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Adaptive Sliding Mode Observer for Nonlinear Interconnected Systems

with Time Varying Parameters⋆

Mokhtar Mohamed, Xing-Gang Yan, Zehui Mao, and Bin Jiang

ABSTRACT

In this paper, a class of nonlinear interconnected systems with uncertain

time varying parameters (TVPs) is considered. Both the interconnections

and the isolated subsystems are nonlinear. Sliding mode control method and

adaptive techniques are employed together to design an observer to estimate

the state variables of the systems in presence of unknown TVPs. The Lyapunov

direct method is used to analysis the stability of the sliding motion and it is

not required to solve the so-called constrained Lyapunov problem (CLP). A

set of conditions is developed under which the augmented systems formed

by the error dynamical systems and the designed adaptive laws, are globally

uniformly ultimately bounded. A simulation example is presented and the

results show that the method proposed in this paper is effective.

Key Words: Sliding Mode Observer, Nonlinear Interconnected Systems,

Adaptive Techniques, Time Varying Parameters

I. INTRODUCTION

In the modern world, it is required to deal

with advanced systems using advanced technologies,

which has resulted in many large-scale complex

systems. With the increasing requirement for the system

performance, it needs to develop novel techniques to

achieve novel design to satisfy the requirements. It

should be noted that control design for large-scale

interconnected systems has obtained great achievement

[1, 2]. However, lots of results are based on the fact that

all system state variables are available for design, which

does not always hold and actually only partial state

variables are usually available in reality [1]. Therefore,
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observer design is one of the main topics to estimate

system states using the available system inputs and

outputs in control engineering.

The concept of the observer was first introduced

by Luenberger in 1964 where the observation error

between the output of the actual plant and the output

of the observer converges to zero when time goes

to infinity. Subsequently, many approaches have been

developed to design observers for different systems to

estimate system states (see e.g. [3, 4, 5, 6]). However,

the problem becomes more challenging when some

parameters in the model of the system are unknown,

particularly when these parameters are time varying [7].

Over the last few decades, much literature has been

devoted to the design of adaptive observers for linear

and nonlinear systems. The early results are mainly

for linear systems (see e.g. [8] and references therein).

Later, many authors have focused on the development

of adaptive observer design for nonlinear systems (see

e.g. [9, 10]). In these results, the designed adaptive

observers are able to maintain bounded parameters

estimation error under the persistence of excitation

condition and it is required that the unknown parameters

are bounded with some extra constraints imposed on the

system.

c© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

Prepared using asjcauth.cls [Version: 2008/07/07 v1.00]



2 Asian Journal of Control, Vol. 00, No. 0, pp. 1–10, Month 2008

More recently, adaptive observers using different

techniques have been proposed in (see e.g. [11,

12]) where the unknown parameters are limited to

be constant. Compared with much existing work

in adaptive observer design with unknown constant

parameters, the corresponding observation results for

unknown time varying parameters (TVPs) are very

limited. The approach for nonlinear time varying

systems proposed in [13] is based on the fact

that the nonlinear systems can be transformed to a

particular observable canonical form, and the unknown

parameters are bounded. The authors in [14] proposed

a sampled output high gain observer for a class

of uniformly observable nonlinear systems where

the unknown parameters are bounded. An adaptive

estimator is proposed in [15] to estimate TVPs for

nonlinear systems. However, all the system states

are assumed available. In [16] an adaptive observer

for a class of nonlinear interconnected systems with

uncertain TVPs has been developed. It is required to

solve the well known constrained Lyapunov problem

(CLP) (see e.g. [17, 18]). The authors in [19] used an

adaptive unscented Kalman filter approach to estimate

the time varying parameters and system states of a class

of nonlinear high-speed objects. This technique requires

the assumption that the additive noise vectors are

Gaussian uncorrelated white noises. If the assumption

is not satisfied, the estimation process accuracy will be

significantly affected [20].

