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Manual restrictions on Palaeolithic
technological behaviours

Alastair J.M. Key and Christopher J. Dunmore

School of Anthropology and Conservation, University of Kent, Canterbury, Kent, United Kingdom

ABSTRACT

The causes of technological innovation in the Palaeolithic archaeological record

are central to understanding Plio-Pleistocene hominin behaviour and temporal

trends in artefact variation. Palaeolithic archaeologists frequently investigate the

Oldowan-Acheulean transition and technological developments during the subsequent

million years of the Acheulean technocomplex. Here, we approach the question of

why innovative stone tool production techniques occur in the Lower Palaeolithic

archaeological record from an experimental biomechanical and evolutionary perspec-

tive. Nine experienced flintknappers reproducedOldowan flake tools, ‘early Acheulean’

handaxes, and ‘late Acheulean’ handaxes while pressure data were collected from their

non-dominant (core-holding) hands. For each flake removal or platform preparation

event performed, the percussor used, the stage of reduction, the core securing technique

utilised, and the relative success of flake removals were recorded. Results indicate that

more heavily reduced, intensively shaped handaxes with greater volumetric controls do

not necessarily require significantly greater manual pressure than Oldowan flake tools

or earlier ‘rougher’ handaxe forms. Platform preparation events do, however, require

significantly greater pressure relative to either soft or hard hammer flake detachments.

No significant relationships were identified between flaking success and pressure

variation. Our results suggest that the preparation of flake platforms, a technological

behaviour associated with the production of late Acheulean handaxes, could plausibly

have been restricted prior to the emergence of more forceful precision-manipulative

capabilities than those required for earlier lithic technologies.

Subjects Anthropology, Evolutionary Studies

Keywords Manual Dexterity, Manipulation, Force, Oldowan—Acheulean transition, Stone tool

innovation, Flint knapping

INTRODUCTION

The production and use of flaked stone tools were likely important to the survival of

Palaeolithic hominins. The potential influence of these manually demanding behaviours

on the evolution of the human hand has long been recognised (Napier, 1962;Marzke, 1983;

Marzke, 1997; Marzke, 2013; Williams, Gordon & Richmond, 2010; Rolian, Lieberman &

Zermeno, 2011; Key & Lycett, 2011; Kivell, 2015; Almécija & Sheerwood, 2017; although see

Almécija & Alba, 2014). Recent research has also demonstrated how the manual anatomy

and associated biomechanical capabilities of different hominin species may have influenced

the nature of the Palaeolithic archaeological record (Marzke & Shackley, 1986; Rolian,

Lieberman & Zermeno, 2011; Domalain, Bertin & Daver, 2017; Key et al., 2017; Patiño et al.,
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2017; Key & Lycett, in press). That is, the types, forms and technological strategies of stone

tool artefacts may have been limited by, or preferentially selected for, as a result of how

effectively hominins could use the hand when manipulating or securing lithic objects.

Research concerning how the evolution of the hominin hand may have been influenced

by stone tool production and use has been reviewed in detail elsewhere (Marzke, 1997;

Marzke, 2013; Kivell, 2015; Almécija & Sheerwood, 2017). The present article reciprocally

focuses on the influence that hominin manual capabilities may have had on the types and

forms of stone tools produced during the Lower Palaeolithic.

The earliest intentionally flaked stone tools are currently from the 3.3 million-year-

old site of Lomekwi 3, West Turkana (Kenya), and appear to have been directed towards

producing large flake cutting tools through passive-hammer or bipolar percussive strategies

(Harmand et al., 2015; Lewis & Harmand, 2016). Subsequent to ∼2.6 million years ago

(Mya) Oldowan flake and core technologies, typically characterised by the expedient

production of variably sized flake cutting tools from hand-held cores using hard-hammer

percussion, appear more widely across East Africa (Kimbel et al., 1996; Roche et al., 1999;

Semaw et al., 2003; Rogers & Semaw, 2009; Hovers, 2012; Reti, 2016; Proffitt, 2018). Simple

flake and core stone tools are thereafter ubiquitous throughout the Palaeolithic. After

∼1.75 Mya large bifacially flaked core tools (‘bifaces’) appear in the archaeological

record across East Africa as part of the Acheulean techno-complex (Lepre et al., 2011;

