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Abstract 

 Automatic facial recognition is becoming increasingly ubiquitous in security contexts 

such as passport control. Currently, Automated Border Crossing (ABC) systems in the United 

Kingdom (UK) and the European Union (EU) require supervision from a human operator 

who validates correct identity judgements and overrules incorrect decisions. As the accuracy 

of this human-computer interaction is unknown, this research investigated how human 

validation is impacted by a priori face-matching decisions such as those made by automated 

face recognition software. Observers matched pairs of faces that were already labelled 

onscreen as depicting the same identity or two different identities. The majority of these 

labels provided information that was consistent with the stimuli presented, but some were 

also inconsistent or provided ‘unresolved’ information. Across three experiments, accuracy 

consistently deteriorated on trials that were inconsistently labelled, indicating that observers’ 

face-matching decisions are biased by external information such as that provided by ABCs. 
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Introduction 

Person identification at border control relies primarily on forensic face matching. This 

involves a comparison between a traveller’s face and their passport photograph to verify that 

they are the same person (i.e. an identity match) and not an impostor who is using a stolen or 

borrowed passport (i.e. an identity mismatch). Laboratory studies show consistently that 

human performance in this task can be highly error-prone. For example, up to 20% errors 

arise under optimised conditions, such as when to-be-matched stimuli comprise high-quality 

digital photographs of targets taken under even lighting with similar expressions and pose 

(Burton, White, & McNeill, 2010). Subsequent studies suggest that performance is further 

impeded by factors that are relevant to passport control. For example, accuracy on mismatch 

trials deteriorates considerably over a single prolonged session (Alenezi & Bindemann, 2013; 

Alenezi, Bindemann, Fysh, & Johnston, 2015), as well as under time pressure (Bindemann, 

Fysh, Cross, & Watts, 2016; Fysh & Bindemann, 2017), and when faces are viewed in the 

context of realistic photo-ID (Bindemann & Sandford, 2011; Kemp, Towell, & Pike, 1997; 

McCaffery & Burton, 2016). In addition, even passport officers have been found to make a 

substantial number of errors when comparing same-day face photographs (White, Kemp, 

Jenkins, Matheson, & Burton, 2014). Together, these findings reflect that for humans, 

unfamiliar-face matching is a particularly challenging task. 

Automated Border Crossing (ABC) systems present a potential solution to this 

problem. In the UK, for example, “Electronic Passport Gates”, or “e-Gates”, are now 

installed in most major airports. These e-Gates employ state-of-the-art facial recognition 

algorithms that compare live travellers to a digital photograph that is stored on their 

passports, and are unaffected by factors that impact human capacity for face matching, such 

as time pressure (Bindemann et al., 2016), time passage (Alenezi & Bindemann, 2013; 

Alenezi et al., 2015), and sleep deprivation (Beattie, Walsh, Mclaren, Biello, & White, 2016). 
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These benefits are corroborated by studies in which face recognition algorithms have 

achieved perfect or near-perfect performance in benchmark tests (see, e.g., Phillips et al., 

2010; see also Jenkins & Burton, 2008).  

Despite these advantages, however, it remains difficult to establish the accuracy of 

automatic facial recognition systems in applied contexts. For example, algorithms outperform 

human observers in tests that are considered to be of easy and moderate difficulty (O’Toole, 

Phillips, et al., 2007; O’Toole, An, Dunlop, Natu, & Phillips, 2012). However, under more 

challenging conditions that more closely approximate passport control, such as when to-be-

compared stimuli are photographed on different days, these algorithms perform comparably 

to some observers (O’Toole et al., 2012; Phillips & O’Toole, 2014), and are surpassed by 

expert matchers (White, Phillips, Hahn, Hill, & O’Toole, 2015). Some studies have also 

reported instances where face recognition algorithms failed to score even a single hit in 

matching tasks, whilst humans were well above chance (Rice, Phillips, Natu, An, & O’Toole, 

2013). Together, these findings indicate that algorithms are not yet fully capable of 

supplanting humans at border control. 

Currently, e-Gates function under the supervision of human operators, who monitor 

the identity verification process via a computer interface. This interface indicates the extent to 

which the person in the e-Gate booth matches their passport photograph, as well as notifies 

the operator when a potential biometric mismatch is present (for an example of this interface, 

see Secunet, n.d.). A critical responsibility of the human operators is therefore to manage 

exceptions such as when the system cannot fully resolve a traveller with their passport 

photograph, as well as to prevent the system from incorrectly accepting a mismatching 

identity or incorrectly rejecting a genuine match (FRONTEX, 2015a, 2015b; Graves et al., 

2011; Secunet, n.d.). Such errors are projected to occur only rarely, with the false acceptance 

of impostors estimated to occur on 0.1% of trials, and the false rejection of identity matches 
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on 5-10% of trials (FRONTEX, 2015b). These error rates are not represented in applied 

contexts, where e-Gates have been reported to reject high volumes of identity matches (ICI, 

2014; Watt, 2016), and to falsely accept some egregious mismatches, such as men as women 

(http://www.bbc.co.uk/news/uk-england-manchester-12482156; ICI, 2011). These surprising 

errors indicate that the interaction between humans and e-Gates is crucial for the accuracy of 

person identification at passport control. However, the accuracy of this human-computer 

interaction is currently unknown. 

