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Abstract. This paper proposes Auto-MEKAGGP, an Automated Ma-
chine Learning (Auto-ML) method for Multi-Label Classification (MLC)
based on the MEKA tool, which offers a number of MLC algorithms. In
MLC, each example can be associated with one or more class labels, mak-
ing MLC problems harder than conventional (single-label) classification
problems. Hence, it is essential to select an MLC algorithm and its config-
uration tailored (optimized) for the input dataset. Auto-MEKAGGP ad-
dresses this problem with two key ideas. First, a large number of choices
of MLC algorithms and configurations from MEKA are represented into
a grammar. Second, our proposed Grammar-based Genetic Programming
(GGP) method uses that grammar to search for the best MLC algorithm
and configuration for the input dataset. Auto-MEKAGGP was tested in
10 datasets and compared to two well-known MLC methods, namely
Binary Relevance and Classifier Chain, and also compared to GA-Auto-
MLC, a genetic algorithm we recently proposed for the same task. Two
versions of Auto-MEKAGGP were tested: a full version with the proposed
grammar, and a simplified version where the grammar includes only the
algorithmic components used by GA-Auto-MLC. Overall, the full version
of Auto-MEKAGGP achieved the best predictive accuracy among all five
evaluated methods, being the winner in six out of the 10 datasets.

Keywords: Automated Machine Learning (Auto-ML), Multi-Label Classifica-
tion, Grammar-based Genetic Programming.

1 Introduction

The outgrowing popularity of machine learning algorithms and its indiscrimi-
nate use by practitioners who do not necessarily know the peculiarities of these
methods have made the area of automated machine learning (Auto-ML) [3, 5, 6,
8, 15] more relevant than ever. The area of Auto-ML emerged to deal with the
problem of how to select learning algorithms and their hyper-parameters to suc-
cessfully solve a given ML problem. This problem is a hard one even for experts,
which usually follow ad-hoc approaches to choose learning algorithms. In the
majority of cases, such decisions are based on trial and error when testing differ-
ent methods from the literature or on the recommendation of other experienced



data scientists. Additionally, the algorithm’s hyper-parameters are rarely deeply
explored to achieve the best algorithm’s performance for the given problem.

This scenario makes many ML solutions biased, incomplete and inefficient.
Auto-ML proposes to deal with these problems by customizing solutions (in
terms of algorithms and configurations) to ML problems. Most Auto-ML systems
proposed to date focus on generating sequences of steps to solve single label
classification (SLC) problems [3, 5, 6, 8, 15]. The objective of classification is to
learn models from data capable of expressing the relationships between a set of
predictive attributes and a predefined set of class labels. In the case of SLC, each
instance is associated to a single class label.

However, there is an increasing number of applications that require asso-
ciating an example to more than one class label, including image and video
annotation, gene function prediction, medical diagnosis and tag suggestion for
text mining. For example, in the context of medical diagnosis, a patient can be
associated to one or more diseases (e.g., diabetes, pancreatic cancer and high
blood pressure) at the same time. This classification scenario is better known
as multi-label classification (MLC) [16]. MLC is considered a more challenging
problem than SLC. First, the algorithm needs to consider the label correlations
(i.e., detecting if they exist or not) in order to learn a model that produces accu-
rate classification results. Second, the limited number of examples for each class
label in the dataset makes generalization harder, as the algorithm needs more
examples to create a good model from such complex data.

In the same way that MLC is harder than SLC, we consider the Auto-ML task
for MLC data more challenging than the Auto-ML task for SLC data. This is
because of the higher difficulty to learn from multi-label data, the strain to eval-
uate the produced MLC models [11, 16], and the computational cost involved.
Despite these problems, we have recently proposed the first Auto-ML method
to tackle MLC [2], here referred to as GA-Auto-MLC. The method is a simple
real-coded genetic algorithm (GA) that performs a search in a very large (hierar-
chical) search space of many different types of MLC algorithms from the MEKA
framework [13]. Although GA-Auto-MLC was effective in the experiments re-
ported in [2] (with only three datasets), its solution encoding approach has two
major drawbacks: it is cumbersome and it allows individuals representing im-
practical MLC algorithm configurations (in the sense that the MLC algorithms
could have invalid configurations or take too long to run).