Sliding mode techniques have been successfully

used in control design and state estimation due

to its attractive features such as high robustness

to uncertainties in input channel and to parameters

variations (see e.g. [21, 22]). An adaptive observer

applying sliding mode techniques have been developed

in [23] to enhance the performance of the adaptive

observer proposed by [24]. Adaptive sliding mode

observer based fault reconstruction for nonlinear

systems with parametric uncertainties is considered in

[25]. However, the unknown parameters considered in

these papers are constant. Many adaptive observers

have been developed using sliding mode techniques for

particular applications and for particular purposes (see

e.g. [26, 27]) and thus corresponding specific conditions

need to be imposed on the systems considered. Sliding

mode techniques with super twisting algorithm are

used in [28] to design adaptive observers for nonlinear

systems where the unknown parameter vector is

assumed to be constant. Sliding mode synchronization

method is combined with adaptive techniques in [29] to

estimate the unknown parameters for multiple chaotic

systems where the system states are assumed to be

known and the unknown parameters are constant. To the

best of authors’ knowledge, this is the first contribution

where sliding mode techniques are applied to design an

adaptive observer for nonlinear interconnected systems

with unknown TVPs.

In this paper, an adaptive sliding mode observer

is established for a class of nonlinear interconnected

systems with unknown TVPs, in which both the isolated

subsystems and interconnections are nonlinear. It is not

required that the bounds on the TVPs are known, but

the rate of change of these unknown parameters needs

to be bounded. Sliding mode techniques and adaptive

techniques are employed together to estimate system

states with unknown TVPs. In addition, it is not required

to solve the CLP. Sufficient conditions are developed

such that the augmented systems formed by the error

dynamical system and the designed adaptive laws,

are globally uniformly ultimately bounded. Simulation

results for a numerical nonlinear interconnected system

are presented to demonstrate the effectiveness of the

developed results.

II. System Description and Preliminaries

Consider a nonlinear interconnected system com-

posed of N subsystems as follows

ẋi =Aixi+gi(xi, ui)+φi(yi, ui)Θi(t)

+

N∑

j=1

j 6=i

Hij(xj) (1)

yi =Cixi (2)

where xi ∈ Ωi ⊂ Rni (Ωi are neighborhoods of the

origin), ui ∈ Ui ∈ Rmi (Ui are the admissible control

sets) and yi ∈ Rpi with mi ≤ pi ≤ ni are the state

variables, inputs and outputs of the i-th subsystem

respectively, gi(xi, ui) ∈ Rni are nonlinear known

functions, φi(yi, ui) ∈ Rni are known functions and

Θi(t) ∈ R are unknown TVPs. The matrix triples

(Ai, Ci) are constant with appropriate dimensions and

Ci are full row rank. The terms
∑N

j=1

j 6=i
Hij(xj) are the

known interconnections for i = 1, · · · , N .

Since the Ci are full row rank, there exist

nonsingular matrices Tci such that

Āi =

[
Āi1 Āi2

Āi3 Āi4

]

:= TciAiT
−1
ci

, (3)

C̄i =
[
0 Ipi

]
:= CiT

−1
ci

(4)

where Āi1 ∈ R(ni−pi)×(ni−pi) for i = 1, · · · , N . Then

in the new coordinates x̄i defined by

c© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
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x̄i = Tcixi (5)

system (1)-(2) can be rewritten as

˙̄xi1 = Āi1x̄i1 + Āi2x̄i2 + ḡi1(x̄i, ui)

+φ̄i1(yi, ui)Θi(t) +

N∑

j=1

j 6=i

Ha
ij(x̄j) (6)

˙̄xi2 = Āi3x̄i1 + Āi4x̄i2 + ḡi2(x̄i, ui)

+φ̄i2(yi, ui)Θi(t) +

N∑

j=1

j 6=i

Hb
ij(x̄j) (7)

yi = x̄i2 (8)

where x̄ = col(x̄1, x̄2, · · · , x̄N ), x̄i = col(x̄i1, x̄i2),
x̄i1 ∈ Rni−pi , x̄i2 ∈ Rpi , and

[
ḡi1(x̄i, ui)
ḡi2(x̄i, ui)

]

:= ḡi(x̄i, ui)=Tci [gi(xi, ui)]xi=T
−1

ci
x̄i

(9)

[
φ̄i1(yi, ui)
φ̄i2(yi, ui)

]

:=Tciφi(yi, ui), (10)

[
Ha

ij(xj)

Hb
ij(xj)

]

:=Tci [Hij(xj)]xj=T
−1

cj
x̄j

(11)

Assumption 1. The uncertain TVPs Θi(t) satisfy

|Θ̇i(t)| ≤ µi (12)

where µi are known constants and µi > 0.