So far, only limited research has explored this issue. In one study, the face-matching 

decisions of humans and algorithms were aggregated together, resulting in near-perfect 

performance (O’Toole, Abdi, Jiang, & Phillips, 2007). However, the judgements of human 

observers in this study were independent of those made by algorithms, which differs from 

applied settings, where human operators instead validate a priori judgements by e-Gates. A 

more recent study investigated the performance of facial review staff, who use state-of-the-art 

face recognition algorithms to process new passport applications (White, Dunn, Schmid, & 

Kemp, 2015). In this task, the algorithm compares the face of a passport applicant across a 

database of existing passport holders to prevent fraudulent applications from being processed. 

The algorithm returns eight candidates who most closely resemble the applicant, which are 

then studied by the human operator to ensure that the applicant’s photograph does not match 

that of any existing passport holders. Importantly, the researchers found that the accuracy of 

facial review staff actually limited the success of the algorithm, which could reliably return a 

matching identity from a database of over a million candidates. 

This research suggests that person identification accuracy might not benefit from this 

human-computer interaction. However, crucial differences between the role of facial review 

staff and human operators at passport control make it difficult to generalise White, Dunn, et 

al.’s (2015) findings to the latter context. For example, facial review staff are required to 
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check a single candidate image against eight highly similar face photographs, to safeguard 

against fraudulent passport applications. By contrast, the operators of e-Gates at passport 

control perform a secondary comparison on pairs of faces, for which an identification has 

already been provided by the system. Although this task may bear some conceptual similarity 

to the paradigm explored by White, Dunn, et al. (2015), important theoretical differences 

exist between these tasks, making it difficult to draw firm conclusions about human 

performance in one task from the other. For example, the role of human operators of e-Gates 

rests on the critical assumption that human operators’ identification decisions occur 

independent of the system output. Thus, human operators should overrule the system when 

the algorithm falsely rejects an identity match, or falsely accepts an identity mismatch. If this 

is correct, then the identity decisions of humans and algorithms should align when the system 

has made a correct judgement, but also diverge when the system is incorrect. 

Psychological research provides mixed evidence for this assumption. On one hand, 

attentional load paradigms demonstrate that face identity processing is disrupted when face 

targets are flanked by semantically-relevant words (Bindemann, Burton, & Jenkins, 2005). 

This interference effect is characterised by longer response times and reduced accuracy when 

distractors provide information that is incongruent, as compared to congruent, with the target 

identity (Bindemann, Burton, Jenkins, 2005). In addition, identification judgements for faces 

can be influenced by some simple manipulations relevant to forensic face matching. For 

example, embedding face photographs within passport frames increases false acceptance of 

identity mismatches between a passport photo and its bearer (McCaffery & Burton, 2016). 

These findings suggest that human face matching decisions may also be influenced by 

identification judgements provided by e-Gates, whereby the identity decisions by the system 

may reduce the decision accuracy of human observers when the system is incorrect. 
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On the other hand, it is conceivable also that decisions by human operators are 

relatively unaffected by e-Gate judgements. Faces capture and retain attention more 

effectively than other stimulus categories (see, e.g., Bindemann, Burton, Hooge, Jenkins, & 

de Haan, 2005; Bindemann, Burton, Langton, Schweinberger, & Doherty, 2007; Langton, 

Law, Burton, & Schweinberger, 2008; Theeuwes & Van der Stigchel, 2006). Moreover, task-

irrelevant face distractors tend to interfere with the processing of attended non-face targets 

more strongly than task-irrelevant non-face stimuli with attended faces (Bindemann, Burton, 

& Jenkins, 2005). It is therefore possible in human-computer interaction scenarios that the 

facial information within to-be-matched faces exerts a greater influence on human decision-

making than information from computer algorithms. Consequently, the face matching 

decisions of human operators might also be unaffected by e-Gates judgements. 

Considered together, it remains difficult from the current evidence to predict whether 

human operators can make identification decisions independently of the output of e-Gate 

systems. Consequently, it is unresolved whether identity verification accuracy at passport 

control is improved by human-computer interaction or, paradoxically, reduced by it. This 

question is explored in the current study. Across three experiments, observers matched pairs 

of faces that were labelled as depicting the “same” person, “different” individuals, or that 

were “unresolved”. Labels that provided a same or different resolution were generally 

consistent with the faces shown. However, a small percentage of these also provided 

inconsistent information. In these cases, match trials were incorrectly labelled as different 

individuals, and mismatch trials were labelled as depicting the same person. Unresolved trials 

were chosen as an analogy to the exceptions at e-Gates when a traveller cannot be matched 

by the algorithm, and thus must be processed by the human operator. Experiment 1 first 

sought to determine whether observers can accurately match faces whilst instructed to ignore 

the information provided by these trial labels. Subsequent experiments investigated how 
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responses are further affected when observers instead attempt to verify the accuracy of labels 

(Experiment 2), and whether high compliance with the labels facilitates accuracy gains when 

these provide consistent information, at the cost of performance on trials for which the labels 

are misleading (Experiment 3). 