De la Torre & Mora, 2014; Diez-Martín et al., 2015). These early Acheulean tools, often

characterised by handaxes and cleavers, are typically thought to have been produced

using hard-hammer percussion. Bifaces go on to typify the next >1 million years of the

archaeological record across the Old World (Lycett & Gowlett, 2008; Gowlett, 2015;Moncel

et al., 2015) until the onset of Middle Palaeolithic technologies ∼300 Kya (Moncel et al.,

2011; Tryon & Faith, 2013; Adler et al., 2014). The nature and extent of any chronological

changes to stone technology during the Acheulean are debated (e.g., Vaughan, 2001;

Chauhan, 2009; Gowlett, 2011; McNabb & Cole, 2015; Moncel et al., 2015; Gallotti, 2016),

however, there are indications that later Acheulean bifacial tools (handaxes in particular)

were at times produced using soft-hammer percussion, became thinner relative to their

width (more ‘refined’), displayed greater evidence of intentional thinning, volume control

(mass distribution), investment (e.g., time, skill), shaping and symmetry (Gowlett, 1986;

Saragusti et al., 1998; Schick & Clark, 2003; Grosman, Goldsmith & Smilansky, 2011; Beyene

et al., 2012;García-Medrano et al., 2014; Li et al., 2018;Moncel et al., 2016;Gallotti & Mussi,

2017; Iovita et al., 2017; Shimelmitz et al., 2017), and at times displayed evidence of platform

preparation prior to a flake’s removal (Stout et al., 2014). Together, these technologies

describe ∼3 million years of stone tool production and use during the Lower Palaeolithic.

Relationships between technological or morphological aspects of Lower Palaeolithic

stone tools and hominin manual capabilities are often mentioned, but rarely tested, in

archaeological literature (e.g., Crompton & Gowlett, 1993; Delagnes & Roche, 2005;Machin,

2009; Lycett & Von Cramon-Taubadel, 2015). Although paleoanthropologists frequently

debate whether fossil hominin hand anatomy could facilitate stone tool related precision

grips, it is rarely the case that specific technological or morphological aspects of these tools

are discussed (although see Tocheri et al. (2008) for an example). Therefore, there are only
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a few instances where hypothesised relationships between technological or morphological

features of Lower Palaeolithic stone tools and hominin manual capabilities have actually

been investigated.

Regarding the origin of the first flaked stone tools, Rolian, Lieberman & Zermeno (2011)

used a metal ‘simulated flake tool’ to calculate the external moments, internal flexion

moments and joint stresses of tool users. Their data suggested that efficient flake tool

use with low biomechanical stresses may not have been possible prior to the evolution

of the derived pollical anatomy observed in later Homo (Rolian, Lieberman & Zermeno,

2011). Recently, Key & Lycett (in press) demonstrated the significant impact that tool user

biometric variation can have on stone tool-use efficiency across the Lower Palaeolithic,

revealing that relationships between biometric parameters and tool-use efficiency depend

on the type of tool being used and the biometric variable under consideration. Their results

suggest that the effective use of flakes and handaxes is not only dependent on hominins

displaying relatively strong hands, but that the onset of Acheulean handaxes may have

been linked to the evolution of more anatomically modern manual dimensions (Key &

Lycett, in press). Williams-Hatala et al.’s (2018) investigation of manual pressure variation

during flake and handaxe use may also indicate there to be differences in grip loading levels

dependent on the size of the tool gripped.

These results are, in part, due to the variable grips required when securing different

Lower Palaeolithic tools, as described by Marzke & Shackley (1986). Manual demands and

grip choices have also been demonstrated to vary during different stone tool production

sequences (Marzke & Shackley, 1986). Comparisons between flake andhandaxe production,

for example, identified differences in the motion of the dominant arm, with the latter

requiring smaller, more precise flaking actions. The authors also suggest that a ‘lighter

grip’ could be used to secure an Oldowan flake core relative to a handaxe or pick when

detaching flakes (Marzke & Shackley, 1986). As cores become smaller over a reduction

sequence, Marzke and colleagues (Marzke & Shackley, 1986; Marzke et al., 1998) describe

how the distal aspects of digits are increasing heavily recruited and the palm is used

less. An early experiment also suggested that lower thumb to finger length ratios may

have precluded early hominin’s ability to firmly secure handaxes during production,

in turn resulting in ‘‘very crude handaxes’’ during the early Acheulean (Krantz, 1960:

116). Key et al. (2017) found that experienced knappers gripped hammerstones with high

pressure when detaching particularly large flakes. In turn, large stone flakes within Lower

Palaeolithic archaeological sequences (Sharon, 2010; Shipton et al., 2014) plausibly indicate

that homininswere capable of exerting and resisting highmanual pressures during precision

(hammerstone) manipulation.