GA-Auto-MLC encodes solutions using a real-valued array to code a com-
plex hierarchical structure representing the MLC algorithms and their hyper-
parameters. Although the genotype is represented by a vector of a fixed prede-
fined size, each position of the array can map to distinct components (essential
functional parts) of MLC algorithms. In other words, the genes do not have any
semantic meaning regarding the mapping to the phenotype. Because of that,
when performing genetic operations (such as crossover and mutation), some op-
erations are highly conservative (e.g., no changes occur in the phenotype after a
mutation operation) while others highly destructive (e.g., abrupt changes occur
in the phenotype after a mutation operation).

Aiming to address the aforementioned problems, this paper proposes a new
evolutionary Auto-ML for MLC (based on the MEKA tool), namely Automated



MEKA (Auto-MEKAGGP). Auto-MEKAGGP is a grammar-based genetic pro-
gramming method [7] capable of handling the complex hierarchical nature of the
MLC search space while avoiding the generation of invalid solutions. The method
was conceived to explore a larger set of MLC algorithms and components when
compared to GA-Auto-MLC. Auto-MEKAGGP optimizes the choice of an MLC
algorithm and hyper-parameter settings to the target problem.

In order to evaluate its effectiveness, Auto-MEKAGGP was tested in 10
datasets and compared to two well-known MLC algorithms: Binary Relevance
(BR) [16] and Classifier Chain (CC) [12]. Auto-MEKAGGP was also compared
to GA-Auto-MLC, and all comparisons were based on a combination of sev-
eral multi-label predictive accuracy measures [2, 11, 16]. We run two versions of
Auto-MEKAGGP: a full version with our proposed grammar, and a simplified
grammar version including only the components of GA-Auto-MLC. The results
showed that Auto-MEKAGGP was the best method in terms of average rank,
followed by its simplified version, and then GA-Auto-ML, BR and CC.

The remainder of this paper is organized as follows. Section 2 reviews related
work on Auto-ML and MLC. Section 3 details the proposed method, while Sec-
tion 4 presents and discusses the results obtained. Finally, Section 5 draws some
conclusions and discusses directions of future work.

2 Related Work

Currently, Auto-ML methods [3, 5, 6, 8, 15] have been dealing with the optimiza-
tion of complete ML pipelines. This means that, instead of just focusing on ML
algorithms and their hyper-parameters, these methods are also concerned with
other aspects of ML, such as data preprocessing (e.g., feature normalization
or feature selection) and post-processing (e.g., classification probability calibra-
tion). Most methods proposed so far in the literature use as their search method
either Bayesian optimization or evolutionary approaches.

Auto-WEKA [15] automates the process of selecting the best ML pipeline in
WEKA [17], whereas Auto-SKLearn [5] optimizes the pipelines in Scikit-Learn
[10]. Both methods implemented a random forest based version of a Bayesian
optimization approach (i.e., Sequential Model-based Algorithm Configuration).

Evolutionary methods are also commonly used to perform this task. The
Tree-Based Pipeline Optimization Tool (TPOT) [8], for instance, applies a canon-
ical genetic programming (GP) algorithm to search for the most appropriate
ML pipeline in the Scikit-Learn library. Considering a different evolutionary ap-
proach, the Genetic Programming for Machine Learning method (GP-ML) [6]
uses a strongly typed genetic programming (STGP) method to restrict the Scikit-
Learn pipelines in such a way that they are always meaningful from the machine
learning point of view. Finally, the REsilient ClassifIcation Pipeline Evolution
method (RECIPE) [3] adopts a grammar-based genetic programming (GGP)
method to search for Scikit-Learn pipelines. It uses a grammar to organizes the
knowledge acquired from the literature on how successful ML pipelines look like.
The grammar avoids the generation of invalid pipelines, and can also speed up
the search.



