Kent Academic Repository Full text document (pdf)

Citation for published version

Yowang, Amara and Tsaousis, Anastasios D and Chumphonsuk, Tawatchai and Thongsin, Nontaphat and Kullawong, Niwed and Popluechai, Siam and Gentekaki, Eleni (2018) High diversity of Blastocystis subtypes isolated from asymptomatic adults living in Chiang Rai, Thailand. Infection Genetics and Evolution, 65. pp. 270-275. ISSN 1567-1348.

DOI

https://doi.org/10.1016/j.meegid.2018.08.010

Link to record in KAR

http://kar.kent.ac.uk/68539/

Document Version

Author's Accepted Manuscript

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: **researchsupport@kent.ac.uk**

If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html

Elsevier Editorial System(tm) for Infection,

Genetics and Evolution

Manuscript Draft

Manuscript Number: MEEGID-D-18-00238R1

Title: High diversity of Blastocystis subtypes isolated from asymptomatic adults living in Chiang Rai, Thailand

Article Type: Research paper

Keywords: Blastocystis; genetic diversity; prevalence; subtyping; Thailand

Corresponding Author: Dr. Eleni Gentekaki,

Corresponding Author's Institution:

First Author: Amara Yowang

Order of Authors: Amara Yowang; Anastasios Tsaousis; Tawatchai Chumphonsuk; Nontaphat Thongsin; Niwed Kullawong; Siam Popluechai; Eleni Gentekaki

Abstract: Blastocystis is a common and broadly distributed microbial eukaryote inhabiting the gut of humans and other animals. The genetic diversity of Blastocystis is extremely high comprising no less than 17 subtypes in mammals and birds. Nonetheless, little is known about the prevalence and distribution of Blastocystis subtypes colonising humans in Thailand. Molecular surveys of Blastocystis remain extremely limited and usually focus on the central, urban part of the country. To address this knowledge gap, we collected stool samples from a population of Thai adults (n=178) residing in Chiang Rai Province. The barcoding region of the small subunit ribosomal RNA was employed to screen for Blastocystis and identify the subtype. Forty-one stool samples (23%) were identified as Blastocystis positive. Six of the nine subtypes that colonise humans were detected with subtype (ST) three being the most common (68%), followed by ST1 (17%) and ST7 (7%). Comparison of subtype prevalence across Thailand using all publicly available sequences showed that subtype distribution differs among geographic regions in the country. ST1 was most commonly encountered in the central region of Thailand, while ST3 dominated in the more rural north and northeast regions. ST2 was absent in the northeast, while ST7 was not found in the center. Thus, this study shows that ST prevalence and distribution differs not only among countries, but also among geographic regions within a country. Potential explanations for these observations are discussed herewith.

April 8, 2018

Editorial Board, Infection Genetics and Evolution

Dear Editors,

Here we submit a revised version of our manuscript entitled: "High diversity of Blastocystis subtypes isolated from asymptomatic adults living in Chiang Rai, Thailand".

We have addressed all the comments from the reviewers and hope the manuscript is now suitable for publication.

The manuscript contains only original data that have not been submitted or published elsewhere. We look forward to hearing from you regarding our revised manuscript.

Sincerely,

Eleni Gentekaki, Ph.D.

We thank the reviewers for the positive comments on our manuscript. Below, we address the reviewers' points. Replies are in bold lettering.

Reviewer #1

I think the title is not fit to this manuscript, because the new data obtained in this study was limited from northern region of Thailand.

We have modified the title as follows: High diversity of *Blastocystis* subtypes isolated from asymptomatic adults living in Chiang Rai, Thailand

Line 51-:

Description in this sentence is incorrect, because there are many Blastocystis organisms had been identified in addition to 17 kinds of the STs.

We have added the following sentence to account for the lineages composed of reptilian, amphibian and insect sequences and which have not been assigned to subtypes. Lines 54-56: <u>Isolates from avian and mammalian hosts</u> are currently classified into 17 subtypes (STs) based on the divergence of the small subunit ribosomal RNA (SSU rRNA), though new STs might be arising (Alfellani et al., 2013c; Betts et al., 2018;). Blastocystis isolated from reptilian, amphibian and insect hosts are distinct and are not assigned into subtypes.

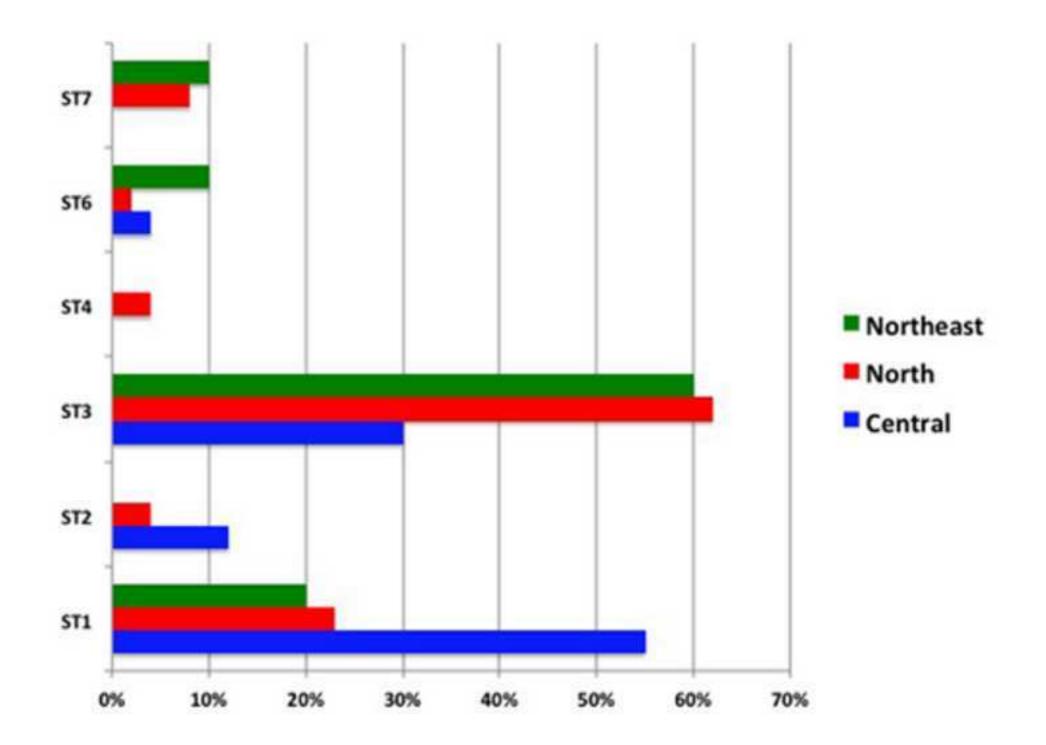
Lines 56-: I think that ST9 is only isolated from humans.

We have added the following sentence in lines 59-60: The exception is ST9, which has yet to be found in a non-human host.

Line 153-: I am confusing " the alignment contained 1,379 sites", because only barcode-region (ca. 600bp) was amplified by the nested-PCR for sequencing in this study.

Indeed, even though we amplified the barcode region, our alignment contained many full-length sequences (~1800bp). Thus, after trimming, the remaining sites were more than 600bp. This is standard practice in phylogenetics, whereby missing data is the norm. By doing this we improve resolution of the phylogenetic tree and strengthen support at the nodes. The topology of the tree remains unchanged. Many investigators do the same. For instance, Alfellani et al., 2013. Genetic diversity of Blastocystis in Livestock and zoo animals, also amplified the barcoding region, but their alignment contained 1,462 sites.

Discussion


I feel the discussion is too long for the results, pleases concise the discussion. Several parts may be deleted where doesn't match the purpose of this study (lines 83-).

Our discussion consists of four parts: 1) asymptomatic carriage of Blastocystis, 2) comparison of prevalence rates to other studies in Thailand, 3) subtypes detected in this study, and 4) subtype distribution in Thailand. We have shortened the discussion in parts three and four.

Reviewer #2

My only comment is that it is a small study sample number for the Chiang Rai study population and all are asymptomatic. This makes it difficult to know the true prevalence of Blastocystis in this region. Only using asymptomatic people means that you might be missing a large number of positives and potential different STs which may come from symptomatic people. This limitation should be stated in the discussion.

We agree with the reviewer's comment. The purpose of this pilot study was to examine which subtypes circulate in asymptomatic individuals. To that end, we have changed the title to reflect our study site and sampled population and we have also emphasized this in the discussion (Lines: 204-205, 270-271, 278-279).

KEY FINDINGS

- First study of Blastocystis prevalence and subtyping in Chiang Rai Province, Thailand
- Six of the nine subtypes known to colonize humans were found
- ST3 is the dominant ST followed by ST1 and ST7
- Distribution of Blastocystis subtypes among geographic regions of Thailand differs

1	High diversity of Blastocystis subtypes isolated from asymptomatic adults living
2	in Chiang Rai, Thailand
3	Amara Yowang ^a , Anastasios D. Tsaousis ^b , Tawatchai Chumphonsuk ^a , Nontaphat
4	Thongsin ^a , Niwed Kullawong ^{c,d} , Siam Popluechai ^{a,d} , Eleni Gentekaki ^{a,*}
5	
6	^a School of Science, Mae Fah Luang University, Chiang Rai, Thailand
7	^b Laboratory of Molecular and Evolutionary Parasitology, RAPID group, School of
8	Biosciences, University of Kent, Canterbury, Kent, UK
9	^c School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand
10	^d Human Gut Microbiome for Health Research Unit, Mae Fah Luang University,
11	Chiang Rai, Thailand
12	
13	Running title: Blastocystis diversity and subtyping in Thai adults
14	
15	*Corresponding author: Eleni Gentekaki, Mae Fah Luang University, Chiang Rai,
16	Thailand. Tel: +66 5391 6776, Fax: +66 5391 6768, E-mail: gentekaki.ele@mfu.ac.th
17	
18	
19	
20	
21	

22 Abstract

24	Blastocystis is a common and broadly distributed microbial eukaryote inhabiting the
25	gut of humans and other animals. The genetic diversity of Blastocystis is extremely
26	high comprising no less than 17 subtypes in mammals and birds. Nonetheless, little is
27	known about the prevalence and distribution of Blastocystis subtypes colonising
28	humans in Thailand. Molecular surveys of Blastocystis remain extremely limited and
29	usually focus on the central, urban part of the country. To address this knowledge gap,
30	we collected stool samples from a population of Thai adults (n=178) residing in
31	Chiang Rai Province. The barcoding region of the small subunit ribosomal RNA was
32	employed to screen for Blastocystis and identify the subtype. Forty-one stool samples
33	(23%) were identified as Blastocystis positive. Six of the nine subtypes that colonise
34	humans were detected with subtype (ST) three being the most common (68%),
35	followed by ST1 (17%) and ST7 (7%). Comparison of subtype prevalence across
36	Thailand using all publicly available sequences showed that subtype distribution
37	differs among geographic regions in the country. ST1 was most commonly
38	encountered in the central region of Thailand, while ST3 dominated in the more rural
39	north and northeast regions. ST2 was absent in the northeast, while ST7 was not
40	found in the center. Thus, this study shows that ST prevalence and distribution differs
41	not only among countries, but also among geographic regions within a country.
42	Potential explanations for these observations are discussed herewith.
43	
44	
45	Keywords: Blastocystis; genetic diversity; prevalence; subtyping; Thailand

