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Abstract 

Purpose – The purpose of this paper is to examine how managers orchestrate, bundle, and leverage resources from big data for value creation in 

emerging economies.  

Design/methodology/approach – The authors grounded the theoretical framework in two perspectives: the resource management and 

entrepreneurial orientation. The study utilizes an inductive, multiple-case research design to understand the process of creating value from big data.  

Findings – The findings suggest that entrepreneurial orientation is vital through which companies based in emerging economies can create value 

through big data by bundling and orchestrating resources thus improving performance.  

Originality/value – This is one of the first studies to have integrated resource orchestration theory and entrepreneurial orientation in the context 

of big data and explicate the utility of such theoretical integration in understanding the value creation strategies through big data in the context of 

emerging economies.  
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1. Introduction  

Recently, big data has attracted increasing interest due to its potential to enhance organizational performance and its vital role in knowledge 

management (George et al., 2014; McAfee and Brynjolfsson, 2012; Khan and Vorley, 2017; Rothberg and Erickson, 2017; Zeng and Glaister, 

2018). Big data refers to extremely large amounts of both structured and unstructured data sets that may be analysed computationally by means of 

techniques that are characterised by high volume, high velocity and high variety, which traditional data processing technology is unable to store, 

capture, and analyse (Chen et al., 2012; McAfee and Brynjolfsson, 2012; Schonberger and Cukier, 2013; Laney, 2001). 

 

Many organizations are exploring ways of deploying and harnessing such large-volume data to create and capture value (Davenport, 2013; Waller 

and Fawcett, 2013; Wamba et al., 2017). This information resource may eventually overshadow physical resources (e.g., capital and labour) as the 

main driving force that re-shapes the competitive advantage of a firm (Bharadwaj et al., 2013; Davenport, 2013; Chen et al., 2012; Davenport and 

Patil, 2012; Koutroumpis and Leiponen, 2013; George et al., 2014). The importance of big data has recently drawn great attention from 

management scholars, leading to a small but growing stream of literature on the factors influencing big data decision making quality (e.g., Janseen, 

Van der Voort and Wahyudi, 2017; Frisk and Bannister, 2017; Perez-Martin, Perez-Torregrosa and Vaca, 2018); managerial capability to drive 

big data value creation (e.g., Zeng and Glaister, 2018); big data analytics from health care, marketing  and supply chain perspective (e.g., Wang 

and Hajli, 2017; Erevelles, Fukewa and Swayne, 2017; Dubey et al., 2018b); big data and business strategy alignment and performance (Akter et 

al., 2016; Wamba et al., 2017; Dubey et al., 2018a; El-Kassar et al., 2018; Prescott, 2014). 



 

However, relatively few studies have sought to understand how managers transform resources to create value (e.g., Adner and Helfat, 2003; Helfat 

and Winter, 2001; Helfat et al., 2007; Ndofor et al., 2011; Sirmon et al., 2007; Sirmon et al., 2011). The exceptions are those relatively few studies 

that have sought to understand this process by emphasizing the resource management process (e.g., Sirmon et al., 2007) and accentuating the 

dynamic capability of the firm based on ‘asset orchestration’ (e.g., Helfat, et al., 2007). Sirmon et al. (2011) later extends our understanding of 

the resource-related management literature by providing a holistic and complementary view that addresses explicitly how managers’ 

actions/capabilities to transform resources lead to value creation. The existing research on big data conducted by management scholars has 

predominantly relied on the dynamic capabilities approach to explain the potential impact of big data (e.g., Dubey, et al., 2018a; Erevelles, Fukawa 

and Swayne, 2016; Opresnik and Taisch, 2015; Zeng and Glaister, 2018; Braganza et al., 2017). However, additional theory development is 

required to add richness to our understanding of how managers orchestrate resources in dynamic environments—such as those associated with big 

data and analytics—to improve organizational performance (Helfat and Winter, 2011; Hefat et al., 2007; Sirmon et al., 2011; George et al., 2014). 

 

Despite the contributions made by the existing studies, however, relatively limited research has examined how value can be generated from big 

data in different contexts; the case in point being emerging markets, which may not possess the key skills needed for bundling and orchestrating 

big data-related resources for value creation strategies. The existing research noted that relevant big data analytics skills are mostly confined to 

developed economies—such as the California bay area—and are not readily available (Tambe, 2014). Companies may find it difficult to mobilize 



resources during the process of big data-related resource orchestration. One potential way through which managers can mobilize and orchestrate 

big data resources for value creation can be through the development of an entrepreneurial orientation (e.g., Lumpkin and Dess, 1996, 2001; Covin 

and Lumpkin, 2011). 

 

Scholars from the field of entrepreneurship have examined corporate performance by paying closer attention to a company’s underlying 

entrepreneurial orientation (EO). An EO refers to a company’s strategic orientation that captures entrepreneurial behaviours in terms of risk taking, 

proactiveness, and innovativeness (e.g., Lumpkin and Dess, 1996; Wiklund, 1999; Rosenbusch, Rauch and Bausch, 2013). An EO can be one of 

the important links in explaining how a company can bundle and orchestrate the resources for value creating strategies (e.g., Sirmon et al., 2011). 

Thereby, an EO can explain, in part, the managerial processes that enable some companies to stay ahead of the competition; this is because an EO 

facilitates company action based upon early signals from its internal and external environments (Lumpkin and Dess, 1996). So far, the existing 

research on big data has applied a dynamic capabilities-based approach to explain the impact of big data on performance; yet, the way organizations 

orchestrate and bundle resources can be complex in changing environments. Thus, an EO can play a vital role in turning big data-related resources 

into knowledge assets by bundling and orchestrating big data-related knowledge for value creation (Lumpkin and Dess, 1996; Covin and Lumpkin, 

2011).  