Assumption 1 means the bounds on the unknown

TVPs are not required, but the rate of changes of these

parameters are required to be bounded.

Assumption 2. The matrix pairs (Āi, C̄i) in (3)-(4) are

observable for i = 1, 2, · · · , N .

Under Assumption 2, there exist matrices Li such

that Āi − LiC̄i are stable, and thus for any Qi > 0 the

Lyapunov equations

(Āi − LiC̄i)
TPi + Pi(Āi − LiC̄i) = −Qi (13)

have unique solutions Pi > 0 for i = 1, 2, · · · , N .

For further analysis, introduce partitions of Pi and

Qi which are conformable with the decomposition in

(6)-(8) as follows

Pi =

[
Pi1 Pi2

PT
i2 Pi3

]

, Qi =

[
Qi1 Qi2

QT
i2 Qi3

]

(14)

where Pi1 ∈ R(ni−pi)×(ni−pi), Qi1 ∈ R(ni−pi)×(ni−pi).

Then, from Pi > 0 and Qi > 0, it follows that Pi1 > 0,

Pi3 > 0, Qi1 > 0 and Qi3 > 0. The following result is

required for further analysis.

Lemma 1. The matrices Āi1 + P−1
i1 Pi2Āi3 are Hurwitz

stable, where Pi1 and Pi2 are defined in (14) and Āi1

and Āi3 are defined in (3), if the Lyapunov equations

(13) are satisfied.

Proof. See Lemma 2.1 in [30].

Assumption 3. The functions ḡi(x̄i, ui) defined in (9)

satisfy the Lipschitz condition with respect to x̄i ∈ Rni

and uniformly for ui ∈ Ui ∈ Rmi for i = 1, 2, · · · , N .

Assumption 3 implies that there exist nonnegative

functions ℓḡi1 and ℓḡi2 such that

‖ḡi1(x̄i, ui)− ḡi1(ˆ̄xi, ui)‖ ≤ ℓḡi1(ui)‖x̄i − ˆ̄xi‖(15)

‖ḡi2(x̄i, ui)− ḡi2(ˆ̄xi, ui)‖ ≤ ℓḡi2(ui)‖x̄i − ˆ̄xi‖(16)

for i = 1, 2, · · · , N .

Remark 1. Assumption 3 shows that the functions

ḡi(x̄i, ui) defined in (9) satisfy the Lipschitz condition

with respect to only x̄i instead of (x̄i, ui). Such an

Assumption is reasonable because control inputs ui are

usually known in observer design, and may relax the

limitation to the functions ḡi(x̄i, ui).

III. Adaptive Sliding Mode Observer Design

Consider the system in (6)-(8). Introduce a linear

coordinate transformation

zi =

[
Ini−pi

Ki

0 Ipi

]

︸ ︷︷ ︸

Ti

x̄i (17)

where Ki = P−1
i1 Pi2. In the new coordinate system zi,

system (6)-(8) has the following form

żi1 = (Āi1 +KiĀi3)zi1 + (Āi2 − Āi1Ki +Ki(Āi4

−Āi3Ki)zi2 + ḡi1(T
−1
i zi, ui) + φ̄i1(·)Θi(t)

+Kiḡi2(T
−1
i zi, ui) +

N∑

j=1

j 6=i

Ha
ij(T

−1z)

+Kiφ̄i2(yi, ui)Θi(t) +Ki

N∑

j=1

j 6=i

Hb
ij(T

−1z) (18)

żi2 = Āi3zi1 + (Āi4 − Āi3Ki)zi2 + ḡi2(T
−1
i zi, ui)

+φ̄i2(·)Θi(t) +

N∑

j=1

j 6=i

Hb
ij(T

−1z) (19)

yi = zi2 (20)

where zi = col(zi1, zi2) with zi1 ∈ Rni−pi . For system

(18)-(20), consider a dynamical system

c© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
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˙̂zi1 = (Āi1 +KiĀi3)ẑi1 + (Āi2 − Āi1Ki +Ki(Āi4

−Āi3Ki))yi + ḡi1(T
−1
i ẑi, ui) + φ̄i1(·)Θ̂i(t)