47 **1. Introduction**

48

49 Blastocystis is the most commonly found protist in the gastrointestinal tract of humans and other animals (Roberts et al., 2013; Tan, 2008). Though Blastocystis 50 51 exhibits morphological stasis, it has a high degree of genetic heterogeneity. Isolates 52 from avian and mammalian hosts are currently classified into 17 subtypes (STs) based on the divergence of the small subunit ribosomal RNA (SSU rRNA), though new STs 53 might be arising (Alfellani et al., 2013c; Betts et al., 2018;). Blastocystis isolated from 54 55 reptilian, amphibian and insect hosts are distinct and are not assigned into subtypes. So far, only ST1-ST9 have been found in humans with ST1-ST4 being the most 56 common colonisers (Alfellani et al., 2013b). However, these STs have also been 57 58 detected in a variety of non-human hosts, suggesting that Blastocystis has low host specificity (Stensvold and Clark 2016). The exception is ST9, which has yet to be 59 60 found in a non-human host. The rest of the STs have so far been identified in both 61 domesticated and wildlife animal hosts (Alfellani et al., 2013a). Lately, considerable research effort has gone into deciphering potential roles 62 63 of Blastocystis in intestinal disease. For instance, an association between presence of Blastocystis and irritable bowel syndrome has been discussed frequently, though a 64 65 definitive causal link has yet to be postulated (Jimenez-Gonzalez et al., 2012; 66 Khademvatan et al., 2017; Poirer et al., 2012; Yakoob et al., 2010). Nonetheless, emerging data have shown presence of Blastocystis in asymptomatic individuals 67 leading to the hypothesis that the organism is part of the healthy adult gut microbiota 68 69 and that only specific STs and/or genotypes might be pathogenic (Chabe et al., 2017; Scanlan and Stensvold, 2013; Scanlan et al., 2014; Stensvold and van der Giezen, 70 71 2018). In this context, surveys examining prevalence of Blastocystis should ideally be

accompanied by subtyping. Thus, while the cosmopolitan status of Blastocystis is well
established, geographic distribution of specific subtypes and their prevalence are
relatively recent endeavors.

75 Research efforts on the latter two are disproportionate among countries and/or geographic regions: a plethora of Blastocystis studies come from the Americas and 76 Europe, whilst Asia remains disproportionately sampled, given that half of the earth's 77 78 population resides in Asian countries (El Safadi et al., 2016; Scanlan et al., 2016; Villegas-Gomez et al., 2016). Collectively, these studies have shown that ST3 is the 79 80 most prevalent one in almost all regions that have been examined, with a notable exception (Oliveira-Arbex et al., 2018). Prevalence of the other common STs -81 82 namely ST1, ST2, and ST4 - seems to be dependent on geographic region, while 83 ST6-ST9 are not as commonly encountered (Beghini et al., 2017; Stensvold and 84 Clark, 2016).

Herein, we collected samples from 178 asymptomatic adult humans living in Chiang Rai Province, Thailand and examined the prevalence, genetic diversity and distribution of Blastocystis. The region combines several particularities, which have created a culture and lifestyle that differs from other regions of Thailand. We provide the first subtyping data from the area, thus expanding knowledge on Blastocystis ST distribution and prevalence in the country.

91

92 **2. Materials and Methods**

93

94 **2.1. Ethics statement**

95 The human ethics committee of Mae Fah Luang University approved
96 collection of fecal samples from adult Thai volunteers (License approval number

97 REH-60104). Volunteers signed an informed consent form before participating in the98 study.

99

100 **2.2. Human subjects**

All volunteers were over 18 years old, Thai and lived in Chiang Rai Province 101 at the time of sampling (Fig. 1). In total, 178 adult volunteers participated in the 102 study. The volunteers had no history of gastrointestinal symptoms, no diarrhea 103 episodes a month prior to sampling and had received no antibiotic treatment at least 104 105 two months prior to sample collection. 106 2.3. Stool collection and DNA extraction 107 108 Fecal samples were collected from the volunteers using sealed, sterile containers and stored at -80°C until DNA extraction. Samples were collected from 109

110 six districts of Chiang Rai Province: Mae Chan (n=20), Mae Lao (n=20), Mae Sai

111 (n=25), Muang (n=69), Pa Daet (n=23) and Phaya Mengrai (n=21) (Fig. 1). Total

112 DNA was isolated using the QIAamp DNA Stool Mini Kit (Qiagen, Thailand)

according to manufacturer's specifications. The extracted DNA was stored at -20 °C

114 for later use.

115

116 2.4. PCR amplification, amplicon purification and sequencing

117 Polymerase chain reaction (PCR) was used to amplify a 650 bp fragment of

the SSUrRNA at the 5' of the gene. This fragment is considered the barcoding region

119 of Blastocystis spp. (Scicluna et al., 2006).

120 Two PCR reactions were used to amplify the SSUrRNA gene of Blastocystis.

121 The broadly specific primers, RD5 5' -

122 UUAAUCITATCIUUITUATCCIUCCAUTA – J aliu KDJ J	122	GGAAGCTTATCTGGTTGATCCTGCCAGTA – 3' a	ind RD3 5'	—
--	-----	--------------------------------------	------------	---

123	GGGATCCTGATCCTTCCGCAGGTTCACCTAC – 3' were used for the primary
124	PCR reaction (Clark, 1997). The total volume of each reaction was 25µl containing
125	the following reagents: 10X reaction buffer, 1 mM MgCl ₂ , 0.1 mM dNTPs, 0.2 μ M
126	forward primer, 0.2 μ M reverse primer, 5U Taq DNA polymerase (RBC Bioscience,
127	New Taipei City, Taiwan) and 12 μ l HPLC grade water. Cycling conditions were as
128	follows: initial denaturation at 94 °C for 3 min followed by 35 cycles of denaturation
129	at 94 °C for 1 min 40 s, annealing at 65 °C for 1 min 40 s, extension at 72 °C for 1
130	min 40 s followed by a final extension at 72 °C for 10 min.
131	The more narrowly specific primers RD5F 5' – ATCTGGTCGATCCTG
132	CCAGT – 3' and BhRDr 5' – GAGCTTTTTAACTGCAACAACG – 3' were
133	employed for the secondary, nested PCR reaction. Reaction volume and concentration
134	of reagents were as in the primary PCR with the exception of the DNA template.
135	Instead of genomic fecal DNA, one μ l from the primary PCR reaction was used.
136	Cycling conditions were as follows: denaturation at 94 °C for 3 min, followed by 35
137	cycles of denaturation at 94 °C for 1 min, annealing at 55 °C for 1 min and extension
138	at 72 °C for 1 min and a final extension at 72 °C for 10 min.
139	Positive PCR reactions were purified using the <i>HiYieldTM</i> Gel/PCR Fragments
140	Extraction Kit (RBC bioscience, USA) according to manufacturer's specifications.
141	Purified PCR products were sequenced by 1stBASE, Malaysia.
142	
143	2.5. Subtyping and phylogenetic analysis
144	The obtained sequences were examined and poor quality bases at the 5' and
145	3'ends of the sequence were removed. Sequences were then subjected to BLAST

search against GenBank database to exclude contamination. Sequences identified as

Blastocystis, were further checked against the Blastocystis Subtype Sequence Typing
(MLST) publicly available at <u>http://pubmlst.org/blastocystis/</u>, in order to identify
subtype and the corresponding allele.

150 The new sequences identified as Blastocystis along with sequences spanning the breadth of diversity of Blastocystis (all subtypes and sequences from ectotherms) 151 were used to construct the dataset. In total, 103 sequences were aligned using MAFFT 152 153 v. 7 (Katoh and Toh, 2010), visually inspected and further improved manually. Ambiguous regions were removed with trimAl v. 1.3 (Capella-Gutierrez et al., 2009). 154 155 After trimming, the alignment contained 1,379 sites. A maximum likelihood (ML) phylogenetic tree was constructed using RAxML v. 8 (Stamatakis, 2006) and the 156 general time reversible + Γ model of nucleotide substitution. The heuristic tree search 157 158 was based on 20 starting trees. One thousand bootstrap replicates were generated and 159 used for ML analysis. MrBayes v. 3.2.6 (Ronquist and Huelsenbeck, 2003) was used to construct the Bayesian Inference (BI) tree using the same model as above. Two sets 160 161 of four independent Markov Chain Monte Carlo simulations were run for 1,500,000 generations. Sampling was done every 1,000 generations and 25% were discarded as 162 burn-in. Convergence was declared when the standard deviation of split sequences 163 was less than 0.01. Phylogenetic analyses were conducted on the Cipres Science 164 165 Gateway (http://www.phylo.org/portal2/home.action).

To further examine distribution of subtypes across Thailand, we downloaded all Blastocystis sequences with the following identifiers: country =Thailand and host=Homo sapiens. In total, 161 Blastocystis sequences were used for the analysis of ST prevalence. For the ST distribution across Thailand 159 were used. Two sequences were removed because the exact locality of collection was not noted.

171

3. Results 172

173

3.1. Screening of fecal samples 174

Of the 178 samples, 41 (23%) were sequence positive for Blastocystis (Table 175 1). Differences were noted in the percent prevalence among districts. The highest 176 prevalence was observed in Phaya Mengrai District (33%), while the lowest was 177 noted in Mae Chan and Mae Lao Districts (15%). 178

179

3.2. Subtype prevalence and distribution 180

Blastocystis prevalence in our study population was 23% (41/178). In total, six 181

of the nine STs that colonise humans were identified in this study: ST1 (n=7, 17%), 182

183 ST2 (n=1, 2%), ST3 (n=28, 68%), ST4 (n=1, 2%), ST6 (n=1, 2%) and ST7 (n=3, 7%).

Two alleles of ST1 were detected with the dominant one being allele 4, while four 184

185 alleles were found within the dominant ST3 (Fig. 2). Even though only three

sequences are available for ST7, two alleles were detected, suggesting a high degree 186

of genetic diversity for this ST in the study population. The prevalence of the various 187

188 Blastocystis subtypes in Thailand resembles the rest of the world (Fig. 3). Subtype 3 is

the most prevalent one, followed by ST1, ST2, ST6 and ST7. Nonetheless, notable 189

differences emerge when looking at the prevalence of STs according to geographic 190

```
191
       region (Fig. 4).
```

All newly generated sequences have been submitted to GenBank (submission 192 number SUB3865516) 193

3.3. Phylogenetic analyses 194

All newly derived sequences grouped within clades formed by previously 195 196 reported STs (Fig. 5). In agreement with previous studies, isolates from ectothermic

metazoans and those from ST15, ST16 and ST17 placed at a basal position (Betts et
al., 2018; Yoshikawa et al., 2016). Placement of the new sequences confirmed ST
predictions from the pubmlst website. The rest of the STs grouped into two large
clusters, once consisting of ST3, ST4, ST8 and ST10 and the other formed by the
remaining STs.

