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Statistical Significance and Effect Sizes of Differences among Research 

Universities at the Level of Nations and Worldwide based on the Leiden 

Rankings 

 

Loet Leydesdorff,*a Lutz Bornmann,b and John Mingersc 

 

Abstract 

The Leiden Rankings can be used for grouping research universities by considering universities 
which are not significantly different as a homogeneous set. The groups and intergroup relations 
can be analyzed and visualized using tools from network analysis. Using the so-called 
“excellence indicator” PPtop-10%—the proportion of the top-10% most-highly-cited papers 
assigned to a university—we pursue a classification using (i) overlapping stability intervals, (ii ) 
statistical-significance tests, and (iii ) effect sizes of differences among 902 universities in 54 
countries; we focus on the UK, Germany, Brazil, and the USA as national examples. Although 
the groupings remain largely the same using different statistical significance levels or 
overlapping stability intervals, the resulting classifications are uncorrelated with those based on 
effect sizes. Effect sizes for the differences between universities are small (w <.2). The more 
detailed analysis of universities at the country level suggests that distinctions beyond three or 
perhaps four groups of universities (high, middle, low) may not be meaningful. Given similar 
institutional incentives, isomorphism within each eco-system of universities should not be 
underestimated. For practical purposes, our results suggest that networks based on overlapping 
stability intervals can provide a first impression of the relevant groupings among universities. 
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1. Introduction 

 

Following the introduction of the “Shanghai rankings” of universities in 2004 (Academic 

Ranking of World Universities, ARWU, 2004), a quasi-industry of university rankings has 

emerged (e.g., Shin, Toutkoushian, & Teichler, 2011). The various rankings (for example, the 

Times Higher Education World University Rankings and QS World Universities Rankings) use 

somewhat different parameters such as quality of education, number of Nobel Prizes, number of 

articles in top-journals—however defined—or also the visibility of a university on the internet 

(e.g., Aguillo, Ortega, & Fernández, 2008; Harzing & Mijnhardt, 2015; Tang & Thelwall, 2004). 

Although there is some consensus about a group of most-elite universities, differing parameters 

and models may have considerable effects on lower-ranked universities. From this perspective, 

the reliability of rankings is low. Gingras (2016, at p. 75), for example, argued “that annual 

rankings of universities, be they based on surveys, bibliometrics, or webometrics, have no 

foundation in methodology and can only be explained as marketing strategies on the part of the 

producers of these rankings.”  

 

Are there significant differences among leading research universities, or are there homogeneous 

classes with no significant differences among them? European governments, for example, have 

funded state universities hitherto often using a scheme which assumes equality among them. But 

is this empirically the case? Martin (2010) argued that under market pressure inequalities can be 

expected to have increased in recent decades. Using a sample of 500 universities, however, 

Halffman & Leydesdorff (2010) showed that the Gini coefficient (a measure of inequality) of the 

distribution of publications over universities declined during the period 2003-2007. Using a 
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similar methodology, Ville et al. (2006) found decreasing inequality in research outputs among 

Australian universities during the period 1992-2003. The authors suggest that “institutional 

isomorphism” has led to imitative behavior (DiMaggio & Powell, 1983). In other words, 

universities appear to have become more similar.  

 

Universities are positioned similarly on the market and share the same incentives; lower-ranked 

universities tend to imitate innovations by the leading universities. One can also raise the 

methodological question of whether differences in the ratings are statistically significant or 

mainly an artifact of considering too many decimals, as in the case of differences among journals 

measured by the journal impact factor (which includes three decimals). Using detailed rankings, 

an impression of differences can be generated whereas equality may prevail (Waltman, 2016).  

 

Among the university rankings, the so-called “Leiden Ranking of research universities” (LR; 

available at http://www.leidenranking.com/) stands out for its clarity about limitations, 

methodological care, and transparency (e.g., Frenken, Heimeriks, & Hoekman, 2017). LR is 

based on data of the Web-of-Science (WoS) of Clarivate Analytics which are processed by the 

Centre for Science & Technology Studies (CWTS) at Leiden University. After an initial phase, 

the methodology was firmly established at the time of the Leiden Ranking 2013 (Waltman et al., 

2012). The user of LR can interactively (on the internet) select a world region, country or 

discipline, and a preferred parameter to be used for the ranking.  Furthermore, one can download 

the complete data for each year as Excel files. 
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In this study, we use the dataset of LR 2017 to explore the question of classifying universities 

using statistics. In addition to the numbers of publications, LR provides the numbers of 

publications in the top-10% segment of most highly-cited publications both as a number (Ptop 

10%) and as a percentage (PPtop 10%) normalized against the respective reference sets. 

Normalization against reference sets is needed because citation intensity varies among 

disciplines (Garfield, 1979; Moed, 2010). The reference sets, however, are themselves dynamic, 

making it difficult to compare results over a series of years. For this reason, all previous years 

are recalculated in LR using the model of the current year (Leydesdorff, Wouters, & Bornmann, 

2016, pp. 2144f.). 

 

PPtop 10% is a proportion and the differences among universities can therefore statistically be 

tested for significance using, for example, the z-test. Echoing Schneider’s (2013; 2015) criticism 

of the use of significance tests in bibliometrics, however, Waltman (2016)—one of the 

conceptual organizers of the LR—argued against the use of both significance testing and 

confidence intervals based on boot-strapping, stating that “it seems likely that the use of 

statistical inference will lead to confusion and misunderstandings.” In a section about 

“Responsible Use” on the website of the Leiden Rankings (at 

http://www.leidenranking.com/information/responsibleuse), the authors state:  

 

To some extent it may be possible to quantify uncertainty in university rankings (e.g., using 

stability intervals in the Leiden Ranking), but to a large extent one needs to make an intuitive 

assessment of this uncertainty. In practice, this means that it is best not to pay attention to 

small performance differences between universities. Likewise, minor fluctuations in the 
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performance of a university over time can best be ignored. The focus instead should be on 

structural patterns emerging from time trends. 