 



This is the context in which the present article aims to understand how companies based in emerging economies generate value from big data and 

improve their performance. The study adds to the limited research that has examined the potential performance implications of big data in emerging 

economy contexts. Understanding how managers orchestrate, bundle, and leverage resources from big data in emerging contexts has wider 

implications for research on big data and its implications for corporate performance in different settings (e.g., Akter et al., 2016; Jabbour et al., 

2017; Wamba et al., 2017) .  

 

This study makes three key contributions to the existing literature on big data and its implications for company performance. First, we bring 

resource orchestration into the domain of big data and identify an EO as one of the key factors through which companies bundle and orchestrate 

the knowledge assets arising from big data. The existing research highlighted that resources themselves may not create value for companies; 

companies need to have internal practices and methods suited to putting resources into innovative value creating strategies. Entrepreneurial 

orientation is one such method by which companies can improve performance through big data. 

 

Second, this study provides important insights in terms of empirically demonstrating the value of integrating resource orchestration and 

entrepreneurial orientation in explaining the performance implications of big data. This is an important contribution as most of the existing literature 

on resource orchestration is conceptual in nature (Sirmon et al., 2007, 2011). Additionally, we provide important insights from the important 

emerging economy of China and show how managers bundle and orchestrate resources and create value from big data. This is one of the first 



studies to integrate resource orchestration theory and EO in the context of big data and to empirically support the arguments it puts forward by 

examining case studies from China. 

 

2. Conceptual Development  

2.1 Resource orchestration and value creation through big data 

The resource-based view (RBV) suggests that resources, on their own, may not be sufficient to create value, but that companies need to put in 

place an appropriate organization in order to take advantage of hard to imitate value creating resources (cf. Barney, 1991, 2001). Sirmon et al. 

(2007) defined resource management as the comprehensive process of structuring, bundling, and leveraging company resources with the purpose 

of creating value for customers and competitive advantages for the company itself. The resource management process involves the three sub-

processes of structuring, bundling, and leveraging. 

Structuring contains those processes by which companies acquire, accumulate, and divest themselves of those resources that are affected by the 

environmental context. ‘Acquiring’ refers to purchasing resources from strategic markets. ‘Accumulating’ denotes the internal development of 

resources. ‘Divesting’ pertains to the assessment—crucial for a company— of its existing resources, ridding itself of less-valued ones to generate 

the slack and flexibility needed to acquire and accumulate others of higher value (Sirmon and Hitt, 2003; Sirmon et al., 2007; Uhlenbruck et al., 

2003). 



Bundling includes: ‘stabilizing’, by which companies make minor incremental improvements to existing capabilities; ‘enriching’, which entails 

extending and elaborating current capabilities; and ‘pioneering’, which involves creating new capabilities. 

Leveraging refers to the processes used to exploit a company’s capabilities and take advantage of specific market opportunities. According to 

Sirmon et al. (2007), effective cross-market leveraging capabilities include mobilizing, coordinating, and deploying. ‘Mobilizing’ refers to the 

capabilities required to form requisite capability configurations. ‘Coordinating’ involves integrating capability configurations. ‘Deploying’ 

involves physically using capability configurations to support the chosen leveraging strategy formed by the coordinating sub-process. Sirmon et 

al. (2007) further noted that, while each process and its sub-processes are important in themselves, they need to be synchronized in order to 

optimize value creation. 

 

The process of resource management is referred to as managerial capabilities (Kraaijenbrink et al., 2010). Scholars have examined the managerial 

actions that affect resource management which in turn affect firms' performance (Ndofor et al., 2011; Morrow et al., 2007; Sirmon et al., 2010), 

and the relationships that exist among resource management processes (Holcomb et al. 2009; Kor and Leblebici, 2005; Sirmon et al., 2011). These 

empirical studies have produced some important results. For example, Holcomb et al. (2009) indicated that the effects of managing resources are 

contingent on the quality of the resources held and on the synchronization of the processes used to manage them.  

 



In parallel with research on the development of resource management, Helfat et al. (2007) put forward a related logic that focused on the asset 

orchestration emerging from the dynamic capability literature. Dynamic capability is an extension of RBV by highlighting explicitly the role of 

managers when they “purposefully create, extend or modify [the company’s] resource base” to create value to achieve sustainable advantage (Amit 

and Schoemaker, 1993; Eisenhardt and Martin, 2000; Teece et al., 1997; Winter, 2003). The recent work by Helfat and colleagues (Adner and 

Helfat 2003; Helfat et al., 2007) elaborated the concept of dynamic capability by accentuating the manager’s capabilities and decisions in 

influencing company’s performance regardless of the environment in which it operates. The asset orchestration, proposed by Helfat et al. (2007), 

consists of two primary processes: search and selection, and configuration and deployment. The search/selection process refers to a manager’s 

capability to identify assets and design organisational structures for the company and create business models to capture opportunities. The 

configuration/deployment process entails the coordination of co-specialized assets in order to nurture innovation. Helfat et al. (2007) argue that 

achieving a ‘fit’ between these dimensions is a primary function of effective management. Essentially, dynamic managerial capabilities are largely 

created by adding new knowledge to the company's current knowledge stocks (Adner and Helfat, 2003).  

 

Sirmon et al. (2011) further extended RBV and their previous work (Sirmon et al., 2007) on resource management by bridging two related 

frameworks: resource management and asset orchestration. Resource orchestration was subsequently proposed, explicitly articulating managerial 

actions aimed at orchestrating resources in ways that help companies create a competitive advantage (Sirmon et al., 2011). Further research 



focusing on resource orchestration, highlighted by Sirmon et al. (2011), could serve as a catalyst for related research on the flow of knowledge 

within an organization.  