+

N∑

j=1

j 6=i

Ha
ij(T

−1ẑ) +Kiḡi2(T
−1
i ẑi, ui)

+Kiφ̄i2(·)Θ̂i(t) +Ki

N∑

j=1

j 6=i

Hb
ij(T

−1ẑ) (21)

˙̂zi2 = Āi3ẑi1 + (Āi4 − Āi3Ki)yi + ḡi2(T
−1
i ẑi, ui)

+φ̄i2(·)Θ̂i(t) +

N∑

j=1

j 6=i

Hb
ij(T

−1ẑ) + di(·) (22)

ŷi = ẑi2 (23)

where ẑ = col(ẑ1, y), and the injection term di(·) is

defined by

di(·) = ρisgn(yi − ŷi) (24)

where ρi are positive constants for i = 1, 2, · · · , N , with

adaptive laws

Γ̇i = −σi[ ˙̂yi − di(·)] (25)

Θ̂i(t) = Γi + σiyi (26)

where di(·) is given in (24), and σi are positive

constants. Let ei1 = zi1 − ẑi1, eyi
= yi − ŷi and eΘi

=

Θi(t)− Θ̂i(t). Then from (18)-(20) and (21)-(23), the

error dynamics are described by

ėi1=(Āi1 +KiĀi3)ei1 + [ḡi1(·)−ḡi1(̂·)]+φ̄i1(·)[Θi(t)

−Θ̂i(t)]+

N∑

j=1

j 6=i

[Ha
ij(·)−Ha

ij (̂·)]+Ki[ḡi2(·)− ḡi2(̂·)]

+Kiφ̄i2(·)[Θi(t)−Θ̂i(t)]+Ki

N∑

j=1

j 6=i

[Hb
ij(·)−H

b
ij (̂·)](27)

ėyi
= Āi3ei1 + [ḡi2(·)− ḡi2(̂·)] + φ̄i2(·)[Θi(t)− Θ̂i(t)]

+

N∑

j=1

j 6=i

[Hb
ij(·)−Hb

ij (̂·)]− di(·) (28)

where di(·) is given in (24) for i = 1, 2, · · · , N , and

ḡi1(T
−1
i zi, ui) = ḡi1(·), ḡi1(T

−1
i ẑi, ui) = ḡi1(̂·)

ḡi2(T
−1
i zi, ui) = ḡi2(·), ḡi2(T

−1
i ẑi, ui) = ḡi2(̂·)

Ha
ij(T

−1z) = Ha
ij(·), Ha

ij(T
−1ẑ) = Ha

ij (̂·)

Hb
ij(T

−1z) = Hb
ij(·), Hb

ij(T
−1ẑ) = Hb

ij (̂·)

From (25) and (26)

ėΘi
= Θ̇i(t)−

˙̂
Θi(t) = Θ̇i(t)− {Γ̇i + σiẏi}

= Θ̇i(t)−
{
{−σi[Āi3ẑi1 + (Āi4 − Āi3Ki)yi

+ḡi2(̂·) + φ̄i2(·)Θ̂i(t) +

N∑

j=1

j 6=i

Hb
ij (̂·) + di(·)

−di(·)]}+ {σi[Āi3zi1 + (Āi4 − Āi3Ki)zi2

+ḡi2(·) + φ̄i2(·)Θi(t) +

N∑

j=1

j 6=i

Hb
ij(·)]}

}

= −σiĀi3ei1−σi[ḡi2(·)−ḡi2(̂·)]− σiφ̄i2(·)eΘi

−

N∑

j=1

j 6=i

σi[H
b
ij(·)−Hb

ij (̂·)] + Θ̇i(t) (29)

From the structure of the transformation matrix Ti in

(17) and the fact that ẑi = col(ẑi1, yi), it follows that

‖T−1
i zi − T−1

i ẑi‖=‖T−1
i (zi − ẑi)‖

=

∥
∥
∥
∥
T−1
i

[
ei1
0

]∥
∥
∥
∥
= ‖ei1‖ (30)

From the analysis above, it is straightforward to see

‖T−1z − T−1ẑ‖ = ‖e1‖ (31)

where

e1 := col(e11, e21, · · · , eN1) (32)

Therefore, from (15), (16), (30) and (31)