Aside from manual requirements, other studies emphasise the increased cognitive

demands of handaxe production relative to Oldowan flakes (Stout et al., 2008; Muller,

Clarkson & Shipton, 2017), while Mateos, Terradillos-Bernal & Rodriguez (in press) have

recently experimentally compared the energetic cost of soft and hard hammer handaxe

production. Only Faisal et al. (2010), however, have empirically examined Lower

Palaeolithic technological transitions from a manipulative perspective. Joint angles on, and

abduction angles between, the digits of the non-dominant hand of a skilled flint knapper
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indicated that, at least for the individual under investigation, Acheulean andOldowan stone

tool production are ‘‘indistinguishable’’ in terms of manipulative complexity (Faisal et al.,

2010: 6). Faisal et al.’s (2010) study also highlights key manipulative differences between

these two reduction sequences, including the unique need to properly and securely brace

a handaxe as it becomes increasing thin relative to its width.

Together, these studies emphasise the distinct manual demands required by the type and

form of stone tool being used or produced. These demands must be facilitated by effective

grips, which are, in turn, facilitated by anatomical adaptations. Without this anatomy it is

unlikely that the respective tool forms would be found in associated archaeological deposits.

Yet, there is still relatively little known about hand recruitment during the production of

different types and forms of stone tool. Further, there is limited information about the effect

biomechanical variation in a tool producer’s hand has on the efficacy of different stone

tool production behaviours. Certainly, the onset and adoption of certain technological or

morphological features in the Palaeolithic archaeological record could have been restricted

by biomechanical capabilities, including the forceful precision grip capabilities of the

hominin upper limb.

The non-dominant hand is known to experience high loading levels and perform

complexmanipulative tasks during the production of stone tools (Marzke & Shackley, 1986;

Faisal et al., 2010; Key & Dunmore, 2015), perhaps to a greater extent than the dominant

hand. Differences in manipulative requirements between stone tool production behaviours

might, then, be more readily detected in this hand relative to the dominant hand. Here, we

test the null hypothesis that the pressures experienced across the non-dominant hand of

stone tool producers during a series of Lower Palaeolithic technological activities, including

a range of tool types produced and percussors used, are not significantly different. Further,

we assess how flake removal success is related to the pressure used to secure cores and

whethermanual pressures vary according to the stage of a core’s reduction, or the technique

used to support a core against hammerstone impact reaction forces.

METHODS

Reduction strategies and technological differences

Three Lower Palaeolithic reduction strategies are examined here: (1) the production

of replica Oldowan flake tools (‘flake’), (2) bifacial flake removals while shaping an

‘Early Acheulean’ handaxe (EAH), and (3) bifacial flake removals while shaping a ‘Late

Acheulean’ handaxe (LAH) (Figs. 1 and 2). Both flake and EAH tools were produced via

hard hammer percussion while LAH were produced with soft hammer percussion as well.

The latter strategy also employed specialist grinding stones during the preparation of flake

platforms. The terms EAH and LAH used here refer to general increases in flaking extent,

shaping, volume control, symmetry, the use of intentional ‘thinning’ flakes, soft-hammer

percussion and prepared flake platforms in later Acheulean handaxes (Saragusti et al.,

1998; Schick & Clark, 2003; Grosman, Goldsmith & Smilansky, 2011; Diez-Martín et al.,

2014; Stout et al., 2014; Gallotti & Mussi, 2017; Iovita et al., 2017; Shimelmitz et al., 2017).

While these differences are often clearest when tools produced >1 Mya are compared to
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Figure 1 The ‘early Acheulean’ and ‘late Acheulean’ handaxes produced by knappers 6 (A), 9 (B), 5 (C),

4 (D), 3 (E) and 2 (F).Handaxes are not presented to scale in order to emphasise shape differences. Source:

A Key.