 

Experiment 1 

In this experiment, observers matched pairs of faces that were labelled onscreen as 

belonging to the “same” person, “different” individuals, or as “unresolved” identity pairings. 

These labels were employed as an analogy to human-computer interaction at passport control, 

where human operators supervise e-Gates judgements for each identity, to prevent the false 

acceptance of impostors by the system. For this to be effective, human operators should be 

making identifications that are independent of the algorithm judgements, and can therefore 

overrule erroneous e-Gate decisions. The aim of this experiment was to investigate whether 

observers can match faces without being influenced by onscreen identity judgements. 

To investigate this, we informed observers that most of the onscreen labels provided a 

correct identification for each trial, but that some were also inaccurate, and that they should 

therefore ignore the labels when deciding whether faces depicted the same person or different 

individuals. To understand this within the context of passport control, the stimuli that were 

employed in this study portrayed considerable within-person variability (see Jenkins, White, 

van Montfort, & Burton, 2011; Megreya, Sandford, & Burton, 2013), and mismatches 

occurred infrequently (Bindemann, Avetisyan, & Blackwell, 2010; Papesh & Goldinger, 

2014). Furthermore, the proportion of inconsistently-labelled and unresolved trials was lower 

than the proportion of trials with consistent labels, given that the algorithms employed at 

passport control are projected to be highly accurate, and thus incorrect identifications should 

occur only rarely (FRONTEX, 2015b). This design should indicate whether human 
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performance in face matching is influenced by onscreen trial information, as an analogy to 

human-computer interaction at passport control.  

 

Methods 

Participants 

 Thirty undergraduates (7 males, 23 females) with a mean age of 22.1 years (SD = 7.3 

studying at the University of Kent participated in this research in exchange for course credit. 

All reported normal (or corrected-to-normal) vision. This study was approved by the Ethics 

Committee of the School of Psychology at the University of Kent, and was conducted in 

accordance with the ethical guidelines of the British Psychological Association. 

 

Stimuli 

 The stimuli in this study comprised 210 pairs of faces extracted from the Kent 

University Face Database (KUFD; see Fysh & Bindemann, 2018). Of these, 15 were 

mismatching identities, and the remaining 195 were identity matches. One photo in each pair 

consisted of a controlled image, in which targets were photographed against a plain white 

background under even lighting and whilst bearing a neutral expression. These photographs 

were cropped to depict the target’s head and shoulders, and were scaled to a size of 283x332 

pixels at a resolution of 72-ppi, before being placed on the right-hand side of a plain white 

canvas. The second image consisted of a student ID photograph that was retrieved with 

permission from the University of Kent’s online Student Data System. These images were 

unconstrained in target expression, pose, and lighting, and therefore contribute an important 

source of variability to each stimulus pair. To preserve resolution, these photographs were 

scaled to a size of 142x192 pixels at a resolution of 72-ppi, and were presented to the left of  
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-------------------- Insert Figure 1 about here -------------------- 

 

the controlled images. Mismatching pairs were created by pairing identities that were visually 

similar in terms of hair colour, face shape, and eyebrow shape. 

 Next, three versions of each face-pair stimulus were created, featuring a trial label in 

the bottom right corner of the canvas that displayed the message “same”, “different”, or 

“unresolved” (see Fig. 1). Each observer viewed one version of each stimulus. However, to 

ensure that each identity pair was presented alongside a consistent, inconsistent, and 

unresolved label with equal frequency across observers, these were counterbalanced over 15 

versions of the task. Each trial label measured 137x101 pixels. To provide a closer analogy to 

the interface used by human operators of ABC systems (see Secunet, n.d.), these labels were 

also coloured green, red, or yellow, corresponding to whether the label was “same”, 

“different”, or “unresolved”, respectively. 

 

Procedure 

 This experiment was run using PsychoPy software (Peirce, 2007). Trials were divided 

evenly over three blocks of 70 face pairs (65 matches, 5 mismatches), which proceeded 

without any breaks. At the beginning of the task, observers were instructed that an identity 

judgement had already been supplied for each face pair, and that whilst the majority of these 

would be correct, some would be inaccurate. It was therefore important that observers 

ignored the trial labels when deciding whether the faces onscreen portrayed the same person, 

or different individuals. 

 Each trial was preceded by a 1-second fixation cross. This was then replaced with a 

stimulus pair that was labelled onscreen as “same”, “different”, or “unresolved”. The 

majority of the trial labels (60%) provided consistent information about the face pair. 
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However, 20% of the labels were also inconsistent, in that they displayed the incorrect 

solution to the onscreen faces. The remaining 20% of trial labels were unresolved, such that 

observers were required to independently decide whether two faces depicted the same person 

or two different individuals. Thus, for the 65 identity matches in a block of 70 trials, 39 were 

presented with a consistent identification label, 13 with an inconsistent label, and another 13 

with an unresolved label. Equally, for the five identity mismatches in each block, three were 

presented with a consistent identification label, one with an inconsistent label, and another 

with an unresolved label. 