202

203 **4. Discussion**

204 All samples herein were collected from asymptomatic adults with no history 205 of gastrointestinal disease. Our results match previous recent reports, which have demonstrated asymptomatic carriage of Blastocystis in populations from westernised 206 and non-westernised countries, as well as, rural and urban settings (Lukeš et al., 207 2015; Parfrey et al., 2014; Scanlan et al., 2014). Findings from analyses of large 208 datasets are also consistent with these observations (Audebert et al., 2016; Beghini et 209 210 al., 2017). These are in contrast with many previous studies that postulate links of Blastocystis with intestinal diseases and dysbiosis (Poirer et al., 2012; Yakoob et al., 211 2010). Thus, it is still unclear, whether Blastocystis is a pathogen, a harmless 212 213 commensal or a beneficial member of gut microbiota. The debate has given rise to the speculation that pathogenicity of Blastocystis is limited to specific genotypes with the 214 majority of them being harmless (Scanlan and Stensvold, 2013; Tan et al., 2010). 215 216 Given the polymicrobial nature of the gut, an as yet unexplored theme in the context of ecological theory, is whether Blastocystis becomes pathogenic through synergistic 217 action with other microbes and/or their metabolic products. Nonetheless, the 218 219 asymptomatic carriage of Blastocystis found in our study and others reinforces the idea of it being a part of the healthy gut microbiota. 220

We used PCR to amplify the barcoding region of Blastocystis (Scicluna et al., 221 2006) from 178 fecal samples. This method demonstrated that the overall prevalence 222 of Blastocystis in our study population was 23%. It is difficult to determine how this 223 224 prevalence rate compares to other studies from Thailand. Blastocystis detection in the country is primarily based on microscopy (Boonjaraspinyo et al., 2013; Kitvatanachai 225 and Rhongbutsri, 2013; Kitvatanachai et al., 2008; Ngrenngarmlert et al., 2007; 226 227 Pipatsatitpong et al., 2012; Sagnuankiat et al., 2014). In general, microscopy is less sensitive and underestimates prevalence. Molecular-based studies on Blastocystis 228 229 constitute a recent development and remain extremely limited (Boondit et al., 2014; 230 Jantermtor et al., 2013; Palasuwan et al., 2016; Pintong et al., 2014; Pipatsatitpong et al., 2015; Popruk et al., 2015; Thathaisong et al., 2013). These molecular surveys 231 232 have shown prevalence ranging from 6% to 51%. The observed variable data from our 233 study and others could be the result of demographically different populations being surveyed. For instance, the highest abundance of Blastocystis was found in orphan 234 235 male children, while residents of communities along Chao Praya River in Ayutthaya Province (central Thailand) had the lowest prevalence (Palasuwan et al., 2016; 236 Pintong et al., 2014). Age, health status of the individuals, and general lifestyle are 237 likely contributing factors accounting for the observed differences among studies 238 239 (Leelayoova et al., 2008).

Subtyping of Blastocystis positive samples identified six of the nine STs known to colonise humans: ST1, ST2, ST3, ST4, ST6 and ST7. ST3 was dominant and present in two thirds of the samples, followed by ST1 and ST7. This is slightly different than the global trend, whereby ST3, ST1 and ST2, in this order, are the most frequently encountered (Stensvold and Clark, 2016). This pattern is also noted in molecular surveys of Blastocystis in neighboring Southeast Asian countries (Laos,

246 Cambodia and Malaysia), except for Laos, where ST1 was the most frequent followed by ST3 and then ST2 (Nithyamathi et al., 2016; Noradilah et al., 2017; Sanpool et al., 247 2017; Wang et al., 2014). Herein, ST2, ST4 and ST6 were found in a single individual 248 249 each. ST4 is a geography-influenced ST and is typically found in Europe, where it is 250 abundant and highly prevalent (Alfellani et al., 2013b; Beghini et al., 2017; Forsell et al., 2016;). Indeed, ST4 occurrence in Southeast Asia is extremely rare having been 251 252 found so far only in Thailand and Malaysia (Nithyamathi et al., 2016; Noradilah et al., 2017; Popruk et al., 2015). 253

254 When all available sequences from human stool samples from Thailand are taken into account (including ours), the most prevalent STs are ST3, ST1 and ST2, a 255 256 pattern that follows the global trend (Stensvold and Clark, 2016). Given the known 257 influence of geography on ST distribution, we zoomed into specific regions. Based on geography, Thailand is divided into four regions: north, northeast, center and south. 258 Thus, when geographic region is taken into account, there are some notable 259 260 differences in the ST distribution. For instance, the relative abundance of ST3 and ST1 changes. ST1 is dominant in the center, while ST3 dominates in the north and 261 northeast. ST2 is absent in the northeast, whilst ST4 has only been found so far in the 262 north. Importantly, the center, which is the most urbanised region of Thailand, has the 263 264 least number of subtypes. Incidentally, this is also the most broadly surveyed region 265 and where most sequences come from. Thus, though we cannot exclude the possibility that some STs circulate in the center and have yet to be detected, this is not very 266 likely. Presence of ST6 and ST7 in the north and northeast could be attributed to 267 268 domestic fowl, especially chickens and geese, which live in close proximity to humans. 269

270	The data obtained herein are the first on prevalence of Blastocystis and
271	distribution of STs in asymptomatic individuals living in Chiang Rai Province. Our
272	data along with other molecular data from Thailand will contribute to the knowledge
273	on the epidemiology of Blastocystis in the country. Nonetheless, major gaps exist, in
274	that: 1) molecular data on Blastocystis from Thailand is scant, thus ST distribution is
275	largely unknown and, 2) the majority of Thai communities have yet to be sampled.
276	For example, there is no molecular data of Blastocystis from the south part of
277	Thailand. Moving forward, future studies should expand to generate subtyping
278	information from more communities across Thailand and also include symptomatic
279	individuals.
280	
281	CONFLICTS OF INTEREST
282	The authors declare no conflict of interest
283	
284	ACKNOWLEDGMENTS
285	We are grateful to all the volunteers that participated in this study. We also wish to
286	acknowledge the Human Gut Microbiome for Health Research Unit, Mae Fah Luang
287	University, Chiang Rai, Thailand.
288	
289	FINANCIAL SUPPORT
290	This project was supported by the Thailand Research Fund (RSA6080048) awarded to
291	E.G. A.D.T. was supported by BBSRC research grant (BB/M009971/1).
292	REFERENCES
293	Alfellani, M.A., Jacob, A.S., Perea, O.N., Krecek, R.C., Taner-Mulla, D., Verweij,

294	J.J., Levecke, B., Tannich, E., Clark, C.G. 2013a. Diversity and distribution of
295	Blastocystis sp. subtypes in non-human primates. Parasitol. 140, 966-971.
296	Alfellani, M.A., Stensvold, C.R., Vidal-Lapiedra, A., Onuoha, E.S., Fagbenro-
297	Beyioku, A.F., Clark, C.G. 2013b. Variable geographic distribution of
298	Blastocystis subtypes and its potential implications. Acta Trop. 126, 11-18.
299	Alfellani, M.A., Taner-Mulla, D., Jacob, A.S., Imeede, C.A., Yoshikawa, H.,
300	Stensvold, C.R., Clark, C.G. 2013c. Genetic diversity of Blastocystis in
301	livestock and zoo animals. Protist. 164, 497-509.
302	Audebert, C., Even, G., Cian, A., The Blastocystis Investigation Group, Loywick, A.,
303	Merlin, S., Viscogliosi, E., Chabé, M. 2016. Colonization with the enteric
304	protozoa Blastocystis is associated with increased diversity of human gut
305	bacterial microbiota. Sci. Rep. 6, doi: 10.1038/srep25255.
306	Beghini, F., Pasolli, E., Truong, T.D., Putignani, L., Cacciò, S.M., Segata, N. 2017.
307	Large-scale comparative metagenomics of Blastocystis, a common member of
308	the human gut microbiome. ISME J. 11, 2848-2863.
309	Betts, E.L., Gentekaki, E., Thomasz, A., Breakell, V., Carpenter, A.I., Tsaousis, A.D.
310	2018. Genetic diversity of Blastocystis in non-primate animals. Parasitol. 17,
311	doi: 101017/S0031182017002347.
312	Boondit, J., Pipatsatitpong, D., Mungthin, M., Taamasri, P., Tan-ariya, P., Naaglor,
313	T., Leelayoova, S. 2014. Incidence and risk factors of Blastocystis infection in
314	orphans at the babies' home, Nonthaburi Province. Thailand. J. Med. Assoc.
315	Thai. 97, (Supplement 2), S52-S59.
316	Boonjaraspinyo, S., Boonmars, T., Kaewsamut, B., Ekobol, N., Laummaunwai, P.,

317	Aukkanimart, R., Wonkchalee, N., Juasook, A., Sriraj, P. 2013. A Cross-
318	sectional study on intestinal parasitic infections in rural communities,
319	Northeast Thailand. Korean J. Parasitol. 51, 727-734.
320	Capella-Gutierrez, S., Silla-Martinez, J.M., Gabaldon, T. 2009. Trimal, a tool for
321	automated alignment trimming in large-scale phylogenetic analyses.
322	Bioinformatics (Oxford, England). 25, 1972-1973.
323	Chabé, M., Lokmer, A., Ségurel, L. 2017. Gut protozoa, friends or foes of the human
324	gut microbiota? Trends Parasitol. 33, 925-934.
325	Clark, C.G. 1997. Extensive genetic diversity in Blastocystis hominis. Mol. Biochem.
326	Parasitol. 87, 79-83.
327	El Safadi, D., Cian, A., Nourrisson, C., Pereira, B., Morelle, C., Bastien, P.,
328	Bellanger, AP., Botterel, F., Candolfi, E., Desoubeaux, G., Lachaud, L.,
329	Morio, F., Pomares, C., Rabodonirina, M., Wawrzyniak, I., Delbac, F.,
330	Gantois, N., Certad, G., Delhaes, L., Poirier, P., Viscogliosi, E. 2016.
331	Prevalence, risk factors for infection and subtype distribution of the intestinal
332	parasite Blastocystis sp from a large-scale multi-center study in France. BMC
333	Infect. Dis. 16, doi: 10.1186/s12879-016-1776-8.
334	Forsell, J., Granlund, M., Samuelsson, L., Koskiniemi, S., Edebro, H., Evengård, B.
335	2016. High occurrence of Blastocystis sp subtypes 1-3 and Giardia
336	intestinalis assemblage B among patients in Zanzibar, Tanzania. Paras.
337	Vectors. 9, doi: 10.1186/s13071-016-1637-8.
338	Jantermtor, S., Pinlaor, P., Sawadpanich, K., Pinlaor, S., Sangka, A., Wilailuckana,
339	C., Wongsena, W., Yoshikawa, H. 2013. Subtype identification of Blastocystis
340	spp. isolated from patients in a major hospital in northeastern Thailand.
341	Parasitol. Res. 112, 1781-1786.