 

In our opinion, this advice begs the question, since one has no tools other than statistics to 

distinguish between differences among groups and variation within groups. Without statistics, 

the criteria would be subjective or the interpretation based on intuitive “rules of thumb” (Van 

Raan, 2005, at p. 7). However, LR offers “stability intervals” of the PPtop 10% (Lunneborg, 2000; 

Colliander & Ahlgren 2011, at p. 105). As Colliander & Ahlgren (2011, at p. 105) formulate: 

“[I] f two departments have overlapping stability intervals this indicates that there is no 

substantial difference between these departments.” A stable result is one that is not influenced by 

including or excluding specific cases in the analysis. Stability intervals thus provide us with a 

second means to group universities. 

 

The critique of the use of inferential statistics finds its origins in the work of Cohen (1977, 1994) 

who first proposed the use of “power analysis” as an alternative to significance testing. Statistical 

significance can be an effect of sample size and does not inform us about the strength of a 

relationship. Furthermore, significance testing assumes the specification of a null-hypothesis 

which can be tested against a sample. Our data does not allow for this. 

 

The persistent (mis)use of statistical-significance testing in the literature prompted the American 

Statstical Association to issue a consensus statement in 2016 in which the use of null-hypothesis 

statistical testing (NHST) was strongly disapproved as a measure of evidence: “The p-value is a 

statement about data in relation to a specified hypothetical explanation, and is not a statement 



6 
 

about the explanation itself. […] Any effect, no matter how tiny, can produce a small p-value if 

the sample size or measurement precision is high enough, and large effects may produce 

unimpressive p-values if the sample size is small or measurements are imprecise” (Wasserstein 

& Lazar, 2016, at pp. 131f.). Statistical-significance tests should therefore be accompanied by 

effect sizes as measures of “practical significance.”  

 

Cumming (2013), for example, argued that empirical studies using inferential statistics should 

report not only statistical significance but also effect sizes. In his opinion, meaningful differences 

between groups of entities can only be uncovered if both test statistics are considered. In this 

study, we juxtapose the results of using stability intervals, significance-testing, and effect sizes in 

order to address the questions raised, such as whether groups of universities are not substantially 

different in terms of their rankings despite the impression of differences in their positions 

provided by these rankings. Whereas significance testing and stability intervals focus on 

inferences beyond the sample, effect sizes reflect the magnitude of differences. 

 

Among the various measures of effect sizes, Cohen’s w fits our type of data. Unlike the effect-

size measures of differences between means and proportions (Cohen’s d; Cumming & Calin-

Jageman, 2016), w is non-parametric and based on chi-square statistics. Note that PPtop10% is 

non-parametric. The application of w, therefore, is straightforward, but the interpretation of 

effect sizes remains specific to the hypothetical model and the research design. While a 

statistical-significance level of 5% is defined as a cut-off at z = 1.96, w has an indicative 

interpretation: w = .10 can be considered as “small;” w = .30 as “medium;” and w = .50 as a 

“large” effect (Cohen, 1988, at p. 227). However, Cohen (1988, at p. 226) “reiterates a word of 
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caution about the use of constant w values to define a given level of departure, such as the 

operational definitions of “small,” “medium,” and “large” […].” He warns (at p. 20) that “[t]he 

absolute size of a point is a consequence of arbitrariness in the decision by the investigator, 

and/or in the scale construction method, and/or the writing or selection of the items.”  

 

In summary, one cannot expect the measurement and analysis to provide us with clear-cut 

answers to the question of how many groups are to be distinguished, but the combined 

assessment in terms of these tests can inform us about the fit or lack of fit between the results 

and the model assumption that universities can be ranked meaningfully because they are 

sufficiently different. If groups are distinguishable, however, the borderlines among them remain 

disputable. Our objective is to discuss how one might address the research question of how and 

whether to group universities into classes. This question is highly policy-relevant, since 

governments for example may wish to differentiate policies for different classes of universities. 

We use tools from network analysis to illustrate our results. 

 

With a similar objective, Bornmann & Glänzel (2017) used the method of Characteristic Scores 

and Scales (CSS; Glänzel, 2007) to group universities into meaningful classes (poorly cited, 

fairly cited, remarkably, and outstandingly cited). However, these authors did not apply statistics 

beyond the description of publication data and did not visualize the results which facilitates 

understanding of the results. Using network analysis, we decompose the university groups. Thus, 

the fuzziness or clarity of the distinctions can also be estimated using, for example, modularity Q 

(Newman & Girvan, 2004; Blondel et al., 1988).  

 



8 
 

2. Statistics 

 

2.1. Stability intervals 

 

The construction of stability intervals in LR is based on bootstrapping (Waltman et al., 2012, at 

p. 2429): one thousand samples are drawn for each university’s set of publications, leading to a 

thousand distributions with each a PPtop 10%. In order to obtain a 95% stability interval, the 

authors take the 2.5th and the 97.5th percentiles of the distribution of the values of the samples as 

the lower and upper bounds of the stability intervals.  