 

Results 

 The percentage accuracy data were calculated for all conditions. The cross-subject 

means of these data are provided in Fig. 2. To maximise the number of data points in this 

analysis, the accuracy data were collapsed across the three blocks of the experiment. A 2 

(trial type: match vs. mismatch) x 3 (trial label: consistent, unresolved, inconsistent) within-

subjects ANOVA was conducted, which did not reveal a main effect of trial type, F(1,29) = 

4.00, p = 0.06, ηp
2 = 0.12, or an interaction, F(2,58) = 0.06, p = 0.94, ηp

2 = 0.00. However, a 

main effect of trial label was found, F(2,58) = 4.20, p < 0.05, ηp
2 = 0.13. To interpret this 

effect, the percentage accuracy data were collapsed across match and mismatch trials and 

were then compared for consistent, inconsistent, and unresolved trial labels via a series of 

paired-sample t-tests (with alpha corrected at p < 0.017 [i.e. 0.05/3] for multiple 

comparisons). This analysis did not find significant differences between unresolved and 

consistent trials, t(29) = 1.97, p = 0.06, and between unresolved and inconsistent trials, t(29) 

= 1.01, p = 0.32. However, accuracy on consistent trials was higher than on inconsistent 

trials, t(29) = 2.93, p < 0.01. This demonstrates that trial labels influenced observers’ face-

matching decisions despite the instruction to ignore these. 
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See Supplemental Material for additional analysis of d’, criterion, and response times 

for all experiments reported here. 

 

-------------------- Insert Figure 2 about here -------------------- 

 

Discussion 

 In this experiment, observers matched pairs of faces that were labelled onscreen as 

depicting same or different identities or as unresolved identifications. Observers were 

informed at the start of the task that the majority of the labels provided correct information, 

but that some were also inaccurate, and that it was therefore important to ignore the labels 

when matching faces. Despite this instruction, the labels clearly affected face matching 

performance. Accuracy for consistently-labelled match and mismatch trials was 81% and 

69%, respectively, but declined to 72% and 61% when the labels provided inconsistent 

identity information for these trials. In addition, performance for unresolved match and 

mismatch trials fell in between these conditions and was 76% and 63%, respectively.  

These findings indicate that a priori external identity judgements, such as same- and 

different-identity labels, interfere with observers’ face-matching decisions even when 

attempting to ignore such information. This converges with work showing that observers’ 

face-matching decisions can be compromised when led to believe that mismatching faces 

depict the same person (Menon, White, & Kemp, 2015), as well as with research 

demonstrating that face identity processing can be disrupted when flanked by semantically-

relevant distractor words (Bindemann, Burton, & Jenkins, 2005).  

 This experiment indicates that human operators may struggle to ignore the 

information provided by e-Gate systems when processing travellers. However, it is 

conceivable that in such operational settings, operators of e-Gates may instead attempt to 
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evaluate the accuracy of each system identification, rather than ignoring these judgements per 

se. This strategy makes some sense when considering that e-Gates are projected to be highly 

accurate, and should, in theory, make very few errors (FRONTEX, 2015b). By contrast, 

human face matching performance deteriorates due to the repetitive nature of the task 

(Alenezi & Bindemann, 2013; Alenezi et al., 2015), and when under time pressure 

(Bindemann et al., 2016; Fysh & Bindemann, 2017; Wirth & Carbon, 2017). Consequently, 

human-computer interaction at passport control may be more effective if human operators 

instead seek to verify e-Gate judgements, rather than ignore them outright. We explore this 

possibility in Experiment 2. 

 

Experiment 2 

 The previous experiment suggested that onscreen identity judgements interfere with 

face identification decisions even when observers attempt to ignore such information. 

However, a more effective strategy employed by human-operators at passport control may be 

to assess the accuracy of the e-Gate decision for each traveller, to verify that a correct 

decision has been made. In practice, utilising the high accuracy of e-Gates in this way should 

lead to fewer errors (FRONTEX, 2015b). However, it remains unclear as to whether 

observers could reliably overrule e-Gate errors using this strategy. To explore this question in 

the current experiment, we repeated the procedure used in Experiment 1, but amended the 

instructions to encourage use of the onscreen labels. Observers were instructed that whilst 

most trial labels were correct, some were also inaccurate, and so it was important to check 

each pair of faces carefully before submitting the final decision. 

This design should indicate whether trial labels also interfere with observers’ face 

matching decisions when explicitly evaluating the accuracy of these judgements on each trial, 

rather than ignoring them. Current evidence shows that observers are likely to conform to 
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algorithm judgements in decision-making tasks when the outcome of a given trial is 

ambiguous (Weger, Loughnan, Sharma, & Gonidis, 2015). In addition, although an 

attentional bias exists for faces, observers also utilise task-relevant non-face objects in 

perceptual tasks when it is advantageous to do so (Bindemann, Burton, Langton, et al., 2007). 

Extending these findings to the current experiment, we expect to observe further interference 

from the trial labels in the current experiment, when observers match pairs of faces. This 

interference effect should be characterised by high accuracy on trials for which the labels 

provide consistent information, but may also coincide with poorer accuracy on trials that are 

inconsistently-labelled. 

 

Method 

Participants, stimuli, and procedure 

Thirty undergraduates studying at the University of Kent (11 males, 19 females) with 

a mean age of 20 years (SD = 3.8) participated in this research in exchange for course credit 

or a small fee. All reported normal (or corrected-to-normal) vision, and none had participated 

in Experiment 1. 