All Auto-ML methods previously discussed were designed to solve the conven-
tional single-label classification task. By contrast, we propose Auto-MEKAGGP,
a grammar-based genetic programming method to solve the Auto-ML task for
multi-label data. Auto-MEKAGGP overcomes the major drawbacks of our pre-
viously proposed GA-Auto-MLC method [2], being able to properly handle the
complex hierarchical nature of the MLC search space. It is important to point
out that in this paper we focus only on algorithms and hyper-parameters (not
pipelines), as the MLC search space is much bigger than the SLC search space.

Most works in the MLC literature fall into one of two approaches [16]: prob-
lem transformation (PT) and algorithm adaptation (AA). While PT creates algo-
rithms that transform the multi-label dataset (task) into one or more single-label
classification tasks (making it possible to use any SLC algorithm), AA adapts
traditional single-label classification algorithms to handle multi-label data.

Among the many MLC algorithms in the literature, it is worth mentioning:
Binary Relevance (BR), which learns Q = |L| independent binary classifiers,
one for each label in the label set L; Label Powerset (LP), which creates a single
class for each unique set of labels that exists in a multi-label training set; and
Classifier Chain (CC), which extends the BR method by chaining the Q binary
classifiers (also one for each label), where the attribute space of each link in the
chain is increased with the classification outputs of all previous links. For more
details about MLC algorithms, see [1, 11, 16].

Given the very large variety of MLC algorithms in the literature — each
one having its own assumptions or biases — it is clear that selecting the best
MLC algorithm for a dataset is a hard task, and the use of Auto-ML is fully
justified. This is because different algorithms’ assumptions can lead to different
predictive performances, depending on the characteristics of the dataset and the
algorithms. For instance, when the BR method is selected, the label correlations
are disregarded, which is beneficial for some types of datasets. However, consid-
ering the label correlations is essential for some other datasets, which makes LP
and CC methods better choices. Hence, it is important to identify these patterns
and map specific algorithms (with hyper-parameters) to specific datasets.

3 Automatically Selecting Algorithms and

Hyper-Parameters for Multi-Label Classification

This section presents Automated MEKA (Auto-MEKAGGP), a method con-
ceived to automatically select and configure MLC algorithms in the MEKA
tool [13]. Auto-MEKAGGP relies on a grammar-based genetic programming
(GGP) search to select the best MLC algorithm and its associated hyper-parame-
ters to a given dataset. The GGP search naturally explores the hierarchical na-
ture of the problem, a missing feature of our previous method [2].

As shown in Figure 1, Auto-MEKAGGP receives as input an MLC dataset
(with the attribute space XF with F features and the Q class labels, L1 to LQ)
and a grammar describing the (hierarchical) search space of MLC algorithms
and their hyper-parameters. The grammar directly influences the search, as each
individual created by the GGP is based on its production rules, which guarantees



that all individuals are valid. In other words, the MLC grammar defines the
search space and how the individuals are created and modified (see Section 3.1).
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Fig. 1. The proposed method to select and configure MLC algorithms.