Full-size DOI: 10.7717/peerj.5399/fig-1
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Figure 2 A replica Oldowan flake core knapped by the lead author. The original unmodified core (A),

a flake after its removal from the core at a late stage of the reduction (B), and the refitted core (C) are de-

picted on the left. The sequence of flake removals can be seen on the right (D). The first flake removed is

highlighted on the bottom right hand side of the image, with subsequent flake removals spiralling clock-

wise into the centre and ending with the core. Source: A Key.

Full-size DOI: 10.7717/peerj.5399/fig-2

those produced after ∼0.5 Mya, we do not mean to imply uniform linear progression of

forms across regional records (Vaughan, 2001; Gowlett, 2013; Moncel et al., 2015; McNabb

& Cole, 2015). Rather, we seek to investigate if handaxe forms produced using distinct

techniques may be limited by biomechanical capabilities, as inferred frommanual pressure

records (see below).

Although the translation and rotation of cores are manually demanding behaviours

(Marzke et al., 1998; Key & Dunmore, 2015), the present analysis focuses only on manual

pressure while securing cores during flake removals or platform preparation activities (edge

grinding, retouching and trimming). As these behaviours remove mass from a core, they

shape a lithic artefact and have the potential to be identified from the archaeological record.

Nine skilled flint knappers, each with at least five years experience, took part in the study.

At a minimum, all individuals were capable of consistently producing replica Acheulean

handaxes of predetermined formwhen required.Notably, some of the participants exceeded

this lower skill threshold by a considerable margin (cf. Eren et al., 2014). All had previously
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Figure 3 Four of the knappers during the three reduction sequences.Oldowan flake and core (A, D, G,

J), early Acheulean handaxe (B, E, H, K) and late Acheulean handaxe (C, F, I, L) reduction sequences are

depicted. Note image F, where the knapper is grinding an edge in preparation for a flake removal. Images

used with permission. Source: A Key.

Full-size DOI: 10.7717/peerj.5399/fig-3

knapped while connected to manual pressure sensors and are familiar with producing

tools within other experimental conditions (Winton, 2005; Williams, Gordon & Richmond,

2010; Key & Dunmore, 2015; Key et al., 2017). Additionally, most knap on a professional

and frequent basis (e.g., academic, craftsman etc.) and likely provide the best possible

sample available for providing natural, unfettered, pressure data. For these reasons, we

are confident in the use of a single trial per reduction strategy for each knapper (collected

within a single day) and the repeatability of the data collected. Each individual undertook

the flake reduction first, followed by the EAH and then LAH sequence (Fig. 3). British

flint from Suffolk and Kent was used in all reductions. All tool production sequences
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Figure 4 Platform preparation events. Two edge grinding (A, B) and retouching (C, D) events are de-

picted. These behaviours are undertaken to remove edge ‘lipping’ (i.e., peaks at the apex of an edge that

prevent a direct blow to the intended point of impact), to round the edge, to alter the flake platform’s an-

gle or to shape and isolate platforms. Source: A Key.

Full-size DOI: 10.7717/peerj.5399/fig-4

were recorded using a HD video camera. Ethical approval was granted by the School of

Anthropology and Conservation Ethics Committee (University of Kent; Ref. Ares 19065).

All individuals gave informed consent.

Each knapper used their own hammerstones and soft hammers, without restriction,

although red deer (Cervus eleghus) and moose (Alces alces) billets were typically used. No

wooden or copper billets were used. Knappers were free to use grinding stones during

platform preparation events in the LAH reduction, although in many instances soft and

hard hammerswere also used for grinding and trimming (Figs. 3 and 4). Knappers produced

flakes at their own pace and supported the core in whatever way they preferred (this varied

between the core resting in the hand or on the leg). Every attempted flake removal was

coded as successful if the flake detached or unsuccessful if it did not. In instances where

a fracture had clearly propagated through the core but required additional minor taps to

remove it, the original hammer strike was considered successful and the small taps were not
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included in the study. Small (micro) flake removals undertaken when preparing platforms

for large flake’s removals are considered as distinct to ‘flake removals’ in this study.