The stimuli and procedure in this experiment were identical to the previous 

experiment, except for the following change. Instead of instructing observers to ignore the 

trial labels as in Experiment 1, participants were informed that whilst the majority of trial 

labels were correct, some would also be inaccurate, and that it was therefore important to 

check each identity pair carefully before submitting the final decision. 

 

Results 

The cross-subject mean percentage accuracy scores for consistent, inconsistent, and 

unresolved match and mismatch trials were analysed (see Fig. 3). A 2 (trial type: match vs. 
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mismatch) x 3 (trial label: consistent, unresolved, inconsistent) within-subjects analysis of 

variance (ANOVA) revealed a main effect of trial type, F(1,29) = 5.25, p < 0.05, ƞp
2 = 0.15, a 

main effect of trial label, F(2,58) = 12.14, p < 0.001, ƞp
2 = 0.30, and an interaction between 

these factors, F(2,58) = 3.21, p < 0.05, ƞp
2 = 0.10. 

Analysis of simple main effects showed that accuracy was superior on match 

compared to mismatch trials with consistent labels, F(1,29) = 8.62, p < 0.01, ƞp
2 = 0.23, and 

inconsistent labels, F(1,29) = 6.44, p < 0.05, ƞp
2 = 0.18, but comparable with unresolved 

labels, F(1,29) = 0.68, p = 0.42, ƞp
2 = 0.02. More importantly, simple main effects analysis 

revealed also that performance on both match, F(2,28) = 6.32, p < 0.01, ƞp
2 = 0.31, and 

mismatch trials was affected by the trial labels, F(2,28) = 6.66, p < 0.01, ƞp
2 = 0.32.  

 

-------------------- Insert Figure 3 about here -------------------- 

 

For the simple main effect of match trials, paired-sample t-tests (with alpha corrected 

at p < 0.017 for multiple comparisons) showed that accuracy was higher when the labels were 

consistent versus when they were unresolved or inconsistent, t(29) = 3.36, p < 0.01 and t(29) 

= 3.59, p < 0.01, respectively. In addition, accuracy on unresolved match trials was also 

higher than when these pairs were labelled inconsistently, t(29) = 2.85, p < 0.01. Likewise, 

corrected paired-sample t-tests were performed to explore the effect of the trial labels on 

mismatch trials. These revealed lower accuracy on inconsistently-labelled trials compared to 

when the labels were consistent, t(29) = 3.45, p < 0.01, and unresolved, t(29) = 3.36, p < 

0.01. However, mismatch accuracy was comparable between consistent and unresolved trials, 

t(29) = 0.15, p = 0.89. 

 

Discussion 
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 This experiment showed that when verifying the accuracy of trial labels, observers’ 

face matching decisions are influenced by the information that these provide. Performance 

was considerably more accurate when these labels provided information that was consistent 

with the identities of the depicted face pairs. For example, accuracy on mismatch trials 

deteriorated from 70% when these were labelled as depicting different identities (i.e., with a 

consistent label) to 48% when faces were labelled as belonging to the same person 

(inconsistent label). Similarly, performance on match trials deteriorated from 85% when the 

labels were consistent, to 66% when these indicated that two faces depicted different 

individuals. For trials that were labelled as unresolved, accuracy was similar between match 

and mismatch trials, at 74% and 69%, respectively. 

 Considered alongside Experiment 1, these findings show that the trial labels interfere 

with face matching decisions not only when observers attempt to ignore the judgements that 

are presented, but also when observers specifically attend to these throughout the task. This is 

particularly troubling when considering the observed interaction, which demonstrated a more 

pronounced effect of inconsistent labels on mismatch trials compared to match trials. 

Translated to applied settings, this suggests that human operators are less likely to detect the 

false acceptance of impostors by e-Gates than the false rejection of identity matches. 

  Although the trial labels influenced responses in this task, accuracy on consistently-

labelled trials was lower than would be expected (i.e. 100%) if observers were resolutely 

following the labels. This indicates that observers were reluctant to conform to the 

judgements provided by the trial labels, and that the facial information in stimuli were 

exerting a stronger influence on identification decisions. One possible explanation for this is 

that observers may have encountered misleading labels early on in the task, and were 

therefore less willing to utilise the information presented. This makes it difficult to apply 

these findings to passport control, where human operators are likely to be more trusting of the 



17 

 

algorithms’ decisions in such settings, given that these systems are expected to be highly 

accurate (FRONTEX, 2015b). To encapsulate this, we ran a final experiment, in which we 

sought to encourage compliance with the trial labels through the administration of feedback 

in Block 1, and replaced all inconsistent labels in Blocks 1 and 2 to provide consistent 

information.  

 

Experiment 3 

In the previous experiment, accuracy deteriorated by around 20% on inconsistently-

labelled match and mismatch trials. However, observers also rejected nearly a quarter of 

consistent labels. Converging with research showing that human conformity to computer 

judgements is modulated by the ambiguity of a given trial (Weger et al., 2015), it is possible 

that conformity to the trial labels was reduced by a number of inconsistently-labelled, low-

ambiguity trials at the start of the task. 