 

The research being conducted in the area of resource management and asset orchestration is promising and encouraging; however, our 

understanding of how managers orchestrate a company’s resources could be enhanced by applying it to a big data context. This is the case for two 

reasons. First, big data, as an information asset, is a non-rivalrous resource due to its self-generative nature (Glazer, 1991). Therefore, making a 

distinction between non-rivalrous and rivalrous resources and understanding the value creation process based on the former could provide a more 

robust explanation for resource orchestration networks. Second, to date, very few empirical studies have explicitly incorporated resource 

orchestration into the heart of their inquiries (e.g., Chirico et al., 2011; Chadwick et al., 2015; Ndofor et al., 2011; Wales et al., 2013). For the 

most part, these studies deductively tested the relationship between managerial actions in relation to the connection between resources and 

performance (e.g., Ndofor et al., 2011; Wales et al., 2013; Chadwick et al., 2015; El-Kassar and Singh, 2018), or in family-run company contexts 

(Chirico et al., 2011). Furthermore, the underlying methods and managerial actions for the orchestration of resources are neither well theorized 

nor empirically proven. Thus, there is a great opportunity to understand how big data-related resources are orchestrated and leveraged in different 

contexts (Akter et al., 2016; Dubey et al., 2018b; Jabbour et al., 2017; Prescott, 2014; Wamba et al., 2017). Such examination will provide not 

only important insights, but also a theoretically rich understanding of resource orchestration in the context of big data.  

 



2.2 Entrepreneurial orientation and the Orchestration of Big data-related knowledge assets 

Resources, on their own, may not create value; companies need to have internal managerial processes, structures and strategies in place to take 

advantage of resources and capture value from difficult to imitate resources (Barney, 1991; Eisenhardt and Martin, 2000). Due to its (EO) three 

set of characteristics of innovativeness, proactiveness, and risk taking (e.g., Wiklund, 1999; Covin and Lumpkin, 2011), an EO can be one of the 

important internal company-specific processes that can bundle and orchestrate knowledge assets originating from big data for pursuing innovative 

opportunities for the development of competitive advantage (Covin and Lumpkin, 2011; Prescott, 2014; Wamba et al., 2017).  

 

The existing studies have examined the direct relationship between individual sets of resources and company performance, however there has been 

relatively limited research focus on understanding how managers can effectively utilize those resources for value creation (Helfat, 2000). Since 

EO is often associated with a company’s strategic actions in capturing specific entrepreneurial aspects of decision-making styles, methods, and 

practices, it is perceived by entrepreneurship scholars as one of the key capabilities that can explain the differential performances of companies 

(Lumpkin and Dess, 1996; Covin and Lumpkin, 2011). Applied to the resource orchestration framework, an EO may shed light how management 

can utilize and coordinate resources—such as big data-oriented ones—to improve performance (Simsek, Heavey and Veiga, 2010; Wales et al., 

2013).  

 



Resource bundling and orchestration in a big data environment is vitally important for achieving sustainable performance (e.g., Prescott, 2014; 

Dubey et al., 2018a; Wamba et al., 2017). Due to its characteristics in terms of managerial practices and methods, an EO may play an important 

role in the orchestration of the resources, as managers will prepare the company to generate value from big data; this is because an EO “provides 

the mobilizing vision to use firm resources. By directing the use of resources, EO not only provides an objective, but also helps identify the 

resources necessary to support the objective” (Chirico et al., 2011:311), as it refers to the “strategy making practices, management philosophies, 

and firm-level behaviors that are entrepreneurial in nature” (Anderson, Covin and Slevin, 2009:220). Thus, drawing insights from two sets of 

frameworks, an EO offers a complementary and integrated understanding of managerial actions in creating value from big data. Our objective, 

hence, is to add richness to current theory by extending the logic and ideas of resource orchestration to a company’s harnessing of big data (e.g., 

Akter et al., 2016; Dubey et al., 2018b; Jabbour et al., 2017). In the following section, we elucidate our context, data collection, and analysis 

procedures.  

 

3. Context and Research methods  

Due to the paucity of research on resource orchestration and EO in the context of big data, we adopted an inductive, multiple-case research design 

that allows a ‘replication’ logic (Yin, 2003) and in which cases are treated as experiments that confirm or refute the inferences drawn from others 

(Yin, 2014; Eisenhardt, 1989). This process typically creates opportunities to triangulate the information collected, augment external validity, and 

help guard against observer bias, and yields more robust, generalizable theory than single cases (Eisenhardt and Graebner, 2007; Ketokivi and 



Choi, 2014; Miles and Huberman, 1994; Pagell and Wu, 2009; Yin, 2003). Following Mohr’s (1982) suggestion for process research, this research 

key focus was on understanding the causal dynamics of a particular setting.  

 

3.1 Research setting  

The research setting for this study was the high-velocity internet two sided platform industry, which enables direct transaction or value creation 

over web-based virtual platforms by linking markets from different groups of users, and extracts a significant proportion of its revenue from such 

transaction (Zeng and Glaister, 2016). This industry is attractive for this study because data are its core product. Rather than largely relying on 

physical assets to drive efficiency, the internet platform industry largely depends on their ability to generate information/data—mainly knowledge-

based assets that enable/facilitate the interaction between different groups of users in order to create value (Parker and Van Alstyne, 2005). 

Consistent with theoretical sampling, we selected companies in which our focal phenomenon of value creation from big data was likely to occur. 

Specifically, as suggested by Rouse and Daellenbach (1999), we focussed on selecting the key performing companies from a single industry to 

improve the potential for generalizability of our research findings. Following the advice proposed by Block and McMillan (1985), four companies 

were selected that were closely matched in terms of starting conditions, availability of resources, and company development as factors associated 

with competitive advantage (Lieberman and Montgomery, 1988) and entrepreneurial growth (Aldrich, 1999; Naman and Slevin, 1993). This 

research design also enabled the emerging conceptual insights from one case to be evaluated against comparative evidence from the others (Yin, 



2003). Table 1 describes the four cases used in this paper. We stopped at four cases because we were near or at a saturation point and were also 

reaching the limits of the amount of data that could be processed in one study (Yin, 2003; Pagell and Wu, 2009). 

