for a certain metric does not have an effect on the number of evaluated solutions 

performed by the algorithm.  

 Our fitness function follows a standard approach for search-based graph drawing methods. 

It is similar to the fitness function used in Davidson & Harel (1996) with some changes in the 

selected aesthetics. We used four metrics for measuring the quality of the graph. These metrics 

represent the aesthetics of: distributing nodes evenly, making uniform edge lengths, minimising 

edge crossings, and improving angular resolution (refer to Chapter 2 for a detailed description 

of each criterion). All these metrics contribute in the graph quality fitness function that is 

computed as follows: 

fitness = w1*m1 + w2*m2 + w3*m3 + w4*m4 

where wi and mi are the weight and the measure for criterion i respectively. The problem in a 

multi-criteria optimisation function is that the value of a specific measure may dominate the 

others. Therefore, we applied a normalisation process to ensure that the value of each measure 

is between 0 and 1. It is not possible to determine unified weights that work well for all types 

of graphs, and indeed weights can vary according to application area and user preferences. 

Hence, we assigned the value 1 to all the weights such that w1=w2=w3=w4=1.  

 The rest of this chapter is organised as follows: Section 4.1 demonstrates the normalisation 

process we applied on the criteria (metrics) used in our fitness function; Section 4.2 describes 
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the local search space used by the three algorithms and the general procedure used for tuning 

their parameters; Section 4.3 describes the pseudo code for the hill climbing graph drawing 

algorithm along with the process of tuning its parameters; Section 4.4 describes the pseudo 

code for the simulated annealing graph drawing algorithm along with the process of tuning its 

parameters; Section 4.5 describes our proposed tabu search-based graph drawing algorithm 

along with the process of tuning its parameters; and Section 4.6 summarises the contents of this 

chapter.   

4.1 Normalisation of Metrics 

Multi-criteria optimisation algorithms seek to find a single optimised solution based on the 

weighted sum of all criteria. If all metrics get better or worse together, this conventional 

approach can effectively find the optimal solution. However, if there are conflicts between the 

metrics, then there is no single optimal solution. In most cases, there are infinitely many 

optimal solutions. An optimal solution in the multi-criteria optimisation context is a solution 

where there is no other feasible solution that improves the value of at least one criterion 

without deteriorating any other criterion. This is the notion of Pareto Optimality (Sunar & 

Kahraman 2001; Kim & de Weck 2005).  

The weighted sum formula allows the multi-criteria optimisation problem to be 

transformed into a single criterion optimisation function that is constructed as a sum of 

objective functions (metrics) mi multiplied by weighting coefficients wi (Grodzevich & 

Romanko 2006). The problem is formulated as follows:  

min � 
�∋�(7)												
)

�∗+
 

such	that	7	is	a	set	of	nodes	and	edges	that	form	a	graph, where	
� ≥ 0, ∀� = 1, …	, 1.	 
The problem in the multi-criteria optimisation function is that the value of a single 

measure might largely dominate the others. Also, as different measures can have different 

magnitudes, the normalisation of measures is required in order to obtain a solution consistent 

with the weights assigned by the decision-maker who has insights into the problem and is 

able to express relative importance of the measures.  
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In our graph layout problem, we have four different metrics that contribute in a single 

weighted sum optimisation function. Each measure has a different scale of values (i.e. the 

range of values of each measure differs from one measure to another). Furthermore, the node-

node occlusion measure (as described in Chapter 2 Section 2.4) might have a maximum value 

of infinity (when two nodes have the same coordinates). Therefore, normalising the values to 

a unified range (i.e. a range between 0 and 1) is required. 

We normalised the values of measures using the min-max method (Kotsiantis et al. 2006; 

Shalabi et al. 2006). This method assumes that the minimum (ΦΓ�Η)	and the maximum (ΦΓΙϑ) 

values of a measure (m) are known. Then it uses the following function for normalisation:  

∋ − ΦΓ�Η
ΦΓΙϑ − 	 ΦΓ�Η

 

This formula was directly applied on the measure of edge crossings since the minimum 

and maximum possible values for edge crossings can be easily calculated as follows:  

ΦΓ�Η = 0, 

ΦΓΙϑ = E * (E – 1) / 2 , where E is the number of edges. 

However, the normalisation process was slightly different with the measures of node-node 

occlusion, edge lengths, and angular resolution as the calculation of maximum value of these 

measures is not straight forward and in some cases it could reach infinity. Therefore, we 

performed the following process to normalise those measures:    

i. As the graph drawing algorithm goes through several iterations searching for 

candidate solutions, in the first iteration, we compute the value of each measure 

and we consider that solution as an initial solution vector. 

ii.  In all the subsequent iterations, for each measure, we compute the current 

maximum and minimum values of all the generated values (tracking a history of 

values) for each measure in order to use in the calculation of a normalised value 

between 0 and 1. For example, the normalised value of measure m at iteration i 

(mi), 	 



59 

 

 

ΚΛ∋ΜΝ�Ο�� = 	 ∋� − Π���
ΠΝΘ� − Π��	�	

where Π��� and ΠΝΘ� 	are the minimum and the maximum values of the measure at 

the ith iteration.  

iii.  This process is performed at each iteration until a solution is found.  

This is considered as an estimation of the normalised value for the measure. Calculating 

the normalised values using this method will not affect the performance of our drawing 

algorithm because we just compare the newly generated values with the current maximum 

(minimum) and we update the value accordingly.  

After applying all the above calculations, the value of each measure lies between 0 and 1 

and none of the measures dominates the others. Thus, the value of our fitness function is 

always a small non-negative value such that the maximum value is 4 and the minimum value 

is 0 since our fitness function consists of four measures. This normalisation process is also 

used in the field of neural networks to avoid neuron saturation where a neuron predominantly 

outputs values close to the asymptotic ends of the bounded activation function (Jayalakshmi 

& Santhakumaran 2011).  

Our graph drawing algorithms are applied to lay out general graphs that might have 

different properties. Therefore, assigning weights to the measures in the weighted sum 

formula would be an interactive process with decision-makers (users) who have background 

in graph layout. We cannot determine unified weights that work properly for any graph. Thus, 

the weights should be assigned by decision-makers according to their preferences of which 

measure they want to test. In our experiments, we assign the value 1 to all weights in order to 

avoid the domination of a measure over another. 

4.2 Common Procedures between Graph Drawing Algorithms 

In this section, we describe the basic local search procedure used in the three neighbourhood 

search-based graph drawing algorithms discussed in this chapter. We also provide a detailed 

description of the parameter tuning process that we applied to tune the value of each parameter 

in each algorithm.  
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4.2.1 Local Search Space  

In all the algorithms described in this work, we use a systematic exploration of the search 

space. For each node, we search the points (candidate solutions) around a square centred on 

the node at a given distance, as shown in Figure 4.1. Eight points around the square are 

checked (up, down, left, right, and the four corners). We compute the fitness value at each 

candidate solution, and we select the candidate solution that gives the lowest fitness value 

(currentFitness). In the case that there are multiple candidate solutions that share the 

lowest fitness value, we select the first encountered candidate solution starting from the right 

point around the square and move along the points of the square in a clockwise direction. This 

is how the fitness tie-breaks in all the methods discussed in this work.  

 

Figure 4.1 The points around the square represent the candidate solutions at each node 

Note that, using a geometric shape for defining a search space in the field of graph 

drawing was used earlier in Davidson & Harel (1996), and Stott et al. (2011) where a circle 

and a rectangle had been respectively used. However, since evaluating a multi-criteria fitness 

value is a lengthy process, we restrict the movements to eight points only to avoid the long 

execution time for re-evaluating the value of the fitness function with a large number of 

evaluated solutions. We use the same neighbourhood searching strategy with all the methods 

included in this work in order to make a fair comparison. This searching strategy can be easily 

adjusted with our implementation by increasing the number of repetitions from eight points to 

any larger number, but the execution time would be significantly longer. 

4.2.2 Parameter Tuning Procedure  

Each method has a different number of parameters that affect the performance of the method 

and the quality of the layouts generated by these methods. The parameters calibration process is 
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a key step in the development of any algorithm. Several experiments were conducted to tune 

the parameters of the three methods. The experiments show the effect of increasing and 

decreasing the values of the parameters on the method’s performance and the layout’s quality.  

 Parameter tuning is a common practice in search-based methods. Typically, one parameter 

is tuned at a time that may cause some suboptimal choices, since parameters often interact in a 

complex way. However, the simultaneous tuning of more parameters leads to an enormous 

amount of experiments. There are some technical drawbacks to parameter tuning based on 

experimentation that can be summarised as follows (Eiben et al. 1999):  

•  Parameters are not independent, but trying all different combinations systematically is 

practically impossible. 

•  The process of parameter tuning is time consuming, even if the parameters are 

optimised one by one, regardless to their interactions. 

•  For a given problem, the selected parameter values are not necessarily optimal, even if 

the effort made for setting them was significant. 

However, many researchers (Davidson & Harel 1996; Rosete-Suárez et al. 1999; Pacheco 

& Marti 2006; Gendreau & Potvin 2014) used the following process for tuning parameters: 

i.  Perform exploratory tests on a wide range of values for each parameter in order to 

select a robust set of initial values.  

ii.  Perform a systematic incremental procedure for testing the values of each single 

parameter at a time while fixing the values of the rest of the parameters at what 

appears to be reasonable.  

In computational experiments, it is recommended to divide the datasets into two subsets; 

one that is used in the algorithm design and the tuning of the parameters, whereas the other 

subset is used in the final experimentation after the parameters are calibrated. This is 

necessary for avoiding overfitting, i.e. the tuned parameters might be good for the dataset at 

hand, but they produce poor results in general with different datasets (Gendreau & Potvin 
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2014). Overfitting can be beneficial if we are trying to find the best set of values to parameters 

for a specific type of graphs with certain properties but it causes a problem when we are 

looking for more general results (Hawkins 2004).   

In the next sections, we describe the basic neighbourhood search-based graph drawing 

algorithms for hill climbing and simulated annealing, followed by our tabu search-based 

approach for graph layout. For each algorithm, we provide a detailed description of the 

parameters that the algorithm requires along with the results of the parameter tuning process.  

4.3 Hill Climbing 

Hill climbing has been applied as a multi-criteria search-based method in the field of graph 

drawing in Rosete-Suárez et al. (1999), and Stott et al. (2011). Algorithm 4.1 shows an 

overview of the process for a straightforward, generic hill climbing method for graph layout.  

4.3.1 Algorithm  

The algorithm operates in the following manner:  first, we compute the fitness value of the 

initial layout (layoutFitness). Then a local search procedure is implemented, as described 

in the previous section. The square size starts with an initial predefined value, 

(initialSquareSize). In order to intensify the searching process, the square size is 

reduced when none of the candidate solutions at the current square size makes an improvement 

to the current solution. SmallerSquareSize() is a function that reduces the current 

square size (squareSize) by a predefined reduction rate  (squareReduction) using the 

following formula:  

squareSize = squareSize / squareReduction 

 The whole process of searching is repeated as long as the square size is of a positive value. 

See Algorithm 4.1.  
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4.3.2 Parameter Tuning 

The hill climbing algorithm is affected by two parameters: the initial value of the square size 

used to determine the neighbourhood solutions (initialSquareSize) and the value used to reduce 

the size of the square (squareReduction). 

In order to tune the parameters of this algorithm and the other algorithms in this research, 

several experiments were conducted to calibrate the parameters of each method. We performed 

exploratory tests on a wide range of values for each parameter in order to select a robust set of 

initial values. Then we ran a systematic incremental procedure for each single parameter at a 

time while fixing the values of the other parameters. This is similar to the tests conducted in 

Davidson & Harel (1996), Rosete-Suárez et al. (1999), Pacheco & Marti (2006), and Gendreau 

Given:  

 Connected Graph G(V,E): V is a set of nodes and E ⊆	(V×V) is a set of edges. 

 initialSquareSize: predefined size of a square where candidate solutions are located on its border. 

 squareReduction: predefined value which represents the rate of reduction for the size of the square. 

Algorithm :  
1: allOffsets = {(1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1, 0), (-1, 1), (0, 1)} 

2: squareSize = initialSquareSize 

3: layout = RandomizeLayout(G) /* layout maps each node in G to an (x,y) position */ 

4: while squareSize > 0 do 

5:  layoutFitness = Fitness(layout)   

6:  for v in V do 

7:   currentPos = layout[v] /* position currently associated with node v */ 

8:   currentFitness = Fitness(layout)   

9:   for scaledOffset in {(squareSize*x, squareSize*y) | (x,y) in allOffsets} 

10:   candidatePos = currentPos + scaledOffset /* vector addition */ 

11:   if (Fitness(candidatePos) < currentFitness) 

12:    layout[v] = candidatePos  

13:    currentFitness = Fitness(layout) 

14:   end if 

15:  end for 

16: end for 

17: if (currentFitness >= layoutFitness) /* in case of no improvement in layout fitness*/  

18:  squareSize = SmallerSquareSize(squareSize, squareReduction) 

19: end if    

  20:end while 

Algorithm 4.1 Hill climbing graph drawing algorithm  
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& Potvin (2014). Since Erdos-Renyi graphs with the same parameters are known to possess 

very similar characteristics (Bollobás 1998; Titiloye & Crispin 2012), we generated 100 

random connected graphs based on Erdos-Renyi model that were divided into five sets such 

that the graphs in each set had a different number of nodes and edges compared to the graphs in 

the other sets. Hence, each set consisted of 20 test cases with the same number of nodes and 

edges but with different initial layouts. The characteristics of the five sets are described in 

Table 4.1. Since all our experiments are applied on undirected simple graphs, we use the 

following formula for computing the density of a graph (Coleman & Moré 1983):    

Ρ��Σ�ΤΥ = 2|W|
|Μ|(|Μ| − 1) 

Table 4.1 The characteristics of graph datasets used in parameter tuning for the hill climbing algorit hm 

Graph Set Nodes Edges Density Label 

1 50 153 0.125 N50E153 

2 100 544 0.110 N100E544 

3 150 1173 0.105 N150E1173 

4 200 1890 0.095 N200E1890 

5 250 2645 0.085 N250E2645 

The parameters’ tuning process has passed through two phases. In the first phase we try to 

find a proper set of values of parameters that gives the smallest fitness (best quality), whereas 

in the second phase we try to find a set of values that gives the smallest number of evaluated 

solutions.  

i. Phase I 

In phase I, we tested the hill climbing drawing algorithm on the 100 test cases for four 

different values of initialSquareSize: 64, 128, 256, 512, and four different values of 

squareReduction: 2, 4, 6, 8. We tested all combinations of these values in an attempt to obtain 

the parameters’ values that give the best graph layout quality among all possible 

combinations. We started the process by fixing the value of squareReduction to 2 and 

changing the values of initialSquareSize according to the list of values mentioned above. We 

applied the same process for all the values of squareReduction. Figure 4.2, Figure 4.3, Figure 

4.4, and Figure 4.5 show the values of the fitness function generated by the hill climbing 
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drawing algorithm when we use all combinations of the parameters’ values listed above. The 

figures show that the value of the fitness function decreases when the value of 

initialSquareSize increases. In this phase of testing, we looked for the combination of 

parameters’ values that give the smallest fitness value (best quality) compared to all other 

combinations regardless of the number of evaluated solutions performed by the algorithm. The 

best values we got in this phase were 512 for initialSquareSize and 2 for squareReduction.  

 

Figure 4.2 Hill Climbing - Fitness value when squareReduction = 2 (phase I) 

 

Figure 4.3 Hill Climbing - Fitness value when squareReduction = 4 (phase I) 
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Figure 4.4 Hill Climbing - Fitness value when squareReduction = 6 (phase I) 

 

Figure 4.5 Hill Climbing - Fitness value when squareReduction = 8 (phase I) 

ii.  Phase II 

In phase II of parameter tuning, we focus on the performance of the algorithm (i.e. number of 

evaluated solutions). The target is speeding up the process of drawing a good graph layout but 

not necessarily the best layout. To do so, we took a view that a good-enough graph layout is a 

layout in which its fitness value is slightly greater than the best fitness value produced in the 

experiments of phase I. Therefore, we took the values of the fitness function produced by the 
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selected parameters’ values in phase I and we increased them by 12.5%. Then we ran the hill 

climbing drawing algorithm until it reached equal fitness values to the target fitness values or 

no further improvement in the fitness value could be made. Afterwards, we picked the most 

appropriate parameters’ values that gave a good layout with a small number of evaluated 

solutions.  

In this experiment, we tested once more the following values for initialSquareSize: 64, 

128, 256, 512 and the values 2, 4, 6, 8 for squareReduction. We followed the same process 

performed in phase I by fixing the value of squareReduction to 2 and changing the values of 

initialSquareSize according to the list of values given above. Then we repeat this for all the 

values of squareReduction. The tables from Table 4.2 to Table 4.5 and the figures from Figure 

4.6 to Figure 4.9 show the fitness function values and number of evaluated solutions generated 

by the hill climbing algorithm in phase II.  

According to these tables and figures, we recognised that the values of the parameters that 

gave small fitness values (good quality) with a small number of evaluated solutions were: 512 

for initialSquareSize and 4 for squareReduction. Using these two values for the parameters 

made the hill climbing algorithm produce close fitness values to the target fitness values with 

a limited number of evaluated solutions compared to the other parameters’ values. We could 

have used the value 2 for squareReduction since it produced graph layouts with fitness values 

that were slightly better than the graph layouts produced by the algorithm when 

squareReduction equals to the value 4. However, the latter generated a lower number of 

evaluated solutions compared to the former value, and since there is only a slight difference 

between the values of the fitness function produced using these two values, we selected the 

value 4 for squareReduction.     
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Table 4.2 Hill Climbing - Fitness value when squareReduction = 2 (phase II) 

 
Fitness 

initialSquareSize N50E153 N100E544 N150E1173 N200E1890 N250E2645 
64 0.591 0.821 0.996 1.168 1.336 
128 0.487 0.766 0.991 1.127 1.290 
256 0.474 0.764 0.981 1.125 1.291 
512 0.453 0.760 0.985 1.123 1.288 

      
Target 0.408 0.681 0.883 1.006 1.152 
 
 

 

Figure 4.6 Hill Climbing -Number of evaluated solutions when squareReduction = 2 (phase II) 

Table 4.3 Hill Climbing - Fitness value when squareReduction = 4 (phase II) 

Fitness 
initialSquareSize N50E153 N100E544 N150E1173 N200E1890 N250E2645 

64 0.599 0.855 1.019 1.187 1.348 
128 0.505 0.784 1.017 1.145 1.288 
256 0.487 0.812 1.013 1.129 1.299 
512 0.500 0.800 0.996 1.120 1.297 

Target 0.408 0.681 0.883 1.006 1.152 
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Figure 4.7 Hill Climbing - Number of evaluated solutions when squareReduction = 4 (phase II) 

Table 4.4 Hill Climbing - Fitness value when squareReduction = 6 (phase II) 

 
Fitness 

initialSquareSize N50E153 N100E544 N150E1173 N200E1890 N250E2645 
64 0.612 0.860 1.021 1.194 1.357 

128 0.518 0.792 1.033 1.175 1.314 

256 0.506 0.818 1.017 1.126 1.285 

512 0.509 0.821 1.050 1.124 1.317 
            

Target 0.408 0.681 0.883 1.006 1.152 

 

 

Figure 4.8 Hill Climbing - Number of evaluated solutions when squareReduction = 6 (phase II) 
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Table 4.5 Hill Climbing - Fitness value when squareReduction = 8 (phase II) 

Fitness 
initialSquareSize N50E153 N100E544 N150E1173 N200E1890 N250E2645 

64 0.615 0.861 1.022 1.197 1.358 

128 0.521 0.792 1.038 1.174 1.314 

256 0.509 0.881 1.039 1.128 1.307 

512 0.571 0.831 1.022 1.134 1.303 

Target 0.408 0.681 0.883 1.006 1.152 
 
 

 

Figure 4.9 Hill Climbing - Number of evaluated solutions when squareReduction = 8 (phase II) 

4.4 Simulated Annealing 

Simulated annealing was first used for the graph layout problem in Davidson & Harel (1996). It 

has been used to draw general undirected graphs with straight edges taking into account several 

drawing aesthetics. An overview of a generic implementation for simulated annealing used in 

drawing graph layouts is shown in Algorithm 4.2. 

4.4.1 Algorithm 

The algorithm starts by choosing an initial graph layout and an initial temperature 

(initialTemp). Then it repeats the following steps for fixed number of iterations 

(maxIterations): a new candidate solution is chosen from the neighbourhood of the 
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current solution using the same neighbourhood solution selection process described in section 

4.2.1 but the selection is performed at random (i.e. moving only one node in the current layout 

to a new location on the points of the surrounding square to get a new layout). The fitness value 

of the new candidate solution is computed and compared to the fitness value of the current 

solution. The candidate solution becomes the new current solution if the fitness value of the 

candidate solution is less than the fitness value of the current solution. Also, there is a 

probability of selecting the candidate solution as the new current solution even if its fitness 

value is larger than the fitness value of the current solution. This happens if the difference 

between the fitness values satisfies the following condition:  

e-(candidateFitness – currentFitness) / t ≤ random[0,1) 

where t is the current temperature of the system.  

 As the general simulated annealing algorithm dictates, a series of moves is attempted at 

each temperature (i.e. the annealing process keeps searching for candidate solutions using the 

same temperature for a certain number of iterations). Therefore, we have to decide when to 

change the temperature and how to change it. iterPerTemp is the predefined value that 

represents the number of iterations needed to search for candidate solutions at each 

temperature. 

 The cooling down schedule is one of the most crucial parts of the annealing algorithm. As 

we start with an initial temperature (initialTemp), the temperature should be decreased 

after a predefined number of iterations (iterPerTemp). We follow most researchers 

(Davidson & Harel 1996) in applying the following rule as referenced in Algorithm 4.2 by the 

CoolingDown() function:  

tnew = told * coolDown 

where t represents the temperature and coolDown is a predefined value that represents the 

temperature reduction rate. Slow cooling may improve the results but at a cost of increasing 

running time. In addition to cooling down the temperature, the size of the square, in which the 

candidate solutions of the current solution lie, should also be reduced. 

SmallerSquareSize() is the function we used to reduce the size of the square as in hill 
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climbing. However, our experiments showed that a slower reduction rate would give better 

graph layouts. According to Davidson & Harel (1996), we used the following formula:  

squareSize = squareSize – (initialSquareSize / squareReduction) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given:  

Connected Graph G(V,E): V is a set of nodes and E ⊆	(V×V) is a set of edges. 

initialSquareSize: predefined size of a square where candidate solutions are located on its border. 

squareReduction: predefined value which represents the rate of reduction for the size of the square. 

maxIterations: predefined value for the number of iterations for running the drawer. 

iterPerTemp: predefined value for the required number of iterations at each temperature. 

initialTemp: initial temperature used in the annealing process. 

coolDown: predefined value for the temperature cooling down rate. 

Algorithm :  
1: allOffsets = {(1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1, 0), (-1, 1), (0, 1)} 

2: squareSize = initialSquareSize 

3: layout = RandomizeLayout(G) /* layout maps each node in G to an (x,y) position */ 

4: t = initialTemp 

5: iteration = 0 

6: while iteration < maxIterations do 

7:  for i:= 1 to iterPerTemp do  /* number of iterations at each temperature */  

8:   for v in V do 

9:    currentPos = layout[v] /* position currently associated with node v */ 

10:   currentFitness = Fitness(layout)   

11:   generate random scaledOffset in {(squareSize*x,squareSize*y) | (x,y) in allOffsets} 

12:   candidatePos = currentPos + scaledOffset    /* vector addition */ 

13:   if (Fitness(candidatePos) < currentFitness) 

14:    layout[v] = candidatePos  

15:    currentFitness = Fitness(layout) 

16:   else  

17:    costDiff = Fitness(candidatePos) - currentFitness 

18:    if (e-costDiff / t < random[0,1))  

19:     layout[v] = candidatePos 

20:     currentFitness = Fitness(layout) 

21:    end if  

22:   end if 

23:  end for 

24: end for 

25: t = CoolingDown(t, coolDown) 

26: squareSize = SmallerSquareSize(squareSize, squareReduction) 

27: iteration = iteration + 1  

  28:end while 

Algorithm 4.2 Simulated annealing graph drawing algorithm 
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4.4.2 Parameter Tuning 

The performance of the simulated annealing drawing algorithm is influenced by four 

parameters: the number of iterations for running the algorithm (maxIterations), the number of 

iterations at each temperature (iterPerTemp), the initial temperature used in the annealing 

process (initialTemp), and the temperature cooling down factor (coolDown).  

Simulated annealing is characterised as a slow search-based method. It is also a stochastic 

method unlike hill climbing and tabu search. Thus, in order to speed up the testing process, the 

process for generating the graphs used for testing was a bit different than the one used in the 

previous method. We generated 10 random connected graphs, based on Erdos-Renyi model, 

that were divided into five sets (as described previously in Table 4.1) such that each set had 

two graphs with different initial layouts. Then, for each graph in each data set, we run the 

simulated annealing drawing algorithm for 10 runs and we find the median of the results.  