To investigate this possibility, all inconsistent labels in Blocks 1 and 2 of Experiment 

3 were replaced to provide consistent information, so that observers did not encounter any 

misleading trial labels until the final block of the task. To further encourage compliance with 

the trial labels, feedback was also administered in Block 1 whilst stimuli were still onscreen. 

Considering research showing that face-matching performance benefits reliably from 

feedback (Alenezi & Bindemann, 2013; White, Burton, Jenkins, & Kemp, 2014), observers 

should display high compliance with trial labels over the course of Block 1, which should be 

maintained in Block 2, given that this block also did not feature any inconsistent trial labels. 

In the final block, this should coincide with high accuracy on trials for which the labels are 

consistent, but result in an even greater number of errors on inconsistent trials. Moreover, we 

expect that these errors will be exaggerated on inconsistent mismatch trials, given that these 

occurred less frequently than inconsistent match trials. 
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Method 

Participants, stimuli, and procedure 

 Thirty undergraduates studying at the University of Kent (8 males, 22 females) with a 

mean age of 19.6 years (SD = 1.8) participated in this study in exchange for course credit or a 

small fee. None of these had participated in the previous experiments, and all reported normal 

(or corrected-to-normal) vision.  

The stimuli and procedure used in this experiment were identical to that of the 

previous experiment, except for the following changes. All inconsistent labels in Blocks 1 

and 2 were replaced to provide consistent information, whilst the frequency of unresolved 

match and mismatch trials remained unchanged. In addition, onscreen feedback was provided 

following each response in Block 1, whilst the stimuli and label were still onscreen, and 

consisted of “Correct/Incorrect! These faces show the SAME person/two DIFFERENT 

individuals!”. This feedback was withdrawn in Block 2, and Block 3 was identical to the third 

block in Experiments 1 and 2. 

 

Results 

Accuracy for Blocks 1 and 2 

First, we assessed performance for Block 1 and 2 (see Fig. 4). A 2 (trial type) x 2 

(block: Block 1 vs. Block 2) x 2 (trial label: consistent vs. unresolved) within-subjects 

ANOVA did not reveal an effect of block, F(1,29) = 2.16, p = 0.15, ƞp
2 = 0.07, or interactions 

of block and trial label or trial type, all Fs ≤ 0.67, all ps ≥ 0.42, all ƞp
2 ≤ 0.02. The three-way 

interaction was also not significant, F(1,29) = 0.04, p = 0.85, ηp
2 = 0.00. However, an 

interaction of trial type and trial label was found, F(1,29) = 10.20, p < 0.01, ηp
2 = 0.26. 

Simple main effects analysis revealed that accuracy on match trials was higher than on 
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mismatch trials for consistent trials, F(1,29) = 47.06, p < 0.001, ηp
2 = 0.62, and unresolved 

trials, F(1,29) = 44.82, p < 0.001, ηp
2 = 0.61. More importantly, simple main effects of trial 

label were found for match, F(1,29) = 6.27, p < 0.05, ηp
2 = 0.18, and mismatch trials, F(1,29) 

= 14.48, p < 0.01, ηp
2 = 0.33, due to higher accuracy on consistent versus unresolved trials. 

This indicates that observers’ decisions were guided by the trial labels.  

 

Accuracy for Block 3 

The data of main interest concerned the extent to which observers were able to detect 

misleading trial labels in Block 3 (see Fig. 4). A 2 (trial type) x 3 (trial label: consistent, 

unresolved, inconsistent) within-subjects ANOVA of this data did not reveal an interaction, 

F(2,58) = 1.60, p = 0.21, ηp
2 =0.05, but revealed a main effect of trial type, F(1,29) = 46.93, p 

< 0.001, ƞp
2 = 0.62, due to higher accuracy on match compared to mismatch trials. A main 

effect of trial label was also found, F(2,58) = 13.17, p < 0.001, ƞp
2 = 0.31. Paired-sample t-

tests (with alpha corrected at p < 0.017) revealed that this was due to higher accuracy on 

consistently-labelled trials compared to unresolved trials, t(29) = 3.07, p < 0.01, and 

compared to trials for which the labels were inconsistent, t(29) = 5.09, p < 0.001. In addition, 

accuracy on unresolved trials exceeded inconsistent trials, t(29) = 2.17, p < 0.05. These 

findings reflect that observers found it difficult to overrule inconsistent trial labels in this 

block. 

 

-------------------- Insert Figure 4 about here -------------------- 

 

 In a final step of the analysis, we sought to confirm whether Experiment 3, which was 

designed to induce stronger compliance with the trial labels, was more likely to produce 

errors than in Experiments 1 and 2 (see Fig. 5). To achieve this, a cross-experiment 
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comparison was performed on the percentage accuracy data for Experiments 1 and 2, 

collapsed across Blocks 1-3, and accuracy in Block 3 of Experiment 31. This revealed main 

effects of experiment, F(2,87) = 5.19, p < 0.01, ηp
2 = 0.12, trial type, F(1,87) = 42.93, p < 

0.001, ηp
2 = 0.33, and of trial label, F(2,174) = 28.10, p < 0.001, ηp

2 = 0.24. These were 

qualified by significant interactions between experiment and trial type, F(2,87) = 8.59, p < 

0.001, ηp
2 = 0.17, and between experiment and trial label, F(4,174) = 3.53, p < 0.01, ηp

2 = 

0.08. However, trial type and trial label did not interact, F(2,174) = 0.84, p = 0.43, ηp
2 = 0.01, 

and the three-way interaction was not significant, F(4,174) = 1.86, p = 0.12, ηp
2 = 0.04. 