 

[Insert table 1 about here] 

 

3.2 Data collection  

For each company, we traced the process of value creation from big data through both primary and secondary data sources. The primary sources 

were semi-structured interviews conducted with individual informants. We selected our informants from different departments that were involved 

in the data analysis and data execution process and from different hierarchical levels, ranging from top management executives to individual data 

analysts. The main benefit of this approach was that it ensured exposure to different perspectives to compensate for any individual informant 

personal bias and lack of knowledge, and to enable the cross-checking of the information provided by different informants (Huber and Power, 

1985). We employed semi-structured interviews as they afforded us the flexibility to probe informants for details and provide as wide a scope as 

possible while ensuring that we still covered the issues relevant to our research question (Yin, 2003). The semi-structured interviews were 

conducted in Chinese, ranged from 60 to 150 minutes long (but occasionally took as long as 3 and half hours), were recorded (if  allowed by the 

interviewees), and were transcribed verbatim within a week by a professional transcribing and translating service provider. 

 



Following Pettigrew’s (1990) suggestion for case based research, although we approached the organizational field with theoretical constructs in 

mind, we did not impose them. We carefully considered how the evidence gathered from both primary and secondary data could inform existing 

theory or constructs, such as resource orchestration and entrepreneurial orientation (EO). We examined how the data informed our understanding 

of 1) the process of creating value from big data and 2) the mechanisms that drive and facilitate the process. 

 

Our exploratory interviews, in a semi-structured format, were conducted with informants from the top management executive level of each 

company as they had ‘interpretational’ roles (Bennis and Nanus, 1985; Smirich and Morgan, 1982) and ‘visibility’ of the object of the inquiry 

(Pettigrew, 1990). The interview protocol involved by asking about the respondent’s background and the company’s big data strategy. The 

informant was then asked to describe the process of value creation from big data and to identify the key mechanisms that facilitated/hindered this 

process. After the initial top management interviews, we conducted semi-structured interviews with staff from various departments, and then with 

individual data analysts. The interviews began with a request to describe the company’s big data strategy and the informant’s personal background. 

Each informant then described his/her interaction with the big data team, and the key mechanism that facilitated or hindered the process of value 

creation from big data. Thus, a general view of the mechanisms affecting the process of value creation from big data within the company emerged. 

Following the methods of inductive research, these questions were supplemented with others that seemed fruitful to pursue during the interview. 

In total, 36 interviews were conducted. In order to ensure the credibility of the data, we followed the suggestions made by Eisenhardt and Graebner 

(2007) and adopted a ‘courtroom questioning’ style, by which the informants were encouraged to provide concrete examples to support their 



commentary and concentrate on facts and events, rather than on their interpretations of them. Complete anonymity was promised in order to 

encourage the participants to give candid responses. 

 

Secondary data were also collected to triangulate and gain a complete and accurate picture (Yin, 2003); these included reports and strategic memos 

produced by the companies for the period between February 2008 and March 2013, and extensive archives—including newspapers, internet sources, 

and corporate materials published between March 2000 and July 2014. 

3.3 Data analysis  

As is typical in inductive research, we first built individual case studies using the data gathered from both the interview transcripts and archival 

materials. We then wrote a case study for each site, emphasizing the themes that were supported by the different data collection methods and 

confirmed by several informants (Jick, 1979). This was an iterative process in which we revisited the data as important features of the mechanisms 

within each case emerged. We read the cases independently to form our own views of each case and in order to identify the theoretical constructs, 

relationships, and longitudinal patterns within each case independently and with respect to our research question. Although we noted the similarities 

and differences with other cases, to maintain the independence of the replication logic (Eisenhardt, 1989), we only started further analyses after 

we had completed all the case write-ups. 

 



Once the individual case studies were complete, we conducted a cross case analysis to look for similar constructs and themes in the cases 

(Eisenhardt and Graebner, 2007; Ketokivi and Choi, 2014; Pagell and Wu, 2009). We started by comparing cases in order to seek common themes 

and refine the unique aspects of each particular case. We then used replication logic to further refine these initial relationships by frequently 

revisiting each case in order to compare and contrast the specific constructs, relationships, and logics. With each iteration, we used new 

permutations of case pairs to refine the conceptual insights. Any discrepancies and agreements in the emergent theory were noted and investigated 

further by revisiting the data. We followed an iterative process of cycling among theory, data, and literature to refine our findings, relate them to 

existing theories, and clarify our contributions. The propositions were induced following Eisenhardt’s (1989) guidance on building theory from 

case studies. After a tentative proposition had been developed, we revisited each case to see whether the data confirmed the proposed relationship. 

We went back and forth between our data and proposition, relying on the existing literature to further sharpen the insights yielded by the inductive 

process (Eisenhardt, 1989). We also presented our analysis at a peer workshop and to our informant in order to induce alternative explanations. 

The feedback we received was taken into consideration when drafting the final conceptual framework. We display additional selected quotes in 

Table 2 to illustrate and document the robustness of our claims. 

[Insert table 2 about here] 

4. Findings and analysis 



What emerged from our data were insights that linked value creation from big data with a set of mechanisms. For all companies, making sense of 

the high volume, high velocity, and high variety data itself was central to the challenge of creating value from it. We found that, to address this 

challenge, companies differed in their approaches to create value from big data.  

Through our examination of the data, we developed a framework that capture the value creation process from big data (please see figure 1) 

 

Insert figure 1 about here 

 

In the next sections, we elaborate on these insights and describe their grounding in the data. 

4.1 Resource coordination for data exploitation  

Prior research suggested that the analytical skill and knowledge of data scientists contributes greatly to a company’s opportunities for value creation 

from big data (e.g., Davenport and Patil, 2012). Yet, our data suggests that the presence of a data scientist or a group of data scientists is a necessary 

but insufficient condition to cope with high volume, high velocity, and high variety data. We found evidence that, while some companies rely 

heavily on data scientists or data departments to exploit big data, others focus more on bridging the knowledge gap and building coordination 

networks between the data department and the rest of the company. 