Auto-MEKAGGP works as follows. First, it creates an initial population of
individuals (trees representing MLC algorithms) by choosing at random valid
rules from the grammar (see Section 3.1), generating a derivation tree. Next, an
iterative process starts. First, a mapping of each derivation tree to a specific MLC
algorithm is performed. The individuals are evaluated by running the algorithm
they represent within the MEKA tool on the input (see Section 3.2). Different
MLC measures are taken into account to assess the individuals’ quality, i.e., the
fitness function. Next, Auto-MEKAGGP checks if a search stopping criterion is
satisfied (e.g., a fixed number of iterations or a quality criteria). If this criterion
is not satisfied, Auto-MEKAGGP selects individuals by using tournament selec-
tion. Next, the GGP operators (i.e., Whigham’s crossover and mutation [7]) are
applied on the selected individuals to create a new population. These operators
also respect the grammar constraints, ensuring that the produced individuals
represent valid solutions. This process goes on until the stopping criterion is sat-
isfied. At the end of the evolution, the best individual (an MLC algorithm with
its hyper-parameters) is returned, and its model is built from the full training
set and evaluated in the test set (which was not accessed during the evolution),
in order to measure the predictive performance of the returned individual.

It is worth noting that Auto-MEKAGGP was implemented using EpochX [9],
an open source genetic programming framework, and is available for download1.

3.1 Grammar: A Formal Description of the MLC Search Space

This section describes the grammar used to specify the search space of our pro-
posed Auto-MEKAGGP method. The Auto-MEKAGGP’s grammar was created
based on MEKA, which is a multi-label extension to WEKA [17], and hence in-

1 Code and documentation are available at: https://github.com/laic-ufmg/automlc/



<Start> ::= (<MLC-PT> | <MLC-AA> | <META-MLC-LEVEL> ) <Pred-Tshd>

<MLC-PT> ::= <ALGS-PT> <ALGS-SLC>

<ALGS-SLC> ::= <ALG-TYPE> | <META-SLC1> <ALG-WEIGHTED-TYPE> | <META-SLC2> <ALG-RANDOM-TYPE> |

(<META-SLC3> | <META-SLC4> [<ALG-TYPE>] [<ALG-TYPE>] [<ALG-TYPE>] <ALG-TYPE>) <ALG-TYPE>

#META-SLC 1-4=‘Meta SLC algorithms with different constraints’

#ALG-WEIGHTED-TYPE=‘Defining SLC weighted algorithms’

#ALG-RANDOM-TYPE=‘Defining randomizable SLC algorithms’

<ALG-TYPE> ::= [<ASC>] (<Trees> | <Rules> | <Lazy> | <Functions> | <Bayes> | <Exceptions>)

... #ALG-TYPE=‘Types of SLC algorithms’

#ALGS-PT 1-4=‘PT methods with different constraints’

<ALGS-PT> ::= <ALGS-PT1> | <ALGS-PT2> | <ALGS-PT3> | <ALGS-PT4>

<ALGS-PT1> ::= BR | CC | LP #BR=‘Binary Relevance’, CC=‘Classifier Chain’, #LP=‘Label Powerset’

<MLC-AA> ::= <ML-DBPNN> <ML-BPNN> | <ML-BPNN> #ML-BPNN=‘Multi-Label Back Propagation Neural Network’

... #ML-DBPNN= Deep ML-BPNN

<META-MLC-LEVEL> ::= <META-MLC1> | <META-MLC2> | <META-MLC3> | <META-MLC4> | MBR BR <ALGS-SLC>

#MBR=‘BR method stacked with feature outputs’

... #META-MLC 1-4=‘Meta MLC algorithms with different constraints’

<Pred-Tshd> ::= PCut1 | PCutL | RANDOM-REAL(0.001, 0.999) #Pred-Tshd=‘prediction threshold’

Fig. 2. An excerpt of the proposed grammar for multi-label classification.

cludes most of its algorithms. MEKA has a large variety of algorithms, focusing
mainly on problem transformation methods.

We first performed a deep study of the MLC search space in MEKA: the
algorithms and their hyper-parameters, the constraints associated with different
hyper-parameter settings, the hierarchical nature of operations performed by
problem transformation algorithms and meta-algorithms, and other issues. The
grammar includes 30 MLC algorithms, exploring most algorithms in MEKA. We
let some algorithms aside because of their poor performance to solve the MLC
task or because of errors when testing the algorithm for different types of data.
The MLC algorithms were divided into three types: problem transformation
(PT), algorithm adaptation (AA) and meta-algorithms (Meta).