342	Jiménez-González, D.E., Martínez-Flores, W.A., Reyes-Gordillo, J., Ramírez-
343	Miranda, M.E., Arroyo-Escalante, S., Romero-Valdovinos, M., Stark, D.,
344	Souza-Saldivar, V., Martínez- Hernández, F., Flisser, A., Olivo-Díaz, A.,
345	Maravilla, P. 2012. Blastocystis infection is associated with irritable bowel
346	syndrome in a Mexican patient population. Parasitol Res. 110, 1269-1275.
347	Katoh, K., Toh, H. 2010. Parallelization of the MAFFT multiple sequence alignment
348	Program. Bioinformatics (Oxford, England). 26, 1899-1900.
349	Khademvatan, S., Masjedizadeh, R., Rahim, F., Mahbodfar, H., Salehi, R., Yousefi-
350	Razin, E., Foroutan, M. 2017. Blastocystis and irritable bowel syndrome,
351	frequency and subtypes from Iranian patients. Parasitol. Int. 66, 142-145.
352	Kitvatanachai, S., Rhongbutsri, P. 2013. Intestinal parasitic infections in suburban
353	government schools, Lak Hok subdistrict, Muang Pathum Thani, Thailand.
354	Asian Pac. J. Trop. Med. 6, 699-702.
355	Kitvatanachai, S., Boonsilp, S., Watanasatitarpa, S. 2008. Intestinal parasitic
356	infections in Srimum suburban area of Nakhon Ratchasima Province,
357	Thailand. Trop. Biomed. 25, 237-242.
358	Leelayoova, S., Siripattanapipong, S., Thathaisong, U., Naaglor, T., Taamasri, P.,
359	Piyaraj, P., Mungthin, M. 2008. Drinking water, a possible source of
360	Blastocystis spp. subtype 1 infection in schoolchildren of a rural community in
361	central Thailand. Am. J. Trop Med. Hyg. 79, 401-406.
362	Lukeš, J., Stensvold, C.R., Jirků-Pomajbíková, K., Wegener-Parfrey, L. 2015. Are
363	human intestinal eukaryotes beneficial or commensals? PLOS Pathog. 11,
364	e1005039.

365 Ngrenngarmlert, W., Lamom, C., Pasuralertsakul, S., Yaicharoen, R., Wongjindanon,

366	N., Sripochang, S., Suwajeejarun, T., Sermsart, B., Kiatfuengfoo, R. 2007.
367	Intestinal parasitic infections among school children in Thailand. Trop.
368	Biomed. 24, 83-88.
369	Nithyamathi, K., Chandramathi, S., Kumar, S. 2016. Predominance of Blastocystis sp.
370	Infection among school children in peninsular Malaysia. PLoS One. 11,
371	e0136709.
372	Noradilah, S.A., Moktar, N., Anuar, T.S., Lee, I.L., Salleh, F., Manap, S.N.A.A.,
373	Mohtar, N.S.H.M., Azrul, S.M., Abdullah, W.O., Nordin, A., Abdullah, S.R.
374	2017. Molecular epidemiology of blastocystosis in Malaysia. Does seasonal
375	variation play an important role in determining the distribution and risk factors
376	of Blastocystis subtype infections in the aboriginal community? Paras.
377	Vectors. 10, doi: 10.1186/s13071-017-2294-2.
378	Oliveira-Arbexa, A.P., David, É.B., Guimarãesa, S. 2018. Blastocystis genetic
379	diversity among children of low-income daycare center in Southeastern Brazil.
380	Infect. Genet. Evol. 57, 59-63.
381	Palasuwan, A., Palasuwan, D., Mahittikorn, A., Chiabchalard, R., Combes, V.,
382	Popruk, S. 2016. Subtype distribution of Blastocystis in communities along the
383	Chao Phraya River, Thailand. Korean J. Parasitol. 54, 455-460.
384	Pintong, A., Sukthana, Y., Mori, H., Mahittikorn, A., Tungtrongchitr, R.,
385	Ruangsittichai, J., Popruk, S. 2014. Subtype identification of Blastocystis
386	isolated from orphans, Pathum Thani Province, Thailand. J. Trop. Med.
387	Parasitol. 37, 1-9.
388	Pipatsatitpong, D., Rangsin, R., Leelayoova, S., Naaglor, T., Mungthin, M. 2012.
389	Incidence and risk factors of Blastocystis infection in an orphanage in
390	Bangkok, Thailand. Paras. Vectors 5, doi: 10.1186/1756-3305-5-37.

391	Poirier, P., Wawrzyniak, I., Vivarès, C.P., Delbac, F., El Alaoui, H. 2012. New
392	insights into Blastocystis spp, a potential link with irritable bowel syndrome.
393	PLOS Pathog. 8, doi: 10.1371/journal.ppat.1002545.
394	Popruk, S., Udonsom, R., Koompapong, K., Mahittikorn, A., Kusolsuk, T.,
395	Ruangsittichai, J., Palasuwan, A. 2015. Subtype distribution of Blastocystis in
396	Thai-Myanmar Border, Thailand. Korean J. Parasitol. 53, 13-19.
397	Roberts, T., Stark, D., Harkness, J., Ellis, J. 2013. Subtype distribution of Blastocystis
398	isolates from a variety of animals from New South Wales, Australia. Vet.
399	Parasitol. 196, 85-89.
400	Ronquist, F., Huelsenbeck, J.P. 2003. MrBayes 3, Bayesian phylogenetic inference
401	under mixed models. Bioinformatics (Oxford, England). 19, 1572-1574.
402	Sagnuankiat, S., Wanichsuwan, M., Bhunnachet, E., Jungarat, N., Panraksa, K.,
403	Komalamisra, C., Maipanich, W., Yoonuan, T., Pubampen, S., Adisakwattana,
404	P., Watthanakulpanich, D. 2014. Health status of immigrant children and
405	environmental survey of child daycare centers in Samut Sakhon Province,
406	Thailand. J. Immigr. Minor. Health. 18, 21-27.
407	Sanpool, O., Laymanivong, S., Thanchomnang, T., Rodpai, R., Sadaow, L., Phosuk,
408	I., Maleewong, W., Intapan, P.M. 2017. Subtype identification of human
409	Blastocystis spp. isolated from Lao People's Democratic Republic. Acta Trop.
410	168, 37-40.
411	Scanlan, P.D., Stensvold, C.R. 2013. Blastocystis, getting to grips with our guileful
412	guest. Trends Parasitol. 29, 523-529.
413	Scanlan, P.D., Stensvold, C.R., Rajilic-Stojanovic, M., Heilig, H.G.H.J., De Vos,

414	W.M., O'Toole, P.W., Cotter, P.D. 2014. The microbial eukaryote Blastocystis
415	is a prevalent and diverse member of the healthy human gut microbiota.
416	FEMS Microbiol. Ecol. 90, 326-330.
417	Scanlan, P.D., Knight, R., Song, S.J., Ackermann, G., Cotter, P.D. 2016. Prevalence
418	and genetic diversity of Blastocystis in family units living in the United State.
419	Infect. Genet. Evol. 45, 95-97.
420	Scicluna, S.M., Tawari, B., Clark, C.G. 2006. DNA barcoding of Blastocystis. Protist.
421	157, 77-85.
422	Stamatakis, A. 2006. RAxML-VI-HPC, maximum likelihood-based phylogenetic
423	analyses with thousands of taxa and mixed models. Bioinformatics (Oxford,
424	England). 22, 2688–2690.
425	Stensvold, C.R., Clark, G.C. 2016. Current status of Blastocystis, a personal view.
426	Parasitol. Int. 65, 763-771.
427	Stensvold, C.R., van der Giezen M. 2018. Associations between gut microbiota and
428	common luminal intestinal parasites. Trends Parasitol. doi:
429	10.1016/j.pt.2018.02.004.
430	Tan, K.S. 2008. New insights on classification, identification, and clinical relevance
431	of Blastocystis spp. Clin. Microbiol. Rev. 21, 639-665.
432	Tan, K.S.W., Mirza, H., Teo, J.D.W., Wu, B., MacAry, P.A. 2010. Current views on
433	the clinical relevance of Blastocystis spp. Curr. Infect. Dis. Rep. 12, 28-35.
434	Thathaisong, U., Siripattanapipong, S., Mungthin, M., Pipatsatitpong, D., Tan-ariya,
435	P., Naaglor ,T., Leelayoova, S. 2013. Identification of Blastocystis subtype 1
436	variants in the home for girls, Bangkok, Thailand. Am. J. Trop. Med. Hyg. 88,
437	352-358.
438	Villegas-Gómez, I., Martínez-Hernández, F., Urrea-Quezada, A., González-Díaz, M.,

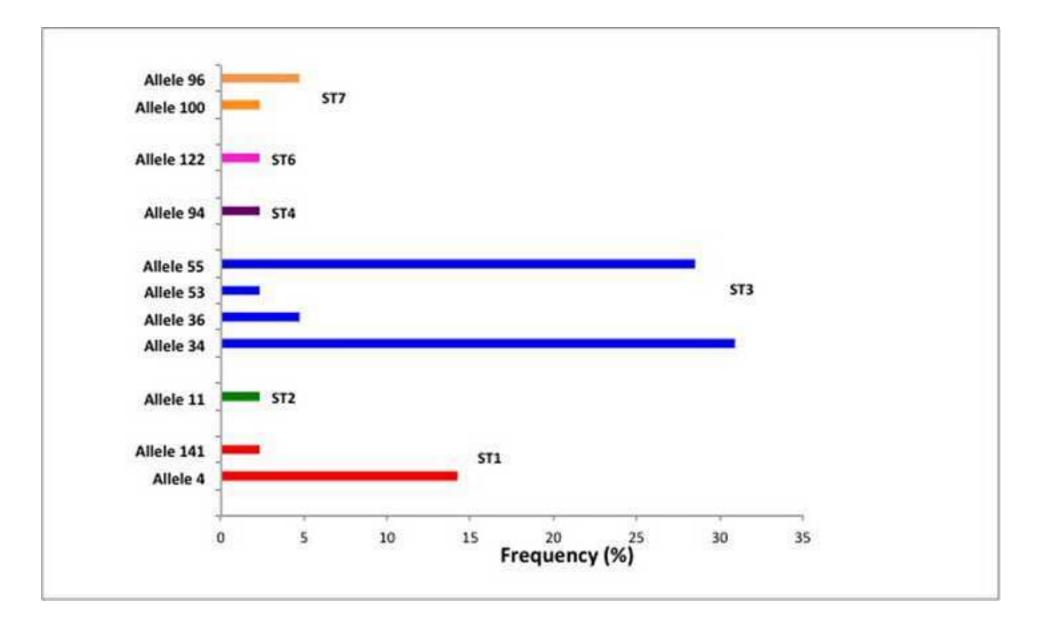
439	Durazo, M., Hernández, J., Orozco-Mosqueda, G.E., Villalobos, G., Maravilla,
440	P., Valenzuela, O. 2016. Comparison of the genetic variability of Blastocystis
441	subtypes between human carriers from two contrasting climatic regions of
442	México. Infect. Genet. Evol. 44, 334-340.
443	Wang, W., Owen, H., Traub, R.J., Cuttell, L., Inpankaew, T., Bielefeldt-Ohmann, H.
444	2014. Molecular epidemiology of Blastocystis in pigs and their in-contact
445	humans in Southeast Queensland, Australia, and Cambodia. Vet. Parasitol.
446	203, 264-269.
447	Wegener-Parfrey, L., Walters, W.A., Lauber, C.L., Clemente, J.C., Berg-Lyons, D.,
448	Teiling, C., Kodira, C., Mohiuddin, M., Brunelle, J., Driscoll, M., Fierer, N.,
449	Gilbert, J.A., Knight, R. 2015. Communities of microbial eukaryotes in the
450	mammalian gut within the context of environmental eukaryotic diversity.
451	Front. Microbiol. 5, doi: 10.3389/fmicb.2014.00298.
452	Yakoob, J., Jafri, W., Beg, M.A., Abbas, Z., Naz, S., Islam, M., Khan, R. 2010.
453	Blastocystis hominis and Dientamoeba fragilis in patients fulfilling irritable
454	bowel syndrome criteria. Parasitol. Res. 107, 679-684.
455	Yoshikawa, H., Koyama, Y., Tsuchiya, E., Takami, K. 2016. Blastocystis phylogeny
456	among various isolates from humans to insects. Parasitol. Int. 65, 750-759.
457	