The parameters of simulated annealing are dependent. Increasing or decreasing the value 

of one parameter affects the values of the other parameters. Therefore, we followed an 

incremental testing process divided into three phases described as follows: in phase I, we 

started with one parameter, tested it thoroughly with different values, and selected the value 

which produced the best layout compared to the other values. We fixed the value of the first 

parameter and we moved to testing another parameter in the same manner, and so forth. In this 

phase, we were searching for the most appropriate values of the parameters that make the 

simulated annealing algorithm produce good layout regardless of the number of evaluated 

solutions performed by the drawer. Simulated annealing used the same neighbourhood 

searching technique that was used in hill climbing. In the previous phase, we used an initial 

square size of 256. However, after performing a complete testing on the parameters of hill 

climbing, an initial square size of 512 has produced graph layouts with better quality and a 

fewer number of evaluated solutions performed by the algorithm.  Therefore, in phase II, we 

repeated the same testing process that we performed in phase I using the best initial square 

size parameter, as described in the parameter tuning process of hill climbing. In phase III, we 

mainly focus on choosing the parameters which speed up the algorithm’s performance (i.e. 

number of evaluated solutions). 
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i. Phase I 

We started the testing process with the first parameter maxIterations by testing it with the 

following values: 30, 40, 50, 60, 70, whereas the remaining parameters were set to some 

arbitrary values such that iterPerTemp = 20, initialTemp = 0.5, and coolDown = 0.8. These 

arbitrary values were very close to the values used in Davidson & Harel (1996). Figure 4.10 

shows the effect of maxIterations on the fitness value. The simulated annealing drawing 

algorithm produced graph layouts with good fitness values when the value of maxIterations 

was 40 and 50. There is no significant difference between the two values. However, we chose 

the value 40 because it generates a lower number of evaluated solutions (i.e. faster).    

 

Figure 4.10 Simulated Annealing - Fitness values with the maxIterations parameter (phase I) 

After setting the value of maxIterations to 40, we moved on to test the value of 

iterPerTemp with the values: 10, 15, 20, 25, 30, 35, 40. Figure 4.11 shows that increasing the 

value of this parameter produces graphs with better layouts. As shown in the figure, the fitness 

values were close starting from the value 25 onwards. Thus, we chose the value 25 for 

iterPerTemp.  
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Figure 4.11 Simulated Annealing - Fitness values with the iterPerTemp parameter (phase I) 

As opposed to iterPerTemp, increasing the value of the temperature parameter initialTemp 

produces graph layouts with poor quality. We tested the initialTemp parameter with the 

values: 0.5, 2.5, 4.5, 6.5. According to Figure 4.12 which shows the effect of the temperature 

on the quality of the graph layout, we chose the value 0.5 for initialTemp since it is the best 

value that produced graphs with good layouts compared to all the other values used in the 

testing process.      
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Figure 4.12 Simulated Annealing - Fitness values with the initialTemp parameter (phase I) 

The cooling down parameter was tested with the values: 0.5, 0.6, 0.7, 0.8, 0.9. Figure 4.13 

shows that there was no significant difference in the fitness values when coolDown was tested 

with the first four values. However, the value 0.9 gave a relatively poor graph layout 

compared to the other values. We chose the value 0.7 since it produced layouts of better 

fitness values when applied on large graphs.  

 

 

Figure 4.13 Simulated Annealing - Fitness values with the coolDown parameter (phase I) 
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ii.  Phase II 

Similar to phase I, we started the testing process with the maxIterations parameter by testing 

the values: 30, 35, 40, 45, 50. Figure 4.14 shows that the fitness values of the graph layouts 

became stable after 40 iterations for maxIterations. Therefore, we selected the first tested 

value after 40 which was the value 45, to become the value of this parameter.  

 

Figure 4.14 Simulated Annealing - Fitness values with the maxIterations parameter (phase II) 

In the previous phase, we recognised that the higher the value of the iterPerTemp 

parameter, the better the quality of the produced layout. In this phase, we tested this parameter 

with the values: 10, 15, 20, 25, 30. The fitness values, as shown in Figure 4.15, were at their 

best when the value of iterPerTemp was either 25 or 30. The value 25 has been chosen since it 

produced very close fitness values to those generated when the value 30 was used. 

Furthermore, using the value 25 would make the algorithm generate a lower number of 

evaluated solutions compared to the number of solutions that would have been generated if the 

value 30 was used.  
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Figure 4.15 Simulated Annealing - Fitness values with the iterPerTemp parameter (phase II) 

In phase I, we realised that increasing the value of the temperature parameter would result 

in producing layouts with poor quality. In this phase, we tested the initialTemp parameter with 

the values: 0.25, 0.5, 0.75, 1.0, 1.25. Unlike phase I, increasing the value of this parameter in 

phase II, has produced graph layouts with better quality compared to the values under test. 

Therefore, we can conclude that the value of this parameter should be below 2 (as shown in 

phase I testing) and above 1 (as shown in Figure 4.16). Although there is no major difference 

between the fitness values when the values 1.0 and 1.25 were used for the initialTemp 

parameter, we selected the value 1.25 as it produced slightly better solutions compared to 

those generated when the value 1.0 was used.  
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Figure 4.16 Simulated Annealing - Fitness values with the initialTemp parameter (phase II) 

The coolDown parameter has been tested with the following values: 0.6, 0.65, 0.7, 0.75, 

0.8. In phase I, using the value 0.9 for this parameter made the drawer produce layouts of low 

quality. That is why we selected a list of testing values that are below 0.9. According to Figure 

4.17, the fitness values were relatively close but with an advantage of the fitness values (i.e. 

layouts) produced by the algorithm when the value of coolDown was 0.8. Therefore, we chose 

the value 0.8 for the coolDown parameter.  

 

Figure 4.17 Simulated Annealing - Fitness values with the coolDown parameter (phase II) 
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iii.  Phase III 

Similar to phase II in Section 4.3.2, we took a view that a good-enough graph layout is a 

layout in which its fitness value is slightly greater than the best fitness value produced in the 

experiments of the previous phase. We used the values of the fitness function produced by the 

selected values of the parameters in phase II and we increased them by 12.5%. Then we ran 

the simulated annealing drawing algorithm until it reached equal fitness values to the target 

fitness values or no further improvement in the fitness value was made. Finally, we selected 

the most appropriate value for each parameter that gave a good-enough layout with a small 

number of evaluated solutions.  

The main objective of this phase is speeding up the performance. The maxIterations 

parameter has a great effect on the number of evaluated solutions. Since 45 was the best value 

for this parameter in phase II, we selected values below 45 to test whether the algorithm can 

reduce the number of evaluated solutions and can still produce graphs with good-enough 

layouts. In this phase, we tested maxIterations with the following values: 25, 30, 35, 40, 45. 

According to Table 4.6, the values 40 and 45 were the only values that made the drawing 

algorithm produce graph layouts with fitness values that met the target fitness value. We 

selected the value 45 over the value 40, as Figure 4.18 shows that the number of evaluated 

solutions generated by the algorithm using the former value was lower than the number of 

evaluated solutions generated using the latter value as the graph size increases. 

Table 4.6 Simulated Annealing - Fitness values with the maxIterations parameter (phase III) 

Fitness 
maxIterations N50E153 N100E544 N150E1173 N200E1890 N250E2645 

25 0.684 1.220 1.508 1.708 1.865 

30 0.391 0.870 1.185 1.377 1.551 

35 0.288 0.619 0.881 1.069 1.201 

40 0.288 0.599 0.826 1.013 1.125 

45 0.288 0.600 0.828 1.013 1.121 

Target 0.289 0.601 0.829 1.015 1.124 
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Figure 4.18 Simulated Annealing – Number of evaluated solutions with the maxIterations parameter 
(phase III) 

In phase II, we ended up selecting the value 25 for the iterPerTemp parameter. Therefore, 

in phase III, we selected values which are less than 25 to test the possibility of using these 

values for producing graphs with good layouts and a few number of evaluated solutions. We 

tested this parameter with the values: 10, 15, 20, 25. Table 4.7 shows that all the values 

(except 10) had produced graph layouts with fitness values that met the target fitness values. 

We chose the value 15 for iterPerTemp since it generated a lower number of evaluated 

solutions compared to the values 20 and 25, as shown in Figure 4.19.  

Table 4.7 Simulated Annealing - Fitness values with the iterPerTemp parameter (phase III) 

Fitness 
iterPerTemp N50E153 N100E544 N150E1173 N200E1890 N250E2645 

10 0.300 0.600 0.828 1.014 1.132 

15 0.290 0.600 0.827 1.014 1.123 

20 0.289 0.600 0.828 1.013 1.122 

25 0.288 0.600 0.828 1.013 1.121 

 
Target 0.289 0.601 0.829 1.015 1.124 
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Figure 4.19 Simulated Annealing – Number of evaluated solutions with the iterPerTemp parameter (phase 
III) 

The temperature parameter was tested with the values: 0.25, 0.75, 1.25, 1.75, 2.25. In 

Table 4.8, we can see that using any of these values would give graph layouts with fitness 

values that meet the target fitness values. On the other hand, Figure 4.20 shows that there was 

no clear behaviour for the number of evaluated solutions before the value 0.75. But starting 

from this value onwards, the figure shows that the number of evaluated solutions increased as 

a function of the graph size. Thus, we selected the value 0.75 for the initialTemp parameter.  

Table 4.8 Simulated Annealing - Fitness values with the initialTemp parameter (phase III) 

Fitness 
initialTemp N50E153 N100E544 N150E1173 N200E1890 N250E2645 

0.25 0.314 0.601 0.828 1.015 1.113 

0.75 0.299 0.601 0.828 1.014 1.117 

1.25 0.290 0.600 0.827 1.014 1.123 

1.75 0.290 0.600 0.827 1.013 1.122 

2.25 0.288 0.600 0.827 1.012 1.122 

      
Target 0.289 0.601 0.829 1.015 1.124 
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Figure 4.20 Simulated Annealing – Number of evaluated solutions with the initialTemp parameter (phase 
III) 

The behaviour of the coolDown parameter was not very clear in this phase, but it was still 

possible to take a decision for the most appropriate value for this parameter. Table 4.9 shows 

that all the values which we tested for cooldown: 0.65, 0.7, 0.75, 0.8, 0.85, would give graph 

layouts with fitness values that meet the target fitness values (excluding the 1st set of graphs). 

Figure 4.21 does not illustrate a clear behaviour of the effect of this parameter on the number 

of evaluated solutions. However, using the value 0.8 for coolDown had generated a lower 

number of evaluated solutions (except for the 4th set of graphs) compared to all the other 

values under test. Therefore, we chose the value 0.8 for this parameter.  

Table 4.9 Simulated Annealing - Fitness values with the coolDown parameter (phase III) 

Fitness 
coolDown N50E153 N100E544 N150E1173 N200E1890 N250E2645 

0.65 0.306 0.601 0.828 1.015 1.106 

0.7 0.302 0.600 0.828 1.012 1.119 
0.75 0.301 0.600 0.828 1.014 1.125 

0.8 0.299 0.601 0.828 1.014 1.117 

0.85 0.293 0.622 0.889 1.119 1.278 

      
Target 0.289 0.601 0.829 1.015 1.124 
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Figure 4.21 Simulated Annealing – Number of evaluated solutions with the coolDown parameter (phase 
III) 

4.5 Tabu Search 

Tabu search is a neighbourhood search-based approach that uses a memory structure while it 

carefully explores the neighbourhood of each solution as the search progresses to avoid getting 

trapped in local optima. It proceeds on the assumption that there is no value in choosing an 

inferior solution unless it is necessary, as in the case of escaping from a local optimum (Lim & 

Chee 1991). It improves the efficiency of the searching process by storing a tabu list of local 

solutions. This is used to restrict the search by forbidding moves to some poor neighbour 

solutions that have already been visited (Hertz et al. 1995). An additional feature of tabu search 

is applying intensification and diversification. It might be useful to intensify the exploration in 

some region because it may contain a high incidence of acceptable solutions. This can be 

obtained by introducing a new term in the objective function that assigns a high priority to 

solutions in the relevant region. Diversification is responsible for moving the exploration 

process over different regions of the search space (Marti 1998).  

 Our tabu search algorithm goes through a predefined number of iterations to minimise the 

value of the fitness function. It uses a tabu list to store tabu moves in order to prevent the 

algorithm from choosing previously reached moves for particular nodes for a predefined period 

of time. Algorithm 4.3 represents the steps of our tabu search method.   
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4.5.1 Algorithm 

In outline, as described in the algorithm, the tabu search method operates in the following 

manner: first, we compute the fitness value of the initial layout. Then the following steps are 

performed for a set number of iterations (maxIterations): for each node, we search in the 

neighbourhood for candidate solutions, as described in section 4.2.1. The ratio of the fitness 

value of the candidate solution to the fitness value of the current solution is computed at each 

point in the neighbourhood. Solutions with ratios above or equal to a predefined threshold 

value (initialCutOff) are considered to be tabu moves and are stored in a tabu list. We 

then move the node to a neighbouring point that is not in the tabu list and its fitness function 

value is minimum compared to all neighbours. Then the current solution is added to the tabu 

list. Note that the new solution might not be better than the current solution hence the tabu 

search does not run out of solutions. In case all eight candidate solutions surrounding the 

current solution are in the tabu list, the intensification and the diversification processes will be 

the way out for solving this problem. A search intensification process is implemented: after a 

chosen number of iterations (intensifyIterations), the square size centred on the node 

is reduced and the cut-off value is decreased by a set value (intensifyCutOff) by calling 

function SmallerSquareSize() and function SmallerTabuCutOff() respectively, 

as shown in Algorithm 4.3. Finally, in order to diversify the searching space, the tabu list is 

updated by removing old solutions from the list after a number of iterations (duration).  
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Given:  

Connected Graph G(V,E): V is a set of nodes and E ⊆	(V×V) is a set of edges. 

initialSquareSize: predefined size of a square where candidate solutions are located on its border. 

squareReduction: predefined value which represents the rate of reduction for the size of the square. 

maxIterations: predefined maximum number of iterations of the drawer.  

initialCutOff: predefined minimum value that determines whether a move is tabu or not.  

intensifyCutOff: predefined value which represents the rate of reduction for cutOff. 

intensifyIterations: predefined number of iterations in which the searching process starts to intensify.  

duration: predefined number of iterations in which a move should remain in the tabu list.   

Algorithm :  
1: allOffsets = {(1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1, 0), (-1, 1), (0, 1)} 

 2: tabuSet = {} 

 3: squareSize = initialSquareSize , CutOff = initialCutOff 

4: layout = RandomizeLayout(G) /* layout maps each node in G to an (x,y) position */ 

 5: iteration = 0 

 6: while iteration < maxIterations do  

 7:  for v in V do 

8:   currentPos = layout[v] /* position currently associated with node v */ 

 9:  currentFitness = Fitness(layout)  

 10:  candidates = {}  

11:  for scaledOffset in {(squareSize*x, squareSize*y) | (x,y) in allOffsets} 

12:   candidatePos = currentPos + scaledOffset /* vector addition */ 

13:   if (v, candidatePos, i) ∉ tabuSet for some i then 
14:    layout[v] = candidatePos  

 15:    candidateFitness = Fitness(layout) 

16:    if candidateFitness / currentFitness > CutOff then 

17:     tabuSet = tabuSet ∪ {(v, candidatePos, iteration)}   
 18:    else  

19:     candidates = candidates ∪ {(candidatePos, candidateFitness)} 
 20:    end if 

 21:   end if 

 22:  end for 

 23:  if candidates ≠ {} then  
24:   newPos = p, where (p,f) is the pair in candidates with minimal f 

25: layout[v] = newPos  

26:   tabuSet = tabuSet ∪ {(v, currentPos, iteration)} 
27:  end if 

 28: end for 

29: if (iteration mod intensifyIterations) == 0 then 

 30:  squareSize = SmallerSquareSize(squareSize, squareReduction) 

 31:  CutOff = SmallerTabuCutOff(CutOff, intensifyCutOff) 

 32: end if    

33: tabuSet = {(v,p,i) | (v,p,i) in tabuSet and (iteration - i) < duration} 

 34: iteration = iteration + 1 

 35:end while 

Algorithm 4.3 Our tabu search graph drawing algorithm 
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Note that the SmallerSquareSize() function reduces the square size used in 

searching for candidate solutions by applying the same formula we used in hill climbing. 

Whereas the SmallerTabuCutOff() function decreases the value of cut-off during the 

intensification process to maintain high quality candidate solutions and truncate the other 

solutions by adding them to the tabu list. The function uses the following formula for cut-off 

value reduction, such that the initial value of oldCutOff is equal to initialCutOff:  

newCutOff =   oldCutOff – (intensifyCutOff * intensifyIterations) 

4.5.2 Parameter Tuning 

Tabu search has five parameters that affect the quality of the layouts produced by the 

algorithm along with its performance: the total number of iterations needed for execution 

(maxIterations), the cut-off value which determines whether to consider a solution for further 

testing or to add it to the tabu list (initialCutOff), the value used in decreasing the cut-off value 

for intensifying the search process (intensifyCutOff), the number of iterations required to 

decrease the value of the cut-off (i.e. intensify the search) (intensifyIterations), and the 

duration in which a solution remains in the tabu list (duration).  

The graph sets used in testing the values of these parameters were exactly the same sets 

used in testing the values of the parameters of hill climbing, as described earlier in this chapter 

in Table 4.1.  

Tabu search parameters are dependent. Therefore, we followed the same incremental 

testing process that we performed with simulated annealing but we divided the process into 

four phases. In phase I, we considered the values that gave good graph layouts (small fitness 

values) regardless of the number of evaluated solutions performed by the drawing algorithm. 

In the second phase of parameter tuning, we repeated the same steps followed in phase I, but 

instead of starting with arbitrary values, we started with the values that were selected and 

fixed from phase I. Moreover, we narrowed the differences between the tested values for each 

parameter. In phase III, we tested the effect of the values of tabu search parameters on the 

performance of the drawing algorithm (i.e. number of evaluated solutions). In all the previous 

phases, we used an initial square size of 256. However, after performing a complete testing on 
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the parameters of hill climbing, an initial square size of 512 has produced graph layouts with 

better quality and a lower number of evaluated solutions were performed by the drawing 

algorithm.  Therefore, in phase IV, we repeated the same tuning process that we performed on 

the tabu search drawing algorithm in phase III using the best initial square size as described in 

the hill climbing parameter tuning process. 

i. Phase I 

We tested the values of maxIterations and fixed the values of the other parameters to some 

arbitrary values such that initialCutOff =2, intensifyCutOff = 0.005, intensifyIterations = 5, 

and duration = 5. The values used in testing maxIterations were: 30, 40, 50, 60, 70. According 

to Figure 4.22, the values 50 and 60 produced the best fitness values compared to others with 

an advantage to the value 50 as the graph size becomes larger. Thus, we selected the value 50 

for maxIterations.  

 

Figure 4.22 Tabu Search - Fitness values with the maxIterations parameter (phase I) 

Secondly, after fixing the value of maxIterations, we moved on to test the value of the 

initialCutOff parameter and we kept the rest of the parameters with their arbitrary values. 

initialCutOff has been tested with the following values: 0, 2, 4, 6, 8, 10. We chose the value 0 

to see the effect of increasing the number of tabu solutions on the quality of the produced 
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layouts. Figure 4.23 shows the effect of the initialCutOff values on the fitness values of the 

graph sets. According to the figure, the fitness function values look similar when the 

initialCutOff value is between 2 and 10. However, we selected the value 4 since it produced 

slightly better fitness values compared to 2 and almost the same as the rest of the values 

except 0.  

Now that we fixed the values of two parameters, we moved to the third parameter 

intensifyCutOff and tested it with the following values: 0.005, 0.055, 0.105, 0.155, 0.205, 

while keeping the rest of the parameters as they were. Figure 4.24 shows that the fitness 

values are very close when the value of this parameter is between 0.005 and 0.055 with an 

advantage to 0.005 for graphs with smaller sizes. Therefore, we selected the value 0.005 for 

intensifyCutOff. 

 

Figure 4.23 Tabu Search - Fitness values with the initialCutOff parameter (phase I) 
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Figure 4.24 Tabu Search - Fitness values with the intensifyCutOff parameter (phase I) 

intensifyIterations was the next parameter to be tested after fixing the values of three 

parameters. It has been tested with the following selected values: 1, 3, 5, 7, 9. This parameter 

shows the effect of the number of iterations required to reduce the value of the cut-off. Figure 

4.25 shows that there is no significant difference between the values selected, but the curve 

starts to increase slightly after the value 5. That means that increasing the value of 

intensifyIterations would produce low-quality graph layouts. This is normal, since the 

intensification process should take place after a reasonable but not a large number of iterations 

taking into account that there is a limited number of iterations for the algorithm to execute 

(maxIterations). For this reason, we selected the value 5 for intensifyIterations. Another 

reason for choosing this value, not a smaller one, was that the number of accesses to the tabu 

list is higher with the value 5 compared to the values 1 and 3, as shown in Figure 4.26, and the 

higher the number of accesses to the tabu list, the lower the number of evaluated solutions as 

more solutions would be excluded from the searching process.   
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Figure 4.25 Tabu Search - Fitness values with the intensifyIterations parameter (phase I) 

 

Figure 4.26 Tabu Search - tabu list accesses with the intensifyIterations parameter (phase I) 

The last parameter that has been tested in this phase was duration. We tested this 

parameter with the following values: 0, 5, 15, 25, 35, while all the other parameters were 

fixed. Figure 4.27 shows that there is no significant effect of this parameter on the fitness 

value of the produced graph layouts. However, Figure 4.28 shows that number of accesses to 
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solutions would increase. On the other hand, the performance of the drawing algorithm looks 

stable after the value 5. Therefore, we selected the value 5 for this parameter.    
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Figure 4.27 Tabu Search - Fitness values with the duration parameter (phase I) 

 

Figure 4.28 Tabu Search - tabu list accesses with the duration parameter (phase I) 
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solutions produced by the drawer. With reference to Figure 4.29, the best value for 

maxIterations is 55. 

 

Figure 4.29 Tabu Search - Fitness values with the maxIterations parameter (phase II) 
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recognised. Figure 4.30 shows the effect of the different values we tested for this parameter: 2, 

3, 4, 5, 6, 7, 8, on the fitness value. According to the figure, all the values of initialCutOff 

gave very close values for the fitness function. However, the initialCutOff value 7 gave a 

slightly better fitness value compared to the others.   
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Figure 4.30 Tabu Search - Fitness values with the initialCutOff parameter (phase II)  

At the end of phase I, we fixed the value of intensifyCutOff to 0.005. We recognised that 

the fitness value was better when the value of this parameter was below 0.1. Therefore, in this 

phase, we tested this parameter with values less than 0.1 such as: 0.005, 0.025, 0.045, 0.065, 

0.085. However, Figure 4.31 shows that any of these values could be selected as a value for 

this parameter since there was no major difference between the fitness values. Thus, we kept 

the same value that we selected in phase I which equals to 0.005.  

 

Figure 4.31 Tabu Search - Fitness values with the intensifyCutOff parameter (phase II) 
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The results of phase I showed that increasing the value of intensifyIterations would also 

increase the value of the fitness function (i.e. reduce the quality of the graph layout). In this 

phase, we selected the following values for testing: 3, 5, 7, 9, 11. Figure 4.32 shows that the 

best values for the fitness function were produced when the value of intensifyIterations was 5 

(the same value we selected in phase I). Furthermore, the figure confirmed the fact that 

increasing the value of this parameter would reduce the quality of the graph layout.   

 

Figure 4.32 Tabu Search - Fitness values with the intensifyIterations parameter (phase II) 

As shown in the previous phase, increasing the value of duration starting from the value 5 

would not make any significant changes in the values of the fitness function. This is what we 

got when we tested this parameter again in phase II with the values: 5, 15, 25, 35, 45, as 

shown in Figure 4.33. Therefore, we have not made any changes to the value of duration and 

kept the fixed value from the previous phase which was 5. However, the value of this 

parameter slightly affects the number of evaluated solutions generated by the drawer as we 

will see in the next phase.  
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Figure 4.33 Tabu Search - Fitness values with the duration parameter (phase II) 
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selected the value 45 for maxIterations since it produced fitness values that are similar or less 

than the target fitness values with a low number of iterations compared to the other values. 

Table 4.10 Tabu Search - Fitness values with the maxIterations parameter (phase III) 

Fitness 
maxIterations N50E153 N100E544 N150E1173 N200E1890 N250E2645 

35 0.344 0.652 0.876 1.073 1.234 

40 0.370 0.654 0.872 1.071 1.245 

45 0.293 0.641 0.868 1.078 1.239 

50 0.302 0.640 0.869 1.078 1.235 

55 0.287 0.628 0.875 1.078 1.238 

Target 0.294 0.652 0.885 1.090 1.246 
 

 

Figure 4.34 Tabu Search – Number of evaluated solutions with the maxIterations parameter (phase III) 

As shown in the previous phases, increasing the value of the initialCutOff slightly reduces 

the value of the fitness function. On the other hand, in this phase, the experiment showed that 

increasing the value of this parameter would slightly increase the number of evaluated 

solutions. The best value we got for this parameter in phase II was 7. Therefore, we tested it 

with lower values: 1, 2, 3, 4, 5 in order to verify whether we can obtain a good layout with a 

small number of evaluated solutions. Table 4.11 and Figure 4.35 indicate that the value 2 

could be the best value for initialCutOff since the number of evaluated solutions became stable 

starting from that value.  
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Table 4.11 Tabu Search - Fitness values with the initialCutOff parameter (phase III) 

Fitness 
initialCutOff N50E153 N100E544 N150E1173 N200E1890 N250E2645 

1 0.821 0.996 1.215 1.398 1.597 

2 0.314 0.645 0.866 1.069 1.235 

3 0.298 0.643 0.867 1.074 1.244 

4 0.302 0.640 0.868 1.072 1.238 

5 0.295 0.643 0.867 1.077 1.240 

Target 0.294 0.652 0.885 1.090 1.246 
 

 

Figure 4.35 Tabu Search – Number of evaluated solutions with the initialCutOff parameter (phase III) 

For the intensifyCutOff parameter, we tuned the value by testing it with values close to the 

value 0.005 (as selected in phase II). The values which we tested were: 0.0025, 0.005, 0.0075, 

0.01, 0.0125. Table 4.12 shows that our drawing algorithm produced fitness values similar or 

lower than the target values with all the tested values (except for the first set of graphs). 