PT algorithms usually call the SLC algorithms to solve an MLC problem,
transforming the given problem into one or various SLC problems. For these
algorithms, we choose 30 SLC algorithms based on a robust method to select
and configure algorithms in WEKA, i.e., Auto-WEKA [15]. On the other hand,
AA methods do not need to transform the data in a preprocessing step, ap-
plying their learning process in a direct way. Finally, meta algorithms have the
aforementioned MLC algorithms (PT or AA) as base algorithms, using the base
classifiers’ outputs in different ways to try to improve MLC performance. Consid-
ering these learning algorithms, their hyper-parameters, their dependencies and
constraints, the search space of MLC algorithms has (8.420× 10128) + [(5.642×
10124) × Q] + [(1.755 × 10113) × Q2] possible MLC algorithm configurations,
where Q is the number of labels of the input dataset. For more details about
these possible algorithm configurations, see [1].

After studying this search space, we defined a grammar that encompasses
the knowledge about MLC in MEKA, i.e., all algorithms, hyper-parameters and
constraints. Formally, a grammar G is represented by a four-tuple <N, T, P,

S>, where N represents a set of non-terminals, T a set of terminals, P a set of
production rules and S (a member of N ) the start symbol.



Figure 2 presents a sample of our proposed grammar. The complete ver-
sion of the MLC grammar is specified in [1] and the implemented grammar
(i.e., for EpochX) is also available online2. The proposed grammar has 138 pro-
duction rules, in a total of 137 non-terminals and 230 terminals. It uses the
Backus Naur Form (BNF), where each production rule has, for instance, the
form <Start>::= <Meta-Algorithm><AlgorithmA> | <AlgorithmB> ParamA.
Symbols wrapped in “<>” represent non-terminals, whereas terminals (such as
ParamA) are not bounded by “< >”. The special symbols “|”, “[]” and “()”
represent, respectively, a choice, an optional element and a set of grouped ele-
ments that should be used together. Additionally, the symbol “#” represents a
comment in the grammar, i.e., it is ignored by the grammar’s parser. The choice
of one among all elements connected by “|” is made using a uniform probability
distribution (i.e., all elements are equally likely to occur in an individual).

3.2 From Individual Representation to Individual Evaluation

Each individual is represented by a tree, derivated from the expansion of the
production rules of the MLC grammar. The mapping process takes the terminals
from the tree and constructs a valid MLC algorithm from them. Given the
mapped MLC algorithm in MEKA (and WEKA), the fitness function measures
how effective each algorithm is for the input dataset To do this, the training set
is split into two parts: a learning set (80%) and a validation set (20%). We use
a stratified sampling method [14] to split the training set. Each MLC algorithm
creates an MLC model from the learning set and evaluates its predictive accuracy
on the validation set, using the fitness function.

MLC algorithms are usually evaluated considering several measures [16].
Hence, we set the fitness function as the average of four of these MLC mea-
sures [2, 11, 16]: Exact Match (EM), Hamming Loss (HL), F1 Macro averaged
by label (FM) and Ranking Loss (RL), as indicated in Equation 1:

Fitness =
EM + (1−HL) + FM + (1−RL)

4
(1)

EM is a very strict evaluation metric, as it only takes the value one when the
predicted label set is an exact match to the true label set for an example, and
takes the value zero otherwise. HL counts how many times a label not belonging
to the example is predicted, or a label belonging to the example is not predicted.
FM is the harmonic mean between precision and recall, and its average is first
calculated per label and, after that, across all the labels in the dataset. This
metric is interesting because it accounts for different levels of class imbalance
of the data. Finally, RL measures the number of times that irrelevant labels
are ranked higher than relevant labels, i.e., it penalizes the label pairs that are
reversely ordered in the ranking for a given example. All four metrics are within
the [0, 1] interval. However, the EM and FM measures should be maximized,
whereas HL and RL should be minimized. Hence, HL and RL are subtracted
from one in Equation 1 to make the search maximize the fitness function.