Serong provided a compelling illustration of this pattern. Serong had initially set up a data team focusing on data mining. However, the outcome 

was barely satisfactory, as one informant pointed out: 



“We have a set of statistics and report from them (data team) on a regular basis. It was useful to a certain extent. They are data analysts, 

not marketer, not product developers so they could not see much connections and potential as marketers or product developers do”. 

Following such observation, Serong encouraged the data team to build close collaborative relationships with other departments. Such collaborative 

interaction stimulated a great flow of knowledge across different departments.  

“People from different background and discipline see data and correlations from different perspective. For example, data analysts from 

computer science background would miss or overlooked some correlations and patterns that would matter greatly from marketing and 

product design perspective. Getting them working together to fully appreciate the meaning from the data is crucial”. 

Information gathered from other informants and archival data also supported such collaboration.  

A similar example can be found from Targar. A consistent pattern across all Targar informants highlighted the importance of broadening the data 

mining boundaries beyond the individual team/department.   

For example, one informant indicated: 

“Unless you have a clear set of questions in mind when you interrogate data, you can easily get lost given the significant volume of data 

we have. And because we have so many data, you can also easily get correlations that make no sense at all. So we talked to people from 

different departments, to understand what is bothering them that can be solved by the data we have, what data or information do they need 

to make their job better and easier”.  



This view was often echoed by other informants, who ascribed great significance to cross-department collaboration. We also noted that Targar had 

opened up its platform to external partners to develop value-added applications based on the datasets available on their platforms. A senior director 

from Targar commented:  

“We were sitting on huge amount of data that was not being used to its full potential. We only have limited resources here and by opening 

up our dataset on our platform really connect our data with many ‘a-ha’ moment. They [the external partners] never failed to impress us 

with their creative ideas”.  

Similarly, many informants highlighted that opening up their data to third-party developers had resulted in the establishment of a distinctive 

resource network within their network innovation systems.  

We observed quite different patterns in the other cases. Yogy, for instance, did not mention such cross disciplinary collaboration. Yogy 

informants expressed rather frustrating views on benefiting from big data.  

“They always sit behind closed doors and we never know what is going on there. We do regularly get reports and instructions from the top 

[the managers] in terms of what to do based on the data they [the data team] crunched but sometimes it just seemed rather pointless and a 

waste of time. Yes, they are good at numbers, but do they understand business, or do they understand our jobs?”  

The findings suggest that the managers from Yogy had often had high expectations in terms of the data department generating value from big data. 

One informant from the data department explained: 



“We are under a lot of pressure to deliver results, but our attention is limited given how much data we have crunch. And data crunching is 

not just a one-off, it changes especially given how many real time data we have. It should be about the instant flow and connection with 

other teams. We feel quite isolated here”.  

Similar patterns were observed across another case company—Gray. The data team was often described as “living in their own world”. The 

informants often expressed a low level of confidence in the role of big data holding strategic importance for their companies. One informant 

commented: 

“It is a big hype. We implement changes that were requested from the top from the analysis reported put together by the data team, some 

of the requests did not make much sense and we never got to fully understand it. I wish a bilateral dialog could be built”.  

Why does resource coordination between different departments facilitate the process of value creation from big data? One reason may be that those 

who lack familiarity with customers (Shane, 2000; Von Hippel, 1988) and knowledge of ways to serve the market (Shane, 2000) find it difficult 

to recognize solutions to meet customer needs and to formulate effective strategies to introduce and sell new products/services. Therefore, by 

working in isolation, data scientists are unable to discover patterns and correlations related to customer behaviour. This was illustrated by the 

following quote:  

“Given the volume of the data we have, it is easy to get random correlations. We need people with different backgrounds and knowledge 

of the market to truly appreciate and understand these correlations and patterns. You cannot achieve this by getting them to work 

separately”.  



Based on our findings, without such coordination, an organization is less capable of discovering and exploiting new opportunities emerging from 

big data. Many scholars highlighted that team members’ willingness and ability to share hard-to-find specialized knowledge with other team 

members (bringing expertise to bear) were crucial to firm’s performance (Majchrzak et al.,  2000; Kanawattanachai and Yoo, 2007). From the 

above evidence, we argue that resource coordination as a result of cross department collaboration provides a company with an increased ability to 

discover and exploit any opportunities emerging from big data. This leads to our first proposition:  

Proposition 1: Resource coordination between different departments is positively related to opportunities for discovery and exploitation from 

big data which leads to value creation.  

4.2 Entrepreneurial orientation and value creation from big data  

The findings indicate that our sample companies varied in their approaches to create value from big data. Some believed that employing skilled 

data scientists was critical to success. Others valued data scientists but ascribed more importance to capitalizing on big data by encouraging 

entrepreneurial activities at the company level (Covin and Lumpkin, 2011).  

One good example was provided by Serong. The main focus of Serong was to encourage its employees to be curious about data and to experiment 

with it. One informant had this to say about his understanding of the key aspects of creating value from big data: 

“We wanted people to take ownership of the data, not to think that data analysis is the experts’ job and responsibilities. They don't need to 

get to the technical side of it, but rather to think creatively about how we can tell a good story with the data we have, what kind of impact 

it will have on our customers”. 



Creativity and experimentation were perceived as great approaches to complement the technical data crunching. For example, Serong introduced 

a “Magic Data Cube” initiative to inspire employees at the company level to generate projects based on the big data. One informant from data 

team described: 

“Data are like a magnifying glass to understand the market, its trends and our customers. There were many interactions between us [the 

data department] and the rest of the company; what data they needed to tell a story and what data we had to support that. They can see 

things differently and come up with great creative ideas which we would never have thought of.”  