Pressure sensors

Awireless Novel Pliance R© sensor systemwas used to record the pressures (kPa) experienced

across the non-dominant hand of knappers during all three reductions (Fig. 5). The system

was comprised of 10 17 ×17 mm2 and two 10 ×10 mm2 sensors. The larger sensors

were attached to the distal and proximal phalanges of digits 1–4 as well as the intermediate

phalanges of digits 2 and 3. The two smaller sensors were attached to the distal and proximal

phalanges of digit 5 (Fig. 5). All sensors were attached to the palmar surfaces of digits using

double-sided tape and Velcro straps. Latex finger cots were used to protect the sensors and

help keep them in place. The sensors were ‘zeroed out’ prior to data collection starting

to account for any potential pressure caused by the finger cots. In all instances data were

collected at a rate of 50 Hz.

Data extraction

Reduction sequences ranged between 5 to 34 min in duration. The number of individual

data points collected from sensors ranged from∼12,000 to∼102,000. To identify individual

behavioural instances within data streams it was necessary to align the pressure data output

with the video records of each reduction sequence. Knappers were asked to free their

non-dominant hand of any loads prior the reduction sequence starting and forcefully

pinch their thumb and index finger. This created a known behaviour that was clearly

identifiable at the start of the pressure data and the video record, after which, the two

outputs could be accurately aligned.

Every time one of the behaviours under investigation was performed the peak pressure

(kPa) experienced on each sensor was identified and recorded. For an attempted flake

removal, peak pressures were identified from 2-second-long segments of the data stream

(1 second either side of the point of impact; Fig. 6). Platform preparation behaviours

could occur for substantially longer periods, therefore peak pressures were extracted from

across their entire duration. Every manual activity recorded here, and therefore every peak

pressure value, was assigned a technological strategy (flake, EAH, LAH), an indenture type

(hard hammer, soft hammer, grinding stone), a removal type (successful flake, unsuccessful

flake, platform preparation), a core-support position (leg, hand), and a sequence number.

Pressure data from all 12 sensors were summed to produce a record of the digital peak

pressures experienced at awhole-hand level during individual technological behaviours. For

each statistical comparison the peak pressures from all nine participants were combined.

Participant seven’s distal sensor on the first digit became detached during his flake reduction

sequence. To make this discrepancy equal across all conditions examined here, no data for

this sensor from this participant were included in the analyses.

To control for inter-knapper differences in pressure, records were normalised to a 0-1

scale by dividing the difference between each peak pressure record and minimum record

of that reduction sequence, by the range of values in that reduction. Since all reductions

begin in a similar manner this scaling should not preclude the identification of significant

differences between groups.
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Figure 5 The Novel Pliance R© pressure system attached to the hand of knapper #1.Note the 12 sensors

secured underneath the finger cots. Source: A Key.

Full-size DOI: 10.7717/peerj.5399/fig-5
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Figure 6 Two data sequences fromwhich peak pressure values were recorded.Depicted in the im-

age (A) is a brief platform preparation event during a LAH sequence. In this instance a grinding event is

shown, with the peaks and troughs associated with the forwards and backwards motion of the abrading

stone being clearly visible. The image (B) is from a flake removal during the same LAH reduction. It is

clear that prior to the point of percussion pressure increases. At the point of impact, however, there is a

noticeable peak as sensors record both the pressure exerted by the digits and those in reaction to hammer-

stone impact forces. Two sensors display a drop in pressure at the point of impact, presumably as the core

moves off the sensors in reaction to the impact. ‘D’, ‘I’, and ‘P’ refer to the distal, intermediate and proxi-

mal sensor on each digit (respectively).

Full-size DOI: 10.7717/peerj.5399/fig-6
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Statistical analyses
Pressure differences between flake, EAH, and LAH reduction strategies

Both successful and unsuccessful flake removal data were used to investigate how pressure

varies between the three core reduction strategies. Shapiro–Wilk tests revealed that

normalised peak pressure data were not normally distributed in any of the three reduction

strategies (p≤ .0001). As reduction sequence lengths varied between knappers, each was

sub-sampled to n peak pressure records evenly spaced over that sequence length, where n

was the minimum length of sequence data analysed (n= 30) (File S1). This step ensured

that knappers that produced longer sequences were not over-represented in the data, while

still yielding reasonable statistical power with a sample of 270 peak pressure records in

each reduction type. A Friedman test and post-hoc pairwise Wilcoxon signed rank tests

were used to test for significant differences between normalized median pressure values

between each reduction type. Significant values were identified at p< .017 as a Bonferroni

correction was applied.