‖ḡi1(T
−1
i zi, ui)− ḡi1(T

−1
i ẑi, ui)‖≤ ℓḡi1(ui)‖ei1‖(33)

‖ḡi2(T
−1
i zi, ui)− ḡi2(T

−1
i ẑi, ui)‖≤ ℓḡi2(ui)‖ei1‖(34)

‖Ha
ij(T

−1z)−Ha
ij(T

−1ẑ)‖ ≤ ℓHa‖e1‖ (35)

‖Hb
ij(T

−1z)−Hb
ij(T

−1ẑ)‖≤ ℓHb‖e1‖ (36)

where ℓḡi1(ui) and ℓḡi2(ui) are nonnegative functions,

and ℓHa and ℓHb are constants.

Remark 2. It is well known that sliding mode

is a reduced order system. In this paper, the sliding

motion governs by the error dynamical systems (27)

with adaptive laws (25) - (26) while the error dynamical

systems (28) does not affect the sliding motion, which

makes the obtained results less conservative.

IV. Stability of the Error Dynamical Systems

Theorem 1. Under Assumptions 1− 3, the error

dynamical systems (27) with adaptive laws (25) - (26)

c© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
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are globally uniformly ultimately bounded if the matrix

WT +W is positive definite, where

W =

[
wa wb

wc wd

]

2N×2N

(37)

where wa = (wa
ij)N×N , wb = (wb

ij)N×N , wc =

(wc
ij)N×N , wd = (wd

ij)N×N , and

wa
ij =







{λmin(Qi1)− 2‖Pi1‖[ℓgi1 + ‖Ki‖ℓgi2 ]
−2‖Pi1‖[ℓHa + ‖Ki‖ℓHb ]}, i = j

−‖Pi1‖[ℓHa + ‖Ki‖ℓHb ], i 6= j

wb
ij = wc

ij =







−{‖Pi1‖αi1 + σi‖Āi3‖
+σiℓgi2 + σiℓHb}, i = j

σiℓHb , i 6= j

wd
ij =

{
2σiαi2, i = j

0, i 6= j
(38)

where Pi1 and Qi1 are given in (14), and

‖φ̄i1(·) +Kiφ̄i2(·)‖ ≤ αi1 (39)

‖φ̄i2(·)‖ ≤ αi2 (40)

for i, j = 1, 2, · · · , N .

Proof. For systems (27) and (29), consider the

candidate Lyapunov function

V =

N∑

i=1

eTi1Pi1ei1 +

N∑

i=1

eTΘi
eΘi

(41)

The time derivative of V (·) along the trajectories of

system (27) and (29) is given by

V̇ =

N∑

i=1

[ėTi1Pi1ei1 + eTi1Pi1ėi1 + ėTΘi
eΘi

+ eTΘi
ėΘi

]

=

N∑

i=1

{

eTi1[(Āi1+KiĀi3)
TPi1+Pi1(Āi1+KiĀi3)]ei1

+2eTi1Pi1[ḡi1(·)−ḡi1(̂·)]+2e
T
i1Pi1φ̄i1(·)eΘi

+2eTi1Pi1

×

N∑

j=1

j 6=i

[Ha
ij(·)−H

a
ij (̂·)] + 2eTi1Pi1Ki[ḡi2(·)− ḡi2(̂·)]

+2eTi1Pi1Kiφ̄i2(·)eΘi
+2eTi1Pi1Ki

N∑

j=1

j 6=i

[Hb
ij(·)−H

b
ij (̂·)]

−2eTΘi
σiĀi3ei1−2e

T
Θi
σi[ḡi2(·)−ḡi2(̂·)]− 2eTΘi

σi

×

N∑

j=1

j 6=i

[Hb
ij(·)−H

b
ij (̂·)]−2e

T
Θi
σiφ̄i2(·)eΘi

+2eTΘi
Θ̇i(t)