Similar entrepreneurial examples can be found from Targar. Many informants highlighted the value of real time data and the importance of a 

company’s ability to extract information from real time operational data. The faster a company can harness insights from real time data, the greater 

its advantage in driving its value creation opportunities, as “top down command-control structure will not work well in this sense”  

One informant commented: 

“By the time you get through the different layers of approvals, you already missed the time and opportunity to respond to these data. The 

top down structure has to change to cultivate and support the entrepreneurial activities at the front line level”.  

Our informants further accentuated a risk-taking approach in relation to data management. This was explained by the following observation: 

 “With the insights coming from the data, you don't have to go all out. You can manipulate the scale to which you want to test your ideas. 

Initially, the scale is quite small, so the risk is low; then, you can gradually scale it up based on how data reacts”. 



Such entrepreneurial activities were perceived as being essential in driving a company’s value creation opportunities from big data.  

 

These findings support the notion of entrepreneurial orientation in maximizing value from big data. The data suggest that the companies with a 

greater level of entrepreneurial orientation were in a better position to take advantage of the opportunities offered by big data. The literature has 

consistently identified three dimensions of an EO: innovativeness in engaging in creativity and experimentation, thereby departing from established 

practices and technologies (Lumpkin and Dess, 1996); proactiveness in opportunity-seeking, being forward-looking to stay ahead of the 

competition (Lumpkin and Dess, 1996); risk-taking, being willing to commit large amounts of resources to projects in which the cost of failure 

could be high or the outcomes unknown (Miller and Friesen, 1978). The underlying assumption is that an EO provides organizations with a basis 

for entrepreneurial decisions and actions for capturing innovative opportunities (e.g., Lumpkin and Dess, 1996; Wiklund and Shepherd, 2003; 

Covin and Lumpkin, 2011).  

  

By contrast, such entrepreneurial actions were barely mentioned by Gray and Yogy. For example, Gray emphasized the technical side of big data 

and the importance of the data department in contributing to a company’s value creation opportunities from big data. When asked about the 

involvement of other departments in value creation opportunities from big data, one informant from the top management team described: 

 “Of course, they are given the data analysis report—sometimes from us, sometimes directly from the data team. It is a chain of action and 

they can act on what needs to be done”.  



When asked the same question, an informant from a different department stated: 

“We do receive regular reports and tasks from them [the top management and the data team], some of them are useful but most of them are 

not contextual, there is no story behind it. I wish that we could get more involved in this process”.  

We observed very similar patterns in Yogy. The Yogy informants described the process of generating insights from big data as being too technical; 

therefore, the involvement from other teams/departments was limited. Some of the interviewees stated: 

“We just follow the direction and act on what needs to be done”. 

When asked about experimentation and risk-taking, an informant responded: 

“They focus too much on the left brain, it is all about analytical and logic. Data dictate everything and we play limited roles in the process.” 

Our analysis points to the key insight emerging from the above evidence: that those organizations that have an EO are more likely to generate 

value from big data. An EO represents the way a company is organized in terms of utilizing resources in order to uncover and exploit opportunities. 

Based on the RBV, how a company is organized, when coupled with its resources, can increase the positive relationship between resources and 

company performance (Barney, 1995). The findings demonstrate that an EO captures the way a company is organised towards entrepreneurship 

and can enhance value creation opportunities from big data. Our data reveal that the key elements of an EO—such as innovativeness, risk taking 

and proactiveness—can partially explain the process of value creation from big data that enables some companies to get ahead of their competitors. 

Companies with higher levels of EO can be in a better position to effectively utilize big data-related knowledge assets for both the discovery and 



exploitation of opportunities arising from big data analytics (Covin and Lumpkin, 2011; Davenport and Patil, 2012; Khan and Vorley, 2017). 

Previously, we proposed a positive relationship between resource coordination between different departments and value creation from big data. 

Because of the magnitude of the data volume and of the speed at which it should be analysed and acted upon, we further propose that a managerial 

decision-making process that champions a willingness to capitalize on its big data resources by engaging in entrepreneurial activities at the 

company level will perform even better in creating value from big data (Wales et al., 2013). This leads to the following proposition: 

Proposition 2: An EO moderates the relationship between resource coordination and value creation from big data.  

5. Discussion and Conclusions 

The aim of this article was to understand the value creation through big data in dynamic environments such as those observed in emerging 

economies. Recently, there has been an increasing interest in understanding the role of big data and its resultant implications for performance 

and knowledge management (Jabbour et al., 2017; Dubey et al., 2018b; Khan and Vorley, 2017). The existing studies have enhanced our 

understanding on this topic, yet the research on big data is at its infancy and further research has been suggested in developing solid 

understanding about how firms co-create knowledge and capture value through big data (e.g., Acharya et al., 2018; Dubey et al., 2018b; Wamba 

et al., 2017; Khan and Vorley, 2017).  In order to understand value creation through big data in emerging economies, we integrated resource 

orchestration (e.g., Sirmon et al., 2007; Sirmon et al., 2011) and entrepreneurial orientation (Lumpkin and Dess, 1996; Covin and Lumpkin, 

2011).  



The findings highlight that resource coordination is vital for firms to create value through big data by firms based in emerging economies. The 

findings further indicate the important role of entrepreneurial orientation through which resource coordination and asset orchestration lead to the 

value creation from big data in emerging economies.    