Pressure according to flake removal success

Average pressure was compared between flake removals depending on whether they were

successful or not, within each reduction strategy. Hard and soft hammer percussion were

included in the LAH analyses, but platform preparation events were not. Shapiro–Wilk tests

confirmed that all three data sets were not normally distributed (p≤ .040). Mann–Whitney

U tests were repeated individually for Flake, EAH and LAH reductions as these data were

not repeated measures. Significance was assumed in-line with the Bonferroni correction

(p≤ .017).

Pressure differences between core support strategies

As the present investigation is one of a few to consider core securing events with the

non-dominant hand, we also analysed how different core support strategies may influence

manual pressures. Two methods of core support were naturally used by knappers during

reductions. Cores were either secured and supported solely in the hand, with the palm

and fingers working to support their weight, or by the hand bracing tools against the leg.

Pressure differences between these two core support strategies were compared individually

within the three reduction strategies using Mann–Whitney U tests as Shapiro–Wilk tests

identified that all data sets were not normally distributed (p≤ .0003). Significant values

were identified at p< .017 as a Bonferroni correction was applied. The LAH data does

include platform preparation events using both core support strategies.

Pressure according to mass removal method

Only the LAH reduction displayedmultiple mass removal (core shaping) methods; namely,

hard and soft hammer flake removals, and platform preparation events. To examine how

pressure varies between each of these threemass removal strategies LAHdata were separated

and then compared by technique used. Shapiro–Wilk tests confirmed that the three data

sets were not normally distributed (p≤ .0001). In turn, peak pressures were statistically

compared between the three strategies using sub-sampled data as for testing differences

between reduction strategies, though here the lowest number of mass removals in a
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sequence of a given type was 11 and so each removal type pressure sample was constituted

of 99 records evenly spaced over reduction sequences (File S1). A Friedman test and

post-hoc pairwise Wilcoxon signed rank tests were used to test for significant differences

between normalized median pressure values between each mass removal type.

Pressure differences dependent on reduction stage

To examine whether core reduction stage significantly influences the pressure exerted and

resisted by the non-dominant hand, flake sequence numbers were regressed on summed

peak pressure data for each respective reduction type. This analysis of the influence of a

core’s stage of reduction, as defined by the number of flakes removed, on manual pressure

does not use normalized or sub-setted data since it is the covariance of these variables that is

under investigation. Due to the influence that core form, knapping mistakes, raw material

inclusions, and participant enthusiasm could have on the duration of tool production

sequences, there is potential for later trends within shorter sequences to be concurrent

with earlier stages of longer reduction sequences. In turn, if there is only an increase in

pressure during the final stages of a handaxe’s production, for example, then this trend in

the shorter sequences may go undetected. Hence, we performed another regression using

flake removal sequence numbers of equal range that were proportionally normalised to the

shortest sequence length (out of the nine) for each reduction type. This allows assessment

of manual pressure from the start of a reduction sequence relative to its end (as determined

by the tool producer) irrespective of any variation in the number of flake removals.

Both sets of regressions are performed with all nine participants’ data. Regressions were

repeated individually for each of the three reduction strategies. Only hard and soft hammer

flake removals were included in these first analyses for the LAH data. Pressure data from

platform preparation event sequences were independently investigated using both types of

regression. Significance was assumed in-line with the Bonferroni correction (p≤ .0125) in

each instance.

RESULTS

Descriptive data for the pressure values used in each analysis are detailed in Tables 1–5.

Between the three types of tool production sequence there were substantially more mass

removal events when producing LAHs (n= 1,503), relative to flakes and EAHs (n= 506

and 777 respectively; Table 1). Around twice as many flake removals were required during

the production of LAHs relative to EAHs. Mean, summed peak pressure records across the

non-dominant hand during the production of LAHs were also greater than the flake and

EAH sequences by ∼50 kPa (Table 1; Fig. 7). The Friedman test did not reveal significant

differences between median pressures used in the three types of reduction (p= 0.22138)

and so post-hoc tests were not conducted. Although the production of ‘Late Acheulean

Handaxes’ required greater mean pressures to be exerted and resisted by the non-dominant

hand across all data collected, compared to the production of Oldowan flake tools or ‘early

Acheulean handaxes’, these differences were not significant.