Furthermore, the number of evaluated solutions is almost similar among all the tested values 

with a minor advantage for the value 0.0025 in the first four sets of the graphs, as shown in 

Figure 4.36. Therefore, we picked the value 0.0025 for the intensifyCutOff parameter.   
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Table 4.12 Tabu Search - Fitness values with the intensifyCutOff parameter (phase III) 

Fitness 
intensifyCutOff N50E153 N100E544 N150E1173 N200E1890 N250E2645 

0.0025 0.313 0.643 0.870 1.068 1.230 

0.005 0.314 0.645 0.866 1.069 1.235 

0.0075 0.329 0.648 0.869 1.072 1.236 

0.01 0.330 0.645 0.869 1.072 1.230 

0.0125 0.331 0.647 0.870 1.077 1.235 

Target 0.294 0.652 0.885 1.090 1.246 
 

 

Figure 4.36 Tabu Search – Number of evaluated solutions with the intensifyCutOff parameter (phase III) 

The fourth parameter, intensifyIterations, was tested using the following values: 3, 5, 7, 9, 

11. According to Table 4.13, the values 5 and 7 gave smaller fitness values (better quality) 

compared to the other values of the parameter as the graph size increased. Whereas, the 

number of evaluated solutions produced by the algorithm when the value of this parameter is 

5, is smaller than or equal to the number of evaluated solutions given by the algorithm using 

the rest of the values (except for the fourth set of graphs), as shown in Figure 4.37. But since 

the difference was not significant, we chose the value 5 for this parameter.  
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Table 4.13 Tabu Search - Fitness values with the intensifyIterations parameter (phase III) 

Fitness 
intensifyIterations N50E153 N100E544 N150E1173 N200E1890 N250E2645 

3 0.304 0.637 0.872 1.079 1.245 

5 0.313 0.643 0.870 1.068 1.230 

7 0.374 0.650 0.867 1.071 1.229 

9 0.379 0.660 0.878 1.083 1.246 

11 0.399 0.656 0.880 1.082 1.246 

Target 0.294 0.652 0.885 1.090 1.246 
 

 

Figure 4.37 Tabu Search – Number of evaluated solutions with the intensifyIterations parameter (phase 
III) 

The duration parameter has no significant effect on the quality of the produced layout as 

shown in the previous phases. However, increasing the value of this parameter to a certain 

limit would improve the performance of the drawing algorithm and consequently produce a 

smaller number of evaluated solutions. In this phase, we tested the value of duration with the 

following values: 5, 15, 25, 35, 45. Testing the algorithm with all these values produced graph 

layouts with quality at least as good as the target layout, as shown in Table 4.14. On the other 

hand, Figure 4.38 shows the number of accesses to the tabu list by the drawing algorithm. The 
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from the searching process, and this consequently reduces the number of evaluated solutions. 
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values 5 and 15 and then became stable. Therefore, we selected the value 15 for the duration 

parameter.   

Table 4.14 Tabu Search - Fitness values with the duration parameter (phase III) 

Fitness 
duration N50E153 N100E544 N150E1173 N200E1890 N250E2645 

5 0.313 0.643 0.870 1.068 1.230 

15 0.324 0.645 0.866 1.070 1.230 

25 0.328 0.644 0.866 1.071 1.229 

35 0.327 0.645 0.867 1.070 1.232 

45 0.327 0.645 0.867 1.070 1.232 

Target 0.294 0.652 0.885 1.090 1.246 
  

 

Figure 4.38 Tabu Search – Number of accesses to the tabu list with the duration parameter (phase III) 

iv. Phase IV 

We repeated the same tuning process that we performed on the tabu search drawing algorithm 

in phase III using the best initial square size as described in the hill climbing parameter tuning 

process. Table 4.15 and Figure 4.39 show the results produced by the tabu search drawing 

algorithm when we tested the maxIterations parameter with the values: 30, 35, 40, 45, 50. The 

main goal is to speed up the performance of the algorithm while producing graphs with good 

layouts. Therefore, we chose the value that best satisfies the target fitness values with the 
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smallest number of iterations. The best value for maxIterations that satisfied this condition 

was 40.    

Table 4.15 Tabu Search - Fitness values with the maxIterations parameter (phase IV) 

Fitness 
maxIterations N50E153 N100E544 N150E1173 N200E1890 N250E2645 

30 0.348 0.654 0.873 1.075 1.240 

35 0.335 0.654 0.873 1.075 1.238 

40 0.329 0.653 0.873 1.075 1.237 

45 0.328 0.653 0.873 1.075 1.236 

50 0.329 0.653 0.873 1.075 1.236 

Target 0.294 0.652 0.885 1.090 1.246 
    

 

Figure 4.39 Tabu Search – Number of evaluated solutions with the maxIterations parameter (phase IV) 

The initialCutOff parameter has been tested with the following values: 1, 2, 3, 4, 5. Table 

4.16 shows that all the values (except the value 1) produced graph layouts with fitness values 

below or equal to the target (except for the first graphs set). On the other hand, Figure 4.40 

demonstrates the number of evaluated solutions performed by the tabu search algorithm and 

indicates that when the algorithm uses the initialCutOff value 4, it generates the lowest 

number of solutions compared to the other values.    
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Table 4.16 Tabu Search - Fitness values with the initialCutOff parameter (phase IV) 

Fitness 
initialCutOff N50E153 N100E544 N150E1173 N200E1890 N250E2645 

1 0.892 1.080 1.261 1.479 1.648 

2 0.329 0.653 0.873 1.075 1.237 

3 0.324 0.653 0.873 1.077 1.238 

4 0.316 0.652 0.877 1.079 1.236 

5 0.322 0.660 0.876 1.079 1.241 

Target 0.294 0.652 0.885 1.090 1.246 
 

 

Figure 4.40 Tabu Search – Number of evaluated solutions with the initialCutOff parameter (phase IV) 

As for the intensifyCutOff parameter, we tested it with the following values: 0.0025, 0.005, 

0.0075, 0.01, 0.0125. Table 4.17 shows that all these values could give good layouts since all 

of them have reached fitness values less than or almost equal to the target fitness values 

(except for the first set of graphs). But in Figure 4.41, we realise that using any of these values 

would make no significant difference in the number of evaluated solutions performed by the 

algorithm with a slight advantage to the value 0.005 in most of the tested graph data sets. 

Therefore, we selected the value 0.005 for intensifyCutOff.  
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Table 4.17 Tabu Search - Fitness values with the intensifyCutOff parameter (phase IV) 

Fitness 
intensifyCutOff N50E153 N100E544 N150E1173 N200E1890 N250E2645 

0.0025 0.324 0.653 0.873 1.077 1.238 

0.005 0.324 0.644 0.876 1.080 1.238 

0.0075 0.320 0.645 0.874 1.077 1.239 

0.01 0.321 0.647 0.872 1.080 1.236 

0.0125 0.315 0.646 0.872 1.079 1.242 

Target 0.294 0.652 0.885 1.090 1.246 
 

 

Figure 4.41 Tabu Search – Number of evaluated solutions with the intensifyCutOff parameter (phase IV) 

The intensifyIterations parameter has been tested with five values 3, 5, 7, 9, 11. Figure 

4.42 shows that the number of evaluated solutions increases as the value of this parameter 

increases. Picking the value 3 would be the best in terms of the number of evaluated solutions. 

However, according to Table 4.18, selecting this value would not produce good graph layouts 

for the first two sets of the graphs under test. The results in the table indicate that the fitness 

values in the first two sets of graphs (when intensifyIterations = 3) are far from the target 

fitness values. Therefore, we chose the next best value for intensifyIterations which equals to 

5.  
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Table 4.18 Tabu Search - Fitness values with the intensifyIterations parameter (phase IV) 

Fitness 
intensifyIterations N50E153 N100E544 N150E1173 N200E1890 N250E2645 

3 0.367 0.660 0.877 1.077 1.240 

5 0.324 0.644 0.876 1.080 1.238 

7 0.310 0.652 0.881 1.080 1.240 

9 0.335 0.655 0.877 1.080 1.245 

11 0.399 0.670 0.878 1.082 1.247 

Target 0.294 0.652 0.885 1.090 1.246 
 

 

Figure 4.42 Tabu Search – Number of evaluated solutions with the intensifyIterations parameter (phase 
IV) 

Last but not least, we tested the duration parameter with the following values: 5, 15, 25, 

35, 45. Note that the search space in graph drawing is large, thus this parameter has no 

significant effect on the quality of the produced layouts as shown in Table 4.19, where all the 

tested values of this parameter have produced similar results. On the other hand, Figure 4.43 

shows that this parameter has slightly affected the number of evaluated solutions performed 

by the tabu search drawing algorithm. The figure shows that there is a difference between the 

number of evaluated solutions when the value of duration is 5 and the rest of the values. 

Although the figure does not show that the difference is significant, but the difference could 

reach up to 7% (which reaches about 10,000 solutions or even more in some test cases where 

the number of nodes is very large). Thus, the value 5 is the most appropriate for the duration 

parameter.  
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Table 4.19 Tabu Aearch - Fitness values with the duration parameter (phase IV) 

Fitness 
duration N50E153 N100E544 N150E1173 N200E1890 N250E2645 

5 0.324 0.644 0.876 1.080 1.238 

15 0.331 0.657 0.873 1.078 1.238 

25 0.330 0.657 0.874 1.080 1.238 

35 0.330 0.657 0.874 1.080 1.238 

45 0.330 0.657 0.874 1.080 1.238 

Target 0.294 0.652 0.885 1.090 1.246 
 

 

Figure 4.43 Tabu Search – Number of evaluated solutions with the duration parameter (phase IV) 
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iii.  Tabu Search Parameters  

 maxIterations = 40 

 initialCutOff = 4 

 intensifyCutOff = 0.005 

 intensifyIterations = 5 

 duration = 5 

4.6 Summary 

This chapter described the basic neighbourhood search-based graph drawing algorithms for 

hill climbing and simulated annealing, followed by our tabu search-based approach for 

drawing general graph layouts with straight lines that have multiple aesthetic criteria which 

are used in a weighted fitness function to measure the quality of the graph layout. Each 

criterion had a different range of values. Hence, a normalisation process for the values to a 

unified range was described. 

This chapter also demonstrated how the three drawing algorithms had used the same local 

search space. They also shared the same procedure for tuning the values of their parameters by 

performing exploratory tests on a wide range of values for each parameter in order to select a 

robust set of initial values. Then a systematic incremental procedure was applied for each 

single parameter at a time while fixing the values of the rest of the parameters. 

Hill climbing, simulated annealing, and tabu search graph drawing algorithms were 

described including their pseudo codes and a complete description of their parameters. A 

detailed clarification of the parameter tuning process for each parameter was demonstrated 

including figures and tables that showed the effect of each parameter on the quality of the 

layouts and the efficiency of the drawing algorithms.  

In the next chapter, we show the experimental results of a comprehensive comparison 

between the three neighbourhood search-based methods according to the quality of the 

generated layouts and the efficiency of the algorithms.   
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Chapter 5 Experimental Results of Comparing Hill Climbing, 
Simulated Annealing, and Tabu Search 

This chapter demonstrates the experimental results of applying the three graph drawing 

algorithms described in the previous chapter: hill climbing, simulated annealing, and our 

graph drawing version of tabu search on random graph datasets and real world graph datasets. 

It also shows our analysis and conclusions to the results.  

5.1 Introduction 

Our research question in this experiment was: ‘Does our tabu search graph drawing algorithm 

perform better than the hill climbing and simulated annealing approaches?’ To answer this 

question we had to implement and evaluate our method against the two commonly used 

alternative neighbourhood search-based methods for graph drawing. Three types of evaluations 

were conducted:  

i. Finding the best layout that can be achieved (i.e. minimising the value of the fitness 

function); 

ii. How long it took to draw a graph to a particular level of quality;  

iii.  How good the quality of the graph was after a fixed optimisation time (number of 

evaluated solutions). 

 These allow us to examine different possible use cases for the graph layout: firstly, 

generating the best possible layout; secondly speed to draw an acceptable layout; and thirdly 

how good the graph layout can be if there is a fixed time available to produce it.   

 The programming language used in our implementation is Java (version 1.7.0; Java 

HotSpot™ 64-Bit Server VM 21.0-b17 on Windows 7). The experiments were performed using 

Lenovo Thinkpad T430, Intel® Core™ i7-3520M CPU processor with 2.90 GHz frequency 

and 8 GB RAM.  

 We generated random graph datasets in two categories. The graphs of the first category 

have the same number of nodes but with different densities (i.e. different number of edges), 
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whereas the graphs of the second category have a different number of nodes with varying 

values of densities.  

 The random graph generator is based on the Erdos-Renyi model (Erdos & Rényi 1960; 

Daudin et al. 2008). It generated randomly connected graphs. The parameters to the generator 

were the number of nodes and the density of the graph. Random locations for the nodes were 

generated based on the size of the window where the graph is displayed. Then, the generator 

chose random nodes as the end points of the edges. All random values were generated using the 

random method in Java. Self-sourcing edges and multiple edges between the same pair of 

nodes were not allowed. Finally, the graph generator tested the connectivity of the generated 

graph. Only connected graphs were accepted. In our implementation for the random graph 

generator, we added an option which allows the user to randomly change the layout of the 

generated connected graph.  

 There were 80 random graphs in the first category split into 4 groups of 20 test cases each. 

All the graphs in this category had 150 nodes, randomly positioned. Each group had a differing 

number of edges so that the density varied. The graphs in each group had same number of 

nodes and edges. See Table 5.1 for the characteristics of the graphs in the first category. Note 

that the density of the graph is computed using the same formula described in the previous 

chapter (Section 4.3.2).   

Table 5.1 Characteristics of the graphs in the 1st category 

Graph Set Nodes Edges Density 

1A 150 558 0.05 

2A 150 1117 0.1 

3A 150 1676 0.15 

4A 150 2235 0.2 

 The second category also had 80 random graphs, again divided into 4 groups. The number 

of nodes for a group varied, increasing in steps of 50. The value of the density was chosen for 

each group to avoid too dense graphs so that we could generate graphs that were easily 

visualised. A similar random process used to generate graphs in the first category was applied 

to this category. See Table 5.2 for the characteristics of the graphs in the second category. 
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Table 5.2 Characteristics of the graphs in the 2nd category 

Graph Set Nodes Edges Density 

1B 50 159 0.13 

2B 100 569 0.115 

3B 150 1173 0.105 

4B 200 1990 0.1 

 The initial layout of nodes for each graph was random. We applied our tabu search-based 

approach along with hill climbing and simulated annealing approaches to the graphs. Tabu 

search and hill climbing approaches are deterministic methods which are not influenced by 

chance. The characteristic of this type of method is that the output is determined when the set 

of input elements and properties in the model has been specified. Both methods use the same 

initial input layout and there is no randomness in their implementation. On the other hand, 

simulated annealing is a stochastic method which includes an element of randomness in the 

neighbourhood searching process. Therefore, this approach has been tested on each individual 

graph for 30 different runs. Then we find the median of the results for the 30 different runs to 

compare with the results of the tabu search and hill climbing approaches. Note that, we 

modelled the neighbourhood transition probability of simulated annealing in a similar way to 

the model described in Davidson & Harel (1996). In the following section, we describe the 

three phases of the experiment along with the analysis of the results.  

5.2 Experiments on Random Graph Datasets  

To make a comprehensive comparison between the methods, we divided our experiment into 

three phases. Firstly, in phase I, we focus on the overall performance for each method 

regardless of how long it takes to execute to get the best possible graph layout that can be 

generated by that method. Secondly, in phase II, we study the speed of each algorithm when it 

runs to draw a graph for a particular level of quality. Thirdly, in phase III, we investigate the 

quality of the drawn layouts after a fixed predefined execution time.  

5.2.1 Phase I 

We applied the methods on the graphs of the two categories described in Section 5.1. The 

methods executed on the 20 test cases in each group of the two categories, and then the average 

fitness function value and the average number of evaluated solutions were computed for each 
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group in each method. Note that in simulated annealing, the average of medians was computed 

for the 30 runs of each test case. In this phase, the hill climbing approach was executed until it 

found the best solution that can be reached (i.e. a solution that cannot be further improved). 

Whereas, the simulated annealing and tabu search approaches were more flexible in how they 

reach a good solution, and hence we ran them using the values of the parameters discussed 

earlier in the previous chapter.     

 The following figures show bar charts of the results obtained from phase I. Figure 5.1 and 

Figure 5.2 show the difference between the three methods in terms of the quality of the 

produced layouts (fitness value) when applied on each category of graphs, whereas Figure 5.3 

and Figure 5.4 show the difference according to the performance efficiency (number of 

evaluated solutions).  

 

Figure 5.1 Bar chart with 95% confidence interval of the fitness function obtained by HC, SA, TS when 
applied on the graphs of the 1st category (phase I) 
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Figure 5.2 Bar chart with 95% confidence interval of the fitness function obtained by HC, SA, TS when 
applied on the graphs of the 2nd category (phase I) 

 

Figure 5.3 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by HC, 
SA, TS when applied on the graphs of the 1st category (phase I) 
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Figure 5.4 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by HC, 
SA, TS when applied on the graphs of the 2nd category (phase I) 

 Figure 5.5 and Figure 5.6 show the execution time (in seconds) when the methods were 

applied on the data of the first and second categories respectively. The figures demonstrate how 

lengthy the layout process was with simulated annealing compared to the other two methods. 

Our proposed tabu search-based method, on the other hand, shows a slightly faster execution 

time against hill climbing.    

 

Figure 5.5 Bar chart with 95% confidence interval of the execution time (in seconds) obtained by HC, SA, 
TS when applied on the graphs of the 1st category (phase I) 
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Figure 5.6 Bar chart with 95% confidence interval of the execution time (in seconds) obtained by HC, SA, 
TS when applied on the graphs of the 2nd category (phase I) 

 In Figure 5.7 and Figure 5.8, we merge the results obtained from applying the three 

methods on both categories (category I and category II graph datasets) to show respectively the 

average overall fitness value and the average number of evaluated solutions produced by the 

three methods. On the other hand, Table 5.3 and Table 5.4 demonstrate the statistical analysis 

of the fitness values for the graph layouts produced by the three methods when applied on the 

graph datasets of the first and the second categories together along with the number of 

evaluated solutions obtained by each method. You can refer to Section 5.2.4 for a complete 

description of the conducted statistical test and for the interpretation of the p-value column 

listed in the tables. 

0

100

200

300

400

500

600

700

800

1 2 3 4

Time 

(seconds)

Graph Sets - Category II

HC

SA

TS



115 

 

 

 

Figure 5.7 Bar chart with 95% confidence interval of the average overall fitness function obtained by HC, 
SA, TS when applied on the graphs of both categories (phase I) 

 

Figure 5.8 Bar chart with 95% confidence interval of the average overall number of evaluated solutions 
obtained by HC, SA, TS when applied on the graphs of both categories (phase I) 
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Table 5.3 Statistical analysis of the fitness function for HC, SA, TS when applied on the graphs of both 
categories (phase I) 

Fitness 

Hill Climbing Simulated Annealing Tabu Search 

Graph Set Mean Median Max Min Mean Median Max Min Mean Median Max Min p-value 

1A 0.616 0.607 0.828 0.502 0.494 0.494 0.503 0.484 0.505 0.504 0.558 0.421 4.11E-07 

2A 0.902 0.875 1.211 0.791 0.746 0.746 0.754 0.728 0.791 0.784 0.869 0.728 5.33E-09 

3A 1.023 0.978 1.309 0.916 0.871 0.871 0.884 0.860 0.928 0.922 1.061 0.889 2.06E-09 

4A 1.126 1.092 1.387 0.987 0.963 0.964 0.974 0.955 1.017 1.013 1.154 0.944 5.33E-09 

1B 0.486 0.465 0.827 0.361 0.286 0.286 0.297 0.272 0.354 0.332 0.618 0.280 1.25E-08 

2B 0.801 0.743 1.210 0.614 0.563 0.562 0.587 0.543 0.625 0.612 0.794 0.551 6.52E-09 

3B 0.890 0.863 1.249 0.800 0.762 0.761 0.777 0.754 0.805 0.801 0.948 0.730 3.56E-08 

4B 1.116 1.076 1.504 0.979 0.956 0.958 0.968 0.918 1.001 0.995 1.072 0.942 6.52E-09 

Overall 0.870 0.837 1.191 0.744 0.705 0.705 0.718 0.689 0.753 0.745 0.884 0.685 
 

 

Table 5.4 Statistical analysis of number of evaluated solutions obtained by HC, SA, TS when applied on 
the graphs of both categories (phase I) 

Evaluated Solutions 

Hill Climbing Simulated Annealing Tabu Search 
Graph 

Set 
Mean Median Max Min Mean Median Max Min Mean Median Max Min p-value 

1A 49867 50071 56715 40577 71480 71473 71582 71326 44391 44393 44656 44047 2.64E-08 

2A 50623 50132 60846 39727 72149 72139 72266 72059 44688 44670 45020 44381 1.25E-08 

3A 53516 52571 65036 42458 72287 72277 72438 72186 44765 44783 45112 44368 1.25E-08 

4A 51838 51640 68429 39193 72343 72342 72540 72162 44941 44939 45357 44382 2.64E-08 

1B 14523 14206 18779 11801 24485 24489 24634 24387 14870 14883 15010 14619 1.38E-07 

2B 32643 32661 44387 25746 48740 48733 48936 48638 29918 29959 30287 29454 8.76E-08 

3B 54128 51864 71345 42643 72203 72208 72340 72068 44741 44764 45086 44243 5.33E-09 

4B 76351 76891 93479 58574 95171 95163 95327 95079 59182 59152 59775 58818 5.33E-09 

Overall 47936 47504 59877 37590 66107 66103 66258 65988 40937 40943 41288 40539 
 

 The results presented in Figure 5.1, Figure 5.2, Figure 5.7, and Table 5.3 show that 

simulated annealing produces the best graph layouts compared to the other two methods. It has 

a slight advantage over tabu search in the quality of the graph layout, but both are considerably 

better than hill climbing. On the other hand, simulated annealing evaluates a larger number of 

solutions in order to get those good layouts. Figure 5.3, Figure 5.4, Figure 5.8, and Table 5.4 

show that tabu search outperforms the other two methods in terms of performance efficiency 

(number of evaluated solutions). The figures in Appendix A (A.1 and A.2) are samples of the 

layouts drawn by the three algorithms when applied on the graph datasets described in Table 

5.1 and Table 5.2 respectively.    
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5.2.2 Phase II 

In phase II, we investigated the performance of the approaches rather than the quality of the 

produced layouts. The following process was performed on the graphs of the two categories, 

described in Section 5.1, to test which method has the lowest number of evaluated solutions to 

reach a particular value of a fitness function (a particular level of a layout quality):  

1. We ran the hill climbing method on the graphs until no improvements could be made 

to the value of the fitness function. We started with hill climbing, in particular, because 

in phase I, it produced graph layouts with the worst quality compared to the other two 

methods. Therefore, simulated annealing and tabu search could easily produce graph 

layouts with good quality as the one produced by hill climbing.  

2. We ran simulated annealing and tabu search methods until they reached an equal or 

better fitness function value compared to the one found by the hill climbing drawing 

algorithm. 

3. We measured the number of evaluated solutions for each method. 

 Figure 5.9 and Figure 5.10 show the number of evaluated solutions obtained by the three 

methods when they are applied on the graphs of the first category and the second category 

respectively. Whereas Figure 5.11 and Table 5.5 describe, visually and statistically, the average 

overall number of evaluated solutions obtained from phase II when the three methods are 

applied on the graphs of the two categories together.  
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Figure 5.9 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by HC, 
SA, TS when applied on the graphs of the 1st category (phase II) 

 

Figure 5.10 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by HC, 
SA, TS when applied on the graphs of the 2nd category (phase II) 

0

10000

20000

30000

40000

50000

60000

1 2 3 4

Evaluated 

Solutions

Graph Sets - Category I

HC

SA

TS

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4

Evaluated 

Solutions

Graph Sets - Category II

HC

SA

TS



119 

 

 

 

Figure 5.11 Bar chart with 95% confidence interval of the average overall number of evaluated solutions 
obtained by HC, SA, TS when applied on the graphs of the two categories together (phase II) 

Table 5.5 Statistical analysis of the average overall number of evaluated solutions obtained by HC, SA, TS 
when applied on the graphs of the two categories together (phase II) 

According to the results shown in Figure 5.9, Figure 5.10, Figure 5.11, and Table 5.5, we 

conclude that our tabu search method generates graph layouts of good quality with a very 

limited number of evaluated solutions compared to hill climbing and simulated annealing. 