5.1 Theoretical contributions  

Our study offers several insights for business management in the big data context (e.g., Acharya et al., 2018; Akter et al., 2016; Wamba et al., 

2017). The primary contribution of this study is that we explicitly incorporate resource orchestration into the domain of big data and identify EO 

as one of the key factors through which companies bundle and orchestrate the knowledge assets arising from big data for value creation. While the 

three frameworks of resource management, asset orchestration, and resource orchestration have been established to describe the use of resources 

to create value (Helfat et al., 2007; Sirmon et al., 2007; Sirmon et al., 2011), additional empirical research is needed in order to add richness to 

current theory (Sirmon et al., 2011; Chadwick et al., 2015). The findings indicate that resource coordination between different departments 

facilitates the process of value creation from big data. We have thus extended the understanding of resource orchestration in a big data context, 

whereas previous research has provided key insights by utilizing dynamic capabilities approach (Wamba et al., 2017). Our findings are consistent 

with the hitherto largely underexplored arguments that resources themselves may not create value for companies; it is how companies utilize those 

resources that is important in explaining corporate performance. The findings further indicate that an EO moderates the relationship between 

resource coordination and value creation from big data. That is, the willingness to be innovative, proactive and taking risks enhances a company’s 

capability to generate value from big data (Covin and Lumpkin, 2011). These findings echoed Chirico et al.’s (2011) observations and suggest 



that an EO can help explain the managerial processes that provide some companies with the ability to utilize their resources to identify and respond 

to environmental cues earlier than competitors. 

 

Second, while most of the existing literature on resource orchestration is conceptual in nature (e.g., Sirmon et al., 2007, 2011), this study provides 

important empirical insights demonstrating the value of integrating resource orchestration and entrepreneurial orientation in explaining the 

performance implications of big data. Our findings are therefore consistent with the existing resource orchestration and dynamic capability 

conceptual apparatus, such as evolutionary and entrepreneurial fitness (Helfat et al., 2007). The findings of this study provide an important 

foundation to explore how resource orchestration and EO may influence the process of generating value from big data. Our research thus could be 

adopted in further studies as a starting point from which to examine the effectiveness of an EO in shaping resource orchestration to enhance value 

creation from big data.  

 

In addition, we provide important insights from the important emerging economy of China and show how managers bundle and orchestrate 

resources and create value from big data. This is one of the first studies to have integrated resource orchestration theory and entrepreneurial 

orientation in the context of big data, thus demonstrating the value of integrating the RBV with EO in the context of big data. Not much is known 

about how companies from emerging economies orchestrate and leverage knowledge assets, particularly the valuable knowledge that can be 

captured through big data for value creation strategies; therefore, the findings of this study have greater value for managers in order to understand 



the creation of value from big data through the adoption of specific managerial processes and strategies that are conducive to the orchestration and 

leveraging of resources for the development of competitive advantage in the era of big data (Prescott, 2014).  

5.2 Implications for Practice 

The findings of this study provides important implications for practice. The findings suggest that resource coordination is important in harnessing 

value from big data in dynamic environments of emerging markets.  Thus, managers need to carefully orchestrate asset base and coordinate internal 

resources in order to benefit from big data for value creation which will lead to the development of competitive advantage (Barney, 1991; Helfat 

et al., 2007; Sirmon et al., 2007; Sirmon et al., 2011). The resource coordination for exploitation of big data can be further realized through 

proactive, innovative and risk-taking entrepreneurial orientation, therefore, managers need to improve and reconfigure internal processes in order 

to create value through big data. 

 

5.3 Limitations and further research  

Our aim was to gain a rich understanding of how companies manage big data resources to create value in the context of emerging economies. With 

regard to generalizability, it is critical to note that the sample companies operated in a data-intensive area and had very different starting points. 

However, with companies in other industries generating more data than ever before, the process of value creation from big data that we observed 

may be generalized to other ventures. We also acknowledge that this research’s setting was limited to China. Therefore, future research can expand 

or test (e.g., by using quantitative methods) across industries and countries the two propositions that we have put forward. Additionally, future 



studies could examine micro-processes and other strategic orientations—such as learning and marketing orientation—and how these influence the 

creation of value from big data.  

 

Summarising, one of the key contributions of this study is that it brings the EO into the discourse on resource orchestration and value creation 

from big data. A key implication of our findings for resource orchestration scholars is that the investigation of the relationship between big data 

and value creation should also consider its organization. Therefore, further research needs to investigate the effectiveness of an EO in affecting 

the explorations of ways in which a company is organized for the detection and exploitation of opportunities from big data. In addition, there is a 

need for more scholarly attention to the development of company control and coordination processes aimed at encouraging and stimulating EO 

behaviours in individual employees, thus focusing on the central role played by persons and interpersonal interactions in harnessing EO —as 

pointed out by Salvato and Vassolo (2017)—rather than that of abstract, company-level entities. Lastly, the insights of this study can be applied 

in the context of sharing economy based firms in order to understand those firms value creation strategies. Furthermore, there is a scope to examine 

other antecedents such as learning orientation, social networks and absorptive capacity and how these enable firms to create and capture value 

from big data across emerging and developed markets.  
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Tables and Figures 

 

Table 1: Background characteristics and data sources for cases 



Company  Founding year Type (from 

inception)  

Ownership  

 

Number of informants  Data sources   

Serong  1999 Online B2C 

retailer  

Private 11 Reports and strategic memos (27) 

Press articles (36)  

Semi structured interviews  

 

Targar  1998 Online social 

network  

Private 9 Reports and strategic memos (25) 

Press articles (38)  

Semi structured interviews  

 

Yogy   1998 Online group 

buying site   

Private 9 

 

Reports and strategic memos (14) 

Press articles (19)  

Semi structured interviews  

 



Gray  1999 Online travel 

agent  

Private 7 Reports and strategic memos (11) 

Press articles (23)  

Semi structured interviews  

 



Table 2 Cross case comparison: additional representative quotes 

Key themes  Serong  Targar  Yogy  Gray  

Resource 

coordination  

“Often we found that people from 

different disciplines, from different 

backgrounds often see data from different 

ways. They also see the pattern in different 

ways, how it connects to the knowledge 

they know. When you get people work 

together in a collaborative way, that's 

when you really unleash the real potential 

of the data.” 

“It’s not just about plucking numbers, 

understand the correlations, this is just a 

very beginning of the journey, it’s about 

understand the business context and 

scenarios. In order to understand the 

context, we cannot do this by ourselves, 

we need to talk people from marketing, 

product development, or even partners 

from outside of the companies such as 

“Our data team used to be a lone wolf, 

but now they have people who work on 

the data, they also have people who are 

out and about talking to people from 

different departments, working on 

different project together. The job we 

have is not focussing on the data itself, 

it’s about how to make the rest of the 

people from other departments, make 

their job much easier”.  