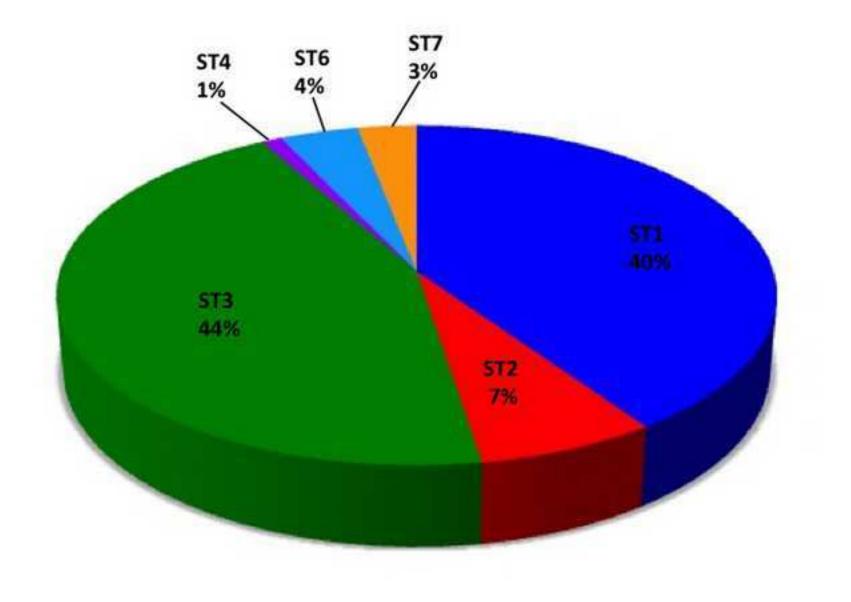
458 FIGURE LEGENDS

459 Fig. 1. Map of Thailand and Chiang Rai Province districts. Sampling localities used in

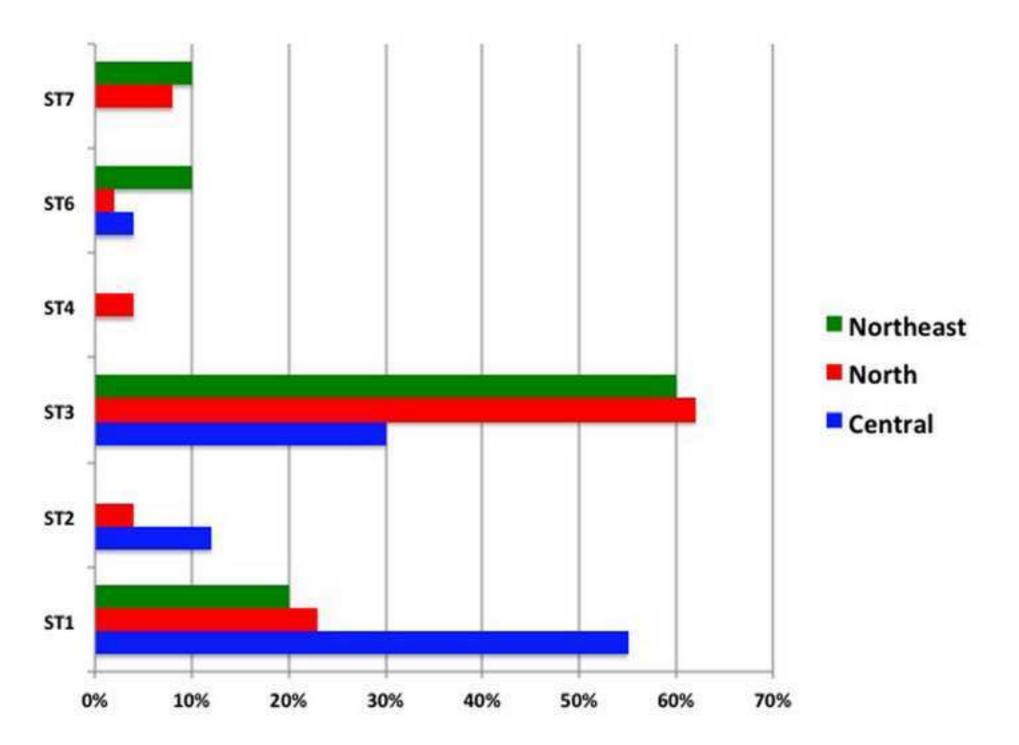
460 this investigation are depicted in red lettering.

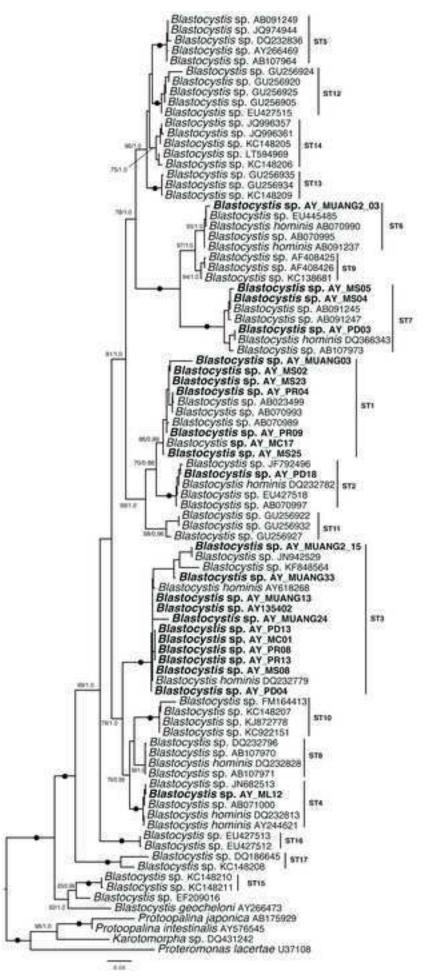
- 461 **Fig. 2.** Frequency of Blastocystis alleles detected in the study population
- 462 **Fig. 3.** Prevalence of Blastocystis subtypes in Thailand (n=161)
- 463 Fig. 4. Prevalence and distribution of Blastocystis subtypes across geographic regions


464 in Thailand


- 465 Fig. 5. Maximum likelihood phylogenetic tree inferred from 103 SSUrRNA
- sequences and 1379 sites. New sequences are depicted in bold lettering. Numerical
- 467 values on the tree branches indicate bootstrap support percentages and posterior
- 468 probabilities in this order.
- 469
- 470
- 471
- 472

District	No of samples	% prevalence (positives)
Mae Chan	20	15 (3/20)
Mae Lao	20	15 (3/20)
Mae Sai	25	24 (6/25)
Muang	69	25 (17/69)
Pa Daet	23	22 (5/23)
Phaya Mengrai	21	33 (7/21)
Total	178	23 (41/178)


Table 1. Prevalence of Blastocystis in six districts in Chiang Rai Province, Thailand



Figure(s) Click here to download high resolution image

Figure(s) Click here to download high resolution image

1	High diversity and variable geographic distribution of Blastocystis subtypes
2	isolated from <u>asymptomatic</u> adults living in <u>Chiang Rai,</u> Thailand
3	Amara Yowang ^a , Anastasios D. Tsaousis ^b , Tawatchai Chumphonsuk ^a , Nontaphat
4	Thongsin ^a , Niwed Kullawong ^{c,d} , Siam Popluechai ^{a,d} , Eleni Gentekaki ^{a,*}
5	
6	^a School of Science, Mae Fah Luang University, Chiang Rai, Thailand
7	^b Laboratory of Molecular and Evolutionary Parasitology, RAPID group, School of
8	Biosciences, University of Kent, Canterbury, Kent, UK
9	^c School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand
10	^d Human Gut Microbiome for Health Research Unit, Mae Fah Luang University,
11	Chiang Rai, Thailand
12	
13	Running title: Blastocystis diversity and subtyping in Thai adults
14	
15	*Corresponding author: Eleni Gentekaki, Mae Fah Luang University, Chiang Rai,
16	Thailand. Tel: +66 5391 6776, Fax: +66 5391 6768, E-mail: gentekaki.ele@mfu.ac.th
17	
18	
19	
20	
21	

22 Abstract

24	Blastocystis is a common and broadly distributed microbial eukaryote inhabiting the
25	gut of humans and other animals. The genetic diversity of Blastocystis is extremely
26	high comprising no less than 17 subtypes in mammals and birds. Nonetheless, little is
27	known about the prevalence and distribution of Blastocystis subtypes colonising
28	humans in Thailand. Molecular surveys of Blastocystis remain extremely limited and
29	usually focus on the central, urban part of the country. To address this knowledge gap,
30	we collected stool samples from a population of Thai adults (n=178) residing in
31	Chiang Rai Province. The barcoding region of the small subunit ribosomal RNA was
32	employed to screen for Blastocystis and identify the subtype. Forty-one stool samples
33	(23%) were identified as Blastocystis positive. Six of the nine subtypes that colonise
34	humans were detected with subtype (ST) three being the most common (68%),
35	followed by ST1 (17%) and ST7 (7%). Comparison of subtype prevalence across
36	Thailand using all publicly available sequences showed that subtype distribution
37	differs among geographic regions in the country. ST1 was most commonly
38	encountered in the central region of Thailand, while ST3 dominated in the more rural
39	north and northeast regions. ST2 was absent in the northeast, while ST7 was not
40	found in the center. Thus, this study shows that ST prevalence and distribution differs
41	not only among countries, but also among geographic regions within a country.
42	Potential explanations for these observations are discussed herewith.
43	
44	
45	Keywords: Blastocystis; genetic diversity; prevalence; subtyping; Thailand

1. Introduction

49	Blastocystis is the most commonly found protist in the gastrointestinal tract of
50	humans and other animals (Roberts et al., 2013; Tan, 2008). Though Blastocystis
51	exhibits morphological stasis, it has a high degree of genetic heterogeneity. Isolates
52	from avian and mammalian hosts are The organism is currently classified into 17
53	subtypes (STs) based on the divergence of the small subunit ribosomal RNA (SSU
54	rRNA), though new STs might be arising (Alfellani et al., 2013c; Betts et al., 2018;).
55	Blastocystis isolated from reptilian, amphibian and insect hosts are distinct and are not
56	assigned into subtypes. So far, only ST1-ST9 have been found in humans with ST1-
57	ST4 being the most common colonisers (Alfellani et al., 2013b). However, these STs
58	have also been detected in a variety of non-human hosts, suggesting that Blastocystis
59	has low host specificity (Stensvold and Clark 2016). The exception is ST9, which has
60	yet to be found in non-human hosts. The rest of the STs have so far been identified in
61	both domesticated and wildlife animal hosts (Alfellani et al., 2013a).
62	Lately, considerable research effort has gone into deciphering potential roles
63	of Blastocystis in intestinal disease. For instance, an association between presence of
64	Blastocystis and irritable bowel syndrome has been discussed frequently, though a
65	definitive causal link has yet to be postulated (Jimenez-Gonzalez et al., 2012;
66	Khademvatan et al., 2017; Poirer et al., 2012; Yakoob et al., 2010). Nonetheless,
67	emerging data have shown presence of Blastocystis in asymptomatic individuals
68	leading to the hypothesis that the organism is part of the healthy adult gut microbiota
69	and that only specific STs and/or genotypes might be pathogenic (Chabe et al., 2017;
70	Scanlan and Stensvold, 2013; Scanlan et al., 2014; Stensvold and van der Giezen,
71	2018). In this context, surveys examining prevalence of Blastocystis should ideally be

accompanied by subtyping. Thus, while the cosmopolitan status of Blastocystis is well
established, geographic distribution of specific subtypes and their prevalence are
relatively recent endeavors.