This difference is significant since the p-values for all graph sets are smaller than our 

significance level as shown in the last column of the tables according to the Friedman test that 

will be described in Section 5.2.4.  
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Graph Set Mean Median Max Min Mean Median Max Min Mean Median Max Min p-value 

1A 49867 50070 56715 40577 49929 50073 70029 37054 21468 23010 28765 12633 2.51E-07 

2A 50622 50131 60846 39727 46822 46122 67079 32120 20851 23205 29366 2272 8.76E-08 

3A 53516 52570 65036 42458 46478 47600 60463 32053 25007 27351 41053 6086 2.64E-08 

4A 51837 51640 68429 39193 45321 45549 61512 32090 21450 25254 29789 2299 8.76E-08 

1B 14523 14205 18779 11801 13136 12388 19220 7822 6665 6142 11819 2690 7.16E-07 

2B 32643 32661 44387 25746 27602 26903 41822 16976 12009 11855 22726 2677 5.06E-08 

3B 54127 51863 71345 42643 48811 49601 58243 31749 23266 23461 44243 5984 4.80E-07 

4B 76351 76891 93479 58574 63208 63516 87893 41797 28551 30759 39755 1790 2.64E-08 

Overall 47936 47504 59877 37589 42663 42719 58282 28957 19908 21379 30939 4553 < 2.2e-16 
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5.2.3 Phase III 

In phase III, we investigated the quality of the layout produced by the drawing algorithms 

rather than the performance. The following process was performed to test which method 

produces the graph layouts with the best quality (smallest value of fitness function) when the 

three methods perform the same number of evaluated solutions: 

1. We ran the tabu search method on the graphs for a predefined number of iterations 

(maxIterations = 40 as described in Chapter 4, Section 4.5.2). The number of evaluated 

solutions is computed and saved. We started with the tabu search in particular because in 

phase I, it generated the lowest number of evaluated solutions.  

2. We ran hill climbing and simulated annealing methods until they perform the same 

number of evaluated solutions performed by the tabu search drawing algorithm. 

3. We measured the value of the fitness function produced by the drawing algorithms in 

each of the steps above. 

Figure 5.12 and Figure 5.13 show the values of the fitness function obtained by the three 

drawing algorithms when they are applied on the graphs of the first category and the second 

category respectively. Whereas Figure 5.14 and Table 5.6 describe, visually and statistically, 

the average overall fitness function values obtained from phase III when the three methods are 

applied on the graphs of the two categories together. 
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Figure 5.12 Bar chart with 95% confidence interval of the fitness function values obtained by HC, SA, TS 
when applied on the graphs of the 1st category (phase III) 

 

Figure 5.13 Bar chart with 95% confidence interval of the fitness function values obtained by HC, SA, TS 
when applied on the graphs of the 2nd category (phase III) 
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Figure 5.14 Bar chart with 95% confidence interval of the average overall fitness function values obtained 
by HC, SA, TS when applied on the graphs of the two categories together (phase III) 

Table 5.6 Statistical analysis of the average overall fitness function values obtained by HC, SA, TS when 
applied on the graphs of the two categories together (phase III) 

Fitness 

HC SA TS 

 Graph Set Mean Median Max Min Mean Median Max Min Mean Median Max Min p-value 

1A 0.617 0.609 0.828 0.502 0.658 0.659 0.668 0.646 0.505 0.504 0.558 0.421 2.64E-08 

2A 0.904 0.877 1.211 0.792 0.897 0.897 0.907 0.886 0.791 0.784 0.869 0.728 1.38E-07 

3A 1.028 0.989 1.309 0.925 1.015 1.015 1.033 1.002 0.928 0.922 1.061 0.889 9.66E-07 

4A 1.132 1.098 1.390 0.988 1.101 1.100 1.123 1.090 1.017 1.013 1.154 0.944 1.30E-06 

1B 0.487 0.465 0.827 0.361 0.419 0.421 0.438 0.390 0.354 0.332 0.618 0.280 9.80E-07 

2B 0.803 0.746 1.210 0.616 0.696 0.696 0.713 0.683 0.625 0.612 0.794 0.551 9.66E-07 

3B 0.895 0.872 1.249 0.803 0.908 0.909 0.921 0.895 0.805 0.801 0.948 0.730 4.80E-07 

4B 1.122 1.082 1.517 0.987 1.121 1.123 1.138 1.102 1.001 0.995 1.072 0.942 1.36E-07 

Overall 0.873 0.842 1.193 0.747 0.852 0.853 0.868 0.837 0.753 0.745 0.884 0.685 < 2.2e-16 

We conclude from the results presented in Figure 5.12, Figure 5.13, Figure 5.14, and Table 

5.6 that our tabu search approach draws graph layouts with better quality (or similar quality in 

the worst case) compared to hill climbing and simulated annealing when they evaluate the 

same number of solutions. The Friedman statistical significance test was applied on the results 

and the p-values in the tables show that there is a significant difference in the layouts between 

the three methods.  
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 Figure 5.15 and Figure 5.16 show two different examples of random graph layouts drawn 

by hill climbing, simulated annealing, and our tabu search approach.  

 
 

Random Layout Hill Climbing Layout 

  

Simulated Annealing Layout Tabu Search Layout 

Figure 5.15 Example of connected graph layout with 10 nodes and 19 edges drawn within the canvas of our 
visualization tool by the three methods: HC, SA, TS 
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Random Layout Hill Climbing Layout 

  

Simulated Annealing Layout Tabu Search Layout 

Figure 5.16 Example of connected graph layout with 12 nodes and 17 edges drawn within the canvas of our 
visualization tool by the three methods: HC, SA, TS 

5.2.4 Statistical Tests 

In order to test the effect of randomness in generating the initial graph layouts used in 

comparing the methods, we performed a statistical significance test on the results generated 

from the three phases. Note that, we applied a statistical significance test on phase I for the 

fitness values of the graph layouts generated by the three methods to conclude which method 

draws the best layout without fixing a specific number of evaluated solutions performed by 

each method. To demonstrate that there is a statistical significant difference between the three 

methods, we first applied the Friedman test (Upton & Cook 2014) which is a non-parametric 

test for testing the differences between several samples. This test requires no prior knowledge 
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of the distribution of data. We could have applied ANOVA test if our population was 

normally distributed, but when we applied Shapiro-Wilk normality test (Shapiro & Wilk 

1965) on our randomly generated datasets, we got p-values less than the significance level that 

equals to 0.05. Thus, the null hypothesis of Shapiro-Wilk’s test that the population is normally 

distributed was rejected.  

We ran the three methods on 20 randomly generated test cases, based on Erdos-Renyi 

model, for each group of graphs in the first and second categories. Note that, in simulated 

annealing, we calculated the median of 30 runs for each test case instead of finding the mean 

(median is more reliable in avoiding outliers) and consequently we got 20 medians (since we 

find the mean of 30 medians for each test case).  Then we compared them with the results of 

the means computed by hill climbing and tabu search using the Friedman test with a 

significance level of a value 0.05. The null hypothesis for the Friedman test states that there 

are no differences between the results of the methods. If the probability is low (i.e. less than 

the selected significance level) the null hypothesis is rejected and it can be concluded that at 

least two methods are significantly different from each other. In all the tests, as shown in 

Table 5.3, Table 5.4, Table 5.5, and Table 5.6, we got p-values smaller than 0.05 which means 

we can reject the null hypothesis and hence we conclude that there is a significant difference 

between the three methods.  

The Friedman test allowed us to conclude that there is a significant difference between the 

methods, but it does not show how each method differs from the other. Therefore, a post-hoc 

test for multiple comparisons between the methods was conducted using the Wilcoxon signed-

rank test (Wilcoxon 1945) with Bonferroni correction (Dunn 1961; Holm 1979). The 

Wilcoxon signed-rank test is a non-parametric statistical hypothesis test that can be used as an 

alternative to the paired student’s t-test since our population is not normally distributed. 

Bonferroni correction, on the other hand, is a simple method that allows pairwise comparisons 

and is easy to apply. Despite the importance of using the Bonferroni method for the multiple 

comparison post-hoc correction, it can be considered conservative if there are a large number 

of tests and/or the test statistics are positively correlated (Perneger 1998). Note that all the 

statistical tests were conducted using the R statistical package i386 (version 3.1.1). 
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In the Bonferroni correction, we lower the significance level value to 0.01 in an attempt to 

prevent data from incorrectly appearing to be statistically significant and to increase the 

accuracy of results. When you are performing many independent or dependent statistical tests 

at the same time, this multiple comparison post-hoc correction is used (Bland & Altman 

1995).  

While a p-value of a statistical significance test can indicate the existence of a significant 

difference, but it does not show the size of that difference. Effect size is a simple way of 

quantifying the difference between the results of two methods. Here, we measure it by the 

standardized difference between two means (i.e., difference of means divided by the standard 

deviation). Cohen (1992) classified effect sizes as small (= 0.2), medium (= 0.5), and large (= 

0.8). See Table 5.7, Table 5.8, Table 5.9, and Table 5.10 for the effect sizes and p-values in 

phase I; Table 5.11 and Table 5.12 for the effect sizes and p-values in phase II; and Table 5.13 

and Table 5.14 for the effect sizes and p values in phase III.  

The p-values of the Bonferroni post-hoc test shown in Table 5.7 and Table 5.8 conclude 

that there is a significant difference between the layouts drawn by simulated annealing and the 

other two methods except in the first graph dataset of the first category. The effect size of 

fitness between simulated annealing and hill climbing is always large, whereas the effect size 

increases from medium to large as the graph size increases when simulated annealing is 

compared against tabu search. On the other hand, Table 5.9 and Table 5.10 show that the tabu 

search outperforms the other two methods in terms of performance efficiency as the number of 

nodes increases except for small graphs as shown in the first and the second graph datasets in 

the second category in Table 5.10 (i.e., the effect size increases from small to medium then 

large when tabu search is compared against hill climbing, and it is always large when 

compared against simulated annealing).     
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Table 5.7 Effect size and p-values for the fitness function values after conducting the Bonferroni test on 
HC, SA, TS when applied on the graphs of the 1st category (phase I) 

 Fitness 

 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4 

 

 HC SA HC SA HC SA HC SA 

 
SA 

p 1.7e-10 * 4.4e-11 * 4.4e-11 * 4.4e-11 * 

effect 1.0442  0 0.9987  0 1.0374  0 1.1315  0 

TS p 1.2e-08 0.2400 3.4e-06 1.5e-07 0.0001 4.4e-11 0.0002 1.2e-06 

effect 0.8999 0.2954 0.7372 0.9724 0.6957 0.8648 0.7848 0.7805 

 

Table 5.8 Effect size and p-values for the fitness function values after conducting the Bonferroni test on 
HC, SA, TS when applied on the graphs of the 2nd category (phase I) 

   Fitness 

   Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4 

   HC SA HC SA HC SA HC SA 

 
SA 

p 4.4e-11 * 4.4e-11 * 4.4e-11 * 4.4e-11 * 

effect 1.1044  0 1.0903  0 0.7858  0 0.8629  0 

TS 
p 4.1e-06 2.3e-06 1.0e-05 1.5e-06 1.2e-05 1.0e-05 1.7e-05 2.3e-06 

effect 0.7310 0.5909 0.8397 0.7571 0.5297 0.6295 0.6400 0.9621 

 

Table 5.9 Effect size and p-values for the number of evaluated solutions after conducting the Bonferroni 
test on HC, SA, TS when applied on the graphs of the 1st category (phase I) 

   Evaluated Solutions 

   Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4 

   HC SA HC SA HC SA HC SA 
 

SA 
 

p 2.0e-07 * 4.4e-11 * 4.4e-11 * 4.4e-11 * 

effect 1.6794  0 1.6181  0 1.4865  0 1.4912  0 

TS 
p 0.0002 2.0e-07 2.6e-05 2.0e-07 8.7e-06 4.4e-11 0.0002 4.4e-11 

effect 1.0772 1.8704 0.9268 1.8705 1.1500 1.8694 0.7738 1.8677 

 

Table 5.10 Effect size and p-values for the number of evaluated solutions after conducting the Bonferroni 
test on HC, SA, TS when applied on the graphs of the 2nd category (phase I) 

   Evaluated Solutions 

   Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4 

 
 HC SA HC SA HC SA HC SA 

 
SA 

 

p 4.4e-11 * 4.4e-11 * 4.4e-11 * 4.4e-11 * 

effect 1.8559  0 1.6627  0 1.3728  0 1.1804  0 

TS 
p 0.1400 4.4e-11 0.0280 4.4e-11 1.2e-07 4.4e-11 1.2e-07 4.4e-11 

effect -0.1824 1.8629 0.4961 1.8668 0.9798 1.8682 1.3144 1.8725 
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In Table 5.11 and Table 5.12 we see that tabu search outperforms hill climbing and 

simulated annealing in drawing graph layouts with similar fitness values using a lower number 

of evaluated solutions as the p-values in the tables show that there is a statistical significant 

difference between the tabu search and the other two methods along with very large effect 

sizes. On the other hand, there is no statistically significant difference in the number of 

evaluated solutions between simulated annealing and hill climbing when applied on graphs 

with a small number of nodes. However, Table 5.12 shows that there is a significant difference 

between the two methods as the number of nodes increases with medium effect sizes. 

Table 5.11 Effect size and p-values for the number of evaluated solutions after conducting the Bonferroni 
test on HC, SA, TS when applied on the graphs of the 1st category (phase II) 

 Evaluated Solutions 

 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4 

 HC SA HC SA HC SA HC SA 

 
SA 

p 1.0000 * 0.1500 * 0.0260 * 0.0340 * 

effect 0.0045  0 -0.2736  0 -0.5751  0 -0.4570  0 

TS p 4.4e-11 4.4e-11 4.4e-11 4.4e-11 4.4e-11 5.2e-10 4.4e-11 4.4e-11 

effect 1.7633 1.4981 1.5434 1.3164 1.5074 1.2786 1.4538 1.3258 

 

Table 5.12 Effect size and p-values for the number of evaluated solutions after conducting the Bonferroni 
test on HC, SA, TS when applied on the graphs of the 2nd category (phase II) 

 Evaluated Solutions 

 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4 

 HC SA HC SA HC SA HC SA 

 
SA 

p 0.1700 * 0.0430 * 0.2200 * 0.0009 * 

effect 0.3465  0 0.4984  0 0.3879  0 0.6480  0 

TS p 8.7e-11 6.1e-09 4.4e-11 2.9e-09 8.7e-11 8.3e-10 4.4e-11 4.4e-11 

effect 1.4860 1.2484 1.5087 1.2869 1.4767 1.4578 1.5524 1.3110 

 

Table 5.13 and Table 5.14 show that the tabu search always draws graph layouts with 

better quality compared to hill climbing and simulated annealing using the same number of 

evaluated solutions with medium to large effect sizes when compared against hill climbing, 

and very large effect sizes when compared against simulated annealing. On the other hand, 

there is no significant difference between the qualities of the graph layouts drawn by hill 

climbing and simulated annealing when they are applied on graphs using the same number of 

evaluated solutions. 
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Table 5.13 Effect size and p-values for the fitness function values after conducting the Bonferroni test on 
HC, SA, TS when applied on the graphs of the 1st category (phase III) 

 Fitness 

 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4 

 HC SA HC SA HC SA HC SA 

 
SA 

p 0.0300 * 0.1500 * 0.2400 * 0.9200 * 

effect -0.3991  0 0.0525  0 0.1075  0 0.2562  0 

TS p 1.2e-08 4.4e-11 2.3e-06 4.4e-11 4.0e-05 1.2e-07 1.0e-04 1.2e-07 

effect 0.9060 1.6279 0.7494 1.5637 0.7368 1.4149 0.8186 1.2066 

 

Table 5.14 Effect size and p-values for the fitness function values after conducting the Bonferroni test on 
HC, SA, TS when applied on the graphs of the 2nd category (phase III) 

 Fitness 

 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4 

 HC SA HC SA HC SA HC SA 

 
SA 

p 0.0430 * 0.5500 * 0.0180 * 0.1500 * 

effect 0.4500  0 0.5625  0 -0.0928  0 0.0048  0 

TS p 4.1e-06 1.2e-05 1.0e-05 2.8e-06 6.0e-06 1.2e-07 9.9e-07 4.4e-11 

effect 0.7319 0.6455 0.8482 0.9581 0.5628 1.3612 0.6625 1.6436 

 In the next section, we explore the performance of the methods when applied to real world 

datasets sourced from the Internet.   

5.3 Experiments on Real World Graph Datasets 

After performing several experiments on random graphs, we tested our system on real world 

graph datasets to demonstrate that we can reproduce similar results in a real world setting. We 

selected 10 different datasets from different sources as shown in Table 5.15 that also indicates 

the number of nodes, the number of edges, and the density of each graph. The graphs have 

different sizes with different densities. The initial layout of the nodes in each graph was 

generated randomly. Hill climbing and tabu search have run once on the same initial layout 

whereas simulated annealing has run 30 times on that random initial layout, as we previously 

did. Then we calculated the median for each of the 30 runs which was used in comparison with 

the results of the other two methods. We tested the methods according to phases I, II, and III 

described in Section 5.2.  
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Table 5.15 Real world graph datasets characteristics and sources 

Graph Nodes Edges Density Source Description 

1 34 78 0.139 (Zachary 1977) 

A social network of 
friendships between 34 
members of a karate club 
at a US university in the 
1970s 

2 62 159 0.084 (Lusseau et al. 2003) 

An undirected social 
network of frequent 
associations between 62 
dolphins in a community 
living off Doubtful 
Sound, New Zealand 

3 105 441 0.081 (Krebs n.d.) 

Books about US politics 
sold by the online 
bookseller Amazon.com. 
Edges represent the 
frequent co-purchasing of 
books by the same 
buyers, as indicated by 
the ‘customers who 
bought this book also 
bought these other books’ 
feature on Amazon 

4 112 425 0.068 (Newman 2006) 

The network of common 
adjective and noun 
adjacencies for the novel 
‘David Copperfield’ by 
Charles Dickens 

5 115 613 0.094 (Girvan & Newman 2002) 

The network of American 
football games between 
Division IA colleges 
during regular season Fall 
2000 

6 128 2075 0.255 (Melián & Bascompte 2004) 

A network contains the 
carbon exchanges in the 
cypress wetlands of 
South Florida during the 
wet season 

7 198 2742 0.141 (Gleiser & Danon 2003) 
List of edges of the 
network of Jazz 
musicians 
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8 277 1918 0.05 (Choe et al. 2004) 

C. elegans global network 
of 277 neurons, and the 
spatial positions of the 
neurons as two-
dimensional coordinates 

9 297 2148 0.049 (White et al. 1986) Neural network of the 
nematode C. Elegans 

10 332 2126 0.039 (Batagelj & Mrvar 2006) Undirected weighted 
graph for US Air flights 

 The results of the experiments are shown in the following figures. We start with Figure 

5.17 and Figure 5.18 that illustrate the results of applying the three methods on the real data 

graphs described in Table 5.15 according to phase I. The figures assert the conclusion 

formulated in Section 5.2.1 stipulating that simulated annealing draws the best graph layouts 

compared to hill climbing and tabu search, but it is the worst in terms of efficiency. 

 

Figure 5.17 Bar chart of the fitness function values obtained by HC, SA, TS when applied on the graph 
datasets in Table 5.15 (phase I) 
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Figure 5.18 Bar chart of the number of evaluated solutions obtained by HC, SA, TS when applied on the 
graph datasets in Table 5.15 (phase I) 

 Figure 5.19 represents the number of evaluated solutions performed by each method when 

testing the methods on the real world graphs described in Table 5.15 according to phase II. The 

figure shows that our tabu search drawing algorithm outperforms the other two approaches as 

the size of the graph increases which supports the conclusion we had in Section 5.2.2 when the 

methods were applied on random graphs.    

 

Figure 5.19 Bar chart of the number of evaluated solutions obtained by HC, SA, TS when applied on the 
graph datasets in Table 5.15 (phase II) 

 In Figure 5.20, the values of the fitness function obtained by each method are demonstrated 

following the experiment described in phase III when applied on the same set of data. The 
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figure shows that the tabu search approach can reproduce the same behaviour described in 

Section 5.2.3 on the real data setting (i.e. tabu search approach produces graph layouts with 

better quality compared to hill climbing and simulated annealing when they evaluate the same 

number of solutions). 

 

Figure 5.20 Bar chart of the fitness function values obtained by HC, SA, TS when applied on the graph 
datasets in Table 5.15 (phase III) 

 Figure 5.21 and Figure 5.22 are examples of the layouts produced by hill climbing, 

simulated annealing, and tabu search when applied to graph 1 and graph 2 in the list of real 

world datasets described in Table 5.15.  
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Random Layout Hill Climbing Layout  

 
 

Simulated Annealing Layout  Tabu Search Layout  

Figure 5.21 Layout of graph dataset 1 (listed in Table 5.15) produced by HC, SA, TS drawn within the 
canvas of our visualization tool 
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Random Layout Hill Climbing Layout  

 
 

Simulated Annealing Layout  Tabu Search Layout  

Figure 5.22 Layout of graph dataset 2 (listed in Table 5.15) produced by HC, SA, TS drawn within the 
canvas of our visualization tool 

5.4 Threats to Validity 

In terms of threats to validity, two deterministic algorithms and one stochastic algorithm were 

applied. The deterministic methods ran on the same initial graph layout whereas the stochastic 

method ran 30 different times on the same initial layout for the same graph. The main internal 

threat is in the implementation of the algorithms. The three methods were implemented by the 

same coder, and were run on the same machine. There is the possibility that one of the three 

methods was implemented in a more efficient way. However, the methods share substantial 

code that increases confidence that none was particularly disadvantaged.  
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 Another concern is the selection strategy for a neighbour solution to break the tie when two 

or more neighbour solutions have the same fitness values. In our method, we always break the 

tie by selecting the solution located on the right. In order to test the significance of the selection 

strategy, we investigated the number of times in which a tie-break would occur by applying the 

method on 40 random graphs with a minimum of 60 nodes and a maximum of 110 nodes of 

different layouts. Table 5.16 shows the average number of occurrences of tie-breaks along with 

the average total number of solutions. The average percentage of occurrences was below 1% 

(0.25%) which concludes that the selection strategy is insignificant.   

Table 5.16 Average tie-breaks percentage for 40 random graphs 

Evaluated Solutions 
Tie-breaks Total Solutions Percentage %  

187.5 73758.85 0.25 

In terms of external threats, a threat to the generalizability of the results is possible. 

Selection bias was avoided by using randomly generated graphs (except in the parameters of 

the generation algorithm, such as number of nodes and edges). However, randomly generated 

graphs generally do not have the same characteristics as real world graphs hence we also 

evaluated the methods on real world data sets. 

5.5 Summary 

In this chapter, we described our research questions and the experiments we performed in 

order to answer those questions by conducting a comparison between three neighbourhood 

search-based drawing algorithms: hill climbing, simulated annealing, and tabu search. Our 

experiments covered the three main aspects of our comparison: how good a layout can be 

achieved by each drawing algorithm; number of evaluated solutions performed by each 

method to reach a particular level of layout quality; and quality of layout drawn by the 

methods after a fixed number of evaluated solutions. The experimental results on random 

graphs and real world graphs provided quantitative evidence to assert that the tabu search 

approach can draw a graph with a good layout quality in a lower number of evaluated 

solutions compared to the hill climbing and the simulated annealing approaches. We also 

conducted statistical tests which showed, along with the large effect sizes, that the tabu search 

drawing algorithm was faster than the hill climbing drawing algorithm. It produced (along 
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with simulated annealing) graph layouts with better quality regardless of the graph size in 

terms of the number of nodes and edges. On the other hand, the efficiency of our tabu search-

based method was better than the simulated annealing algorithm but the latter produced graph 

layouts with similar or slightly better fitness values compared to those produced by our tabu 

search algorithm when both methods ran without limitations on the number of evaluated 

solutions. Whilst the tabu search drawing algorithm outperformed the hill climbing drawing 

algorithm in all aspects and rapidly produced good graph layouts comparable with those 

produced by the slow simulated annealing, the algorithm has potential to be further improved 

and so produce better graph layouts if we couple it with methods to more effectively search 

the problem space, such as path relinking, as we will discuss in Chapter 6.   
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Chapter 6 Coupling Tabu Search with Path Relinking 

This chapter shows the effect of coupling our tabu search-based graph drawing algorithm with 

path relinking that also belongs to the neighbourhood search-based algorithms. First, we 

clarify the reason behind specifically choosing path relinking to be coupled with tabu search; 

second, we highlight our contribution by describing the proposed path relinking-based graph 

drawing algorithm and showing the process of integrating path relinking within tabu search 

(Subsection 6.2.1) along with the calibration process of the parameters; third, we discuss 

different variations of path relinking that can improve the performance of the algorithm, we 

demonstrate the algorithm of the selected variation (Subsection 6.3.2) along with the tuning 

process of its parameters; and at last, we give a short summary of the coupling process.  

6.1 Why Path Relinking? 

The main objective of integrating path relinking within tabu search is to speed up the 

identification of good solutions. Path relinking is a relatively new neighbourhood search-based 

method which was originally proposed to improve tabu search and scatter search (Glover et al. 

2000). It has proven its efficiency when being coupled with tabu search in many multi-criteria 

applications as we showed earlier in Chapter 2 (Ho & Gendreau 2006; Peng et al. 2014). 

However, in a similar manner to tabu search, path relinking has not yet been used in the field 

of drawing general multi-criteria graph layouts.  