“We can draw many correlations, but 

the ultimatum question is always 

coming down to ‘so what’. Data without 

action, data without context is just data, 

not more. The action and context part 

requires collaboration far beyond the 

data team boundary”.  

“Everyone jumped on the backbone of this data thing 

and everyone is fighting to get anyone who is good at it. 

For me, it is more like “ji le (chicken ribs)”, tasteless 

when eaten but a pity to throw away. They do daily 

report and we look at the data in the morning, but most 

of the time, it is more like a procedure, do we get much 

from it, not really”.  

“Sometimes people don't really appreciate the job we 

have done. We worked really hard on the data, but 

sometimes, nobody even look at our data. They 

complained that it is not useful” 

“I would say the expectation was very 

high (from us). It is often alone these 

lines: “tell me how I can steer my 

company based on the data, or tell me 

how I can make money based on the 

data.’ By throwing us in the data sea 

and expect us to know everything is 

not data management. We felt pressed 

and isolated”.  

“We had a bottleneck between the 

data analyses and data application. 

How to breakdown the data and feed 

into different department. They (data 

analysts) know how to fiddle around 

data, how to make sense the data, but 

the hidden layer is that they need to 

understand the business value of these 

data. They present the data on the 

daily basis to us, but most of us, to be 



local communities to understand the 

contextual condition”  

honest, do not really know what we 

look at, what these data means”. 

EO  

Proactiveness  The data warehouse that you have 

generated and stored is a history. The most 

valuable data is collected, analysed and 

reacted during the point of customer 

interaction. The time is not a couple of 

days, or even a couple of hours, it is less 

than 60 seconds, even with 60 seconds I 

am being generous. This means that in 

order to capture this opportunity, simply 

responding is not sufficient, we need to 

take action drive the change and anticipate 

the change”.  

“With amount of the data we have, we are 

in a better position to make decisions 

about the future. We know what to expect 

and how to approach it.”  

 

 

“Data itself, particularly the real time 

data is very valuable. You have to be 

prepared, to anticipate the changes, and 

you have to act fast. If you are not 

prepared, by the time you put everything 

together and act on it, the opportunities 

are gone. You want our front line staff 

to work with the data team, we want 

people can hear the gunfire, know when 

the gunfire is going to start, and we built 

a system where these people have all the 

resources they need to go into the war”.  

“The beauty of big data is the 

predicative nature. You can use the data 

to predict, although not 100% correct, 

most of time you can predict the trends, 

predict what is going to happen, in what 

context. We want to make sure people 

who are in position to execute these 

“Somehow we feel that we always play a catch up game. 

With layers after layers of management, with layers after 

layers approval, we were never been capture the real 

value of big data. The real value is not about mining the 

data we have in the past, this is just too passive and you 

won’t get much from it”  

“You need to build a different organization structure to 

enable the agile response to the big data, it is not about 

takes a month or two to come up with an action plan. 

This kind of action plan just eats dust of the big data. 

Being proactive to the big data, to have this kind of 

mind-set requires a system change, we are too rigid” 

N/A  



insights are enough freedom and 

flexibility to do so”.   

Innovation  “We often neglect the human side of the 

data business and how people can use data 

in a different and innovative ways. We 

tried to strive for a balance between 

analytical and innovative side of data”  

“The term ‘big data’ sounds intimidating 

and very technical. We wanted to change 

this perception and encourage our staff to 

have fun with it. That's why I say data 

cannot overtake all the jobs because there 

are certain aspects such as curiosity, 

creativity and imagination, things we are 

good at but data cannot do. That's exactly 

what we try to get our people to do when 

they approach the data, be curious, ask 

questions, be creative and use their 

imaginations, use data to create different 

stories, to create emotional connections 

with our customers”. 

“People got fascinated about data itself 

and forgot important mechanism to 

enabling to make these data “alive”, the 

mechanism I am talking about is culture. 

You need to have that culture change, 

the culture that takes an innovative 

approach when it comes to data” 

“It is important to create a synergy 

between data and people. Data is 

important proving solid evidence, but it 

can only be to its best potential with the 

magic touch from people.  

“Everything is ‘we need to look at the data’ or ‘let the 

data do the talk’. We don't have the voice in the process. 

When it comes to data, we often have a blurred vision, it 

is like to admire flower in fog weather, and nobody 

really know the true beauty of the flower”. 

“The emphasis is always on the analytical side of data. 

Innovation, well, they (data team) just have to think 

something different.”  

 

“Crunching big data requires hard-

analytical skills. We have great 

experts in the house”.  

“We put great investment into our data 

team, focussing on the data analytical 

side of business”   

Risk taking  “It is great that data can provide many 

insights about our customers’ behaviour 

“Data is a very important resource, but 

data is a history, we need to discover, 

“You don't have to take risk because the insights 

generated from big data can help you to unravel the 

N/A 



but if everything is driven from data, you 

never get opportunities to take risk and try 

it out new things. People often afraid to 

take a risk, but you have to be all in”.  

“We have the luxury to try it out in a small 

scale to see how market response. Without 

taking risks, you will be blinded by many 

other potential opportunities in the 

market” 

create new opportunities, not just from 

the data we have, but to create new 

insights, to shape the data. This requires 

us to take a plunge, yes, it can be risky, 

but if are afraid of making mistake”.  

“If you are afraid of taking risk, then 

you are definitely in the wrong side of 

big data business. It is not about play 

safe with the data you have, it also about 

explore new ideas and opportunities, to 

create and drive the future with the help 

and insight from big data”  

misty of the phenomena, so why do we need to try 

something different”.  

“The risk is greatly reduced with the power of big data. 

It provide us with a much safer environment to do our 

business”   
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