 

-------------------- Insert Figure 5 about here -------------------- 

 

Analysis of simple main effects for the interaction of experiment and trial type 

revealed that accuracy on both match and mismatch trials varied between experiments, 

F(2,87) = 3.18, p < 0.05, ηp
2 = 0.07 and F(2,87) = 8.91, p < 0.001, ηp

2 = 0.17, respectively. 

To interpret this, the percentage accuracy data for match and mismatch trials were collapsed 

across trial label categories for each experiment, and were then compared between 

experiments via a series of independent-sample t-tests (with alpha corrected at p < 0.017). 

These revealed comparable accuracy on match trials between all experiments following the 

Bonferroni adjustment, all ts ≤ 2.23, all ps ≥ 0.03. For mismatch trials, accuracy was also 

comparable between Experiments 1 and 2, t(58) = 0.41, p = 0.69, but was higher in 

Experiment 1 compared to Experiment 3, t(58) = 3.64, p < 0.01, and in Experiment 2 

compared to Experiment 3, t(58) = 3.42, p < 0.01. 

                                                
1 Note that this cross-experiment comparison also produced a significant interaction of experiment and trial 

label, with the same pattern of significant effects, when this analysis compared accuracy for Block 3 only across 

experiments. 
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More importantly, simple main effects analysis for the interaction of experiment and 

trial label revealed comparable accuracy across Experiments 1-3 on consistently-labelled 

trials, F(2,87) = 0.55, p = 0.58, ηp
2 = 0.01, as well as on trials that were unresolved, F(2,87) = 

2.86, p = 0.06, ηp
2 = 0.06. For inconsistent trials, however, accuracy varied between 

experiments, F(2,87) = 6.34, p < 0.01, ηp
2 = 0.13. To interpret this effect, the percentage 

accuracy data were collapsed across inconsistently-labelled match and mismatch trials for 

each experiment, and compared across experiments via a series of independent-samples t-

tests (with alpha corrected at p < 0.017). These revealed comparable accuracy between 

Experiments 1 and 2, t(58) = 1.99, p = 0.05, and Experiments 2 and 3, t(58) = 1.68, p = 0.10. 

However, accuracy was significantly poorer on inconsistently-labelled trials in Experiment 3 

compared to Experiment 1, t(58) = 3.50, p < 0.01. This suggests that high trust in the trial 

labels exerted a greater effect on accuracy when these provided information that was 

inconsistent with the trial type, compared to when observers were attempting to ignore the 

information that these provided. 

 

Discussion 

 This experiment provides further evidence that onscreen trial labels interfere with face 

matching judgements. Accuracy was near-ceiling for consistent match trials in Block 1, 

indicating high compliance with the most frequent trial type. Accuracy was also similar 

between Blocks 1 and 2, suggesting that observers remained compliant with the labels after 

the feedback was withdrawn. Importantly, however, accuracy on inconsistently-labelled trials 

was lower than on consistently-labelled and unresolved trials in Block 3. Moreover, the 

compliance manipulation of this experiment produced a greater number of errors on 

inconsistently-labelled trials in the final block in comparison with Experiment 1, in which 

observers were instructed to ignore the labels completely, whereas accuracy for Experiment 
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2, with its emphasis on verifying trial label information, fell in-between. In addition, a deficit 

in mismatch accuracy was also observed in the third block of this experiment, compared to 

Experiments 1 and 2. Together, these results suggest that the administration of feedback 

further increases observers’ reliance on the trial labels. If human operators at passport control 

come to rely on e-Gates to a similar extent, then human-computer interactions would lead to 

increased failure to detect instances where algorithms falsely reject identity matches, and 

more critically, falsely accept identity mismatches.  

 

General Discussion 

 This study investigated face-matching accuracy whilst onscreen trial labels provided 

consistent, inconsistent, or unresolved information about to-be-matched faces. Observers 

were informed that most of these labels presented the correct response, but that some would 

also be inaccurate as well as unresolved. In each experiment, the trial labels impacted 

performance, with accuracy deteriorating considerably between consistent and inconsistent 

trial labels. In Experiment 1, observers were instructed to ignore the trial labels. The purpose 

of this was to determine whether it was possible for observers to independently compare 

faces despite the onscreen presence of these labels. On match trials, accuracy deteriorated by 

9% between consistent and inconsistent trial labels, and by 8% on mismatch trials. This 

indicates that interference from the trial labels occurs even when observers attempt to ignore 

the information provided by the trial labels. 

 In Experiment 2, we instructed observers to check the outcome of each trial label 

carefully before submitting a final identification decision. This resulted in 18% and 22% 

more errors on inconsistent match and mismatch trials, respectively, compared to when these 

were consistent. However, even though observers were aware that the majority of the labels 

provided the correct solution to the trials, accuracy was nonetheless below ceiling on match 
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(85%) and mismatch (70%) trials, indicating that observers were reluctant to trust the trial 

labels even when these provided accurate information. 