Ratios of successful to unsuccessful flake removals varied only slightly between the three

reduction strategies (ranging between 7:2 and 9:2) (Table 2). In each strategy, successful
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Table 1 Descriptive data outlining the differences in combined peak pressure data recorded on the

non-dominant hand during flake and core, ‘early Acheulean handaxe’, and ‘late Acheulean handaxe’

stone tool production sequences.

All manual

behaviours

combined

n Mean (kPa) Median (kPa) S.D. (kPa) Min (kPa) Max (kPa)

Flake 506 214.3 205 114.2 25 722.5

EAH 777 203.5 192.5 104.5 20 617.5

LAH 1,503 261.8 235 155.8 17.5 930

Table 2 Data describing combined peak pressure differences between successful and unsuccessful

flake removals within the three types of stone tool production sequence examined.

Flake removal

success

n Mean

(kPa)

Median

(kPa)

S.D.

(kPa)

Min

(kPa)

Max

(kPa)

Successful 393 210.7 205 111.5 25 722.5Flake

Unsuccessful 113 227.1 205 122.8 25 525

Successful 636 200.5 188.8 103.7 22.5 617.5EAH

Unsuccessful 141 217.5 212.5 107.1 20 535

Successful 991 246.4 220 151.1 17.5 930LAH

Unsuccessful 243 256.5 225 137.7 25 705

Table 3 Differences in combined peak pressure recorded on the non-dominant hand of the nine knap-

pers during flake, EAH, and LAH reduction sequences, dependent on whether hand or leg core support

strategies were used.

Core support strategies n Mean

(kPa)

Median

(kPa)

S.D.

(kPa)

Min

(kPa)

Max

(kPa)

Hand 315 220.7 217.5 114.8 25 577.5Flake

Leg 191 203.8 190 112.6 25 722.5

Hand 367 187 180 85.3 25 465EAH

Leg 410 218.3 205 117.2 20 617.5

Hand 503 291 260 152.3 20 802.5LAH

Leg 1,000 247.2 200 155.5 17.5 930

flake removals reported pressure values∼10–15 kPa below unsuccessful removals (Table 2).

Mann–Whitney U tests identified that these differences were not significant in any of the

three sequences (p= .069–.249). In turn, the success of flake removals does not seem to be a

consequence of variation in pressure exerted by the non-dominant hand during stone tool

production, although there is consistency in successful flake removal recording marginally

lower pressure values.

Core support strategies varied between the leg and hand in all three reductions. In

terms of data frequency there is a split between flake production, which reports greater

use of hand support, the EAH reductions which are broadly equal between the two, and

the LAH reductions where there were clear preferences for cores being supported by the

leg (Table 3). While no significant pressure difference is recorded between the hand and
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Table 4 Data describing the combined peak pressure recorded on the non-dominant hand of knappers

while producing ‘late Acheulean handaxes’ (see definition provided in the main text), dependent on the

type of technique used to remove mass from the core.

Mass removal strategy n Mean

(kPa)

Median

(kPa)

S.D.

(kPa)

Min

(kPa)

Max

(kPa)

Hard hammer 617 264.9 235 159.5 17.5 930

Soft hammer 617 231.8 215 134.8 17.5 785

LAH

Platform preparation 269 323.5 297.5 172.8 17.5 802.5

Table 5 Descriptive data for the combined peak pressure records used in the four regression analyses

with flake removal numbers.

Reduction stage

(flake removal number)

n Mean (kPa) S.D. (kPa) Min (kPa) Max (kPa)

Flake 506 214.3 114.2 25 722.5

EAH 777 203.5 104.5 20 617.5

LAH 1,234 248.4 148.5 17.5 930

LAH Platform Preparation 269 323.5 172.8 17.5 802.5

leg support techniques during flake production (p= .060), both of the handaxe sequences

report significant differences (p= ≤.001; Table 3). However, during the EAH reduction

greater pressure values are reported during leg support while LAHs report greater values

during hand support (Table 3). The technique used to support a stone core therefore

appears related to the pressures required to secure it during flake removals and platform

preparation events, however, differences appear dependent on the type of tool being

produced.