 

When the stability intervals of two universities overlap, the distinction between them in terms of 

the indicator can be rejected (Colliander & Ahlgren, 2011). Since each of the two universities 

may be indistinguishable from other universities, we thus obtain so-called “weak” components in 

terms of network analysis. If both the upper and lower bounds of university A are contained 

within the stability interval of university B, the former can be considered as a subset of the latter. 

In this case, we have a strong component since both arcs are present. We evaluate relations in 

terms of the arcs.  
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Figure 1: Overlapping stability intervals used as a grouping criterion for 50 German universities 
covered by the Leiden Ranking; two communities distinguished with modularity Q = 0.21 
(Blondel et al., 2008); VOSviewer used for the visualization. 
 

As an example, Figure 1 provides a visualization of the two components which can thus be 

distinguished among fifty German universities covered by LR. The green group on the right side 

consists of established universities, while the red-colored group on the left side is populated with 

more marginal and recently founded universities. The vertical axis suggests a north-south 

tendency between “Munich” at the top and “Berlin” at the bottom. 
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Throughout this study, we use the Louvain-algorithm for community finding (Blondel et al., 

2008), because it provides less isolates than the algorithm of VOSViewer. In the case of Figure 

1, for example, the community-finding algorithm of VOSViewer distinguishes a subgroup of 

“Berlin” universities within the group at the right, and the Heinrich-Heine Universität in 

Duesseldorf would be considered as a separate grouping at the interface between the two larger 

groups. Note that we use VOSviewer for the visualization (cf. Abramo, d’Angelo, & Grilli, 

2016), but not for the decomposition. 

 

2.2. The z-test for estimating statistical significance 

 

The analysis based on stability intervals provides us with a binary value and does not exploit the 

further information of the indicator values. However, significance testing and effect sizes enable 

us to make these next steps. The z-test can be used to measure the extent to which an observed 

proportion differs significantly from expectation—in the case of PPtop 10%, this is 10%—and 

whether the proportions for two institutions are significantly different. The test statistics can be 

formulated as follows:  

 

  (1) 

 

where: n1 and n2 are the numbers of all the papers published by institutions 1 and 2 (under the 

column “P” in the LR); and p1 and p2 are the values of PPtop 10% of institutions 1 and 2. The 

pooled estimate for proportion (p) is defined as: 
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  (2) 

 

where: t1 and t2 are the numbers of top-10% papers of institutions 1 and 2. These numbers can be 

calculated on the basis of “P” and “PPtop 10%”. When testing values for a single university, n1 = 

n2, p1 is the value of the PPtop 10%, p2 = 0.1, and t2 = 0.1 * n2  (that is, the expected number in the 

top-10%). 

 

An absolute value of z larger than 1.96 indicates statistical significance of the difference between 

two ratings at the five percent level (p < 0.05). The threshold value for a test at the one percent 

level (p < 0.01) is 2.576; |z| > 3.29 for p < 0.001. In a series of tests for many institutions, one 

may wish to avoid family-wise accumulation of Type-I errors by using the Bonferroni 

correction; that is,  pBonferroni = g / n where g is the original test-statistics and n the number of 

comparisons.  

 

Universities which are not significantly different can again be considered as belonging to the 

same performance group. Despite differences in PPtop 10% the performance of these universities 

can be denoted as similar. As above, this group membership is represented as links, so that 

groups can be visualized and analyzed using network software.  

 

1 2
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2.3. Effect sizes 

 

In analogy to the z-test, 2 * 2 contingency tables are generated by comparing two universities in 

terms of their numbers of papers in the top-10% most highly-cited reference groups versus the 

other papers of each of the universities. The expectation is that universities are not different from 

each other or from the 10% level of PPtop 10%. The larger the effect size, the more a difference is 

indicated. A measure of effect size w can be derived from chi-square statistics and is formalized 

as follows (Cohen, 1988, p. 216):  

 

 始 噺  謬デ 岫椎迭日貸 椎轍日岻鉄椎轍日陳沈退怠  (3) 

 

where p0i is the proportion in cell i posited by the null hypothesis, and p1i the proportion in cell i 

posited by the alternative hypothesis; m reflects the number of cells. Note that the formula is 

similar to that for 紐鋼態 except that relative values (proportions) are used instead of values.  

 

2.4. Numerical example 

 

At http://www.leydesdorff.net/leiden11/index.htm the user can retrieve a file leiden11.xls which 

allows for feeding P and PPtop 10% values harvested from the LR for each two universities. The 

spreadsheet provides the significance level of the difference measured as both a z-score and a w- 

value. For example, Leiden University is listed (in the category “All sciences” of LR 2017) with 

P = 6,368 articles of which 13.8% participate in the top-10% layer for the comparable set 

worldwide (PPtop 10%); the upper and lower bounds are 13.10 and 14.50. The University of 
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Amsterdam has 8,519 articles with PPtop 10% = 14.5%, bounded between 13.90 and 15.10. The 

stability intervals are thus intersecting. 

 

On the basis of this data, one can write the following contingency tables and derive the values of 鋼態 and w:  

 

observed values top-10% non-top 

 

proportions    

Leiden 878.784 5489.216 6368 0.059030295 0.368725 0.42775576 

Amsterdam 1235.255 7283.745 8519 0.082975415 0.489269 0.57224424 

 

2114.039 12772.96 14887 0.14200571 0.857994 1 

    
   

expected values 

  

   

Leiden 904.2924 5463.708 6368 0.06074376 0.367012 0.42775576 

Amsterdam 1209.747 7309.253 8519 0.081261949 0.490982 0.57224424 

    
   

contributions to the chi-square 

 

contributions to the effect size 

Leiden 0.719542 0.119091 0.838633 0.000048 0.000008 0.000056 

Amsterdam 0.537862 0.089021 0.626883 0.000036 0.000006 0.000042 

  

鋼態= 
 

1.465 

  
w = 

 

Sqrt(0.000098) 

=0.099 

 
Table 1: Numerical example of the computation of 鋼態 and Cohen’s w. 