In addition to the successful combination of tabu search and path relinking discussed in the 

literature, there are some other reasons behind selecting tabu search to be coupled with path 

relinking in particular. Path relinking follows systematic and deterministic rules to combine 

elite solutions. This is a crucial difference against evolutionary algorithms which use a factor 

of randomness to create offspring from parent solutions. Stochastic methods could be better 

than deterministic when they deal with uncertainties. But since we are using fixed values for 

all the weights in the fitness function in our approach, deterministic methods are favoured as 

they give the same output when given the same initial layout, unlike stochastic methods when 

given the same set of parameter values and initial conditions will lead to an ensemble of 

different outputs (Kleywegt & Shapiro 2001). Consequently, this leads to problems of 
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repeatability which requires running the stochastic method for a number of times for which we 

calculate the mean or median of the generated outputs. Furthermore, stochastic methods lack 

good stopping criteria (Kleywegt & Shapiro 2001).  

The path relinking procedure takes an initial solution and a guiding solution selected from 

the set of solutions generated by another search-based method like tabu search. Then the 

relinking process is applied, where the algorithm aims to gradually introduce the attributes of 

the guiding solution into the solutions obtained by moving away from the initial solution in a 

systematic manner. This combination is motivated by the desire to tunnel through blocked off 

areas and infeasible regions created by the tabu search process (Glover 1997). The tabu list 

guarantees that the relinking process will only explore solutions which have not been visited 

in the tabu search process.     

6.2 Coupling Tabu Search with Path Relinking for Graph Drawing  

Path relinking is a neighbourhood search-based approach which was proposed to intensify and 

diversify the searching process (Glover & Laguna 1997). It starts with a set of elite solutions 

that could be generated from other search-based methods such as tabu search, where two 

solutions are selected from that set: an initial solution and a guiding solution. The relinking 

process begins from the initial solution and searches in the neighbourhood space for 

intermediate solutions. These intermediate solutions should introduce more attributes 

contained in the guiding solution and fewer attributes from the initial solution. The path 

relinking process usually stops when any of the intermediate solutions reach the guiding 

solution.  

There are different rules discussed in the literature, as shown in Chapter 2 (Section 2.9), 

for building the set of elite solutions, selecting the initial and guiding solutions, and 

constructing a systematic and deterministic neighbourhood structure to move along the paths. 

In the next subsection, we describe how these components were selected and applied in our 

basic path relinking implementation, in its simplest version, when coupled with our tabu 

search procedure as an intensification step.  
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6.2.1 Algorithm  

We couple our tabu search procedure with path relinking to intensify the search within a 

specific space of elite solutions as described in Algorithm 6.1. This algorithm is similar to 

Algorithm 4.3 plus the steps required for integrating path relinking within tabu search (lines 6, 

30-38, and 40 in Algorithm 6.1). The path relinking procedure is called within the tabu search 

procedure every fixed number of iterations (intensifyIterations). Building a reference set of 

elite solutions is the first step in path relinking. This has a maximum size (refSize) and contains 

no redundant solutions. Unlike the population in genetic algorithms, the reference set in path 

relinking is recommended to be relatively small (Glover et al. 2000; Ho & Gendreau 2006). 

Initially, the solutions produced by the tabu search procedure are added to the reference set. A 

solution is directly added to the reference set as long as the set is not full. However, once the 

reference set becomes full, a solution will replace the worst solution in the set when any of the 

following criteria is satisfied:  

a. Quality: the fitness value of the added solution is better (smaller) than the fitness value 

of the best solution in the reference set. This is performed by the Quality() function in 

Algorithm 6.1.  

b. Diversity: the fitness value of the added solution is better (smaller) than the fitness 

value of the worst solution in the set, and it is dissimilar to the solutions in the set.  The 

dissimilarity measure is computed as follows: we define ΡΖ[, the level of dissimilarity 

between solution s and the best solution b, as the sum of distances between the 

corresponding nodes in the two graph layouts. This is performed by the Diversity() 

function in Algorithm 6.1. We also define the median position of all solutions x ∈ 

refSet relatively to the best solution b as:  

∋���Ν�	∴ΛΣ�Τ�Λ� = ∑ Ρϑ[ϑ⊥[ϑ∈_�α�β
|�(χ�Τ| − 1 

where |refSet| denotes the number of solutions in the reference set. A solution s is 

included in refSet if its fitness value is better than the fitness value of the worst 

solution in refSet and its level of dissimilarity exceeds the median, ΡΖ[ > Median.  
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Given:  

Connected Graph G(V,E): V is a set of nodes and E ⊆	(V×V) is a set of edges. 

initialSquareSize: predefined square size where tabu search candidate solutions are located on its border. 

squareReduction: predefined value which represents the rate of reduction for the size of the square. 

maxIterations: predefined maximum number of iterations of the tabu search drawing algorithm.  

initialCutOff: predefined minimum value that determines whether a move is tabu or not.  

intensifyCutOff: predefined value which represents the rate of reduction for the current cutOff value.  

intensifyIterations: predefined number of iterations in which the tabu search searching process starts to 
intensify.  

duration: predefined number of iterations in which a move should remain in the tabu list.    

refSize: predefined size for the maximum number of solutions that can be added to the reference set of path 
relinking. 

Algorithm :  
1: allOffsets = {(1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1, 0), (-1, 1), (0, 1)} 

 2: tabuSet = {} 

 3: squareSize = initialSquareSize , CutOff = initialCutOff 

4: layout = RandomizeLayout(G) /* layout maps each node in G to an (x,y) position */ 

 5: iteration = 0 

 6: refSet = {}    /* PR empty reference set */ 

 7: while iteration < maxIterations do  

 8:  for v in V do 

9:   currentPos = layout[v] /* position currently associated with node v */ 

 10:  currentFitness = Fitness(layout)  

 11:  candidates = {}  

12:  for scaledOffset in {(squareSize*x, squareSize*y) | (x,y) in allOffsets} 

13:   candidatePos = currentPos + scaledOffset /* vector addition */ 

14:   if (v, candidatePos, i) ∉ tabuSet for some i then 
 15:    layout[v] = candidatePos  

 16:    candidateFitness = Fitness(layout) 

17:    if candidateFitness / currentFitness > CutOff then 

18:     tabuSet = tabuSet ∪ {(v, candidatePos, iteration)}   
 19:    else  

20:     candidates = candidates ∪ {(candidatePos, candidateFitness)}  
 21:    end if 

 22:   end if 

 23:  end for 

 24:  if candidates ≠ {} then  
25:   newPos = p, where (p,f) is the pair in candidates with minimal f 

26: layout[v] = newPos  

27:   tabuSet = tabuSet ∪ {(v, currentPos, iteration)} 
28:  end if 

29: end for 
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When the path relinking procedure is called, the following steps are performed for a set 

number of iterations (PRmaxIterations) as long as the reference set has more than one solution 

(see Algorithm 6.2): firstly, we select two solutions from the reference set (initial and guiding 

solutions). There are different ways for selecting these two solutions as we show later in this 

chapter. In our first version of this algorithm, we select the worst and the best solutions from 

the reference set to represent the initial and guiding solutions respectively, i.e. the guiding 

solution is always of a better (smaller) fitness value than the fitness value of the initial 

solution. Secondly, we remove the initial solution from the reference set as its path to the 

guiding solution will be explored. Thirdly, we call the function MoveAlongPath() that moves 

on a path from the initial solution toward the guiding solution and vice versa in the solution 

space to generate intermediate solutions (see Algorithm 6.3). This scenario had produced 

better results in other applications compared to moving in one direction only (Ho & Gendreau 

2006). These intermediate solutions should become closer to the guiding solution (i.e. contain 

more attributes from the guiding solution and fewer attributes from the initial solution). In our 

algorithm, for each node in the initial solution, we visit the 8 positions around a square (same 

local search space described earlier in Chapter 4, Section 4.2.1) of a predefined size 

30: if !FoundinRefSet(layout) then 

31:  if Size(refSet) < refSize then /* not full */ 

32:    refSet = refSet ∪ {(layout, iteration)} 
33:  else  

34:   if Quality(layout) || Diversity(layout) then 

35:       refSet = refSet ∪ {(layout, iteration)} 
36:   end if  

37:  end if  

38: end if 

 39: if (iteration mod intensifyIterations) == 0 then 

 40:  layout = PathRelinking(refSet, iteration) 

41:  squareSize = SmallerSquareSize(squareSize, squareReduction) 

42:  cutOff = SmallerTabuCutOff(cutOff, intensifyCutOff) 

43: end if    

44: tabuSet = {(v,p,i) | (v,p,i) in tabuSet and (iteration - i) < duration} 

45: iteration = iteration + 1 

46:end while 

 
Algorithm 6.1 Tabu search and path relinking coupling algorithm for graph drawing 
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(pathSqrSize) and compute the Euclidean distance from each position to its corresponding 

node in the guiding solution, as shown in Figure 6.1 where node number 2 would move to a 

neighbourhood node that has the closest Euclidean distance to its corresponding node in the 

guiding solution. We select the position with the shortest Euclidean distance. Its fitness value 

is computed along with its dissimilarity level, and we update the reference set, by calling 

function UpdateReferenceSet(), if the new solution satisfies the quality and dissimilarity 

measures. The movement along the path requires two conditions to stop: the first is when an 

intermediate solution reaches the guiding solution, and the second is when the length of the 

path reaches a predefined value of a maximum length (pathLength). Note that, as we generate 

intermediate solutions, we use the tabu search memory-based list to avoid previously visited 

solutions. 

 

Figure 6.1 Our path relinking strategy in moving from the initial solution to the guiding solution 
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6.2.2 Parameter Tuning  

Our simplest version of path relinking has four parameters which affect the performance of the 

method: the number of times we pick initial and target solutions from the reference set for 

path testing (PRmaxIterations), the size of the reference set (refSize), the maximum length of 

the path between the initial and the target solutions (pathLength), and the size of the square 

Given:  

PRmaxIterations: predefined value of the number of iterations to repeat the path relinking procedure. 

pathSqrSize: predefined square size where path relinking candidate solutions are located on its border. 

pathLength: predefined value representing the maximum length of the path. 

Algorithm :  
 1: i = 0  

 2: while i < PRmaxIterations && Size(refSet) > 1 do 

 3:  SelectSourceDestination(refSet, source, destination)  

  /* returns source and destination selected from the reference set refSet */ 

 4:  candidateLayout1 = MoveAlongPath(source, destination, pathLength, pathSqrSize)   

     /* forward path */                

 5:  candidateLayout2 = MoveAlongPath(destination, source, pathLength, pathSqrSize)   

     /* backward path */    

6:  UpdateReferenceSet(refSet, Min(candidateLayout1, candidateLayout2))   

7:  i = i + 1 

8: end while 

Algorithm 6.2 PathRelinking() procedure 

Algorithm :  
MoveAlongPath (source, destination, pathLength, pathSqrSize) 

 1: length = 0  

 2: while source != destination || length < pathLength 

 3:  for v in V do 

 4:    position = ShortestEuclidean(source[v], destination[v], pathSqrSize)  

     /* position with shortest distance around the square from the node in source to     

        destination */ 

 5:    fitness = Fitness(layout[position]) 

 6:    move source[v] to position if position ∉ tabuSet                                      
 7:    tabuSet = tabuSet ∪ {(v, layout[position], iteration)} 
 8:  end for 

 9:  length = length + 1 

 10:end while 

Algorithm 6.3 MoveAlongPath() procedure 
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used to determine the neighbourhood search space of solutions in the path (pathSqrSize). In 

this subsection, we try to calibrate the values of the parameters of the path relinking procedure 

while fixing the values of the tabu search procedure to the ones we obtained earlier in Chapter 

4 (Section 4.5.2). Note that, we could have re-calibrated the values of parameters for tabu 

search, but we moved on since tabu search does not have an effect on the parameters of path 

relinking (Ho & Gendreau 2006) as path relinking is a separate function for search 

intensification. Tabu search is only responsible for building the reference set used in path 

relinking by adding elite solutions to the set.  

The graph datasets which we used in tuning the values of these parameters were exactly 

the same sets used in tuning the values of the parameters of all the previous methods as 

described in Table 6.1, i.e. 100 random connected graphs, based on Erdos-Renyi model, that 

were divided into five sets such that each set had a different number of nodes and edges.  

Table 6.1 Graph datasets used in parameter tuning for path relinking 

Graph Set Nodes Edges Density Label 

1 50 153 0.125 N50E153 

2 100 544 0.110 N100E544 

3 150 1173 0.105 N150E1173 

4 200 1890 0.095 N200E1890 

5 250 2645 0.085 N250E2645 

 

We followed the same incremental testing process we performed with all the other 

methods. The process was divided into three phases. In phase I, we select arbitrary values for 

all parameters then we test each parameter with several values. We start with one parameter, 

we test it thoroughly with different values, and then we select the value that produces the best 

layout compared to the other values. We fix the value of the first parameter and we move on 

to test another parameter in the same manner, and so forth. In the second phase of parameter 

tuning, we repeated the same steps we followed in phase I, but instead of starting with 

arbitrary values, we started with the values that were selected and fixed from phase I. The 

third phase is to study the effect of the values of the path relinking parameters on the 

performance of the drawing algorithm (i.e. number of evaluated solutions). 



146 

 

 

i. Phase I 

At the beginning, we tested different values for the PRmaxIterations parameter {1, 2, 3, 4, 5}, 

while fixing the rest of the parameters to some arbitrary values: refSize = 5, pathLength = 10, 

and pathSqrSize = 10. In this phase of testing, we were looking for the combination of 

parameters’ values that give the smallest fitness value (best quality) compared to all other 

combinations regardless of the number of evaluated solutions performed by the drawing 

algorithm. According to Figure 6.2, we selected the value 5 for the PRmaxIterations 

parameter. Note that we could increase the values for this parameter as the figure shows that 

the fitness value decreases as the number of iterations increases. However, we stopped at the 

value 5 since the arbitrary value of the maximum size of the reference set is small. After 

testing the refSize parameter we can choose larger values for PRmaxIterations in phase II.    

 

Figure 6.2 Path relinking fitness with the PRmaxIterations parameter (phase I) 

After fixing the value of PRmaxIterations, we moved on to the second parameter refSize 

and tested it with the values {5, 10, 15, 20, 25}. As shown in Figure 6.3, the layout became 

better as the size of the reference set increased. When refSize was assigned the value 20 or 25, 

it produced better graph layouts compared to the rest of the values. But we selected the value 

20 for this parameter as the number of evaluated solutions was lower.  
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Figure 6.3 Path relinking fitness with the refSize parameter (phase I) 

The maximum length of the path between the initial solution and the guiding solution, 

pathLength was tested with the values {5, 10, 15, 20, 25}. The fitness values of the layouts 

produced by our path relinking drawing algorithm were close to each other, as shown in 

Figure 6.4. However, on large graph datasets whether we decrease or increase the value of this 

parameter around the value 15, the fitness value increases. Thus, we selected the value 15 for 

pathLength as the figure shows that this value gave the best layout.  

 

Figure 6.4 Path relinking fitness with the pathLength parameter (phase I) 
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The square size representing the neighbourhood search space around each solution in the 

path was tested with the values {2, 6, 10, 14, 18}. Figure 6.5 shows that the fitness value 

decreased as the value of PathSqrsize increased until the value 14 was reached. After that the 

fitness value had increased again at the value 18. We chose the value 14 for this parameter 

since it produced the best fitness values of graph layouts when applied on large graphs. 

 

Figure 6.5 Path relinking fitness with the pathSqrSize parameter (phase I) 

ii.  Phase II 

We started with the values that were selected and fixed from phase I. In Figure 6.6, we show 

the results of testing the value of PRmaxIterations with the values {3, 5, 7, 9, 11}. The figure 

shows that the best layouts were produced when the value of this parameter was either 9 or 11. 

But we selected the value 11 as it produced a slightly better fitness value compared to the 

layout’s fitness value produced when the value 9 was used on large graphs. 
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Figure 6.6 Path relinking fitness with the PRmaxIterations parameter (phase II) 

In this phase, there is no significant difference between the fitness values produced when 

we tested refSize parameter with the values {10, 15, 20, 25, 30} except with large graphs as 

Figure 6.7 indicates that the value 25 for this parameter produced layouts with the best fitness 

value compared to the other values of the parameter.  

 

Figure 6.7 Path relinking fitness with the refSize parameter (phase II) 
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for all the categories of graphs used in this experiment. The figure also shows that the fitness 

values increased as the length of the path increased starting from the value 15.  

 

Figure 6.8 Path relinking fitness with the pathLength parameter (phase II) 

The results in phase I showed that increasing the value of the pathSqrSize parameter 

decreases the value of the layout’s fitness until the value of this parameter reaches the value 

14. In this phase, we retested this parameter with the values {4, 9, 14, 19, 24}. Figure 6.9 

shows that phase II gave similar results to those generated in phase I. The fitness values were 

at their best when the value of this parameter was 14.  

 

Figure 6.9 Path relinking fitness with the pathSqrSize parameter (phase II) 
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iii.  Phase III 

We performed a similar process to the one used in parameter tuning of the previous drawing 

algorithms discussed in Chapter 4. We took a view that a good-enough graph layout is a 

layout in which its fitness value is slightly greater than the best fitness value produced in the 

experiments of phase II. We used the values of the fitness function produced by the selected 

parameters’ values in phase II and we increased them by 12.5%. Then we ran the path 

relinking procedure until it reached equal fitness values to the target fitness values or no 

further improvement in the fitness value was made. Finally, we selected the most appropriate 

parameter values that gave a good layout with a small number of evaluated solutions.  

The best value for the PRmaxIterations parameter in phase II was 11. As we are looking to 

minimise the number of evaluated solutions in phase III, we tested this parameter with values 

smaller than 11: {4, 5, 7, 9}. The results in Table 6.2 and Figure 6.10 indicate that the method 

produced layouts with fitness values equal or smaller than the targeted fitness values with all 

the values of PRmaxIterations which we tested. However, the value 4 was the one which 

made the method generate the targeted layouts with the lowest number of evaluated solutions. 

To ensure that there is no smaller value for PRmaxIterations which could produce results 

better than the value 4, we tested it with the value 2 instead. But this value could not allow the 

method to reach the targeted fitness value for one of the tested graph datasets, as shown in 

Table 6.2.   

Table 6.2 Path relinking fitness with the PRmaxIterations parameter (phase III) 

  Fitness 
PRmaxIterations N50E153 N100E544 N150E1173 N200E1890 N250E2645 

2 0.300 0.626 0.813 0.944 1.017 

4 0.299 0.624 0.809 0.926 1.009 

5 0.296 0.622 0.808 0.926 1.008 

7 0.298 0.621 0.811 0.924 1.007 
9 0.299 0.619 0.810 0.926 1.006 

      
Target 0.303 0.634 0.825 0.941 1.029 
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Figure 6.10 Path relinking number of evaluated solutions with the PRmaxIterations parameter (phase III) 

In the previous phase, the best value for the reference set size parameter was 25. We tested 

the refSize parameter in this phase with the values {5, 10, 15, 20, 25}. Figure 6.11 shows that 

there was no significant difference in the number of evaluated solutions when we tested this 

parameter with the values ranging from 10 to 25. Only the value 5 had generated a lower 

number of evaluated solutions. However, a path relinking procedure with a reference set of 

size 5 could not generate graph layouts with fitness values that reach the targeted fitness 

values in two graph datasets as shown in Table 6.3. We decided to select the value 20 for the 

refSize parameter as the fitness values produced by the method were better and smaller than 

the targeted fitness values with a similar number of evaluated solutions compared to the other 

values of this parameter.   

Table 6.3 Path relinking fitness with the refSize parameter (phase III) 

 Fitness 
refSize N50E153 N100E544 N150E1173 N200E1890 N250E2645 

5 0.305 0.627 0.814 0.933 1.030 

10 0.302 0.623 0.814 0.936 1.024 

15 0.301 0.624 0.814 0.930 1.020 
20 0.300 0.625 0.805 0.928 1.009 

25 0.300 0.625 0.807 0.929 1.011 

      
Target 0.303 0.634 0.825 0.941 1.029 
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Figure 6.11 Path relinking number of evaluated solutions with the refSize parameter (phase III) 

According to the tuning process for the pathLength parameter in phase II, we obtained the 

best fitness values when the value of this parameter was 15. As this value increased or 

decreased, the fitness values were also becoming larger (worse). The length of the path was 

tested in phase III with the values {5, 10, 15, 20, 25}. Figure 6.12 illustrates that the number 

of evaluated solutions decreases as the value of pathLength decreases. A path length with the 

value 5 produced a lower number of evaluated solutions compared to the other values, but the 

algorithm could not reach the targeted fitness value for one graph dataset, as shown in Table 

6.4. Thus, the value 10 was the best value for pathLength in which it produced graph layouts 

having similar fitness values to the targeted fitness values with a lower number of evaluated 

solutions compared to the other values of this parameter.  

Table 6.4 Path relinking fitness with the pathLength parameter (phase III) 

 Fitness 
pathLength N50E153 N100E544 N150E1173 N200E1890 N250E2645 

5 0.299 0.636 0.812 0.929 1.018 

10 0.299 0.626 0.807 0.929 1.014 

15 0.300 0.625 0.805 0.928 1.009 
20 0.300 0.627 0.819 0.947 1.023 

25 0.299 0.626 0.816 0.943 1.031 

      
Target 0.303 0.634 0.825 0.941 1.029 
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Figure 6.12 Path relinking number of evaluated solutions with the pathLength parameter (phase III) 

In phase II, the best value for pathSqrSize was 14. In this phase, we retested this parameter 

with the values {6, 10, 14, 18, 22}. Table 6.5 shows that the path relinking procedure could 

reach the targeted fitness values with all the values we tested for pathSqrSize. On the other 

hand, Figure 6.13 shows that the number of evaluated solutions decreased as the square size 

increased. The figure shows that starting from the value 18 onwards, the number of evaluated 

solutions becomes stable. Therefore, we chose the value 18 for the pathSqrSize parameter.  

Table 6.5 Path relinking fitness with the pathSqrSize parameter (phase III) 

 Fitness 
pathSqrSize N50E153 N100E544 N150E1173 N200E1890 N250E2645 

6 0.302 0.624 0.813 0.927 1.014 

10 0.294 0.625 0.810 0.932 1.016 

14 0.299 0.626 0.807 0.929 1.014 

18 0.300 0.622 0.812 0.928 1.019 

22 0.300 0.628 0.816 0.930 1.024 

      
Target 0.303 0.634 0.825 0.941 1.029 
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Figure 6.13 Path relinking number of evaluated solutions with the pathSqrSize parameter (phase III) 

 Now that we have tuned the parameters of the simplest version of path relinking for graph 

drawing, we list the values for the parameters of the path relinking procedure below that we 

will use in the coming experiment: 

PRmaxIterations = 4, 

refSize = 20, 

pathLength = 10, 

pathSqrSize = 18. 

In the following section, we discuss different variations of path relinking that could 

improve the performance of the path relinking procedure in its simplest version.    

6.3 Variation of Path Relinking  

The performance of the path relinking procedure is influenced by the strategy used for 

selecting the initial and the guiding solutions. It is also affected by the technique used in 

searching for solutions in the neighbourhood search space. In this section, we describe the 

different strategies applied in order to select the best variation of path relinking that improves 

the basic implementation in terms of the performance and quality of the produced layouts. We 

also include experimental results which second our selections.  
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6.3.1 Proper Selection of Initial and Guiding Solutions 

Different selection strategies for the initial (source) and guiding (destination) solutions affect 

the quality of the graph layouts drawn by the path relinking procedure. There are five different 

variations for the selection mechanism of the source solution and the destination solution from 

the reference set (Ho & Gendreau 2006): 

a. The worst and the best elite solutions, 

b. The best and the second best elite solutions, 

c. Random selection of elite solutions, 

d. The best elite solution and the most distant elite solution to the best. In our graph 

layout application, the distance between two layouts can be computed as the 

summation of Euclidean distances between the corresponding nodes in the two layouts 

as described in the Diversity() function used in Algorithm 6.1 which was 

discussed in Section 6.2.1. The most distant solution is the one with the maximum 

summation of distances to the best elite solution (i.e. the most distant solution = s such 

that s ∈ refSet and satisfies the formula: ∋ΝΘ ∑ ΡΖ[Ζ⊥[Ζ∈_�α�β , where b is the best solution 

in refSet and ΡΖ[ is the level of dissimilarity between solutions s and b), 

e. The two most distant elite solutions. 

In our basic version of the path relinking procedure, we started with the first strategy 

where source and destination solutions were the worst and the best elite solutions in the 

reference set. But as we want to choose the variation that gives the best performance, we 

tested the five different strategies on random connected graph datasets, as shown in Table 6.6. 

We generated 40 random graphs, based on Erdos-Renyi model, divided into 4 groups such that 

each group contains 10 test cases. Each group had a number of nodes and a number of edges 

that varies from the number of nodes and edges in the other groups. The results in Figure 6.14 

and Figure 6.15 show that the first (a) and the fourth (d) strategies were competitive and had 

better performance compared to the other strategies, taking into consideration the combination 

of both quality and speed.  
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Table 6.6 Characteristics of the graphs used in the experiment of selecting initial/guiding solutions 

Graph Set Nodes Edges Density 

1 55 190 0.128 

2 105 611 0.112 

3 155 1217 0.102 

4 205 1986 0.095 

 

 

Figure 6.14 Fitness values with 95% confidence interval of the strategies for selecting initial/guiding 
solutions 
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Figure 6.15 Number of evaluated solutions with 95% confidence interval of the strategies for selecting 
initial/guiding solutions 

We performed another comparison between those two strategies on newly generated 

random datasets (described in Table 6.7) in order to avoid overfitting. The graph datasets were 

divided into groups in the same way which we followed in the previous experiment. We 

divided the comparison into two phases: the first phase tested the number of evaluated 

solutions performed by the drawing algorithm for each strategy as it runs until it reaches a set 

fitness value; and the second phase tested the quality of the generated graph layouts when the 

drawing procedure runs for a set number of evaluated solutions. In both phases, the path 

relinking procedure which was based on strategy (d) slightly outperformed the procedure with 

strategy (a) in terms of speed as shown in Figure 6.16 and the fitness of the generated layouts 

as shown in Figure 6.17.  