2 The implementation of the grammar(s) for EpochX is available at:
https://github.com/laic-ufmg/automlc/tree/master/PPSN



4 Experimental Results

This section presents the experimental results of the proposed method in 10
datasets from the KDIS (Knowledge and Discovery Systems) repository3. The
datasets are presented in the first two columns of Table 1, where name of the
dataset is followed by a three-tuple (M,F,Q), where M is the number of exam-
ples, F is the number of features, and Q is the number of labels.

Tests are performed with two different grammar versions: a simplified ver-
sion4 that matches the search space of GA-Auto-MLC [2] and a full version5

corresponding to the complete set of MLC components defined in this paper.
The simplified version (i.e., Auto-MEKAGGP(S)) allows us to directly compare
our results to those obtained by GA-Auto-MLC.

The two versions of Auto-MEKAGGP and GA-Auto-MLC were executed with
the following parameters: 100 individuals evolved for at most 100 generations,
tournament selection of size two, elitism of five individuals, and crossover and
mutation probabilities of 0.9 and 0.1, respectively. If the best individual remains
the same for over five generations and the algorithm has run for at least 20
generations, we stop the evolutionary process and return that best individual.
The learning and validation sets are resampled from the training set every five
generations in order to avoid overfitting. Additionally, we use time and memory
budgets for each MLC algorithm (generated by the evolutionary Auto-MLC
methods) of 450 seconds (7.5 minutes) and 2GB of RAM, respectively.

The algorithms produced are also compared to Binary Relevance (BR) and
Classifier Chain (CC) methods. These two methods do not have hyper-parameters
at the MLC level, but can use different SLC algorithms. We test them with
11 candidate algorithms [17]: Näıve Bayes (NB), Tree Augmented Näıve Bayes
(TAN), Bayesian Network Classifier algorithm with a K2 search method (BNC-
K2), Logistic Model Trees (LMT), Random Forest (RF), C4.5 (J48), Sequen-
tial Minimal Optimization (SMO), Multi-Layer Perceptron (MLP), K-Nearest
Neighbors (KNN), PART and Logistic Regression (LR). All SLC algorithms use
the default hyper-parameters, except for SMO which uses a Gaussian Kernel
(with default hyper-parameters), and for KNN which searches for the best K

value in the interval [1,20] by performing a leave-one-out procedure based on the
learning and validation sets. Note that identical time and memory budgets were
applied in this local search to provide a fair comparison.

We perform the experiments using a stratified five-fold cross-validation [14]
with six repetitions varying Auto-MEKAGGP’s random seed, resulting in 30 runs
per dataset for each method. Table 1 presents the (average) results of fitness
function (see Equation 1) in the test set followed by their standard deviations.
For each dataset, the best average result is displayed in bold.

We use the well-known statistical approach proposed by Demšar [4] to com-
pare different methods, using an adapted Friedman test followed by a Nemenyi
post hoc test with significance level of 0.05. The last two rows of Table 1 show
the average value and the average rank for each method.

3 The datasets are available at: http://www.uco.es/kdis/mllresources/
4 Available at: https://github.com/laic-ufmg/automlc/tree/master/PPSN/AutoMEKAS.bnf
5 Available at: https://github.com/laic-ufmg/automlc/tree/master/PPSN/AutoMEKA.bnf



Table 1. The characteristics of the datasets, and the comparison for the versions of
Auto-MEKAGGP and the baseline methods in the test set as to the fitness function.