 
 

For the z-test one needs the pooled estimate. Using the values in the top panel of Table 1, p  = 

(878.784 + 1235.255) / (6368 + 8519) = 0.1420. Using Equation 1 (above), it follows that |z| = 

1.211. The difference between Leiden and Amsterdam is therefore not statistically significant 

and the effect size is small (w < 0.1). In sum, the two universities can be considered as belonging 

to the same group. 
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3. Data 

 

Data of the full sets can be downloaded in Excel format at 

http://www.leidenranking.com/downloads. LR 2017 analyzes 902 universities from 54 countries. 

The file contains ranks for these universities in the preceding years (in intervals of four years). 

Rankings are counted both fractionally and in whole numbers. Data is provided for “All 

sciences” and five major fields: (i) biomedical and health sciences, (ii ) life and earth sciences, 

(iii ) mathematics and computer science, (iv) physical sciences and engineering, (v) social 

sciences and humanities. We limit the analysis here pragmatically to “All sciences” (cf. 

Strotmann & Zhao, 2015), the last available period (2012-2015), and fractional counting. We 

include only the 10,898 fully-covered core journals and not the 3,900 non-core journals. 

However, the analysis can be repeated analogously using any subset and with other parameters.  

 

For our purposes, we reorganize the file so that the fields “university,” “country,” “field,” 

“period” (publication years), “fractional”(fractional or full counting of publications), “p” 

(number of publications), “p_top10,” “pp_top10” and its upper and lower bounds are saved as a 

comma-separated data file. A dedicated routine (available at 

http://www.leydesdorff.net/software/leiden; see Appendix 1) reads this file as input and 

generates, for each country and the whole set, the following files: 

 

1. A file in the Pajek format with universities as vertices and z-values as links insofar as z < 

2.576 (the cutoff for p < .01). This file is named with the country name (e.g., “Germany.net” 

describing 50 German universities represented in the data). Files are thus generated for the 54 
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individual countries, and one additional file “world.net” contains the data for all 902 

universities. 

2. A second file in the Pajek format with similar information, but with w- values for the links; 

in this case, no threshold is set a priori. Each of these files has the same name as under 1, but 

“_w” is added to the country name as a root (e.g., “Germany_w.net”).  

3. A file in the Pajek format with similar information, but with value 1 for the links between 

universities with overlapping stability intervals, and 2 for the strong components. Each of 

these files has the same name as under 1, but “_o” is added to the country name as a root.  

4. The z-values for testing the universities at the nodes against the 10% value of most highly-

cited publications are stored in a file with the same country names, but with the extension 

“.vec”. Since most network programs can handle only positive values, negative values of z 

are set equal to zero.  

5. The full set of z values is retrievable from the Pajek files in the header, indicating the size of 

each node. Using these files, positive values can be represented in the visualization (using 

Pajek) by a circle and negative ones by a diamond. A partition file with the extension “.clu” 

for each country is generated distinguishing between positive and negative values of z (using 

“2” and “1”, respectively.) 

 

The Pajek (.net) format provides a kind of currency among programs for network analysis and 

visualization. We store the resulting measures (overlap, z, or w) in the edge value between each 

two universities. Note that these universities are not necessarily related for example by citation 

or co-authorship. The use of network statistics is in this sense metaphorical. However, both 

VOSviewer and MDS (e.g., in NetDraw or SPSS) are based on showing structural similarities (in 
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a vector space), in our case similar or different institutional impact performances. In VOSviewer, 

network links can additionally facilitate the interpretation.  

 

4. Results 

 

4.1. All universities in the Leiden Ranking 2017 (n =  902) 

 

Nine hundred of the 902 universities in the LR are linked into the largest component on the basis 

of overlaps in the stability intervals. The two exceptions are MIT and Rockefeller University. 

Although this may not come as a surprise in the case of MIT, 31.2% of the publications of 

Rockefeller University are part of the group of top-10% most-highly-cited papers. For MIT, this 

percentage is 25.0% and for Harvard 22.5%. However, the stability interval of Harvard intersects 

with that of Stanford, the University of California at Berkeley, the London School of Hygiene 

and Tropical Medicine, and Princeton University. Otherwise, four components are distinguished 

(Figure 2). 
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Figure 2: Clustering of 902 universities covered by the Leiden Ranking 2017 based on overlapping stability intervals; modularity Q = 0.21 
(Blondel et al., 2008); VOSviewer used for the visualization; layout according to Kamada & Kawai (1989).  
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In the left-most component (yellow), one finds the leading American research universities and a 

few European and Asian ones.  The second component (red) contains other American 

universities, European, Canadian, and some Chinese universities. The third component (blue) is 

dominated by Asian universities, but some large European universities such as La Sapienza in 

Rome are also positioned here. These universities are sometimes education-oriented with less 

emphasis on research. The final component (green) is composed of universities with a low track 

record in terms of research. The PPtop 10%  of these universities is often below the expectation of 

10%. 

 

Given the large number of observations (n = 902, therefore the number of possible comparisons 

is [902 * 901 /2 =] 406,351) a level of 1% is indicated for testing statistical significance. Figure 3 

shows the separation of the 902 universities in LR into three groups plus the same two isolates. 