75 Research efforts on the latter two are disproportionate among countries and/or geographic regions: a plethora of Blastocystis studies come from the Americas and 76 Europe, whilst Asia remains disproportionately sampled, given that half of the earth's 77 78 population resides in Asian countries (El Safadi et al., 2016; Scanlan et al., 2016; Villegas-Gomez et al., 2016). Collectively, these studies have shown that ST3 is the 79 80 most prevalent one in almost all regions that have been examined, with a notable exception (Oliveira-Arbex et al., 2018). Prevalence of the other common STs -81 82 namely ST1, ST2, and ST4 - seems to be dependent on geographic region, while 83 ST6-ST9 are not as commonly encountered (Beghini et al., 2017; Stensvold and 84 Clark, 2016).

Herein, we collected samples from 178 asymptomatic adult humans living in Chiang Rai Province, Thailand and examined the prevalence, genetic diversity and distribution of Blastocystis. The region combines several particularities, which have created a culture and lifestyle that differs from other regions of Thailand. We provide the first subtyping data from the area, thus expanding knowledge on Blastocystis ST distribution and prevalence in the country.

91

92 **2. Materials and Methods**

93

94 **2.1. Ethics statement**

95 The human ethics committee of Mae Fah Luang University approved
96 collection of fecal samples from adult Thai volunteers (License approval number

97 REH-60104). Volunteers signed an informed consent form before participating in the98 study.

99

100 **2.2. Human subjects**

All volunteers were over 18 years old, Thai and lived in Chiang Rai Province 101 at the time of sampling (Fig. 1). In total, 178 adult volunteers participated in the 102 study. The volunteers had no history of gastrointestinal symptoms, no diarrhea 103 episodes a month prior to sampling and had received no antibiotic treatment at least 104 105 two months prior to sample collection. 106 2.3. Stool collection and DNA extraction 107 108 Fecal samples were collected from the volunteers using sealed, sterile containers and stored at -80°C until DNA extraction. Samples were collected from 109

110 six districts of Chiang Rai Province: Mae Chan (n=20), Mae Lao (n=20), Mae Sai

111 (n=25), Muang (n=69), Pa Daet (n=23) and Phaya Mengrai (n=21) (Fig. 1). Total

112 DNA was isolated using the QIAamp DNA Stool Mini Kit (Qiagen, Thailand)

according to manufacturer's specifications. The extracted DNA was stored at -20 °C

114 for later use.

115

116 2.4. PCR amplification, amplicon purification and sequencing

117 Polymerase chain reaction (PCR) was used to amplify a 650 bp fragment of

the SSUrRNA at the 5' of the gene. This fragment is considered the barcoding region

119 of Blastocystis spp. (Scicluna et al., 2006).

120 Two PCR reactions were used to amplify the SSUrRNA gene of Blastocystis.

121 The broadly specific primers, RD5 5' -

122 UUAAUCITATCIUUITUATCCIUCCAUTA – J aliu KDJ J	122	GGAAGCTTATCTGGTTGATCCTGCCAGTA – 3' a	ind RD3 5'	—
--	-----	--------------------------------------	------------	---

123	GGGATCCTGATCCTTCCGCAGGTTCACCTAC – 3' were used for the primary
124	PCR reaction (Clark, 1997). The total volume of each reaction was 25µl containing
125	the following reagents: 10X reaction buffer, 1 mM MgCl ₂ , 0.1 mM dNTPs, 0.2 μ M
126	forward primer, 0.2 μ M reverse primer, 5U Taq DNA polymerase (RBC Bioscience,
127	New Taipei City, Taiwan) and 12 μ l HPLC grade water. Cycling conditions were as
128	follows: initial denaturation at 94 °C for 3 min followed by 35 cycles of denaturation
129	at 94 °C for 1 min 40 s, annealing at 65 °C for 1 min 40 s, extension at 72 °C for 1
130	min 40 s followed by a final extension at 72 °C for 10 min.
131	The more narrowly specific primers RD5F 5' – ATCTGGTCGATCCTG
132	CCAGT – 3' and BhRDr 5' – GAGCTTTTTAACTGCAACAACG – 3' were
133	employed for the secondary, nested PCR reaction. Reaction volume and concentration
134	of reagents were as in the primary PCR with the exception of the DNA template.
135	Instead of genomic fecal DNA, one μ l from the primary PCR reaction was used.
136	Cycling conditions were as follows: denaturation at 94 °C for 3 min, followed by 35
137	cycles of denaturation at 94 °C for 1 min, annealing at 55 °C for 1 min and extension
138	at 72 °C for 1 min and a final extension at 72 °C for 10 min.
139	Positive PCR reactions were purified using the <i>HiYieldTM</i> Gel/PCR Fragments
140	Extraction Kit (RBC bioscience, USA) according to manufacturer's specifications.
141	Purified PCR products were sequenced by 1stBASE, Malaysia.
142	
143	2.5. Subtyping and phylogenetic analysis
144	The obtained sequences were examined and poor quality bases at the 5' and
145	3'ends of the sequence were removed. Sequences were then subjected to BLAST

search against GenBank database to exclude contamination. Sequences identified as

Blastocystis, were further checked against the Blastocystis Subtype Sequence Typing
(MLST) publicly available at <u>http://pubmlst.org/blastocystis/</u>, in order to identify
subtype and the corresponding allele.

150 The new sequences identified as Blastocystis along with sequences spanning the breadth of diversity of Blastocystis (all subtypes and sequences from ectotherms) 151 were used to construct the dataset. In total, 103 sequences were aligned using MAFFT 152 153 v. 7 (Katoh and Toh, 2010), visually inspected and further improved manually. Ambiguous regions were removed with trimAl v. 1.3 (Capella-Gutierrez et al., 2009). 154 155 After trimming, the alignment contained 1,379 sites. A maximum likelihood (ML) phylogenetic tree was constructed using RAxML v. 8 (Stamatakis, 2006) and the 156 general time reversible + Γ model of nucleotide substitution. The heuristic tree search 157 158 was based on 20 starting trees. One thousand bootstrap replicates were generated and 159 used for ML analysis. MrBayes v. 3.2.6 (Ronquist and Huelsenbeck, 2003) was used to construct the Bayesian Inference (BI) tree using the same model as above. Two sets 160 161 of four independent Markov Chain Monte Carlo simulations were run for 1,500,000 generations. Sampling was done every 1,000 generations and 25% were discarded as 162 burn-in. Convergence was declared when the standard deviation of split sequences 163 was less than 0.01. Phylogenetic analyses were conducted on the Cipres Science 164 165 Gateway (http://www.phylo.org/portal2/home.action).

To further examine distribution of subtypes across Thailand, we downloaded all Blastocystis sequences with the following identifiers: country =Thailand and host=Homo sapiens. In total, 161 Blastocystis sequences were used for the analysis of ST prevalence. For the ST distribution across Thailand 159 were used. Two sequences were removed because the exact locality of collection was not noted.

171

3. Results 172

173

3.1. Screening of fecal samples 174

Of the 178 samples, 41 (23%) were sequence positive for Blastocystis (Table 175 1). Differences were noted in the percent prevalence among districts. The highest 176 prevalence was observed in Phaya Mengrai District (33%), while the lowest was 177 noted in Mae Chan and Mae Lao Districts (15%). 178

179

3.2. Subtype prevalence and distribution 180

Blastocystis prevalence in our study population was 23% (41/178). In total, six 181

of the nine STs that colonise humans were identified in this study: ST1 (n=7, 17%), 182

183 ST2 (n=1, 2%), ST3 (n=28, 68%), ST4 (n=1, 2%), ST6 (n=1, 2%) and ST7 (n=3, 7%).

Two alleles of ST1 were detected with the dominant one being allele 4, while four 184

185 alleles were found within the dominant ST3 (Fig. 2). Even though only three

sequences are available for ST7, two alleles were detected, suggesting a high degree 186

of genetic diversity for this ST in the study population. The prevalence of the various 187

188 Blastocystis subtypes in Thailand resembles the rest of the world (Fig. 3). Subtype 3 is

the most prevalent one, followed by ST1, ST2, ST6 and ST7. Nonetheless, notable 189

differences emerge when looking at the prevalence of STs according to geographic 190

```
191
       region (Fig. 4).
```

All newly generated sequences have been submitted to GenBank (submission 192 number SUB3865516) 193

3.3. Phylogenetic analyses 194

All newly derived sequences grouped within clades formed by previously 195 196 reported STs (Fig. 5). In agreement with previous studies, isolates from ectothermic

metazoans and those from ST15, ST16 and ST17 placed at a basal position (Betts et
al., 2018; Yoshikawa et al., 2016). Placement of the new sequences confirmed ST
predictions from the pubmlst website. The rest of the STs grouped into two large
clusters, once consisting of ST3, ST4, ST8 and ST10 and the other formed by the
remaining STs.

202

203 **4. Discussion**

204 All samples herein were collected from asymptomatic adults with no history 205 of gastrointestinal disease. Our results match previous recent reports, which have demonstrated asymptomatic carriage of Blastocystis in populations from westernised 206 and non-westernised countries, as well as, rural and urban settings (Lukeš et al., 207 208 2015; Parfrey et al., 2014; Scanlan et al., 2014). Findings from analyses of large datasets are also consistent with these observations (Audebert et al., 2016; Beghini et 209 210 al., 2017). These are in contrast with many previous studies that postulate links of 211 Blastocystis with intestinal diseases and dysbiosis (Poirer et al., 2012; Yakoob et al., 2010). Thus, it is still unclear, whether Blastocystis is a pathogen, a harmless 212 213 commensal or a beneficial member of gut microbiota. The debate has These contrary findings have given rise to the speculation that pathogenicity of Blastocystis is limited 214 to specific genotypes with the majority of them being harmless (Scanlan and 215 216 Stensvold, 2013; Tan et al., 2010). Given the polymicrobial nature of the gut, an as yet unexplored theme in the context of ecological theory, is whether Blastocystis 217 becomes pathogenic through synergistic action with other microbes and/or their 218 219 metabolic products. Nonetheless, the asymptomatic carriage of Blastocystis found in our study and others reinforces the idea of it being a part of the healthy gut 220 microbiota. 221

We used PCR to amplify the barcoding region of Blastocystis (Scicluna et al., 222 2006) from 178 fecal samples. This method demonstrated that the overall prevalence 223 of Blastocystis in our study population was 23%. It is difficult to determine how this 224 225 prevalence rate compares to other studies from Thailand. Blastocystis detection in the country is primarily based on microscopy (Boonjaraspinyo et al., 2013; Kitvatanachai 226 and Rhongbutsri, 2013; Kitvatanachai et al., 2008; Ngrenngarmlert et al., 2007; 227 228 Pipatsatitpong et al., 2012; Sagnuankiat et al., 2014). In general, microscopy is less sensitive and underestimates prevalence. Molecular-based studies on Blastocystis 229 230 constitute a recent development and remain extremely limited (Boondit et al., 2014; Jantermtor et al., 2013; Palasuwan et al., 2016; Pintong et al., 2014; Pipatsatitpong et 231 al., 2015; Popruk et al., 2015; Thathaisong et al., 2013). These molecular surveys 232 233 have shown prevalence ranging from 6% to 51%. The observed variable data from our 234 study and others could be the result of demographically different populations being surveyed. For instance, the highest abundance of Blastocystis was found in orphan 235 236 male children, while residents of communities along Chao Praya River in Ayutthaya Province (central Thailand) had the lowest prevalence (Palasuwan et al., 2016; 237 Pintong et al., 2014). Age, health status of the individuals, and general lifestyle are 238 likely contributing factors accounting for the observed differences among studies 239 240 (Leelayoova et al., 2008).