Dataset (M,F,Q)
Auto-MEKA

GGP

Auto-MEKA

GGP (S)
GA-Auto-MLC BR CC

Flags (194,18,7) 0.606 (0.02) 0.598 (0.02) 0.603 (0.03) 0.582 (0.02) 0.590 (0.04)
Scene (2407,294,6) 0.837 (0.01) 0.830 (0.01) 0.826 (0.01) 0.824 (0.01) 0.787 (0.02)
Birds (645,260,19) 0.724 (0.02) 0.718 (0.02) 0.722 (0.01) 0.715 (0.03) 0.657 (0.02)
Yeast (2417,103,14) 0.567 (0.01) 0.568 (0.01) 0.565 (0.01) 0.566 (0.00) 0.552 (0.01)

GPosPse (519,440,4) 0.734 (0.04) 0.729 (0.04) 0.721 (0.03) 0.700 (0.04) 0.697 (0.04)
CHD 49 (555,49,6) 0.554 (0.02) 0.549 (0.02) 0.550 (0.02) 0.540 (0.02) 0.524 (0.02)
WTQlty (1060,16,14) 0.521 (0.01) 0.522 (0.01) 0.524 (0.01) 0.523 (0.02) 0.483 (0.01)
Emotions (593,72,6) 0.668 (0.02) 0.676 (0.02) 0.674 (0.01) 0.666 (0.02) 0.627 (0.02)
Reuters (294,1000,6) 0.473 (0.04) 0.475 (0.04) 0.476 (0.05) 0.469 (0.04) 0.457 (0.04)
Genbase (662,1186,27) 0.941 (0.01) 0.938 (0.01) 0.938 (0.01) 0.887 (0.10) 0.934 (0.01)

Average Values 0.663 0.660 0.660 0.647 0.631
Average Ranks 1.800 2.250 2.250 3.900 4.800

As shown in Table 1, Auto-MEKAGGP has achieved the best (lowest) av-
erage rank (based on the fitness measure), followed by Auto-MEKAGGP(S) and
GA-Auto-MLC, which had the same rank. BR and CC presented the worst
performances. There was no statistically significant difference between the per-
formances of the two versions of Auto-MEKAGGP and GA-Auto-MLC. However,
Auto-MEKAGGP was the best method in six out of the 10 datasets in Table 1,
whilst Auto-MEKAGGP(S) and GA-Auto-MLC were each the best in only two
datasets. Finally, both versions of Auto-MEKAGGP (and, also, GA-Auto-MLC)
performed statistically better than BR and CC, well-known MLC methods.

4.1 Evolutionary Behavior

This section compares the evolutionary behaviors of Auto-MEKAGGP and GA-
Auto-MLC. We did not include Auto-MEKAGGP(S) in this analysis because its
results were not significantly better than those achieved by GA-Auto-MLC.

Figures 3(a) and 3(b) illustrate the fitness evolution of the best individuals
of the population and the average fitness of the population of individuals of
Auto-MEKAGGP and GA-Auto-MLC for the dataset GPosPse. All curves con-
sider the mean of the only 10 runs (out of 30) with the same final number of
generations (25). This dataset was chosen because it shows a situation where
Auto-MEKAGGP is clearly better than GA-Auto-MLC, but the evolution curves
are similar for other datasets. Note that the fitness values of the individuals
can decrease or increase from one generation to another due to training data
resampling.

Observe that Auto-MEKAGGP’s population converges faster than GA-Auto-
MLC’s one. This may be due to the lack of semantic meaning of the genes in
GA-Auto-ML’s individuals, so a GA-Auto-MLC’s individual can change severely
from one generation to another by performing crossover and mutation. This is
less likely to happen in Auto-MEKAGGP as the grammar restricts the GGP
operations, which explains why the produced individuals converge quickly.
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(a) Auto-MEKAGGP’s behavior.
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(b) GA-Auto-MLC’s behavior.

Fig. 3. Evolution of fitness values for the dataset GPosPse.