}

From (33)-(36),

V̇ ≤

N∑

i=1

{

− eTi1Qi1ei1+2‖Pi1‖[ℓgi1+‖Ki‖ℓgi2 ]‖ei1‖
2

+2‖Pi1‖‖[φ̄i1(·)+Kiφ̄i2(·)]‖‖ei1‖‖eΘi
‖+2‖ei1‖

×‖Pi1‖[ℓHa+‖Ki‖ℓHb ]‖e1‖−2‖eΘi
‖σi‖Āi3‖‖ei1‖

−2‖eΘi
‖σiℓgi2‖ei1‖−2‖eΘi

‖σiℓHb‖e1‖−2‖eΘi
‖

×σi‖φ̄i2(·)‖‖eΘi
‖+ 2‖eΘi

‖‖Θ̇i(t)‖
}

(42)

From the definition of e1 in (32)

‖e1‖ ≤

N∑

j=1

‖ej1‖ = ‖ei1‖+

N∑

j=1

j 6=i

‖ej1‖ (43)

Then, from (42) and (43)

V̇ ≤

N∑

i=1

{

− eTi1Qi1ei1+2‖Pi1‖[ℓgi1+‖Ki‖ℓgi2 ]‖ei1‖
2

+2‖Pi1‖‖[φ̄i1(·)+Kiφ̄i2(·)]‖‖ei1‖‖eΘi
‖+2‖Pi1‖

×[ℓHa+‖Ki‖ℓHb ]‖ei1‖
2+

N∑

j=1

j 6=i

[2‖Pi1‖[ℓHa + ‖Ki‖

×ℓHb ]‖ei1‖‖ej1‖]−2σi‖Āi3‖‖ei1‖‖eΘi
‖

−2σiℓgi2‖ei1‖‖eΘi
‖−2σiℓHb‖ei1‖‖eΘi

‖

−

N∑

j=1

j 6=i

2σiℓHb‖eΘi
‖‖ej1‖ − 2σi‖φ̄i2(·)‖

×‖eΘi
‖2 + 2‖eΘi

‖‖Θ̇i(t)‖
}

(44)

From Assumption 1, (39) and (40)

V̇ ≤−

N∑

i=1

{

{λmin(Qi1)− 2‖Pi1‖[ℓgi1 + ‖Ki‖ℓgi2 ]

−2‖Pi1‖[ℓHa + ‖Ki‖ℓHb ]}‖ei1‖
2 − {2‖Pi1‖αi1

+2σi‖Āi3‖+ 2σiℓgi2 + 2σiℓHb}‖ei1‖‖eΘi
‖

−

N∑

j=1

j 6=i

[2‖Pi1‖[ℓHa + ‖Ki‖ℓHb ]‖ei1‖‖ej1‖]

+

N∑

j=1

j 6=i

2σiℓHb‖eΘi
‖‖ej1‖+ 2σiαi2‖eΘi

‖2
}
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+

N∑

i=1

2µi‖eΘi
‖ (45)

Then, from the definition of the matrix W in Theorem

1 and the inequality above, it follows that

V̇ ≤ −
1

2
XT [WT +W ]X + γ‖X‖

≤ −

(
1

2
λmin(W

T +W )‖X‖ − γ

)

‖X‖ (46)

where γ = 2µi and X = [‖e11‖, ‖e21‖, · · · , ‖eN1‖,
‖eΘ1

‖, ‖eΘ2
‖, · · · , ‖eΘN

‖]T .

From the definition of Lyapunov function in (41),

it is straightforward to see that

λmin(Pi1)‖X‖2≤ V ≤ λmax(Pi1)‖X‖2

where X = [‖e11‖, ‖e21‖, · · · · · · , ‖eN1‖, ‖eΘ1
‖, ‖eΘ2

‖,
· · · , ‖eΘN

‖]T , for all X ∈ Rn. It can been seen clearly

that λmin(Pi1)‖X‖2 belongs to class K∞.

Therefore, from the condition that WT +W is

positive definite, system (27) is globally uniformly

ultimately bounded. Hence the result follows. △
Remark 3. From Theorem 1, it follows that e1 and eΘi

are bounded and thus there exist constants β1 > 0 and

β2 > 0 such that

‖e1‖ ≤ β1, ‖eΘi
‖ ≤ β2 (47)

where β1 can be estimated using the approach given in

[30] by slightly modification.