Table 6.7 Characteristics of the graphs used in the experiment of comparing strategies (a) and (d) for 
selecting solutions 

Graph Set Nodes Edges Density 

1 150 1173 0.105 

2 200 1890 0.095 

3 250 2645 0.085 

4 300 3363 0.075 
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Figure 6.16 Number of evaluated solutions with 95% confidence interval performed when strategies (a) 
and (d) run to reach a set fitness value 

 

Figure 6.17 Fitness values produced with 95% confidence interval when strategies (a) and (d) run for a set 
number of solutions 
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drawing application, we proposed another improvement to our path relinking procedure by 

examining the way the path is formed from the initial solution to the guiding solution.  

In the basic implementation, the step-size we use to move from an initial solution to 

intermediate solutions is fixed (pathSqrSize) and it never changes as we move along the path 

until we reach the guiding solution. We examined if using a variable step-size would improve 

performance. Moving along the path such that the movement starts faster near the initial 

solution and it becomes slower as it gets closer to the guiding solution in the solution space 

which intensifies the search in the area of the guiding solution. This strategy is applied to both 

directions: from an initial solution to a guiding solution and vice versa. This variation 

introduces two new parameters to our path relinking procedure: number of iterations required 

to update the step-size (accelerationPeriod), and the rate of decreasing the step-size 

(accelerationRate). The net effect is to search more closely to the two known solutions than in 

the space between them. Note that, moving in a variable step-size will not exclude the 

solutions in the middle of the path. They will have a fair exploration time, as the acceleration 

takes place at one end and slows down at the other end in both directions. However, according 

to Sánchez-Oro & Duarte (2012), the best solutions were usually detected near the guiding 

solution since the main purpose of path relinking is intensifying the search near elite solutions.  

Before we compare between those two strategies (fixed step-size or variable step-size), we 

need to select proper values for the newly introduced parameters while fixing the other 

parameters of path relinking to the values which were determined earlier in Section 6.2. 

Therefore, we firstly chose initial arbitrary values for those parameters and we performed a 

tuning process on those values by applying the method on randomly generated graph layouts. 

We generated 50 random graphs, based on Erdos-Renyi model, split into 5 groups, as shown 

in Table 6.8, such that each group contains 10 test cases.  
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Table 6.8 Characteristics of the graph datasets used for choosing proper values for the acceleratioPeriod 
and accelerationRate parameters 

Graph Set Nodes Edges Density Label 

1 50 156 0.128 N50E156 

2 100 549 0.111 N100E549 

3 150 1173 0.105 N150E1173 

4 200 1970 0.099 N200E1970 

5 250 2583 0.083 N250E2583 

We performed two rounds of tuning the values of accelerationPeriod and 

accelerationRate. In the first round, we fixed the value of accelerationRate to 0.01, and we 

examined a set of values for the other parameter {1, 5, 10, 15, 20}. We were looking for the 

value that gives the best fitness compared to the other values and if we get a tie, we select the 

one that gives a lower number of evaluated solutions. The line charts in Figure 6.18 and 

Figure 6.19 show that the fitness value and number of evaluated solutions performed by the 

drawing algorithm become stable after the value 10 that we selected as a value for 

accelerationPeriod in this round. 

 

Figure 6.18 Fitness values of the layouts for the datasets in Table 6.8 when examining the values of the 
accelerationPeriod parameter (1st round) 
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Figure 6.19 Number of solutions for drawing the layouts for the datasets in Table 6.8 when examining the 
values of the accelerationPeriod parameter (1st round) 

To select a proper value for the accelerationRate parameter, we fixed the value of 

accelerationPeriod to 10, and we examined the following values for the accelerationRate 

{0.01, 0.05, 0.10, 0.15, 0.20}. The results in Figure 6.20 indicate that the value 0.01 is the one 

which should be selected as it generates layouts with better fitness values compared to the 

other values in the set. There is no need to examine the number of evaluated solutions since 

the values of fitness function are small with 0.01 acceleration rate. We could have tested 

smaller values, but our main target in this tuning process was getting a proper starting value 

not the final value of the parameter.  
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Figure 6.20 Fitness values of the layouts for the datasets in Table 6.8 when examining the values of the 
accelerationRate parameter (1st round) 

We performed another round for calibrating the values for both parameters in the same 
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round as starting values. The set of values used for accelerationPeriod in the second round 

was {6, 7, 8, 9, 10}. The fitness values were close to each other as shown in Figure 6.21, with 
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example). So, we picked that value for accelerationPeriod and we examined the following set 

of values for accelerationRate {0.01, 0.02, 0.03, 0.04, 0.05}. Again, we selected the value 

0.01 with reference to the results demonstrated in Figure 6.22.   
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Figure 6.21 Fitness values of the layouts for the datasets in Table 6.8 when examining the values of the 
accelerationPeriod parameter (2nd round) 

 

Figure 6.22 Fitness values of the layouts for the datasets in Table 6.8 when examining the values of the 
accelerationRate parameter (2nd round) 
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Table 6.9 Characteristics of the graph datasets used in the comparison between the two strategies for 
moving along the path 

Graph Set Nodes Edges Density 

1 150 1229 0.11 

2 200 1990 0.1 

3 250 2801 0.09 

4 300 3588 0.08 

The two variations used the same values of all path relinking parameters except for the 

newly introduced parameters as they are only related to the variable step-size strategy. We ran 

both of them until reaching the stopping criterion. The results showed that using a variable 

step-size to move along the path can produce better graph layouts with a lower number of 

evaluated solutions than a fixed step-size strategy, as shown in Figure 6.23 and Figure 6.24.  

 

Figure 6.23 Fitness values with 95% confidence interval for the layouts of the datasets in Table 6.9 when 
applying the two strategies of moving along the path 
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Figure 6.24 Number of solutions with 95% confidence interval for the layout of the graph datasets in Table 
6.9 when applying the two strategies of moving along the path 

Our improved path relinking procedure will add some changes to Algorithm 6.2 and 

Algorithm 6.3 that were discussed in Section 6.2.1. The two parameters, accelerationPeriod 

and accelerationRate, will be introduced in the PathRelinking() and MoveAlongPath() 

procedures, as shown in Algorithm 6.4, where the two parameters have been added to the list 

of parameters of the MoveAlongPath() procedure, and in Algorithm 6.5 (Line 5 and Line 6), 

where both parameters are used to intensify the searching process. Note that, the stopping 

conditions for moving along the path are still the same as described in Algorithm 6.3: the first 

is when an intermediate solution reaches the guiding solution, and the second is when the 

length of the path reaches a predefined value of a maximum length.  

Since the results of the experiment show that the variable step-size strategy used in 

moving along the path is better than the fixed step-size strategy, we performed an intensive 

parameter tuning on all the parameters of our improved path relinking procedure, as will be 

described in the next section, in order to get a solid graph drawing algorithm that can be 

compared with simulated annealing and tabu search graph drawing algorithms.   
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Given: 

PRmaxIterations: predefined value of the number of iterations to repeat the path relinking procedure. 

pathSqrSize: predefined square size where path relinking candidate solutions are located on its border. 

pathLength: predefined value representing the maximum length of the path. 

accelerationPeriod: predefined number of iterations required for updating the searching step-size. 

accelerationRate: predefined value representing the rate of decreasing the searching step-size. 

Algorithm : 
1: i = 0 

2: while i < PRmaxIterations && Size(refSet) > 1 do 

3:  SelectSourceDestination(refSet, source, destination) 

/* returns source and destination selected from the reference set refSet */ 

4:  candidateLayout1 = MoveAlongPath(source, destination, pathLength, pathSqrSize, 

accelerationRate, accelerationPeriod)  /* forward path */ 

5:  candidateLayout2 = MoveAlongPath(destination, source, pathLength, pathSqrSize, 

accelerationRate, accelerationPeriod)  /* backward path */ 

6:  UpdateReferenceSet(refSet, Min(candidateLayout1, candidateLayout2))   

7:  i = i + 1 

8: end while 

 

Algorithm :  
MoveAlongPath (source, destination, pathLength, pathSqrSize, accelerationRate, 

accelerationPeriod) 

 1: length = 0  

 2: updateSquare = 0 

 3: while source != destination || length < pathLength 

 4:  for v in V do 

 5:   if length mod accelerationPeriod == 0 then  /* variable step-size for a path move 

 6:      updateSquare += accelerationRate 

 7:   end if 

 8:   position = ShortestEuclidean(source[v], destination[v], pathSqrSize + updateSquare)  

 9:  /* position with shortest distance around the square from the node in source to  

        destination */ 

 10:  fitness = Fitness(layout[position]) 

 11:  move source[v] to position if position ∉ tabuSet                                       
 12:  tabuSet = tabuSet ∪ {(v, layout[position], iteration)} 
 13: end for 

 14: length = length + 1 

 15:end while 

Algorithm 6.4 Improved PathRelinking() procedure 

Algorithm 6.5 Improved MoveAlongPath() procedure 
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6.3.3 Parameter Tuning  

There are six parameters which affect our improved path relinking procedure: the number of 

iterations to repeat the path relinking procedure (PRmaxIterations), the size for the maximum 

number of solutions that can be added to the reference set of path relinking (refSize), the 

maximum length of the path (pathLength), the square size where path relinking candidate 

solutions are located on its border (pathSqrSize), the number of iterations required to update 

the size of the square (accelerationPeriod), and the rate of decreasing the searching step-size 

(accelerationRate). 

For tuning the values of these parameters, we applied our improved graph drawing 

algorithm on 100 random connected graphs which were divided into five sets such that each 

set had a different number of nodes and edges, as described in Table 6.10. 

Table 6.10 Characteristics of the graph datasets used in tuning the parameters of our improved TS+PR 
graph drawing algorithm 

Graph Set Nodes Edges Density Label 

1 50 147 0.120 N50E147 

2 100 519 0.105 N100E519 

3 150 1117 0.100 N150E1117 

4 200 1791 0.090 N200E1791 

5 250 2490 0.080 N250E2490 

Since the improved procedure is called within our tabu search drawing algorithm, we used 

the same values of the parameters of tabu search that we obtained in Chapter 4 (Section 4.5.2). 

On the other hand, in order to calibrate the values of the parameters of the improved path 

relinking, we followed the same incremental testing process we performed with all the other 

methods. The process was divided into three phases. In phase I, we selected the values 

according to our previous parameters testing described in our basic path relinking 

implementation in Section 6.2.2 and the values of the newly introduced parameters described 

in Section 6.3.2. In phase II of the experimental process for tuning the parameters of our 

improved path relinking procedure, we performed another round of further tuning similar to 

the process we followed in phase I using different graph datasets but with the same number of 

nodes and edges. In phase III, we focused on the number of evaluated solutions performed by 

the drawing algorithm when it reached a certain fitness value. 
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i. Phase I 

In phase I, we selected the values according to our previous parameters testing described in 

our basic path relinking implementation in Section 6.2.2 and the values of the newly 

introduced parameters described in Section 6.3.2. The initial values of the parameters were: 

PRmaxIterations = 4, refSize = 20, pathLength = 10, pathSqrSize = 18, accelerationPeriod = 

9, accelerationRate = 0.01. We started with one parameter, tested it thoroughly with different 

values, and selected the value which draws layouts with the minimum fitness value compared 

to the other values. If the fitness values were too close to each other, we would select the 

values based on the ones which performed the lowest number of evaluated solutions. We fixed 

the value of the first parameter and we moved on to test another parameter in the same 

manner, and so forth.  

We started the tuning process with the PRmaxIterations parameter by testing the values of 

the set {1, 4, 7, 10}. Figure 6.25 shows that increasing the value of this parameter would 

minimise the value of the fitness function of the generated layout. According to the set of 

values which we tested, the best value to choose was 10.  

 

Figure 6.25 Fitness values of the improved drawing algorithm when tuning the PRmaxIterations 
parameter (phase I) 
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In the next parameter (refSize), we selected the set {10, 20, 30, 40} to be used in 

calibrating this parameter. With reference to Figure 6.26, the best value for refSize that gave 

the best fitness value was 20. Note that, all the tested values led to producing very close 

fitness values, but as the value of this parameter increases, it slightly increases the number of 

evaluated solutions, as shown in Figure 6.27. We selected the value 20, as it gave a fitness 

value (on the graphs with label N250E2490) that was slightly better than the other values and 

the number of evaluated solutions performed by the algorithm when using this value is less 

than the evaluated solutions when we test this parameter on the values 30 and 40).  

 

Figure 6.26 Fitness values of the improved drawing algorithm when tuning the refSize parameter (phase I) 
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Figure 6.27 Number of evaluated solutions of the improved drawing algorithm when tuning the refSize 
parameter (phase I) 
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tested with the following set of values: {10, 20, 30, 40}. After testing all these values, we 

selected the value 20. We chose this value although it did not give better fitness compared to 

the value 10 on small graphs, but it has the same behaviour on larger graphs as shown in 

Figure 6.28. We first need to test the effect of the initial square size value on longer paths. If 

the effect is not significant, then we could select the value 10 in phase II of parameters testing. 
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Figure 6.28 Fitness values of the improved drawing algorithm when tuning the pathLength parameter 
(phase I) 

The pathSqrSize parameter was tested with the values {5, 10, 15, 20}. According to Figure 

6.29, the best value that could be picked is 20 since the fitness value was slightly smaller as 

the graph size became larger. The value 15 also produced good results but when applied on 

larger graphs, the value 20 was better.  

 

Figure 6.29 Fitness values of the improved drawing algorithm when tuning the pathSqrSize parameter 
(phase I) 
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To test the effect of the accelerationPeriod parameter, we tested it with the following 

values: {1, 5, 9, 13}. Figure 6.30 shows that changing the value of this parameter did not 

greatly affect the value of the fitness function. But Figure 6.31 shows that increasing the value 

of this parameter would slightly increase the number of evaluated solutions. That is why we 

chose the value 5 although there was no big difference with the fitness values produced when 

accelerationPeriod was set to 9 or 13, but it was better on larger graphs with a lower number 

of evaluated solutions.  

 

Figure 6.30 Fitness values of the improved drawing algorithm when tuning the accelerationPeriod 
parameter (phase I) 
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Figure 6.31 Number of evaluated solutions of the improved drawing algorithm when tuning the 
accelerationPeriod parameter (phase I) 

The last parameter that was tested in phase I was accelerationRate which was tested with 

the values {0, 0.05, 0.1, 0.15}. Increasing the value of this parameter resulted in an increase in 

the value of the fitness function as shown in Figure 6.32 when the values went beyond the 

value 0.05. On the other hand, setting the value 0 to this parameter had produced larger fitness 

values compared to those when the value 0.05 was assigned to this parameter. Therefore, we 

chose the value 0.05 in this phase, but in the next phase, we will test the value of this 

parameter with a set of values in the range between 0 and 0.05 to examine the behaviour of the 

fitness function in that specific range.  
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Figure 6.32 Fitness values of the improved drawing algorithm when tuning the accelerationRate 
parameter (phase I) 

ii.  Phase II 
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using different graph datasets but with the same number of nodes and edges, as described 
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change in the selected values of the parameters since the set of values was different in this 
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PRmaxIterations = 10, refSize = 20, pathLength = 15, pathSqrSize = 20, accelerationPeriod = 

5, accelerationRate = 0.0025. 

iii.  Phase III 

We selected the values of the parameters that made the algorithm implement the lowest 
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fitness value for each test case (from phase II with an increase of 12.5%) and we tested 

number of evaluated solutions required to reach that value. The value of the parameter that 

gave the minimum number of evaluated solutions was chosen. Different graph datasets 

(different layouts) were randomly generated and used in this phase as well, but with the same 

number of nodes and edges of the previous two phases.  

The initial values of the parameters in this phase were the final values which were chosen 

from the previous phase. We started with the PRmaxIterations parameter by testing a set of 

values {2, 4, 6, 8, 10}. Although the value 2 would make the algorithm perform the lowest 

number of evaluated solutions as shown in Figure 6.33, it did not reach the target fitness on 

the small graph layouts according to the highlighted cell in Table 6.11. Thus, we picked the 

value 4 since the algorithm had reached the target fitness value with all graph layouts and it 

had performed the lowest number of evaluated solutions.    

Table 6.11 Fitness values reaching a target value by the improved drawing algorithm when tuning the 
PRmaxIterations parameter (phase III) 

  Fitness 
PRmaxIterations N50E147 N100E519 N150E1117 N200E1791 N250E2490 

2 0.180 0.372 0.483 0.574 0.644 

4 0.164 0.376 0.484 0.574 0.644 

6 0.161 0.377 0.484 0.574 0.645 

8 0.163 0.379 0.483 0.572 0.643 

10 0.161  0.377  0.483  0.573  0.642  

            

Target 0.164 0.382 0.487 0.581 0.650 
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Figure 6.33 Number of evaluated solutions of the improved drawing algorithm when tuning the 
PRmaxIterations parameter (phase III) 

For the size of candidate elite solutions in the reference set, refSize, we examined the 

following set of values: {12, 16, 20, 24}. The highlighted cells in Table 6.12 show that the 

algorithm could not reach the target fitness value when refSize had the values 16 or 24. With 

reference to Figure 6.34, we selected the value 20 since the algorithm had performed a slightly 

lower number of evaluated solutions compared to the performance of the algorithm when the 

value 12 was assigned to the refSize parameter.    

Table 6.12 Fitness values reaching a target value by the improved drawing algorithm when tuning the 
refSize parameter (phase III) 

  Fitness 
refSize N50E147 N100E519 N150E1117 N200E1791 N250E2490 

12 0.164 0.375 0.484 0.573 0.644 

16 0.165 0.376 0.484 0.574 0.644 

20 0.164 0.376 0.484 0.574 0.644 

24 0.165 0.376 0.484 0.574 0.644 

            

Target 0.164 0.382 0.487 0.581 0.650 
 

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 2 4 6 8 10 12

Evaluated

Solutions

PRmaxIterations

N50E147

N100E519

N150E1117

N200E1791

N250E2490



178 

 

 

 

Figure 6.34 Number of evaluated solutions of the improved drawing algorithm when tuning the refSize 
parameter (phase III) 

The third parameter, pathLength, was tested with the values {11, 15, 19, 23}. None of 

these values (except the value 15) could help the algorithm in reaching the target fitness 

values for all the graph layouts as shown in the highlighted cells of Table 6.13. Therefore, we 

selected the value 15 since it was the only one that reached the target fitness value for all the 

test cases.  

Table 6.13 Fitness values reaching a target value by the improved drawing algorithm when tuning the 
pathLength parameter (phase III) 

  Fitness 
pathLength N50E147 N100E519 N150E1117 N200E1791 N250E2490 

11 0.242 0.367 0.471 0.568 0.639 

15 0.164 0.376 0.484 0.574 0.644 

19 0.167 0.373 0.511 0.579 0.644 

23 0.172 0.376 0.516 0.579 0.644 

            

Target 0.164 0.382 0.487 0.581 0.65 
 

Two out of the four values {12, 16, 20, 24} which we used for tuning the fourth parameter, 

pathSqrSize, led to the failure of the algorithm to reach the target fitness value as shown in the 

highlighted cells of Table 6.14. With reference to Figure 6.35, we chose the value 20 although 

the values 12 and 16 gave a lower number of evaluated solutions on small graph layouts, but 

that was not the case with large graph layouts which is more important to us in this phase 
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since we are trying to improve the performance of the drawing algorithm. On the other hand, 

the value 24 did not reach the target fitness value on small graph layouts. 

Table 6.14 Fitness values reaching a target value by the improved drawing algorithm when tuning the 
pathSqrSize parameter (phase III) 

  Fitness 
pathSqrSize N50E147 N100E519 N150E1117 N200E1791 N250E2490 

12 0.165 0.376 0.483 0.577 0.644 

16 0.164 0.377 0.480 0.576 0.643 

20 0.164 0.376 0.484 0.574 0.644 

24 0.170 0.377 0.480 0.573 0.644 

            

Target 0.164 0.382 0.487 0.581 0.65 
 

 

Figure 6.35 Number of evaluated solutions of the improved drawing algorithm when tuning the 
pathSqrSize parameter (phase III) 

During the tuning process of the fifth parameter, accelerationPeriod, the behaviour of the 

algorithm was not clear when we chose a set of four values only for tuning the parameter. 

Thus, we increased the number of values in order to examine the behaviour of the algorithm 

and to get a proper indication of its performance. The following values were tested: {2, 3, 4, 5, 

6, 7, 8, 9, 10}.  

After testing all the values, we selected the value 7 to be assigned to the 

accelerationPeriod parameter. This value did not reach the target fitness on the smallest graph 
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dataset as shown in Table 6.15, but as Figure 6.36 indicates, the number of evaluated solutions 

had greatly dropped down with value 7. Since our main target was to speed up the drawing 

process while generating good graph layouts, we chose the value 7 because there was no big 

difference in the number of evaluated solutions as the size of the graph layouts increased. On 

the other hand, the algorithm had generated graph layouts with fitness values which reach the 

target fitness values for all graphs when the values 4 and 5 were assigned to the 

accelerationPeriod parameter, but the number of evaluated solutions was very large when the 

graph size increased. 

Table 6.15 Fitness values reaching a target value by the improved drawing algorithm when tuning the 
accelerationPeriod parameter (phase III) 

  Fitness 
accelerationPeriod N50E147 N100E519 N150E1117 N200E1791 N250E2490 

2 0.185 0.403 0.511 0.580 0.644 

3 0.168 0.381 0.507 0.579 0.645 

4 0.164 0.375 0.483 0.579 0.645 

5 0.164 0.376 0.484 0.574 0.644 

6 0.172 0.375 0.482 0.569 0.640 

7 0.205 0.373 0.479 0.568 0.641 

8 0.245 0.372 0.479 0.566 0.640 

9 0.254 0.372 0.474 0.570 0.641 

10 0.255 0.368 0.477 0.569 0.640 

            

Target 0.164 0.382 0.487 0.581 0.65 
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Figure 6.36 Number of evaluated solutions of the improved drawing algorithm when tuning the 
accelerationPeriod parameter (phase III) 

With the last parameter, accelerationRate, we had a similar situation to the one we had in 

the previous parameter, where the behaviour of the algorithm was not very clear with the four 

values we initially chose. Therefore, we tested this parameter with many values {0.001, 

0.0015, 0.002, 0.0025, 0.003, 0.0035, 0.004, 0.0045, 0.005}. After testing all these values, 

there were two values which could be selected for this parameter: 0.002 or 0.0025. When the 

parameter was assigned any of these two values, the number of evaluated solutions performed 

by the algorithm was minimum compared to the other values. Although the target fitness value 

was not reached when those two values were selected on the smallest graph layouts only, but 

that was the case also when all the other values were tested as shown in the highlighted cells 

of Table 6.16. Since we were looking to generate good graph layouts besides speeding up the 

algorithm to lay out larger graphs, we chose the value 0.002 as the number of evaluated 

solutions was the lowest, in most of the test cases, compared to all other values as shown in 

Figure 6.37.  
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Table 6.16 Fitness values reaching a target value by the improved drawing algorithm when tuning the 
accelerationRate parameter (phase III) 

  Fitness 
accelerationRate N50E147 N100E519 N150E1117 N200E1791 N250E2490 

0.001 0.255 0.384 0.473 0.557 0.644 

0.0015 0.258 0.359 0.453 0.555 0.643 

0.002 0.250 0.370 0.478 0.562 0.640 

0.0025 0.205 0.373 0.479 0.568 0.641 

0.003 0.168 0.374 0.480 0.569 0.642 

0.0035 0.165 0.377 0.480 0.573 0.644 

0.004 0.165 0.378 0.485 0.576 0.643 

0.0045 0.164 0.383 0.494 0.580 0.644 

0.005 0.165 0.382 0.499 0.584 0.645 

            

Target 0.164 0.382 0.487 0.581 0.65 
 

 

Figure 6.37 Number of evaluated solutions of the improved drawing algorithm when tuning the 
accelerationRate parameter (phase III) 

After finishing the tuning process for all the parameters of the improved path relinking 

procedure, we list the value of each parameter which will be used in our coming experiments: 
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accelerationPeriod = 7  

accelerationRate = 0.002  

6.4 Summary 

Path relinking is a relatively new neighbourhood search-based method that has proved its 

effectiveness in many multi-criteria optimisation problems especially when coupled with other 

search-based methods as an intensification step. In this chapter, we described our basic graph 

drawing algorithm which was based on a coupling of tabu search and path relinking. The 

desire to tunnel through blocked off areas created by tabu search solutions was the main 

reason for choosing the path relinking procedure to couple with tabu search to intensify the 

searching process between an initial and a guiding solutions selected from a set of elite 

solutions generated by the tabu search drawing algorithm. A first round of parameter tuning 

was performed to calibrate the values of the basic parameters of the path relinking procedure. 

Two improvements were proposed and applied on the path relinking procedure: a proper 

selection of the initial and the guiding solutions from the reference set of elite solutions, and 

an improved neighbourhood searching strategy based on a variable step size. The proposed 

improvements introduced two new parameters that could affect the performance of the 

procedure. Therefore, we performed a final round of the parameters calibration process in 

order to assign reasonable values for each parameter before we examine the performance of 

our improved neighbourhood search-based method compared to other neighbourhood search 

methods. 