Subtyping of Blastocystis positive samples identified six of the nine STs known to colonise humans: ST1, ST2, ST3, ST4, ST6 and ST7. ST3 was dominant and present in two thirds of the samples, followed by ST1 and ST7. This is slightly different than the global trend, whereby ST3, ST1 and ST2, in this order, are the most frequently encountered (Stensvold and Clark, 2016). This pattern is also noted in molecular surveys of Blastocystis in neighboring Southeast Asian countries (Laos,

247	Cambodia and Malaysia), except for Laos, where ST1 was the most frequent followed
248	by ST3 and then ST2 (Nithyamathi et al., 2016; Noradilah et al., 2017; Sanpool et al.,
249	2017; Wang et al., 2014). Herein, ST2, ST4 and ST6 were found in a single individual
250	each. ST4 is a geography-influenced ST and is typically found in Europe, where it is
251	abundant and highly prevalent (Alfellani et al., 2013b; Beghini et al., 2017; Forsell et
252	al., 2016;). Indeed, ST4 occurrence in Southeast Asia is extremely rare having been
253	found so far only. In molecular surveys taking place in Thailand only two cases of
254	ST4 have been found: one in this study and another from Tak, a northwestern
255	province bordering Myanmar (Popruk et al., 2015). In the neighboring countries of
256	Laos, Cambodia, and Malaysia, ST4 has been found only in Malaysia (Nithyamathi et
257	al., 2016; Noradilah et al., 2017 <u>; Popruk et al., 2015).). Regrettably, there is no</u>
258	publicly available data on Blastocystis from Myanmar. Alfellani et al., (2013b), noted
259	that ST4 occurs rarely in places, where ST1 dominates, and/or in regions where
260	Muslim populations predominate, an observation that has since been reinforced
261	(Forsell et al., 2016). Another explanation could be that the Thai ST4 cases represent
262	imports from Europe. Though none of the participants in our study travelled to
263	Europe, it is unknown, if other household members did. If this indeed were the case, it
264	would be interesting to see how the newly arrived STs affect the resident microbiota.
265	When all available sequences from human stool samples from Thailand are
266	taken into account (including ours), the most prevalent STs are ST3, ST1 and ST2, a
267	pattern that follows the global trend (Stensvold and Clark, 2016). Given the known
268	influence of geography on ST distribution, we zoomed into specific regions. Based on
269	geography, Thailand is divided into four regions: north, northeast, center and south.
270	Thus, when geographic region is taken into account, there are some notable
271	differences in the ST distribution. For instance, the relative abundance of ST3 and

272	ST1 changes. ST1 is dominant in the center, while ST3 dominates in the north and
273	northeast. ST2 is absent in the northeast, whilst ST4 has only been found so far in the
274	north. Importantly, the center, which is the most urbanised region of Thailand, has the
275	least number of subtypes. Incidentally, this is also the most broadly surveyed region
276	and where most sequences come from. Thus, though we cannot exclude the possibility
277	that some STs circulate in the center and have yet to be detected, this is not very
278	likely. Presence of ST6 and ST7 in Explaining these differences is a challenging
279	endeavor. It is known that the four geographic regions of Thailand also happen to be
280	gastronomically distinct. In particular, the north and northeast could be attributed to
281	domestic fowl,, and most especially chickens and geese, which live in close proximity
282	to humansChiang Rai is of interest, because of its northernmost location (Fig. 1) and
283	the mixed influence of nearby Laos and Myanmar on daily life, including diet. In a
284	broader context, and given the influence of diet on microbial communities, the
285	observed differences in ST distribution could also reflect differences in gut microbiota
286	composition. In that vein, recent data have demonstrated that Blastocystis is more
287	prevalent in individuals with increased Prevotella and Ruminococcus and decreased
288	Bacteroides (Andersen and Stensvold, 2015; Audebert et al., 2016; Beghini et al.,
289	2017; O'Brien Andersen et al., 2016;). Nonetheless, a knowledge gap exists, as to
290	whether similar differences drive prevalence of specific STs and vice versa.
291	The data obtained herein are the first on prevalence of Blastocystis and
292	distribution of STs in asymptomatic individuals living in Chiang Rai Province., and
293	one of the few in Thailand. Our data along with other molecular data from Thailand
294	will contribute to the knowledge on the epidemiology of Blastocystis in the country.
295	Nonetheless, major gaps exist, in that: 1) molecular data on Blastocystis from
296	Thailand is scant, thus ST distribution is largely unknown and, 2) the majority of Thai

297	communities have yet to be sampled. For example, there is no molecular data of
298	Blastocystis from the south part of Thailand. Moving forward, future studies should
299	expand to generate subtyping information from and include more communities
300	acrossnot only from Thailand and also include symptomatic individuals, but
301	neighboring countries as well.
302	
303	CONFLICTS OF INTEREST
304	The authors declare no conflict of interest
305	
306	ACKNOWLEDGMENTS
307	We are grateful to all the volunteers that participated in this study. We also wish to
308	acknowledge the Human Gut Microbiome for Health Research Unit, Mae Fah Luang
309	University, Chiang Rai, Thailand.
310	
311	FINANCIAL SUPPORT
312	
313	This project was supported by the Thailand Research Fund (RSA6080048) awarded to
314	E.G. A.D.T. was supported by BBSRC research grant (BB/M009971/1).
315	REFERENCES
316	Alfellani, M.A., Jacob, A.S., Perea, O.N., Krecek, R.C., Taner-Mulla, D., Verweij,
317	J.J., Levecke, B., Tannich, E., Clark, C.G. 2013a. Diversity and distribution of
318	Blastocystis sp. subtypes in non-human primates. Parasitol. 140, 966-971.
319	Alfellani, M.A., Stensvold, C.R., Vidal-Lapiedra, A., Onuoha, E.S., Fagbenro-

320	Beyioku, A.F., Clark, C.G. 2013b. Variable geographic distribution of
321	Blastocystis subtypes and its potential implications. Acta Trop. 126, 11-18.
322	Alfellani, M.A., Taner-Mulla, D., Jacob, A.S., Imeede, C.A., Yoshikawa, H.,
323	Stensvold, C.R., Clark, C.G. 2013c. Genetic diversity of Blastocystis in
324	livestock and zoo animals. Protist. 164, 497-509.
325	Andersen, L.O.B., Stensvold, C.R. 2015. Blastocystis in health and disease Are we
326	moving from a clinical to a public health perspective? J. Clin. Microbiol. 54,
327	524-528.
328	Audebert, C., Even, G., Cian, A., The Blastocystis Investigation Group, Loywick, A.,
329	Merlin, S., Viscogliosi, E., Chabé, M. 2016. Colonization with the enteric
330	protozoa Blastocystis is associated with increased diversity of human gut
331	bacterial microbiota. Sci. Rep. 6, doi: 10.1038/srep25255.
332	Beghini, F., Pasolli, E., Truong, T.D., Putignani, L., Cacciò, S.M., Segata, N. 2017.
333	Large-scale comparative metagenomics of Blastocystis, a common member of
334	the human gut microbiome. ISME J. 11, 2848-2863.
335	Betts, E.L., Gentekaki, E., Thomasz, A., Breakell, V., Carpenter, A.I., Tsaousis, A.D.
336	2018. Genetic diversity of Blastocystis in non-primate animals. Parasitol. 17,
337	doi: 101017/S0031182017002347.
338	Boondit, J., Pipatsatitpong, D., Mungthin, M., Taamasri, P., Tan-ariya, P., Naaglor,
339	T., Leelayoova, S. 2014. Incidence and risk factors of Blastocystis infection in
340	orphans at the babies' home, Nonthaburi Province. Thailand. J. Med. Assoc.
341	Thai. 97, (Supplement 2), S52-S59.
342	Boonjaraspinyo, S., Boonmars, T., Kaewsamut, B., Ekobol, N., Laummaunwai, P.,

343	Aukkanimart, R., Wonkchalee, N., Juasook, A., Sriraj, P. 2013. A Cross-
344	sectional study on intestinal parasitic infections in rural communities,
345	Northeast Thailand. Korean J. Parasitol. 51, 727-734.
346	Capella-Gutierrez, S., Silla-Martinez, J.M., Gabaldon, T. 2009. Trimal, a tool for
347	automated alignment trimming in large-scale phylogenetic analyses.
348	Bioinformatics (Oxford, England). 25, 1972-1973.
349	Chabé, M., Lokmer, A., Ségurel, L. 2017. Gut protozoa, friends or foes of the human
350	gut microbiota? Trends Parasitol. 33, 925-934.
351	Clark, C.G. 1997. Extensive genetic diversity in Blastocystis hominis. Mol. Biochem.
352	Parasitol. 87, 79-83.
353	El Safadi, D., Cian, A., Nourrisson, C., Pereira, B., Morelle, C., Bastien, P.,
354	Bellanger, AP., Botterel, F., Candolfi, E., Desoubeaux, G., Lachaud, L.,
355	Morio, F., Pomares, C., Rabodonirina, M., Wawrzyniak, I., Delbac, F.,
356	Gantois, N., Certad, G., Delhaes, L., Poirier, P., Viscogliosi, E. 2016.
357	Prevalence, risk factors for infection and subtype distribution of the intestinal
358	parasite Blastocystis sp from a large-scale multi-center study in France. BMC
359	Infect. Dis. 16, doi: 10.1186/s12879-016-1776-8.
360	Forsell, J., Granlund, M., Samuelsson, L., Koskiniemi, S., Edebro, H., Evengård, B.
361	2016. High occurrence of Blastocystis sp subtypes 1-3 and Giardia
362	intestinalis assemblage B among patients in Zanzibar, Tanzania. Paras.
363	Vectors. 9, doi: 10.1186/s13071-016-1637-8.
364	Jantermtor, S., Pinlaor, P., Sawadpanich, K., Pinlaor, S., Sangka, A., Wilailuckana,
365	C., Wongsena, W., Yoshikawa, H. 2013. Subtype identification of Blastocystis
366	spp. isolated from patients in a major hospital in northeastern Thailand.
367	Parasitol. Res. 112, 1781-1786.