4.2 The Diversity of the Selected MLC Algorithms

This section analyzes the diversity of the MLC algorithms selected by two evolu-
tionary Auto-ML methods: Auto-MEKAGGP and GA-Auto-ML. We focus only
on the selected MLC algorithms (the “macro-components” of the Auto-ML
methods), and not on their selected parameter settings (the “micro-components”),
to simplify the analysis. We do not report results for Auto-MEKAGGP(S) because
again the full version of this method, Auto-MEKAGGP, obtained better results,
as discussed earlier. Analyzing the MLC algorithms selected by Auto-MEKAGGP

and GA-Auto-ML can help us to better understand the results of Table 1, giving
an idea of how the choice of an MLC algorithm influences the performance of
these two Auto-ML methods.

Figures 4(a) and 4(b) present the bar plots to analyze the percentage of
selection of MLC algorithms for the Auto-ML methods. For the full details about
each MLC algorithm, see [1]. In these figures, we have for each MLC algorithm
a (gray/white) bar, representing the average percentage of selection over all the
300 runs: 10 datasets times 30 independent runs per dataset (5 cross-validation
folds times 6 single runs with different random seeds). These percentages rely on
two cases: (i) when the traditional MLC algorithm is solely selected; (ii) when
the traditional MLC algorithm is selected together with a MLC meta-algorithm.
To emphasize these two cases, the bar for each traditional MLC algorithm is
divided into two parts, with sizes proportional to the percentage of selection as
a standalone algorithm (in gray color) and the percentage of selection as part of
a meta-algorithm (in white color).

BR was the traditional MLC algorithm most frequently selected (in about
30% of all runs) by both Auto-ML methods. Besides, Classifier Chain (CC), Four-
Class Pairwise Classification (FW), and Pruned Sets with and without threshold
(PS and PSt) were selected in total in 34.3% of all runs by Auto-MEKAGGP;
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(a) Auto-MEKAGGP.
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(b) GA-Auto-MLC.

Fig. 4. Barplots for the MLC algorithms’ selection over all the 300 runs.

whilst CC, Conditional Dependency Networks (CDN), LP and PSt were selected
in total in 36.6% of all runs by GA-Auto-MLC. Note that the MLC algorithms
most frequently selected by Auto-MEKAGGP and GA-Auto-ML are broadly sim-
ilar, which suggests that Auto-MEKAGGP’s superior performance is partly due
to a better exploration of the space of hyper-parameter settings of those most
successful MLC algorithms. Finally, we observed that Auto-MEKAGGP selected
meta MLC algorithms in 53.3% of all runs, whilst GA-Auto-MLC selected meta
MLC algorithms in only 27.4% of all runs.

5 Conclusions and Future Work

This paper introduced Auto-MEKAGGP, a new grammar-based genetic pro-
gramming method for automatically selecting the best Multi-Label Classifica-
tion (MLC) algorithm and its hyper-parameter settings for an input dataset.
Auto-MEKAGGP uses a grammar representing prior knowledge about MLC al-
gorithms, restricting its search space to valid solutions.

Auto-MEKAGGP was compared to two well-known MLC algorithms – Bi-
nary Relevance (BR) and Classifier Chain (CC) – and to GA-Auto-ML, a GA
we recently proposed to solve this task [2]. We tested Auto-MEKAGGP with the
full version of the proposed grammar and with a simplified grammar version
which has the same search space (candidate MLC algorithms and their hyper-
parameters) as GA-Auto-ML. Overall, the full version of Auto-MEKAGGP ob-
tained the highest predictive accuracy among all five tested methods, being the
winner in six out of the 10 datasets. Also, both versions of Auto-MEKAGGP, as
well as GA-Auto-ML, obtained statistically significantly higher accuracies than
BR and CC.



In future work we plan to extend Auto-MEKAGGP to search for MLC pipelines
too. This means to search for the best combination of MLC algorithms, data pre-
processing and post-processing methods, and their respective hyper-parameters.
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