 The final experiment sought to encourage compliance with the trial labels, by 

providing trial-by-trial feedback in Block 1, and omitting any inconsistent trial labels until 

Block 3. As a result of this manipulation, accuracy deteriorated between consistent and 

inconsistent trial labels by 25% and 39% on match and mismatch trials. Considered together, 

these experiments demonstrate clearly that human decisions in face matching are influenced 

by onscreen identifications, resulting in accuracy gains when this information is correct, but 

also increases in error when this is misleading. 

These findings converge with a recent study, which found that human performance in 

face matching curtailed the accuracy of algorithms when processing passport applications 

(White, Dunn, et al., 2015). The current study suggests that human-computer interaction at 

passport control is also error-prone. Paradoxically, however, the reported experiments 

indicate that the commission of errors by algorithms facilitates errors in humans, given that 

observers were more likely to accept a mismatch, and reject an identity match, if these were 

labelled as depicting the same person or different individuals, respectively. This finding 

aligns with evidence that facial identification processes are guided by information from 

trustworthy sources, such as experimenters, even when inaccurate (see, e.g., Johansson, Hall, 

Sikström, & Olsson, 2005; Menon et al., 2015; Sagana, Sauerland, & Merckelbach, 2016; 

Sauerland et al., 2016). In addition, human operators are typically expected to monitor up to 

seven e-Gates concurrently (FRONTEX, 2015a). This raises further concerns when 

considering that in laboratory settings, face matching suffers considerably when observers are 

expected to process more than one concurrent identity (see, Megreya & Burton, 2006; 

Bindemann, Sandford, Gillatt, & Avetisyan, 2012). As a consequence, it is possible that the 
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task of human operators is substantially more challenging still than the current results 

suggest. 

It is worth noting that across all experiments, observers refrained from complying 

fully with the trial labels. For example, although observers erroneously accepted many 

inconsistent trial labels, performance on consistent trials was also repeatedly below ceiling, 

whereby observers incorrectly overruled the labels. This reluctance to trust the labels is 

perhaps surprising, given that these generally provided consistent information. However, the 

use of feedback and omission of inconsistent labels in Blocks 1 and 2 of Experiment 3 

increased compliance with the onscreen identifications. This reduced accuracy on 

inconsistently-labelled trials in Block 3 of Experiment 3 compared to in Experiment 1, 

suggesting that high trust in the labels reduced the probability that observers would detect 

inconsistent labels, relative to when attempting to ignore these judgements. This raises the 

possibility that in this block, observers were strategically attending to the trial labels when 

processing stimuli, rather than utilising the information conveyed by the facial stimuli. This 

converges with additional evidence showing that although an attentional bias exists for faces, 

observers can also endogenously shift their attention to non-face stimuli that are task-

relevant, when this confers an advantage to the task at hand (Bindemann, Burton, Langton, et 

al., 2007).  

Across Experiments 1-3, performance on unresolved trials ranged from 74-88% on 

match trials, and 40-69% on mismatch trials. This resonates with the consistent finding that 

face matching is also error-prone when an a priori judgement is not provided (e.g., Burton et 

al., 2010; Fysh & Bindemann, 2018). This raises additional concerns surrounding the 

identification accuracy of human operators of e-Gates when the system cannot adequately 

resolve a person with their passport photograph (FRONTEX, 2015a). However, accuracy on 

these unresolved trials was generally superior to when the trial labels provided inconsistent 
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information, reflecting that it is more challenging to overrule an incorrect identity judgement 

than to make a correct identification independently. Moreover, the accuracy data for these 

trials further reflect that interference from the trial labels can facilitate both accuracy gains, as 

well as increases in error, compared to when a resolution was not provided by the labels. 

 In sum, this study shows that it is particularly difficult to accurately match faces when 

confronted with misleading identity information. Specifically, the reported experiments 

suggest that the commission of errors by automated systems are likely to undermine the 

performance of human observers, such as when an impostor is incorrectly labelled as an 

identity match. This has implications for human-computer interaction at passport control, 

where human operators verify the decisions of e-Gates. The present results indicate that 

humans are unreliable at safeguarding against the errors of such systems. 
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FIGURE. 1. Example stimuli used across Experiments 1-3. The left pair depicts two images 

of the same person with a consistent (i.e. correct), inconsistent (incorrect), and unresolved 

trial label. The right pair depicts two different individuals with a consistent (correct), 

inconsistent (incorrect), and unresolved trial label.  
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FIGURE. 2. Percentage accuracy scores for Experiment 1. Error bars represent the standard 

error of the mean. 
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FIGURE 3. Percentage accuracy scores for Experiment 2. Error bars represent the standard 

error of the mean. 
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FIGURE 4. Percentage accuracy scores for Experiment 3. Error bars represent the standard 

error of the mean.  
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FIGURE 5. Percentage accuracy scores collapsed across Blocks 1-3 for Experiments 1 and 2, 

and for Block 3 of Experiment 3. Error bars represent the standard error of the mean. 

 

 