The grouping is based on the Louvain algorithm (Blondel et al., 2008) and the structuring on 

spring-embedding the resulting network using Kamada & Kawai (1989). Node sizes are 

proportionate to the z values for individual universities compared to the baseline of PPtop 10% = 

10%.  
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Figure 3: Three groups of universities are distinguished using |z| > 2.576; p <.01. Furthermore, 

two universities are isolates (MIT and Rockefeller University); Q = 0.27 (Blondel et al., (2008); 

layout according to Kamada & Kawai (1989). 

 

Lowering the significance level (figure not shown) leads in this design to more groups because 

values of links above the respective |z|-values have been deleted. The main difference at the 5% 

level is the appearance of a fine structure at the top: a small group of leading American 

universities is distinguished from leading European universities (Oxford, Cambridge, ETH 
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Zurich) which were integrated with this top-group when values of z between 1.96 and 2.576 were 

first included.  

 

In Figure 4, we turn to effect sizes for w < .1. (At  w = 0, almost all universities would be 

unique.) The spread of the w values is much smaller than that of z: 97.6% of the comparisons 

result in w ≤ .1. 1 Whereas the maximum z-value in this data was between Harvard University 

and the University of Sao Paolo with z = 45.42, the largest w- value is only 0.41 based on the 

comparison between Nihon University and Rockefeller University. In other words, most of the 

differences between the universities seem negligible using this measure. In our opinion, these 

results by themselves would call into question the practice of producing rankings based on PPtop 

10% since a ranking presumes meaningful differences.  

 

                                                

1 When the focus is on w, node-sizes in the figures are determined by network characteristics using VOSviewer (Van 
Eck & Waltman, 2010). 
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Figure 4: Three groups of universities are distinguished using w < 0.1; modularity Q = 0.06 

(Blondel et al., 2008); layout VOSviewer.  

 
Figure 4 shows three groups: on the right side of the figure the top universities are indicated in 

red.2 In addition to American universities, some British universities are sorted into this class. 

Harvard University, however, is classified with a large group of universities in a second class 

indicated in green. As we noted in a study about university patenting (Leydesdorff, Etzkowitz, & 

Kushnir, 2016), the main divide perhaps emerges between a North-Atlantic (green) and an 

Asian-Pacific group (blue).  

 

  

                                                

2 Given the denser packings when using the much smaller w- values when compared with z-values, the modularity 
of the networks—indicated in the legends of the figures—is smaller by an order of magnitude.  
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When we raise the threshold to w < .3, two groups remain (not shown here). The interpretation is 

again not obvious. It may be easier to provide the differences with an interpretation using 

national sets. We continue the discussion in the next sections using specific national systems of 

universities. One preliminary conclusion is that the effect sizes between universities are small 

even if the statistical significance of a difference is high. In other words, the two methods (of 

significance testing and effect sizes) do not indicate the same thing.  

 

4.2. Universities in the United Kingdom 

 

The university system of the UK has been very much under discussion because of periodical 

evaluations such as the Research Excellence Framework (REF 2014; Wilsdon et al., 2015; 

Wouters et al., 2015). Although these evaluations are at the disciplinary level, they are organized 

institutionally at the university level. Universities are ranked in terms of a number between zero 

and five. These rankings have consequences for the funding. 

 

LR 2017 covers 47 UK universities. Based on overlapping stability intervals among these 

universities, three groups are distinguished and one isolate, the London School of Hygiene and 

Tropical Medicine (Figure 5). Of the papers of this medical college, 21.1% belong to the top-

10% set, against 18.4% for Oxford University which follows in the second position. The z-test 

generates two groups of universities at the 1% and three at the 5% level (Figure 6); with again 

the same isolate in both configurations. However, one should keep in mind that this is a 

representation of only 47 of the approximately 130 universities in the UK including former 

polytechnics and colleges. The latter group of (130 - 47 =) 83 universities can be considered as 
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another group which is not included in the LR because of being insufficiently a research 

university.
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Figure 5: Overlapping stability intervals used as grouping criterion for 47 UK universities covered by the Leiden Ranking 2017; three 
communities distinguished with modularity Q = 0.24 (Blondel et al., 2008); VOSviewer used for the visualization.
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Figure 6: Classification of 47 universities in the UK; p<.05; Q = 0.20; layout VOSviewer. 

 

Figure 6 shows the classification on the basis of significance testing at the 5% level. The figure is 

rather similar to Figure 5. Figure 7 shows the corresponding figure using effect sizes (w < .1). 

Two groups of universities are distinguished at both w < .1 and w < .3. (The corresponding 
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figure for w < .3 is not essentially different.) However, the resulting classes are different from 

those based on statistical significance testing in important respects. Some universities belonging 

to the top-group in Figure 5 are now placed in the second group; for example, King’s College 

London and Queen Mary University of London.  

 

 
Figure 7: Classification of 47 UK universities in terms of effect sizes; w < .1; VOSviewer used 
for layout; Q = 0.024. 
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Table 2: Correspondence and differences among classifications of UK universities (n =  47). 

Cramèヴげゲ V Stability 

intervals 

|z| < 2.576; 

p<.01 

|z| < 1.96; 

p<.05 

 

w<.1 

p<.01 0.834
***

    

p<.05 0.869
***

 0.848
***

   

w<.1 0.454 0.273 0.237  

w<.3 0.354 0.264 0.166 0.821
***

 
***

p < .001 

 

A measure for the (lack of) correspondence between the classifications is provided by Cramèr’s 

V, which is based on chi-square statistics, but which conveniently varies between zero and one. 