368	Jiménez-González, D.E., Martínez-Flores, W.A., Reyes-Gordillo, J., Ramírez-
369	Miranda, M.E., Arroyo-Escalante, S., Romero-Valdovinos, M., Stark, D.,
370	Souza-Saldivar, V., Martínez- Hernández, F., Flisser, A., Olivo-Díaz, A.,
371	Maravilla, P. 2012. Blastocystis infection is associated with irritable bowel
372	syndrome in a Mexican patient population. Parasitol Res. 110, 1269-1275.
373	Katoh, K., Toh, H. 2010. Parallelization of the MAFFT multiple sequence alignment
374	Program. Bioinformatics (Oxford, England). 26, 1899-1900.
375	Khademvatan, S., Masjedizadeh, R., Rahim, F., Mahbodfar, H., Salehi, R., Yousefi-
376	Razin, E., Foroutan, M. 2017. Blastocystis and irritable bowel syndrome,
377	frequency and subtypes from Iranian patients. Parasitol. Int. 66, 142-145.
378	Kitvatanachai, S., Rhongbutsri, P. 2013. Intestinal parasitic infections in suburban
379	government schools, Lak Hok subdistrict, Muang Pathum Thani, Thailand.
380	Asian Pac. J. Trop. Med. 6, 699-702.
381	Kitvatanachai, S., Boonsilp, S., Watanasatitarpa, S. 2008. Intestinal parasitic
382	infections in Srimum suburban area of Nakhon Ratchasima Province,
383	Thailand. Trop. Biomed. 25, 237-242.
384	Leelayoova, S., Siripattanapipong, S., Thathaisong, U., Naaglor, T., Taamasri, P.,
385	Piyaraj, P., Mungthin, M. 2008. Drinking water, a possible source of
386	Blastocystis spp. subtype 1 infection in schoolchildren of a rural community in
387	central Thailand. Am. J. Trop Med. Hyg. 79, 401-406.
388	Lukeš, J., Stensvold, C.R., Jirků-Pomajbíková, K., Wegener-Parfrey, L. 2015. Are
389	human intestinal eukaryotes beneficial or commensals? PLOS Pathog. 11,
390	e1005039.

391 Ngrenngarmlert, W., Lamom, C., Pasuralertsakul, S., Yaicharoen, R., Wongjindanon,

392	N., Sripochang, S., Suwajeejarun, T., Sermsart, B., Kiatfuengfoo, R. 2007.
393	Intestinal parasitic infections among school children in Thailand. Trop.
394	Biomed. 24, 83-88.
395	Nithyamathi, K., Chandramathi, S., Kumar, S. 2016. Predominance of Blastocystis sp.
396	Infection among school children in peninsular Malaysia. PLoS One. 11,
397	e0136709.
398	Noradilah, S.A., Moktar, N., Anuar, T.S., Lee, I.L., Salleh, F., Manap, S.N.A.A.,
399	Mohtar, N.S.H.M., Azrul, S.M., Abdullah, W.O., Nordin, A., Abdullah, S.R.
400	2017. Molecular epidemiology of blastocystosis in Malaysia. Does seasonal
401	variation play an important role in determining the distribution and risk factors
402	of Blastocystis subtype infections in the aboriginal community? Paras.
403	Vectors. 10, doi: 10.1186/s13071-017-2294-2.
404	O'Brien Andersen, L., Karim, A.B., Roager, H.M., Vigsnaes, L.K., Krogfelt, K.A.,
405	Licht, T.R., Stensvold, C.R. 2016. Associations between common intestinal
406	parasites and bacteria in humans as revealed by qPCR. Eur. J. Clin. Microbiol.
407	Infect. Dis. 35, 1427-1431.
408	Oliveira-Arbexa, A.P., David, É.B., Guimarãesa, S. 2018. Blastocystis genetic
409	diversity among children of low-income daycare center in Southeastern Brazil.
410	Infect. Genet. Evol. 57, 59-63.
411	Palasuwan, A., Palasuwan, D., Mahittikorn, A., Chiabchalard, R., Combes, V.,
412	Popruk, S. 2016. Subtype distribution of Blastocystis in communities along the
413	Chao Phraya River, Thailand. Korean J. Parasitol. 54, 455-460.
414	Pintong, A., Sukthana, Y., Mori, H., Mahittikorn, A., Tungtrongchitr, R.,

415	Ruangsittichai, J., Popruk, S. 2014. Subtype identification of Blastocystis
416	isolated from orphans, Pathum Thani Province, Thailand. J. Trop. Med.
417	Parasitol. 37, 1-9.
418	Pipatsatitpong, D., Rangsin, R., Leelayoova, S., Naaglor, T., Mungthin, M. 2012.
419	Incidence and risk factors of Blastocystis infection in an orphanage in
420	Bangkok, Thailand. Paras. Vectors 5, doi: 10.1186/1756-3305-5-37.
421	Poirier, P., Wawrzyniak, I., Vivarès, C.P., Delbac, F., El Alaoui, H. 2012. New
422	insights into Blastocystis spp, a potential link with irritable bowel syndrome.
423	PLOS Pathog. 8, doi: 10.1371/journal.ppat.1002545.
424	Popruk, S., Udonsom, R., Koompapong, K., Mahittikorn, A., Kusolsuk, T.,
425	Ruangsittichai, J., Palasuwan, A. 2015. Subtype distribution of Blastocystis in
426	Thai-Myanmar Border, Thailand. Korean J. Parasitol. 53, 13-19.
427	Roberts, T., Stark, D., Harkness, J., Ellis, J. 2013. Subtype distribution of Blastocystis
428	isolates from a variety of animals from New South Wales, Australia. Vet.
429	Parasitol. 196, 85-89.
430	Ronquist, F., Huelsenbeck, J.P. 2003. MrBayes 3, Bayesian phylogenetic inference
431	under mixed models. Bioinformatics (Oxford, England). 19, 1572-1574.
432	Sagnuankiat, S., Wanichsuwan, M., Bhunnachet, E., Jungarat, N., Panraksa, K.,
433	Komalamisra, C., Maipanich, W., Yoonuan, T., Pubampen, S., Adisakwattana,
434	P., Watthanakulpanich, D. 2014. Health status of immigrant children and
435	environmental survey of child daycare centers in Samut Sakhon Province,
436	Thailand. J. Immigr. Minor. Health. 18, 21-27.
437	Sanpool, O., Laymanivong, S., Thanchomnang, T., Rodpai, R., Sadaow, L., Phosuk,

438	I., Maleewong, W., Intapan, P.M. 2017. Subtype identification of human
439	Blastocystis spp. isolated from Lao People's Democratic Republic. Acta Trop.
440	168, 37-40.
441	Scanlan, P.D., Stensvold, C.R. 2013. Blastocystis, getting to grips with our guileful
442	guest. Trends Parasitol. 29, 523-529.
443	Scanlan, P.D., Stensvold, C.R., Rajilic-Stojanovic, M., Heilig, H.G.H.J., De Vos,
444	W.M., O'Toole, P.W., Cotter, P.D. 2014. The microbial eukaryote Blastocystis
445	is a prevalent and diverse member of the healthy human gut microbiota.
446	FEMS Microbiol. Ecol. 90, 326-330.
447	Scanlan, P.D., Knight, R., Song, S.J., Ackermann, G., Cotter, P.D. 2016. Prevalence
448	and genetic diversity of Blastocystis in family units living in the United State.
449	Infect. Genet. Evol. 45, 95-97.
450	Scicluna, S.M., Tawari, B., Clark, C.G. 2006. DNA barcoding of Blastocystis. Protist.
451	157, 77-85.
452	Stamatakis, A. 2006. RAxML-VI-HPC, maximum likelihood-based phylogenetic
453	analyses with thousands of taxa and mixed models. Bioinformatics (Oxford,
454	England). 22, 2688–2690.
455	Stensvold, C.R., Clark, G.C. 2016. Current status of Blastocystis, a personal view.
456	Parasitol. Int. 65, 763-771.
457	Stensvold, C.R., van der Giezen M. 2018. Associations between gut microbiota and
458	common luminal intestinal parasites. Trends Parasitol. doi:
459	10.1016/j.pt.2018.02.004.
460	Tan, K.S. 2008. New insights on classification, identification, and clinical relevance
461	of Blastocystis spp. Clin. Microbiol. Rev. 21, 639-665.
462	Tan, K.S.W., Mirza, H., Teo, J.D.W., Wu, B., MacAry, P.A. 2010. Current views on

463	the clinical relevance of Blastocystis spp. Curr. Infect. Dis. Rep. 12, 28-35.
464	Thathaisong, U., Siripattanapipong, S., Mungthin, M., Pipatsatitpong, D., Tan-ariya,
465	P., Naaglor ,T., Leelayoova, S. 2013. Identification of Blastocystis subtype 1
466	variants in the home for girls, Bangkok, Thailand. Am. J. Trop. Med. Hyg. 88,
467	352-358.
468	Villegas-Gómez, I., Martínez-Hernández, F., Urrea-Quezada, A., González-Díaz, M.,
469	Durazo, M., Hernández, J., Orozco-Mosqueda, G.E., Villalobos, G., Maravilla,
470	P., Valenzuela, O. 2016. Comparison of the genetic variability of Blastocystis
471	subtypes between human carriers from two contrasting climatic regions of
472	México. Infect. Genet. Evol. 44, 334-340.
473	Wang, W., Owen, H., Traub, R.J., Cuttell, L., Inpankaew, T., Bielefeldt-Ohmann, H.
474	2014. Molecular epidemiology of Blastocystis in pigs and their in-contact
475	humans in Southeast Queensland, Australia, and Cambodia. Vet. Parasitol.
476	203, 264-269.
477	Wegener-Parfrey, L., Walters, W.A., Lauber, C.L., Clemente, J.C., Berg-Lyons, D.,
478	Teiling, C., Kodira, C., Mohiuddin, M., Brunelle, J., Driscoll, M., Fierer, N.,
479	Gilbert, J.A., Knight, R. 2015. Communities of microbial eukaryotes in the
480	mammalian gut within the context of environmental eukaryotic diversity.
481	Front. Microbiol. 5, doi: 10.3389/fmicb.2014.00298.
482	Yakoob, J., Jafri, W., Beg, M.A., Abbas, Z., Naz, S., Islam, M., Khan, R. 2010.
483	Blastocystis hominis and Dientamoeba fragilis in patients fulfilling irritable
484	bowel syndrome criteria. Parasitol. Res. 107, 679-684.
485	Yoshikawa, H., Koyama, Y., Tsuchiya, E., Takami, K. 2016. Blastocystis phylogeny
486	among various isolates from humans to insects. Parasitol. Int. 65, 750-759.
487	

488 FIGURE LEGENDS

489 Fig. 1. Map of Thailand and Chiang Rai Province districts. Sampling localities used in

490 this investigation are depicted in red lettering.

- 491 Fig. 2. Frequency of Blastocystis alleles detected in the study population
- 492 **Fig. 3.** Prevalence of Blastocystis subtypes in Thailand (n=161)
- 493 Fig. 4. Prevalence and distribution of Blastocystis subtypes across geographic regions
- 494 in Thailand
- 495 Fig. 5. Maximum likelihood phylogenetic tree inferred from 103 SSUrRNA
- 496 sequences and 1379 sites. New sequences are depicted in bold lettering. Numerical
- 497 values on the tree branches indicate bootstrap support percentages and posterior
- 498 probabilities in this order.
- 499
- 500
- 501
- 502