For system (27)-(28), consider a sliding surface

Si = {(ei1, eyi
, eΘi

)
∣
∣eyi

= 0} (48)

From the structure of the error dynamical system (27)-

(28), it follows that the sliding mode of the error system

(27)-(28) with respect to the sliding surface (48) is the

system (27) when limited to the sliding surface (48). All

that remains is to determine the gains ρi in (24) such

that the system (27)-(28) can be driven to the sliding

surface Si in finite time and a sliding motion maintained

thereafter.

Theorem 2. Under Assumptions 1-3 and the inequality

(40), system (27)-(28) is driven to the sliding surface

(48) in finite time and remains on it thereafter if

ρi ≥ (‖Āi3‖+ ℓḡi2 + ℓHb + αi2β2)β1 + η (49)

where η > 0 is constant, β1 and β2 satisfy (47).

Proof. From (28)

N∑

i=1

eTyi
ėyi

=

N∑

i=1

eTyi

{

Āi3ei1 + [ḡi2(·)− ḡi2(̂·)] + φ̄i2(·)

×[Θi(t)−Θ̂i(t)]+

N∑

j=1

j 6=i

[Hb
ij(·)−H

b
ij(·)]−di(·)

}

≤

N∑

i=1

{

‖Āi3‖‖ei1‖‖eyi
‖+ℓgi2‖ei1‖‖eyi

‖+ℓHb

×‖e1‖‖eyi
‖+‖φ̄i2(·)‖‖eΘi

‖‖eyi
‖−ρisgn(eyi

)
}

≤

N∑

i=1

{{
(‖Āi3‖+ ℓḡi2 + ℓHb + αi2β2)β1

−ρi
}
‖eyi

‖
}

(50)

Applying (49) into (50)
N∑

i=1

eTyi
ėyi

= −η

N∑

i=1

‖eyi
‖ (51)

which implies that eTy ėy ≤ −η‖ey‖. where ey =
col(ey1

, ey2
, · · · , eyN

) and the inequality ‖ey‖ ≤
∑N

i=1 ‖eyi
‖ is applied to obtain the inequality above.

This shows that the reachability condition is satisfied.

Hence the conclusion follows. △
Remark 4. From sliding mode theory, Theorems 1 and

2 show that system (21)-(23) is an approximate observer

for the system (18)-(20) and the estimation error enters

a bounded domain in finite time.

V. Simulation Example

Consider a nonlinear interconnected system as

follows:

ẋ1 =

[
0 1
2 −3

] [
x11

x12

]

+

[
u1

sinx12

]

+

[
x11

0

]

θ1(t) +

[
0

0.1x2
21

]

(52)

y1 =
[
1 0

]
[

x11

x12

]

(53)

ẋ2 =

[
0 1
2 −3

] [
x21

x22

]

+

[
u2

0.7 cosx22

]

+

[
x21

0

]

θ2(t) +

[
0

0.7 sinx11

]

(54)

y2 =
[
1 0

]
[

x21

x22

]

(55)

where col(x1, x2) are the system states, y1 and y2 are

the system outputs. Let

Tci =

[
0 1
1 0

]

, i = 1, 2 (56)
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The system (52)-(55) can be transformed to

˙̄x1 =

[
−3 2
1 0

]

︸ ︷︷ ︸

Ā1

[
x̄11

x̄12

]

+

[
sin x̄12

u1

]

︸ ︷︷ ︸

ḡ1(·)

+

[
0
x̄11

]

︸ ︷︷ ︸

φ̄1(·)

θ1(t) +

[
0.1x̄2

21

0

]

︸ ︷︷ ︸

H12(x̄2)

(57)

y1 =
[
0 1

]

︸ ︷︷ ︸

C̄1

[
x̄11

x̄12

]

(58)

˙̄x2 =

[
−3 2
1 0

]

︸ ︷︷ ︸

Ā2

[
x̄21

x̄22

]

+

[
0.7 cos x̄22

u2

]

︸ ︷︷ ︸

ḡ2(·)

+

[
0
x̄21

]

︸ ︷︷ ︸

φ̄2(·)

θ2(t) +

[
0.7 sin x̄11

0

]

︸ ︷︷ ︸

H21(x̄1)

(59)

y2 =
[
0 1

]

︸ ︷︷ ︸

C̄2

[
x̄21

x̄22

]

(60)

Choose Li = [1 1] and Qi = 8I for i = 1, 2. Then, the

Lyapunov equation (13) has unique solution:

Pi =

[
1 0.2
0.2 4.2

]

, i = 1, 2 (61)

Therefore, under the transformation xi = (TiTci)
−1zi

with Tci defined in (56) and Ti given by

Ti =

[
1 0.2
0 1

]

, i = 1, 2 (62)

The system can be described in z coordinates as follows

ż11 = −2.8z11 + 2.2z12 + sin z12

+0.1(z21 − 0.2z22)
2 (63)

ż12 = z11 − 0.2z12 + (z11 − 0.2z12)θ1(t) + u1(64)

y1 = z12 (65)

ż21 = −2.8z21 + 2.2z22 + 0.7 cos z22

+0.7 sin(z11 − 0.2z12) (66)

ż22 = z21 − 0.2z22 + (z21 − 0.2z22)θ2(t)+u2 (67)

y2 = z22 (68)

For simulation purposes, the controllers are chosen as

ui = −kixi and ki = [8 2] for i = 1, 2.

By direct computation, it follows that the matrix

WT +W is positive definite. Thus, all the conditions

of Theorem 1 are satisfied. Therefore the following

dynamical system is an asymptotic observer of the

system (63)− (68)

˙̂z11 = −2.8ẑ11 + 2.2y1 + sin ẑ12

+0.1(ẑ21 − 0.2ẑ22)
2 (69)

˙̂z12 = ẑ11 − 0.2ẑ12 + (ẑ11 − 0.2ẑ12)θ̂1(t)

+u1 + d1(·) (70)

ŷ1 = ẑ12 (71)

˙̂z21 = −2.8ẑ21 + 2.2y2 + 0.7 cos ẑ22

+0.7 sin(ẑ11 − 0.2ẑ12) (72)

˙̂z22 = ẑ21 − 0.2ẑ22 + (ẑ21 − 0.2ẑ22)θ̂2(t)

+u2 + d2(·) (73)

ŷ2 = ẑ22 (74)

where d1(·) = 9 sgn(y1 − ŷ1), d2(·) = 9 sgn(y2 − ŷ2).
The parameters are chosen as β1 = 6.5, η = 2.5 and

σ1 = σ2 = 1. Then, from (25) and (26), the designed

adaptive laws are given by

Γ̇1 = −[ ˙̂y1 − d1(·)] (75)

Θ̂1(t) = Γ1 + y1 (76)

Γ̇2 = −[ ˙̂y2 − d2(·)] (77)

Θ̂2(t) = Γ2 + y2 (78)

Simulation in Figures 1-2 shows the system state

variables and their estimations in presence of unknown

time varying parameters Θ1(t) = Θ2(t) = 0.3t, and

simulation in Figures 3-4 shows that the system state

variables and their estimations in presence of unknown

time varying parameters Θ1(t) = Θ2(t) = 0.6t. The

estimation error between the states of the system (63)-

(68) and the states of the observer (69)-(74) converges

to zero globally ultimately bounded. Therefore, ẑi =
col(ẑi1, ẑi2) in (69)-(74) is an asymptotic estimation of

zi = col(zi1, zi2) in (63)-(68).

Remark 5. It should be noted that the states ẑi =
col(ẑi1, ẑi2) in (69)-(74) give estimations of the variable

zi = col(zi1, zi2) in (63)-(68) for i = 1, 2. From the

analysis in Sections II and III, it is straightforward to

see that x̂i = (TiTci)
−1ẑi are estimations of the states

xi = [xi1 xi2]
T of the system (52)-(55) where Tci and

Ti are defined in (56) and (62) respectively for i = 1, 2.

VI. Conclusion

An adaptive sliding mode observer for a class

of nonlinear large scale interconnected systems with

unknown TVPs has been proposed based on Lyapunov
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Fig. 1. The time response of the 1st subsystem states and their estimates
with Θ1(t) = Θ2(t) = 0.3t
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Fig. 2. The time response of the 2nd subsystem states and their
estimates with Θ1(t) = Θ2(t) = 0.3t

direct method. Although bounds on the unknown TVPs

are not required, the rate of changes of these parameters

are bounded. The technique that used in this paper

is combined of sliding mode techniques and adaptive

techniques to guarantee the ultimate boundedness of the

estimation error of the designed observer. Simulation

example has shown that the method is effective.
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