Table 2 shows these values among the five options discussed here: the classification based on 

overlapping stability intervals and the two classifications based on statistical significance testing, 

correlate highly (V >  0.8; p <.001); the two based on effect sizes also correlate (V = .821; p 

<.001); but there is a much lower correlation between classifications based on effect sizes and 

the other tests (p >.05). The relatively simple grouping on the basis of intersecting stability 

intervals is not outperformed by the other statistics. 
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Table 3: Group of elite universities in the UK indicated using different tests. 
 
Overlapping stability intervals |z| < 1.96; p <.05 |z| < 2.576; p <.01 w<.1 w<.3 

Imperial College London Imperial College London Bangor University Cardiff University Cardiff University 

King's College London King's College London Durham University Imperial College London Imperial College London 

Queen Mary University of London Queen Mary University of London Imperial College London Loughborough University King's College London 

University College London University College London King's College London Newcastle University Loughborough University 

University of Bristol University of Bristol London School of Economics and Queen's University Belfast Queen's University Belfast 

University of Cambridge University of Cambridge Newcastle University Swansea University Swansea University 

University of Dundee University of Dundee Queen Mary University of London University College London University College London 

University of Exeter University of Edinburgh University College London University of Bristol University of Birmingham 

University of Oxford University of Exeter University of Aberdeen University of Cambridge University of Bristol 

 University of Oxford University of Bristol University of Edinburgh University of Cambridge 

 University of Reading University of Cambridge University of Glasgow University of Edinburgh 

 University of St Andrews University of Dundee University of Leeds University of Glasgow 

  University of Edinburgh University of Leicester University of Leeds 

  University of Exeter University of Manchester University of Leicester 

  University of Leeds University of Nottingham University of Liverpool 

  University of Liverpool University of Oxford University of Manchester 

  University of Oxford University of Southampton University of Nottingham 

  University of Reading University of Strathclyde University of Oxford 

  University of St Andrews University of Surrey University of Sheffield 

  University of Surrey 

 

University of Southampton 

  University of Warwick 

 

University of Strathclyde 

  University of York 
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Table 3 lists the UK universities that are on the top-list in each of the five classifications. 

Universities included on all five lists are boldfaced. Most of them are top universities as judged 

by the 2014 REF. However, on the basis of this most recent REF (bracketed figures are REF 

ranking): 

 

1. King’s College (7th), LSE (3rd) and Warwick (9th) would be included in the boldfaced 

group; 

2. Bangor (42nd), Newcastle (26th), Aberdeen (46th), Dundee (38th), Liverpool (33rd), 

Reading (39th), and Surrey (45th) would not be in the top group. 

 

Warwick is absent from three of the five listings in Table 3, whereas King’s College London 

misses only on the list based on w <.1. The University of Edinburgh is not included when one 

uses overlaps of stability intervals as the criterion. The number of false positives is maximal 

(seven) for the classification based on p<.01 (but this is the longest list given this methodology). 

A choice between using effect sizes or significance testing is not obvious given these results, but 

the results are significantly different using either technique. It is also not obvious how the one 

analysis can inform the other. Again, the statistical significance tests suggest larger differences 

among universities than the analyses in terms of effect sizes. 

 

4.3 Germany 

 

The German science system has recently received very positive comments. “During a decade of 

global financial turbulence, her (that is, Angela Merkel’s) government has increased annual 
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science budgets in a stable, predictable, quintessentially German way. It has spurred competition 

among universities and improved collaboration with the country’s unique publicly funded 

research institutions” (Abbott, 2017, at p. 18).  

 

In 2006, the so-called Excellence Initiative was launched providing €1.9 billion of additional 

funding for three funding lines between 2006 and 2011: (1) graduate schools to promote early 

career researchers; (2) Clusters of Excellence to promote top-level research; and (3) institutional 

strategies to promote top-level university research (Bornmann, 2016). Universities awarded in 

the third funding scheme have been honoured with an elite status (Schröder et al., 2014). As a 

result of the excellence initiative and further changes, according to Abbott (2017), “German 

universities have climbed up the world rankings. In 2005, only 9 German universities appeared 

in the Times Higher Education top 200. Now, there are 22. The LMU, which tops the German 

list in most years and has won in each round of the Excellence Initiative, rose from 61st place in 

2011 to 30th in 2017” (p. 21). 

 

Fifty German universities are included in the Leiden Ranking 2017. The z-test generates two 

groups of universities at the 1% and three at the 5% level. Figure 8 shows the latter three groups; 

universities which are in the excellence initiative of the German government are indicated by 

italicized labels in brown. (See Figure 1 above for the organization into two groups based on 

intersecting stability intervals.)
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Figure 8: Classification of 50 research universities in Germany; p <.05; labels of excellent universities italicized and in brown. 
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Figure 9: Classification of 50 research universities in Germany; w < 0.3 

 
Figure 9 shows the classification using effect sizes. The difference between a map based on w < 

0.3 or w < 0.1 is negligibly small because the w-values are anyhow smaller than 0.1 (with one 

exception).  

 

Most universities that received grants in the Excellence Initiative are in the same group in both 

figures, but there are important exceptions: the University of Konstanz, for example, appears on 
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the far left side in Figure 8, but on the right side in Figure 9. Conversely, the University of 

Bremen is part of the green group in Figure 9, but among the lower-ranked universities in Figure 

8. The difference between these two universities—both belonging to the “excellence” group as 

defined by the Excellence Initiative—is statistically significant at the .001 level (|z| = 4.252). But 

the effect size w is still only 0.076 and therefore small. It is not within our purview to draw a 

policy conclusion or provide a recommendation other than noting this inconsistency between the 

selection of “excellence” by the bureaucracy and by LR 2017: one would not expect these two 

universities—Konstanz and Bremen—to be in the same class. 