In the next chapter, we conduct an experiment that consists of three phases, with the aim to 

perform a comprehensive comparison, in terms of the speed of the drawing algorithm and the 

quality of the generated layouts, between three neighbourhood search-based methods: 

simulated annealing, tabu search, and our improved coupling of tabu search with the path 

relinking procedure. 
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Chapter 7 Experimental Results for Comparing Tabu Search with 
Path Relinking Versus Simulated Annealing 

This chapter demonstrates the effect of coupling the tabu search graph drawing algorithm with 

path relinking. A comparison with simulated annealing is made by applying the methods on 

random and real world graph datasets. It also illustrates the process we followed for analysing 

the performance of our method and for testing its scalability. The experimental results are 

presented along with our comments and conclusions.  

7.1 Introduction 

In the previous experiment that was described in Chapter 5, we concluded that simulated 

annealing and tabu search graph drawing algorithms can generate graph layouts with better 

fitness values compared to the ones generated by hill climbing. In this chapter, we want to test 

the effect of coupling path relinking with our tabu search algorithm. In this experiment, in spite 

of using new randomly generated datasets, we exclude hill climbing for two reasons:  

•  The results of the previous experiment showed that hill climbing performed 

considerably worse than both tabu search and simulated annealing in all phases when 

being applied on random datasets and real world datasets;  

•  One of the main drawbacks of hill climbing is getting trapped in local optima, unlike 

tabu search which does not run out of solutions (as we described earlier in Chapter 4). 

That behaviour of hill climbing conflicts with the fact that building a reference set for 

path relinking requires diversity in the elite solutions generated by the other search 

algorithm in the pre-processing step.    

 Here, we need to answer the following question: ‘Does coupling the tabu search method 

with path relinking improve the performance of the tabu search graph drawing method?’  To 

answer this question we had to implement and evaluate our improved method against simulated 

annealing and pure tabu search graph drawing algorithms. We use the same system 

specifications and the same three phases of evaluations that were implemented in our previous 

experiment, that include: finding the best layout that can be achieved (phase I); how long it 
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takes to generate a layout to a particular level of quality (phase II); and how good the quality of 

the layout is after a fixed number of evaluated solutions (phase III). The values of the 

parameters for each method were assigned according to the selections we made after the tuning 

process, as described earlier in Chapter 4 and Chapter 6.  

 In order to avoid overfitting, where the drawing algorithm could be tailored to the dataset 

used in the first experiment, we generated new random graph datasets in this experiment, based 

on Erdos-Renyi model that were also divided into two categories, using the same procedure we 

followed for generating random graphs in our previous comparison. 

 In the first category, we had 80 random graphs split into 4 groups of 20 test cases. All the 

graphs in this category had 160 nodes, randomly positioned. Each group had a different number 

of edges so that the density varied. The graphs in each group had the same number of nodes 

and edges but with different random layouts. See Table 7.1 for the characteristics of the graphs 

in the first category. The graphs of the second category were generated in the same way as 

those graphs of category II described in the previous experiment. See Table 7.2 for the 

characteristics of the graphs in the second category.  

Table 7.1 Characteristics of the graphs in the 1st category used in comparing PR+TS, TS, and SA 

Graph Set Nodes Edges Density 

1C 160 572 0.045 

2C 160 1208 0.095 

3C 160 1844 0.145 

4C 160 2480 0.195 

 

Table 7.2 Characteristics of the graphs in the 2nd category used in comparing PR+TS, TS, and SA 

Graph Set Nodes Edges Density 

1D 60 221 0.125 

2D 110 659 0.110 

3D 160 1272 0.100 

4D 210 2139 0.0975 
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7.2 Experiments on Random Graph Datasets 

In a similar scenario to the experiments which were conducted in Chapter 5, we divided our 

experiment into three phases. The first phase focuses on the overall performance for each 

method where all the methods run until they completely finish execution; the second phase 

evaluates the speed of each algorithm when it runs for a particular level of quality; and the third 

phase investigates the quality of the drawn layouts after a fixed number of evaluated solutions.  

 The experiment includes two deterministic methods (pure tabu search and tabu search 

coupled with path relinking) and one stochastic method (simulated annealing). When the 

deterministic methods were applied on several test cases from a group of graphs with similar 

characteristics but with different initial layouts, we computed the average for the fitness values 

and the average of the number of evaluated solutions for each group of graph layouts to use in 

our comparison. But that was not the case with simulated annealing as it is a stochastic method. 

For each test case, we ran a simulated annealing graph drawing method on the same initial 

layout 30 times, then, we computed the median. The average of medians was calculated for the 

30 runs of each test case and was compared to the results obtained after applying the 

deterministic methods.        

7.2.1 Phase I 

The three methods were applied on the datasets described in Section 7.1. In this phase, we 

tested the overall performance of each method by running each method until it finishes 

regardless of how long it took to execute. Figure 7.1 and Figure 7.2 show the values of the 

fitness function when the three methods were applied on the graph datasets of the first and the 

second categories respectively, whereas Figure 7.3 and Figure 7.4 show the number of 

evaluated solutions performed by each method when applied on the same datasets.  
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Figure 7.1 Bar chart with 95% confidence interval of the fitness function obtained by TS, SA, PR+TS 
when applied on the graphs of the 1st category (phase I) 

 

Figure 7.2 Bar chart with 95% confidence interval of the fitness function obtained by TS, SA, PR+TS 
when applied on the graphs of the 2nd category (phase I) 
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Figure 7.3 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by TS, 
SA, PR+TS when applied on the graphs of the 1st category (phase I) 

 

Figure 7.4 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by TS, 
SA, PR+TS when applied on the graphs of the 2nd category (phase I) 

Figure 7.5 and Figure 7.6 demonstrate the execution time (in seconds) when the three 

methods were applied on the data of the first and second categories respectively. We conclude 

from these two figures that the execution time increases as the number of nodes in the graph 

increases as shown in the results of the data of the second category (Figure 7.6), unlike the 

data of the first category where the number of nodes is fixed.  

0

20000

40000

60000

80000

100000

120000

1 2 3 4

Evaluated 

Solutions

Graph Sets - Category I

PR+TS

SA

TS

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4

Evaluated 

Solutions

Graph Sets - Category II

PR+TS

SA

TS



189 

 

 

 

Figure 7.5 Bar chart with 95% confidence interval of execution time (in seconds) obtained by TS, SA, 
PR+TS when applied on the graphs of the 1st category (phase I) 

 

 

Figure 7.6 Bar chart with 95% confidence interval of execution time (in seconds) obtained by TS, SA, 
PR+TS when applied on the graphs of the 2nd category (phase I) 

In order to analyse the overall performance of the three methods and to examine how good 

a layout can the methods achieve, we combined the results of both categories into one bar 

chart as presented in Figure 7.7 which shows the difference between the three methods in 

terms of the lowest fitness that can be obtained by each method. Another bar chart is presented 

in Figure 7.8 that shows the number of evaluated solutions required to reach those lowest 

fitness values.  
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The advantage of coupling tabu search with path relinking is very clear in Figure 7.7 as 

this combination had produced graph layouts with low fitness values compared to those 

layouts produced by pure tabu search and simulated annealing. However, the number of 

evaluated solutions performed by the coupled methods is larger than the other two methods, as 

shown in Figure 7.8. The statistical analysis of the fitness values and the number of evaluated 

solutions presented in Table 7.3 and Table 7.4 second this conclusion. 

Note that the large number of evaluated solutions for the coupled methods is justified since 

the analysis of this phase is based on the overall performance of the methods when they run 

until they finish using the best values of parameters which were selected in the tuning process. 

The coupling of tabu search and path relinking requires many iterations in order to get the 

lowest fitness value that can be obtained. But this combination can still produce good graph 

layouts with a lower number of evaluated solutions as will be shown in the following two 

phases. The figures in Appendix B (B.1 and B.2) are samples of the layouts drawn by the three 

algorithms when applied on the graph datasets described in Table 7.1 and Table 7.2 

respectively.   

 

Figure 7.7 Bar chart with 95% confidence interval of the average overall fitness function obtained by TS, 
SA, PR+TS when applied on the graphs of both categories (phase I) 
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Figure 7.8 Bar chart with 95% confidence interval of the average overall number of evaluated solutions obtained 
by TS, SA, PR+TS when applied on the graphs of both categories (phase I) 

Table 7.3 Statistical analysis of the fitness function for TS, SA, PR+TS when applied on the graphs of both 
categories (phase I) 

 
Fitness 

 

 
PR + TS SA TS 

 
Graph 

Set 
Mean Median Max Min Mean Median Max Min Mean Median Max Min p-value 

1C 0.242 0.242 0.272 0.216 0.493 0.492 0.509 0.486 0.506 0.505 0.549 0.463 1.38E-07 

2C 0.382 0.382 0.403 0.359 0.772 0.772 0.782 0.756 0.825 0.821 0.923 0.741 5.33E-09 

3C 0.468 0.469 0.525 0.408 0.905 0.907 0.913 0.886 0.951 0.956 0.988 0.906 2.06E-09 

4C 0.585 0.593 0.629 0.538 0.999 1.000 1.006 0.991 1.042 1.038 1.084 0.988 5.33E-09 

1D 0.315 0.314 0.360 0.266 0.353 0.355 0.368 0.338 0.398 0.388 0.591 0.328 8.74E-07 

2D 0.300 0.294 0.333 0.276 0.598 0.596 0.613 0.583 0.634 0.628 0.700 0.592 5.33E-09 

3D 0.397 0.399 0.437 0.362 0.792 0.791 0.803 0.786 0.857 0.846 1.148 0.782 1.25E-08 

4D 0.489 0.487 0.536 0.431 0.984 0.991 0.999 0.938 1.021 1.028 1.080 0.946 5.06E-08 

Overall 0.397 0.398 0.437 0.357 0.737 0.738 0.749 0.721 0.779 0.776 0.883 0.718  
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Table 7.4 Statistical analysis of number of evaluated solutions obtained by TS, SA, PR+TS when applied 
on the graphs of both categories (phase I) 

 
Evaluated Solutions 

 

 
PR + TS SA TS 

 
Graph 

Set 
Mean Median Max Min Mean Median Max Min Mean Median Max Min p-value 

1C 104515 104487 108095 99665 76002 75983 76177 75874 47176 47181 47501 46872 2.06E-09 

2C 104022 103990 109386 99175 76769 76755 76877 76635 47497 47499 47867 46776 2.06E-09 

3C 104036 103916 110543 100263 76913 76924 77004 76757 47784 47786 48061 47555 2.06E-09 

4C 104754 104428 111258 100026 76923 76910 77130 76804 47875 47936 48180 47550 2.06E-09 

1D 61676 61705 62261 61077 29381 29390 29482 29278 17875 17902 18170 17572 2.06E-09 

2D 85840 85667 91971 82419 53445 53459 53524 53352 32936 32880 33314 32680 2.06E-09 

3D 103379 103465 107068 99410 76794 76801 76937 76681 47635 47674 48023 46603 2.06E-09 

4D 125735 125386 131283 121829 99755 99763 100050 99565 62164 62118 62739 61676 2.06E-09 

Overall 99245 99130 103983 95483 70748 70748 70897 70618 43868 43872 44231 43410  

7.2.2 Phase II 

In this phase, we investigated the performance of the methods by counting the number of 

evaluated solutions performed by each method to reach similar values for the fitness function. 

Based on the results of the previous phase, we ran the tabu search first since it produced graph 

layouts with the largest fitness values compared to the other methods. This would easily allow 

the other methods to produce graph layouts with a quality which is at least as good as the 

quality of the ones produced by tabu search. Then, we ran the other methods until they reached 

an equal or better fitness value compared to the one reached by the tabu search. Finally, we 

measured the number of evaluated solutions for each method.  

 Figure 7.9 and Figure 7.10 present the number of evaluated solutions obtained when 

applying the three methods to reach graph layouts of a certain quality. Figure 7.11 and Table 

7.5, on the other hand, show the average number of evaluated solutions obtained when the 

methods were applied on all the graph layouts of both categories along with the statistical 

analysis of the results.  
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Figure 7.9 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by TS, 
SA, PR+TS when applied on the graphs of the 1st category (phase II) 

 

Figure 7.10 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by TS, 
SA, PR+TS when applied on the graphs of the 2nd category (phase II) 
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Figure 7.11 Bar chart with 95% confidence interval of the average overall number of evaluated solutions 
obtained by TS, SA, PR+TS when applied on the graphs of the two categories together (phase II) 

 

Table 7.5 Statistical analysis of the average overall number of evaluated solutions obtained by TS, SA, 
PR+TS when applied on the graphs of the two categories together (phase II) 

 
Evaluated Solutions 

 
PR+TS SA TS 

Graph 
Set 

Mean Median Max Min Mean Median Max Min Mean Median Max Min p-value 

1C 39423 36879 55180 29073 72012 73097 76190 65831 47177 47181 47501 46872 7.74e-06 

2C 32470 30211 56041 14478 62492 62418 76734 48034 47497 47499 47867 46776 7.74e-06 

3C 32777 29798 44884 21777 62331 60460 74949 54517 47785 47786 48061 47555 7.74e-06 

4C 31268 29759 52479 23277 62579 62772 76923 53920 47875 47936 48180 47550 7.74e-06 

1D 17021 17875 21032 8191 25147 26374 29433 13568 17876 17902 18170 17572 5.69e-05 

2D 30058 30628 38544 17773 46816 48251 53497 35852 32936 32880 33314 32680 7.74e-06 

3D 29876 29737 44593 8673 61580 61340 76733 37397 47636 47675 48023 46603 3.47e-04 

4D 32981 29754 50216 21055 85040 83589 99629 68381 62165 62119 62739 61676 7.74e-06 

Overall 30734 29330 45371 18037 59750 59787 70511 47187 43868 43872 44232 43411 < 2.2e-16 

 With reference to the bar charts in the figures and the results presented in the table, we 

conclude that coupling tabu search with path relinking could draw graph layouts with a certain 

quality by implementing a lower number of evaluated solutions with a significant difference to 

the number of solutions obtained by simulated annealing and pure tabu search. In other words, 

adding path relinking to pure tabu search improved the process of searching for good layouts 

with a lower number of evaluated solutions.     
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7.2.3 Phase III  

In phase III, we investigated the quality of the layouts produced by the drawing algorithms. We 

tested which method produced graph layouts with the smallest fitness function values (best 

quality) when they perform the same number of evaluated solutions. We ran the tabu search 

method on the graphs for a predefined number of iterations (maxIterations) as described earlier 

in the parameters’ tuning process presented in Chapter 4. We started with the tabu search 

because in phase I, it generated the lowest number of evaluated solutions. We ran the other 

methods until they perform the same number of evaluated solutions performed by the tabu 

search method. Finally, we measured the value of the fitness function produced by each 

drawing algorithm.  

 In Figure 7.12 and Figure 7.13, we show bar charts for the values of the fitness function 

when the three methods were applied to perform a set number of evaluated solutions on the 

graph layouts of the first and the second categories respectively. The average values of the 

fitness function obtained when we combined the results of applying the methods on both 

categories are presented in Figure 7.14 besides Table 7.6 which shows the statistical analysis of 

all the obtained results.   

 

Figure 7.12 Bar chart with 95% confidence interval of the fitness function values obtained by TS, SA, 
PR+TS when applied on the graphs of the 1st category (phase III) 
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Figure 7.13 Bar chart with 95% confidence interval of the fitness function values obtained by TS, SA, 
PR+TS when applied on the graphs of the 2nd category (phase III) 

 

Figure 7.14 Bar chart with 95% confidence interval of the average overall fitness function values obtained 
by TS, SA, PR+TS when applied on the graphs of the two categories together (phase III) 
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Table 7.6 Statistical analysis of the average overall fitness function values obtained by TS, SA, PR+TS 
when applied on the graphs of the two categories together (phase III) 

Fitness 

PR+TS SA TS 
Graph 

Set 
Mean Median Max Min Mean Median Max Min Mean Median Max Min p-value 

1C 0.343 0.347 0.384 0.320 0.664 0.663 0.676 0.646 0.506 0.505 0.549 0.463 7.74e-06 

2C 0.451 0.451 0.481 0.419 0.930 0.930 0.945 0.912 0.825 0.821 0.923 0.741 7.74e-06 

3C 0.531 0.532 0.595 0.474 1.051 1.052 1.064 1.038 0.951 0.956 0.988 0.906 7.74e-06 

4C 0.650 0.656 0.692 0.595 1.139 1.139 1.152 1.117 1.042 1.038 1.084 0.988 7.74e-06 

1D 0.561 0.564 0.631 0.440 0.485 0.486 0.507 0.464 0.398 0.388 0.591 0.328 5.69e-05 

2D 0.407 0.404 0.458 0.377 0.727 0.729 0.741 0.709 0.634 0.628 0.700 0.592 7.74e-06 

3D 0.466 0.469 0.510 0.425 0.942 0.946 0.959 0.920 0.857 0.846 1.148 0.782 5.69e-05 

4D 0.558 0.557 0.612 0.493 1.162 1.167 1.176 1.123 1.021 1.028 1.080 0.946 7.74e-06 

Overall 0.496 0.497 0.545 0.443 0.887 0.889 0.902 0.866 0.779 0.776 0.883 0.718 < 2.2e-16 

 

Based on the results presented in the table and the previous three figures, we conclude that 

intensifying the search process of tabu search by introducing path relinking could lead to a 

quick investigation for graph layouts of good quality when compared with pure tabu search 

and simulated annealing performing the same number of evaluated solutions. This difference 

becomes significantly clear when the size of the graph increases as shown in Figure 7.13 that 

presents the results when the methods are applied on the graph layouts of the second category 

where the number of nodes in each set of graph layouts increases. However, the coupling of 

tabu search with path relinking does not seem to be very effective on small graphs when it is 

applied for a few number of iterations as shown in the first column of Figure 7.13.   

Figure 7.15, Figure 7.16, and Figure 7.17 show three different examples of random graph 

layouts drawn by simulated annealing, tabu search, and tabu search coupled with path 

relinking.   



198 

 

 

  
Random Layout Simulated Annealing Layout 

  

Tabu Search Layout Improved PR+TS Layout 

Figure 7.15 Example of connected graph layout with 10 nodes and 19 edges drawn within the canvas of our 
visualization tool by the three methods: SA, TS, PR+TS 
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Random Layout Simulated Annealing Layout 

 

 

Tabu Search Layout Improved PR+TS Layout 

Figure 7.16 Example of connected graph layout with 12 nodes and 17 edges drawn within the canvas of our 
visualization tool by the three methods: SA, TS, PR+TS 
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Random Layout Simulated Annealing Layout 

  

Tabu Search Layout Improved PR+TS Layout 

Figure 7.17 Example of connected graph layout with 15 nodes and 24 edges drawn within the canvas of our 
visualization tool by the three methods: SA, TS, PR+TS 

7.2.4 Statistical Tests  

In this section, we perform the same statistical tests which were described earlier in Chapter 5 

(Section 5.2.4) to test the effect of randomness in generating the initial graph layouts used in 

comparing the methods. In order to show that there is a statistical significant difference in the 

results generated by the three methods, we applied the Friedman test since Shapiro-Wilk 

normality test showed that the population was not normally distributed. We ran the methods 

on 20 randomly generated test cases for each group of graphs in the first and the second 

categories. Simulated annealing, the only stochastic method, had run 30 times on each test 

case, and medians were calculated. Then we compared the three methods using the Friedman 
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test with a significance level of 0.05. All the p-values shown in the last column of Table 7.3, 

Table 7.4, Table 7.5, and Table 7.6, are smaller than the value of our chosen significance level 

which concludes that there is a significant difference between the three methods. 

With reference to the result of the Friedman test, pairwise comparisons between the three 

methods were performed using the Wilcoxon signed-rank test with Bonferroni correction, with 

a confidence level of 0.01, in order to show if there was a statistical significant difference 

between every pair of methods. Cohen’s effect size measure was also applied. According to 

Cohen (1992), a small effect size is 0.2, a medium effect size is 0.5, and a large effect size is 

0.8.  

 Table 7.7 and Table 7.8 show the p-values for the fitness function when applying the 

Bonferroni correction on the graphs of both categories according to the experiment conducted 

in phase I where each method would run without any restriction on the number of evaluated 

solutions or on the fitness value. The results indicate that the difference between each pair of 

methods is significant in terms of the quality of the generated layouts, except for special cases 

where the graph size is small as shown in the first graph dataset. Also, the effect sizes of fitness 

between path relinking coupled with tabu search against the other two methods are in the range 

of large and very large in most of the cases. On the other hand, there is a clear and a significant 

difference in the number of evaluated solutions between every pair of methods with very large 

effect sizes, as shown in Table 7.9 and Table 7.10.  

Table 7.7 Effect size and p-values for the fitness function values after conducting the Bonferroni test on 
TS, SA, PR+TS when applied on the graphs of the 1st category (phase I) 

   Fitness 
   Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4 

 
 PR + TS SA PR + TS SA PR + TS SA PR + TS SA 

 
SA 

 

p 4.4e-11 * 4.4e-11 * 4.4e-11 * 4.4e-11 * 

effect 1.8519  0 1.8725  0 1.8586  0 1.8641  0 

TS 
p 4.4e-11 0.2900 4.4e-11 1.2e-07 4.4e-11 1.2e-08 4.4e-11 1.2e-07 

effect 1.8422 0.5115 1.8161 0.9034 1.8516 1.3449 1.8724 1.2902 
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Table 7.8 Effect size and p-values for the fitness function values after conducting the Bonferroni test on 
TS, SA, PR+TS when applied on the graphs of the 2nd category (phase I) 

   Fitness 
   Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4 

 
 PR + TS SA PR + TS SA PR + TS SA PR + TS SA 

 
SA 

 

p 5.0e-06 * 4.4e-11 * 4.4e-11 * 4.4e-11 * 

effect 1.1410  0 1.8675  0 1.8640  0 1.8674  0 

TS 
p 4.0e-07 0.0035 4.4e-11 2.3e-06 4.4e-11 1.5e-06 4.4e-11 0.0025 

effect 0.8384 0.5258 1.8214 0.9709 1.5666 0.5245 1.8429 0.7924 

 

Table 7.9 Effect size and p-values for the number of evaluated solutions after conducting the Bonferroni 
test on TS, SA, PR+TS when applied on the graphs of the 1st category (phase I) 

   Evaluated Solutions 
   Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4 

 
 PR + TS SA PR + TS SA PR + TS SA PR + TS SA 

 
SA 

 

p 2.0e-07 * 2.0e-07 * 2.0e-07 * 4.4e-11 * 

effect 1.8717  0 1.8302  0 1.7943  0 1.8117  0 

TS 
p 4.4e-11 2.0e-07 4.4e-11 2.0e-07 2.0e-07 2.0e-07 2.0e-07 2.0e-07 

effect 1.8765 1.8706 1.8563 1.8655 1.8419 1.8724 1.8502 1.8702 

 

Table 7.10 Effect size and p-values for the number of evaluated solutions after conducting the Bonferroni 
test on TS, SA, PR+TS when applied on the graphs of the 2nd category (phase I) 

   Evaluated Solutions 
   Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4 

 
 PR + TS SA PR + TS SA PR + TS SA PR + TS SA 

 
SA 

 

p 2.0e-07 * 4.4e-11 * 4.4e-11 * 2.0e-07 * 

effect 1.8704  0 1.8152  0 1.8556  0 1.8198  0 

TS 
p 2.0e-07 2.0e-07 4.4e-11 4.4e-11 4.4e-11 4.4e-11 4.4e-11 2.0e-07 

effect 1.8707 1.8705 1.8416 1.8721 1.8628 1.8599 1.8564 1.8697 

  When the Bonferroni test was applied on the results of phase II of the experiment, as shown 

in Table 7.11, Table 7.12, and Table 7.13, we see that path relinking outperformed simulated 

annealing in drawing graph layouts with similar objective function values using a limited 

number of evaluated solutions with very large effect sizes. It also outperformed the pure tabu 

search procedure on large graphs (as number of nodes increases) with very large effect sizes, 

unlike smaller graphs where there was no significant difference as shown in the first and the 

second graph datasets in Table 7.12.  
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Table 7.11 Effect size and p-values for the number of evaluated solutions after conducting the Bonferroni 
test on TS, SA, PR+TS when applied on the graphs of the 1st category (phase II) 

   Evaluated Solutions 
   Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4 

 
 PR + TS SA PR + TS SA PR + TS SA PR + TS SA 

 
SA 

 

p 4.4e-11 * 5.2e-10 * 4.4e-11 * 4.4e-11 * 

effect 1.7531  0 1.4528  0 1.5998  0 1.6449  0 

TS 
p 0.0002 4.4e-11 8.7e-06 4.4e-11 4.4e-11 4.4e-11 3.6e-06 2.0e-07 

effect 0.9573 1.8459 1.1111 1.3504 1.4447 1.4673 1.5011 1.3799 

 

Table 7.12 Effect size and p-values for the number of evaluated solutions after conducting the Bonferroni 
test on TS, SA, PR+TS when applied on the graphs of the 2nd category (phase II) 

   Evaluated Solutions 
   Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4 

 
 PR + TS SA PR + TS SA PR + TS SA PR + TS SA 

 
SA 

 

p 3.4e-06 * 8.5e-09 * 8.7e-11 * 4.4e-11 * 

effect 1.1474  0 1.4358  0 1.4438  0 1.7678  0 

TS 
p 0.9800 3.4e-06 0.8700 4.4e-11 4.4e-11 7.2e-06 4.4e-11 4.4e-11 

effect 0.2286 1.3242 0.4833 1.6245 1.2565 1.1270 1.6876 1.5858 

 

Table 7.13 Effect size and p-values for the number of evaluated solutions after conducting the Bonferroni 
test on TS, SA, PR+TS when applied on the graph layouts of the two categories together (Phase II) 

 

 Evaluated Solutions 

 
 PR+TS SA 

 
SA 

p 4.4e-11 * 

effect 1.6120 0 

TS 
p 4.4e-11 4.4e-11 

effect 1.3000 1.5330 

Table 7.14, Table 7.15, and Table 7.16 show the p-values for the values of the fitness 

function after conducting the Bonferroni test on the results of the experiment according to 

phase III where we ran the drawing algorithms so that they evaluate a specific number of 

solutions to test the quality of layouts that would be generated in a set time. The results in the 

tables show that coupling tabu search with path relinking draws graph layouts with better 
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quality compared to simulated annealing with very large effective sizes. It also outperforms 

pure tabu search as the size of the graph increases.  