 

Table 4: Correspondence and difference among classifications of German universities (n =  50). 

Cramèr’s V Stability 
intervals 

|z| <  2.576; 
p<.01 

|z| <  1.96; 
p<.05 

 
w<.1 

p<.01 0.556***     
p<.05 0.825***  0.568***    
w<.1 0.197 0.003 0.154  
w<.3 0.188 0.010 0.117 0.842***  

*** p < .001 
 

The classifications can again be compared using Cramèr’s V as we did above for the UK. The 

pattern is similar: effect sizes and statistical significance are two very different (orthogonal?) 

measures for testing differences. The choice of the statistical significance level has a larger effect 

in this case than in the case of the UK, but otherwise the results are similar. The UK results are 

less sensitive to parameter variations because the stratification among UK universities is more 

pronounced than in the German case.  

  



34 
 

In summary, German and UK universities are organized in not more than three classes: a top 

group, a middle one, and one at the bottom. However, even between members of different groups 

the effect sizes are not large. Any further fine-graining of the groups into subgroups or more 

specific rankings of individual universities is probably based on possible audience effects in the 

market as predicted by Gingras (2016, p. 75). 

 

4.4. Brazil 

 

Nineteen Brazilian universities are covered by the Leiden Ranking 2017. The scores of these 

universities are significantly below 10% on PPtop10% (p < .001). The largest effect size in a 

comparison (w = 0.053) is between the Federal University of Santa Catarina (UFSC) and the 

State University of Rio de Janeiro  (UERJ), where the latter is at the bottom and the former at the 

top of the ranking with PPtop10% = 6.31 and 3.72, respectively.  

 

Using statistical significance testing, three groups of universities were distinguished; and using 

effect sizes or overlapping stability intervals, two. We asked Ricardo Sampaio, a Brazilian 

colleague who focuses on university rankings for domestic policy purposes, for comments. He 

noted that some universities are misplaced in the groupings (not shown as visuals here). For 

example, the Universidade Federal de Minas Gerais is considered as a top university in Brazil, 

but it is placed in the second class with PPtop10%  = 5.11. With PPtop10% = 5.41, the University of 

Brasilia is also placed in this second group,  but with PPtop10% = 5.71 the University of Sao Paulo 

is ranked in the first grouping. In other words, the differences are small and seem more 

determined by the respective volume of publications than PPtop10%. For example, the University 
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of Sao Paulo produced 15,314 publications in the period under study (2012-2015), while this 

number is only 1,490 for the University of Brasilia.  

 

4.5. United States 

 

Let us finally turn once more to the USA. As noted, U.S. universities dominated the patterns 

discussed in section 4.1 for the entire set. The figures for the 177 U.S. universities are not so 

different from what one would expect: a group of top universities (including Harvard, etc.), one 

or two medium groups, and a lower-ranked group. Figure 10a shows the four groups 

distinguished using overlapping stability intervals as criterion and Figure 10b the three groups on 

the basis of z-testing. In both cases and as before, MIT and Rockefeller University are 

additionally depicted as isolates.  



36 
 

 
 

 

Figures 10a and 10b: 177 American universities clustered according to the criterion of overlapping stability intervals (six clusters 

including two isolates; Q = 0.35; Figure 10a on the left) and on the basis of signifcance testing (p<.01; Q = 0.24; five clusters 

including two isolates) in Figure 10b on the right. 
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If we change to effect sizes, two groups are distinguished using the threshold of w < 0.3 and 

three groups for w < 0.1. Figure 11 provides the solution for two groups. We have not been able 

to provide this major divide with a meaningful interpretation. Both major and less-known 

universities are present in both groups. Our previous suggestion to distinguish between an 

Atlantically and Pacifically oriented set does not hold at this level of the U.S. as a nation. 

 

 

 

Figure 11: Distinction of two groups of American universities; N = 177; w < 0.3; VOSviewer 

used for the layout; Louvain algorithm for the decomposition. 



38 
 

 

Table 5: Correspondence and differences among classifications of 177 American universities.  
Cヴ;ﾏXヴげゲ V Stability 

intervals 

|z| < 2.576; 

p<.01 

|z| < 1.96; 

p<.05 

 

w<.1 

p<.01 0.935
***

    

p<.05 0.831
***

 0.860
***

   

w<.1 0.365
***

 0.487
***

 0.460
***

  

w<.3 0.343
***

 0.226 0.223 745
***

 
       ***

p < .001 

 

Not surprisingly, Table 5 shows the same pattern as Tables 2 and 4 above. The larger sample, 

however, leads to more robust correlations.  

 

4.6. Comparison of effect sizes among national systems. 

 

Figure 12 shows the inequality among universities in these four national systems by plotting the 

effect sizes of the possible comparisons in decreasing order.  
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Figure 12: Distributions of (47 * 46 / 2 =) 1081 effect sizes w among 47 UK universities, (50 * 
49 /2 = ) 1225 among 50 German universities, (177 * 176 /2 =) 15,576 among 177 American 

universities, and (19 * 18 /2) = 171 among 19 Brazilian universities. 
 

American universities are most strongly stratified: w > .3 in seven comparisons and >.2 in 103 

others. In the UK case, there are 26 comparisons (among 1081) with an effect size of w ≥ .1; in 

Germany, this effect size is virtually absent. The curves for Brazil and Germany are comparable, 

but at different levels. 

 

5. Conclusions and discussion 

 

We have analyzed the significance of differences in scores of universities on the LR 2017 in 

terms of effect sizes, stability intervals, and using the z-test. The main conclusion is that large 
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groups of universities can be classified as belonging to the same group, and that differences 

among universities are often small if not negligible. Universities, in our opinion, tend to be 

isomorphic—that is, they operate under similar incentive structures and imitate one another. 

Both worldwide and at each country’s level, a top-group can be identified and there is a further 

meaningful distinction between one or two groups in the middle range versus a group at the 

bottom. Note that there is also another group of universities which are not included in LR 

because they are not considered research universities or do not fullfil the requirements for 

inclusion.  

 

Methodologically, our main conclusion is the unrelatedness of the differences using statistical 

significance tests or effect sizes. The results of the testing with (z-)statistics and stability 

intervals remain closer to the rankings and are intuitively more meaningful than the results of 

using effect sizes. The latter are not easily interpretable and sometimes counter-intuitive. Within 

each of the tests, parameter choices lead to relatively small changes in classifications. However, 

the measures themselves indicate different dimensions. We have not been able to provide the 

results in terms of effect sizes with a meaningful interpretation. Our results confirm the 

conclusion of Bornmann et al.’s (2013) analysis of LR 2011 that only 5% of the PPtop10% total 

variation can be traced back to differences between universities. Most of the variation can be 

explained by the location of universities in different countries.  
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6. Limitations 

 

The classification suggests disambiguities whereas dividing lines may be much more fuzzy and 

polymorphic. The universities cannot be divided unambiguously, but each would have a range of 

possible ranks and associations depending on the reference sets and the parameters used by the 

analysts. We made parameter choices and used thresholds for effect sizes or z-values while 

knowing that there are no “bright-line” rules of yes/no decisions. However, the modularity 

algorithm imposes a clustering since a university on the border between two groups cannot be 

fractionally a member of both of them.  

 

Furthermore, one can question the use of universities as units of analysis for rankings. It might 

be more appropriate to rank other units, such as research groups or departments. Universities are 

multi-disciplinary, whereas excellence is discipline- or even specialty-specific (Brewer et al., 

2001). A further limitation is the use of PPtop 10% as a specific indicator. We used the LR because 

of the quality of the data and the transparency of the methodology. Analogously to PPtop 10%, we 

could have used PPtop 1%, which is similarly available, or any other indicator in this ranking or 

another one. From a methodological perspective, PPtop 10% is a test-case. However, this indicator 

can also be considered as an “excellence indicator” (Bornmann, de Moya Anegón, & 

Leydesdorff, 2010; Leydesdorff, Wagner, & Bornmann, 2014). 

 

Given these limitations, the main result is counter-intuitive and therefore interesting: cutting the 

sample into three or four groups may at first glance seem to ignore reality, but it is the only 

conclusion that we could draw. Although one should not reify these results, they provide an 
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orientation. For practical purposes, our results suggest that networks based on overlapping 

stability intervals can provide a first impression of the relevant groupings among universities. 

The corresponding files (e.g., “Germany_o.net” underlying Fig. 1) can be read directly into a 

network analysis or visualization program. 

 

7. Policy implications 

 

The rankings generate a construct that seems to be fine-grained, but that can be analyzed as 

containing not more meaningful information than a division in three or four groups. The policy 

implication is that attempts to pursue rankings among universities focus on differences while the 

similarities and group structures of universities are backgrounded. Universities, however, are 

embedded in eco-systems, for example, at the national level. Competition among them has been 

induced by policies aiming to promote excellence. In the case of Germany, however, we found 

not always a direct relation between the Excellence Initiative of the German government and our 

grouping. Policies may be motivated also by other considerations than research excellence.  

 

In the case of the UK, there were also important differences between the outcome of the REF 

2014 and our classifications. We do not wish to claim priority for a statistical approach above a 

content-based one such as REF 2014 or the German Excellence Initiative. Discrepancies between 

the content-based and quantitative approaches may provide entrance points for further reflection 

and investigation. Our main aim has been to show that in each eco-system groups of universities 

are not significantly different. One may wish to differentiate policies for these different groups. 

However, we expect cultural patterns such as the prestige and status of a university to be sticky 
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issues. One may have to fight an uphill battle to promote a peripheral university ahead of a 

central one. 
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Appendix 1 

The measurement of effect sizes and the statistical significance of differences among universities 

using the Leiden Rankings. 

 

1. Download the program from http://www.leydesdorff.net/software/leiden/leiden.exe . 

2. Download the data at http://www.leidenranking.com/downloads in the Excel format. 

3. Copy the fields “university,” country,” “field,” “period,” “fractional,” “p,” “p_top10,” 

and “pp_top10” for the selection that one wishes to analyze to a separate worksheet; save 

this worksheet as “CSV (comma delimited)” to a file leiden.csv in the same folder as the 

program. Do not use another format (for Apple or DOS), since only this format preserves 

the diacritical characters.  

4. Run the program; read the .net and .vec files into Pajek for the country under study. 

Within Pajek: > Options > Read – Write > UTF8; 

5. Use Network > Transform > Remove > Lines > higher than > 1.96 for generating a file at 

the 5% level; mutatis mutandis. 

6. Draw > (Network + Partition + Vector) > Export > 2D > VOSviewer. The vector file is 

needed for the node sizes. 

 