Table 7.14 Effect size and p-values for the fitness function values after conducting the Bonferroni test on 
TS, SA, PR+TS when applied on the graphs of the 1st category (phase III) 

   Fitness 
   Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4 

 
 PR + TS SA PR + TS SA PR + TS SA PR + TS SA 

 
SA 

 

p 4.4e-11 * 4.4e-11 * 4.4e-11 * 4.4e-11 * 

effect 1.9000 0 1.8666  0 1.8619  0 1.8631  0 

TS 
p 4.4e-11 4.4e-11 4.4e-11 4.4e-11 4.4e-11 4.4e-11 4.4e-11 4.4e-11 

effect 1.8296 1.8142 1.7952 1.4303 1.8541 1.6960 1.8522 1.6389 

 

Table 7.15 Effect size and p-values for the fitness function values after conducting the Bonferroni test on 
TS, SA, PR+TS when applied on the graphs of the 2nd category (phase III) 

   Fitness 
   Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4 

 
 PR + TS SA PR + TS SA PR + TS SA PR + TS SA 

 
SA 

 

p 6.0e-06 * 4.4e-11 * 4.4e-11 * 4.4e-11 * 

effect -1.2122  0 1.8830  0 1.8691  0 1.8671  0 

TS 
p 4.0e-08 1.2e-07 4.4e-11 4.4e-11 4.4e-11 9.9e-07 4.4e-11 4.4e-11 

effect -1.4582 1.0635 1.7946 1.6529 1.5038 0.7855 1.8331 1.6902 

 
Table 7.16 Effect size and p-values for the fitness function values after conducting the Bonferroni test on 

TS, SA, PR+TS when applied on the graph layouts of the two categories together (Phase III) 

 

 Fitness 

 
 PR+TS SA 

 
SA 

p 4.4e-11 * 

effect 1.9000 0 

TS 
p 4.4e-11 9.9e-07 

effect 1.8300 1.8140 

  Note that the improved method does not have any additional threats to validity more than 

those discussed earlier in Chapter 5 (Section 5.4). In the next section, we show how coupling 

tabu search with path relinking performs on real world graph datasets.  
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7.3 Experiments on Real World Graph Datasets 

In this section, we want to show if the improved method can produce similar results in a real 

world setting by testing it against a standard public graph datasets described earlier in Chapter 

5 (Section 5.3). We used the same 10 datasets listed in Table 5.15. The initial layout of the 

nodes in each graph was generated randomly. We tested the methods according to phases I, II, 

and III. The results of the experiments are shown in the following figures. Figure 7.18 and 

Figure 7.19 show the results of applying the methods on the real graph datasets according to 

phase I. The results shown in the charts second our conclusion in the previous section, that 

coupling path relinking with tabu search produces graph layouts with better fitness values 

compared to tabu search and simulated annealing. The difference becomes clearer as the size of 

the graph increases, as shown in Figure 7.18. However, that big difference requires more 

solutions to search in the neighbourhood and consequently, the number of evaluated solutions 

becomes larger, as shown in Figure 7.19.    

 

Figure 7.18 Bar chart of the fitness function values obtained by TS, SA, PR+TS when applied on the graph 
datasets in Table 5.15 (phase I) 
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Figure 7.19 Bar chart of the number of evaluated solutions obtained by TS, SA, PR+TS when applied on 
the graph datasets in Table 5.15 (phase I) 

 In Figure 7.20, where the experiment was based on phase II, we see that the improved 

method can reach the same fitness values of different graph layouts with a lower number of 

evaluated solutions compared to the other two methods. It also produces graph layouts with 

better fitness values, except for small graphs, when all the methods evaluate the same number 

of solutions as shown in Figure 7.21, where the experiment was based on phase III.  

 

Figure 7.20 Bar chart of the number of evaluated solutions obtained by TS, SA, PR+TS when applied on 
the graph datasets in Table 5.15 (phase II) 
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Figure 7.21 Bar chart of the fitness function values obtained by TS, SA, PR+TS when applied on the graph 
datasets in Table 5.15 (phase III) 

 

Figure 7.22, Figure 7.23, Figure 7.24, and Figure 7.25 are four examples of the layouts 

produced by the methods when applied to graph datasets 1, 2, 3, and 5 respectively in the list 

of real world datasets described in Table 5.15. 
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Figure 7.22 Layout of graph dataset 1 (listed in Table 5.15) produced by TS, SA, PR+TS drawn within the 

canvas of our visualization tool 

 

 

 

Random Layout Simulated Annealing Layout  

  

Tabu Search Layout  Improved PR+TS Layout  
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Random Layout Simulated Annealing Layout  

  

Tabu Search Layout  Improved PR+TS Layout  

Figure 7.23 Layout of graph dataset 2 (listed in Table 5.15) produced by TS, SA, PR+TS drawn within the 
canvas of our visualization tool 

 

 



210 

 

 

 
 

Random Layout Simulated Annealing Layout  

  

Tabu Search Layout  Improved PR+TS Layout  

Figure 7.24 Layout of graph dataset 3 (listed in Table 5.15) produced by TS, SA, PR+TS drawn within the 
canvas of our visualization tool 
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Random Layout Simulated Annealing Layout  

  

Tabu Search Layout  Improved PR+TS Layout  

Figure 7.25 Layout of graph dataset 5 (listed in Table 5.15) produced by TS, SA, PR+TS drawn within 
the canvas of our visualization tool 

 

In the next section, we analyse the performance of our method against the graph size 

accompanied with figures which describe its scalability. We also show its effect on each 

aesthetic criterion.  

7.4 Scalability and Performance Analysis 

In order to test the scalability of our method and its ability to work effectively on large graph 

datasets, we ran our method against simulated annealing on randomly generated large graphs, 

based on Erdos-Renyi model, according to phase I. Note that we excluded hill climbing from 
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this comparison as the statistical tests in Chapter 5 showed that hill climbing is considerably 

worse than the other methods. We ran simulated annealing 30 times on each dataset, and the 

median value was recorded for each set. The graphs were generated using the same generator 

described in Chapter 3 and Chapter 5 (Section 5.1). We started with a graph dataset of 1000 

nodes and 3003 edges and we kept increasing the number of nodes and edges as we move 

from one dataset to another as shown in Table 7.17. We stopped increasing the size of the 

datasets when we had a very long execution time for one of the tested methods (almost half a 

day).   

Table 7.17 Characteristics of the graph datasets used in scalability testing 

Graph Set Nodes Edges 

1 1000 3003 

2 1500 4503 

3 2000 6003 

4 2500 7503 

5 3000 9003 

6 3500 10503 

7 4000 12003 

8 4500 13503 

9 5000 15002 

10 5500 16503 

Figure 7.26 shows that our method effectively minimises the value of the fitness function 

and outperforms simulated annealing regardless of how large the size of the graph is. Also, as 

Figure 7.27 and Figure 7.28 show, the speed of this minimisation process is efficient in our 

method compared to simulated annealing as the graph size increases. The figures show that 

increasing the number of nodes and edges (i.e. increasing the size of the graph) would increase 

the number of evaluated solutions and execution time for simulated annealing and our method 

as well, but with different rates of increase. Note that the execution time would be shorter if 

we test the methods for drawing graph layouts with a single criterion. However, since our 

fitness function contains multiple measures, it took a longer time to execute as some measures 

have a long computation time.   
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Figure 7.26 Bar chart of the fitness values obtained by PR+TS and SA when applied on graph datasets in 
Table 7.17 (phase I) for scalability testing 

 

Figure 7.27 Bar chart of the number of evaluated solutions obtained by PR+TS and SA when applied on 
graph datasets in Table 7.17 (phase I) for scalability testing 
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Figure 7.28 Bar chart of execution time in seconds obtained by PR+TS and SA when applied on graph 
datasets in Table 7.17 (phase I) for scalability testing 

Figure 7.29, Figure 7.30, and Figure 7.31, show boxplots for the overall performance of 

our method when being applied on a set of graphs with an increasing number of nodes and 

edges, as described in Table 7.17, in terms of fitness values, number of evaluated solutions, 

and execution time in seconds respectively. All figures show that our method outperforms 

simulated annealing in all aspects.  

 

Figure 7.29 Box plot chart of the overall fitness values obtained by PR+TS and SA when applied on graph 
datasets with an increasing number of nodes and edges (Table 7.17) 
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Figure 7.30 Box plot chart of the overall number of evaluated solutions obtained by PR+TS and SA when 
applied on graph datasets with an increasing number of nodes and edges (Table 7.17) 

 

Figure 7.31 Box plot chart of the overall time in seconds obtained by PR+TS and SA when applied on 
graph datasets with an increasing number of nodes and edges (Table 7.17) 

In order to examine the behaviour of our method on the value of the fitness function as the 

number of evaluated solutions increases, we ran the method on several graphs of the same size 

having 105 nodes and 441 edges but with different initial layouts. The average value of the 

fitness was recorded at different points during the execution time of the method. Figure 7.32 

describes the algorithm’s behaviour by showing the change in the value of the fitness as the 
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number of evaluated solutions increases. The figure shows that the fitness value decreases as 

the number of evaluated solutions increases.  

 

Figure 7.32 The change of the fitness value as the number of evaluated solutions increases 

 Last but not least, we find it interesting to report examples of the normalised values of each 

aesthetic used in our fitness function independently when being evaluated by hill climbing, 

simulated annealing, tabu search, and path relinking coupled with tabu search. Table 7.18 and 

Table 7.19 provide values from the real world datasets 3 and 5 described in Table 5.15.  

Table 7.18 Normalised values of each aesthetic when the methods were applied on graph dataset 3 (listed 
in Table 5.15) 

  node-node occlusion edge length edge crossings angular resolution 
HC 0.029602 0.119400 0.075273 0.249458 

SA 0.021657 0.084227 0.038497 0.230175 

TS 0.026453 0.061855 0.038879 0.219136 

PR+TS 0.000279 0.024855 0.024902 0.085991 

 

Table 7.19 Normalised values of each aesthetic when the methods were applied on graph dataset 5 (listed 
in Table 5.15) 

  node-node occlusion edge length edge crossings angular resolution 
HC 0.079880 0.164624 0.058610 0.395361 

SA 0.035921 0.077498 0.033709 0.312177 

TS 0.048987 0.096359 0.039349 0.346663 

PR+TS 0.000156 0.031453 0.026176 0.195369 
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7.5 Summary 

In this chapter, we studied the effect of coupling path relinking with tabu search on the 

efficiency and the effectiveness of the proposed drawing algorithm. This was achieved by 

conducting three comparisons with the pure tabu search and simulated annealing drawing 

algorithms based on the quality of the layout that can be achieved by each drawing algorithm; 

the number of evaluated solutions performed by each method to reach a particular level of 

layout quality; and the quality of layout drawn by the methods after a fixed number of 

evaluated solutions. The experiments were conducted on new randomly generated datasets, 

different than those used in Chapter 5 in order to avoid overfitting, and on the same real world 

datasets. The statistical tests of the experiments on random graph datasets gave strong 

evidence that coupling path relinking with tabu search outperforms all the neighbourhood 

search methods discussed in this research in all aspects with very large effect size. The results 

of applying the methods on real world datasets support our conclusion. We also described the 

performance of the proposed method as the size of the graph increases and we showed that the 

method has better scalability compared to simulated annealing.  
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Chapter 8 Conclusions  

This chapter provides a summary of the objectives and contributions. We also highlight a 

number of ideas which can be explored in the future.  

8.1 Objectives and Contributions 

In this work, we addressed the research area of graph drawing, where the main task was 

improving the efficiency and effectiveness of neighbourhood search-based methods for 

drawing general graph layouts with undirected straight lines based on a weighted sum multi-

criteria fitness function. This approach has the advantage of allowing explicit combinations of 

metrics that can be tuned to meet user preferences. We described a novel automated 

neighbourhood search method based on tabu search and path relinking that have not been used 

before in drawing general graph layouts with multi-aesthetic criteria, unlike hill climbing and 

simulated annealing.  

To achieve our goals, we started with implementing a visualisation tool that we used for 

testing all the neighbourhood search methods discussed in this thesis. The tool allowed the 

user to choose the preferred values of the parameters for each method, and the weights of each 

aesthetic metric (Chapter 3). It was not possible to determine unified weights that work well 

for all types of graphs, and indeed weights could vary according to application area and user 

preferences. Hence, we assigned the value 1 to all the weights for a fair comparison between 

the methods.  

The first attempt for improving neighbourhood search methods in the field of drawing 

graph layouts was made by implementing an automated drawing method based on tabu search. 

The method searches for the best positions of the nodes, so minimising the value of the fitness 

function and drawing a nice graph layout. The key feature in tabu search was the combination 

of forbidding reverse moves using a memory-based tabu list and allowing escapes from local 

optima. We also implemented the basic neighbourhood search-based graph drawing 

algorithms for hill climbing and simulated annealing in order to be compared with our 

method. Besides the fact that all the methods shared the same local (neighbourhood) search 

space, we followed a unified systematic incremental procedure for tuning the values of the 
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parameters of each method to select proper values which produce graph layouts with small 

fitness values (good quality). We provided figures and tables which describe the effect of 

adjusting the value of each parameter on the quality of the layouts and the efficiency of the 

drawing algorithms (Chapter 4).  

We then conducted a comprehensive comparison between the three neighbourhood search-

based drawing algorithms: hill climbing, simulated annealing, and tabu search. The 

comparison was broken down into three phases to answer the following questions: How good 

a layout can be achieved by each drawing algorithm? How many evaluated solutions 

performed by each method to reach a particular level of layout quality? And how good is the 

quality of layout drawn by the methods after a fixed number of evaluated solutions? We 

provided quantitative evidence of experimental results on randomly generated graph layouts, 

based on Erdos-Renyi model, and real world graphs to assert that the tabu search approach can 

draw a graph layout with a good quality in a smaller number of evaluated solutions compared 

to the hill climbing and the simulated annealing approaches. We also conducted statistical 

tests that showed, along with the large effect sizes, that the tabu search drawing algorithm was 

faster than the hill climbing drawing algorithm. It produced, along with simulated annealing, 

graph layouts with better quality regardless of the graph size in terms of number of nodes and 

edges. In addition, the efficiency of our tabu search-based method was better than the 

simulated annealing algorithm but the latter produced graph layouts with similar or slightly 

better fitness values compared to those produced by our tabu search algorithm when both 

methods ran without limitations on the number of evaluated solutions (Chapter 5).  

Since our tabu search drawing algorithm had not outperformed simulated annealing in 

some aspects, we improved our method by coupling it with path relinking. The desire to 

tunnel through blocked off areas created by tabu search solutions was the main reason of 

choosing path relinking procedure to couple with tabu search to intensify the searching 

process between an initial and a guiding solutions selected from a set of elite solutions 

generated by the tabu search drawing algorithm. The integration of features of tabu search and 

path relinking in one implementation made our method a more effective graph layout method 

than the other neighbourhood search methods. Building a reference set of elite solutions 

generated by tabu search and moving efficiently along the path between two solutions were 

the main two aspects of our path relinking procedure. We also developed a systematic way for 
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choosing the values of the parameters used by the method. We performed one round of 

parameter tuning to adjust the values of the parameters of the basic path relinking procedure. 

Then, we proposed two improvements on the basic implementation: a proper selection of the 

initial and the guiding solutions from the reference set of elite solutions; and an improved 

neighbourhood searching strategy based on a variable step size. The proposed improvements 

introduced two new parameters that could affect the performance of the procedure. Therefore, 

we performed a final round of parameters calibration process in order to assign reasonable 

values for each parameter before we examine the performance of our improved 

neighbourhood search method compared to other neighbourhood search methods (Chapter 6). 

Finally, we studied the effect of coupling path relinking with tabu search on the efficiency 

and the effectiveness of the proposed drawing algorithm. This was achieved by conducting 

three comparisons, with our tabu search drawing algorithm and simulated annealing drawing 

algorithm. Our experimental results on random graphs and real world graphs showed that our 

tabu search/path relinking approach draws graph layouts with good quality in a relatively low 

number of evaluated solutions. Coupling tabu search with path relinking outperformed all the 

other methods discussed in this work in both terms of quality of layout and speed of layout 

process with very large effect sizes. We also described the performance of the proposed 

method as the size of the graph increases and we showed that the method had a better 

scalability when compared against simulated annealing (Chapter 7). 

8.2  Future Work 

In this section, we list a number of potential ideas which can be investigated to extend the 

work covered in this thesis.  

1. Experiments can be conducted to study the efficiency of this method when applied to 

different types of graphs such as trees, hierarchical, and circular graphs. Our method 

can be easily adjusted to work with directed edges, but each type of these graphs has 

its own aesthetic measures such as: subtree separation, closest and farthest leaves for 

tree graphs; uniform edge direction and cycle removal for hierarchical graphs; 

partitioning the graph into clusters and placing the nodes of each cluster onto the 

perimeter of an embedding circle for circular graphs (Tamassia 2013). These 

aesthetics, in addition to the ones discussed in this thesis which usually exist in any 
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graph, must be formulated in a weighted sum multi-criteria objective function to be 

optimised by our proposed method. 

2. The performance of our method can be further improved by implementing a hybrid of 

path relinking and a Greedy Randomized Adaptive Search Procedure (GRASP). This 

combination has been previously applied efficiently in some applications with 

promising results (Laguna & Marti 1999). In GRASP, each iteration consists of 

constructing a candidate solution and then improves that solution by applying an 

exchange procedure to find a local optimum. ‘The construction phase is iterative, 

greedy, randomized, and adaptive. It is iterative because the initial solution is built 

considering one element at a time. It is greedy because the addition of each element is 

guided by a greedy function.  It is randomized because the selection of that 

element is made in a random fashion. And it is adaptive because the element chosen at 

any iteration in a construction is a function of those previously chosen. The 

improvement phase typically consists of a local search procedure (Duarte et al. 2017). 

Unlike tabu search, the generated solution by each GRASP iteration is not linked to the 

next solution by a sequence of neighbourhood moves. Therefore, the relinking process 

can have different interpretations with GRASP (Fleurent & Glover 1999).  

3. There is a relationship between the algorithm’s execution time (in seconds) and the 

calculation of each metric in the fitness function (Davidson & Harel 1996). In our 

implementation, when the fitness function is evaluated, the aesthetic measure is 

recalculated for all nodes and edges. This slows down the execution time (but not the 

number of evaluated solutions). The runtime could be improved if we use memoisation 

on the calculation of metrics by storing previous values and calculating the metric only 

for the nodes and edges that are affected by a movement in the neighbouthood search 

space.   

4. More investigations can be performed on the effectiveness of our approach in 

comparison with force-directed approaches and other population-based approaches that 

have been previously used in the field of graph drawing such as Genetic Algorithms 

(Eloranta & Mäkinen 2001; Vrajitoru 2009) and Ant Colony optimisation (Ware & 

Richards 2013).  
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5. An empirical study on human users could be conducted to evaluate the layouts 

generated by different graph drawing algorithms as visualisation is also concerned 

with how significant the differences are to the human eye and the human sense of 

aesthetics.  

6. One way to improve the quality of solutions in tabu search is to divide the sets into 

Pareto and candidate lists (Baykasoglu et al. 1999). In our work, solutions were only 

added to a candidate list since we used the basic tabu search algorithm. But we can try 

using Pareto list such that the Pareto list collects the selected non-dominated solutions 

found by the algorithm. The candidate list, on the other hand, collects all other non-

dominated solutions that were not selected as Pareto optimal solutions in an iteration. 

These solutions may become seed solutions if they maintain their non-dominated 

status in subsequent iterations. Using this process, the candidate list would give the 

opportunity to diversify the searching process.  
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Appendix A Sample Layouts from Hill Climbing, Simulated 
Annealing, and Our Proposed Tabu Search-based Algorithm 

In this appendix, we show sample layouts, from the graph datasets described in Table 5.1 and 

Table 5.2, generated by the three drawing algorithms discussed in Chapter 5: hill climbing, 

simulated annealing, and our proposed tabu search-based algorithm. Note that, the fitness 

function includes the measures of the following aesthetics: node-node occlusion, edge length, 

edge crossings, and angular resolution.  
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A.1 Sample Layouts from Datasets of Table 5.1 

Hill climbing 

Fitness = 0.612 

 

Simulated annealing 

Fitness = 0.490 

 

Tabu search 

Fitness = 0.509 

 

Figure A.1.1 Sample layouts from group 1A in Table 5.1 
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Hill climbing 

Fitness = 0.859 

 

Simulated annealing 

Fitness = 0.752 

 

Tabu search 

Fitness = 0.825 

 

Figure A.1.2 Sample layouts from group 2A in Table 5.1 
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Hill climbing 

Fitness = 0.925 

 

Simulated annealing 

Fitness = 0.879 

 

Tabu search 

Fitness = 0.889 

 

Figure A.1.3 Sample layouts from group 3A in Table 5.1 
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Hill climbing 

Fitness = 1.038 

 

Simulated annealing 

Fitness = 0.910 

 

Tabu search 

Fitness = 0.993 

 

Figure A.1.4 Sample layouts from group 4A in Table 5.1 
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A.2 Sample Layouts from Datasets of Table 5.2 

Hill climbing 

Fitness = 0.417 

 

Simulated annealing 

Fitness = 0.276 

 

Tabu search 

Fitness = 0.327 

 

Figure A.2.1 Sample layouts from group 1B in Table 5.2 



 

241 

 

Hill climbing 

Fitness = 0.632 

 

Simulated annealing 

Fitness = 0.560 

 

Tabu search 

Fitness = 0.612 

 

Figure A.2.2 Sample layouts from group 2B in Table 5.2 
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Hill climbing 

Fitness = 1.249 

 

Simulated annealing 

Fitness = 0.760 

 

Tabu search 

Fitness = 0.858 

 

Figure A.2.3 Sample layouts from group 3B in Table 5.2 
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Hill climbing 

Fitness = 1.068 

 

Simulated annealing 

Fitness = 0.966 

 

Tabu search 

Fitness = 1.034 

 

Figure A.2.4 Sample layouts from group 4B in Table 5.2 
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Appendix B Sample Layouts from Simulated Annealing, Our 
Proposed Tabu Search-based Algorithm, and Path Relinking 
Coupled with Tabu Search 

In this appendix, we show sample layouts, from the graph datasets described in Table 7.1 and 

Table 7.2, generated by the three drawing algorithms discussed in Chapter 7: simulated 

annealing, our proposed tabu search-based algorithm, and path relinking coupled with tabu 

search. Note that, the fitness function includes the measures of the following aesthetics: node-

node occlusion, edge length, edge crossings, and angular resolution.   
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B.1 Sample Layouts from Datasets of Table 7.1 

Simulated annealing 

Fitness = 0.489 

 

Tabu search 

Fitness = 0.497 

 

Path Relinking + 

Tabu search 

Fitness = 0.238 

 

Figure B.1.1 Sample layouts from group 1C in Table 7.1 
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Simulated annealing 

Fitness = 0.766 

 

Tabu search 

Fitness = 0.835 

 

Path Relinking + 

Tabu search 

Fitness = 0.398 

 

Figure B.1.2 Sample layouts from group 2C in Table 7.1 
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Simulated annealing 

Fitness = 0.911 

 

Tabu search 

Fitness = 0.930 

 

Path Relinking + 

Tabu search 

Fitness = 0.481 

 

Figure B.1.3 Sample layouts from group 3C in Table 7.1 
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Simulated annealing 

Fitness = 1.002 

 

Tabu search 

Fitness = 1.069 

 

Path Relinking + 

Tabu search 

Fitness = 0.600 

 

Figure B.1.4 Sample layouts from group 4C in Table 7.1 
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B.2 Sample Layouts from Datasets of Table 7.2 

Simulated annealing 

Fitness = 0.348 

 

Tabu search 

Fitness = 0.385 

 

Path Relinking + 

Tabu search 

Fitness = 0.335 

 

Figure B.2.1 Sample layouts from group 1D in Table 7.2 
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Simulated annealing 

Fitness = 0.600 

 

Tabu search 

Fitness = 0.625 

 

Path Relinking + 

Tabu search 

Fitness = 0.301 

 

Figure B.2.2 Sample layouts from group 2D in Table 7.2 
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Simulated annealing 

Fitness = 0.792 

 

Tabu search 

Fitness = 0.846 

 

Path Relinking + 

Tabu search 

Fitness = 0.381 

 

Figure B.2.3 Sample layouts from group 3D in Table 7.2 
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Simulated annealing 

Fitness = 0.986 

 

Tabu search 

Fitness = 1.080 

 

Path Relinking + 

Tabu search 

Fitness = 0.431 

 

Figure B.2.4 Sample layouts from group 4D in Table 7.2 