It was only possible to compare hard hammer flake removals, soft hammer flake

removals, and platform preparation events during the LAH reduction sequence. Across

the nine participants there were equal numbers of hard and soft hammer flake removals

(n = 617 for each removal type), suggesting that both types of percussor are equally

important during LAH production sequences (Table 4). There were, however, 4.6 times

as many flake removals relative to platform preparation events, indicating that only ∼one

in five flakes required its platform to be prepared prior to its removal. When only soft

hammer percussion is considered, where platform preparation may more normally be

expected, every other flake was removed without its platform being prepared (i.e., one in

two flakes had its platform prepared). Soft hammer percussion returned, on average, the

lowest peak pressure records across the hand (Table 4; Fig. 7). Hard hammer percussion

required an additional 33 kPa of pressure to be exerted and resisted by the non-dominant

hand. An additional 59 and 92 kPa were recorded, on average, across the non-dominant

hand of knappers during platform preparation events compared to hard and soft hammer

percussion, respectively (Table 4; Fig. 7). The Friedman test between normalised median

pressures used in the three types of mass removal was significant (p= .0001). Subsequent

pairwise Wilxcoxon signed rank tests indicated that platform preparation events required

significantly more pressure than both hard (p= 0.0002) and soft hammer (p= .0043)
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Figure 7 Boxplots depicting peak pressure data. The nine knappers during the three types of stone tool

production strategies (n = 506, 777, and 1,503 for the Oldowan flake, EAH, and LAH data, respectively)

and the three mass removal strategies utilised in the late Acheulean handaxe reduction sequence (n= 617,

617, and 269 for the hard hammer, soft hammer, and platform preparation data, respectively) are shown.

Full-size DOI: 10.7717/peerj.5399/fig-7

removals, while there was no significant difference between the latter two mass removal

types. Platform preparation events do, therefore, appear to require significantly greater

pressure to be exerted and resisted by the non-dominant hand compared to both hard and

soft hammer flake removals.

The LAH data values used during the regression analyses were, on average, greater than

both the flake and EAH reductions (by 34 and 45 kPa, respectively) despite the absence

of platform preparation events (Table 5), demonstrating that even in the absence of this

uniquely late Acheulean behaviour, the production of LAH forms requires greater manual

pressures. Of the eight linear regressions undertaken all identified significant relationships

between flake removal sequence numbers and manual pressure (Table 6). Flake and

EAH reduction sequences displayed negative relationships, whereby pressure decreased

as reduction sequences progressed. LAH sequences and LAH platform preparation events

displayed positive relationships, indicating that later mass removal events required greater

manual pressures (Table 6). In all but one instance R2values were ≤.090, indicating that
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Table 6 Regressions between both the original and ‘standardised’ flake removal or platform prepara-

tion sequence event numbers and combined peak pressures experienced on the non-dominant hand.

p R2

Original flake removal numbers

Flake .0001 −.029

EAH <.0001 −.030

LAH <.0001 .066

LAH platform preparation <.0001 .416

Standardised flake removal numbers

Flake .0007 −.023

EAH <.0001 −.090

LAH .0035 .007

LAH platform preparation .0078 .026

limited (≤ 9%) pressure variation could be attributed to a core’s stage of reduction. The

single exception was the regression between LAH platform preparation sequence numbers

and their respective pressure values, where 42% of the observed pressure variation could be

attributed to the stage of a handaxe’s production (Table 6; Fig. 8). This indicates that as late

Acheulean handaxes progress further through production sequences (i.e., as they become

smaller, increasingly shaped and thin relative to their thickness) the pressure required to

stabilise them during platform preparation events increases significantly. The fact that this

relationship is not similarly repeated in the normalised flake removal sequence numbers

indicates that this relationship is unlikely to be driven by how close a handaxe is to being

considered finished by the knapper, but by how long the sequence goes on for, how many

flakes have been removed, and how ‘refined’ a biface becomes.

DISCUSSION

The present work investigates the origin of technological innovation during the Lower

Palaeolithic from a biomechanical and evolutionary perspective, and asks whether the onset

of new stone tool forms and production techniques may have been restricted by hominin

manual capabilities.Our results demonstrate that although laterAcheuleanhandaxes (LAH)

required the exertion and resistance of greater manual pressure during their production

relative to either Oldowan flake and core tools or early ‘rougher’ Acheulean handaxes

(EAH) (by an average of 22% and 29%, respectively, when all data were considered),

these differences were not found to be significant and may have been driven by a few

individuals. It is, therefore, not possible to state that manual pressure requirements during

flake detachments vary significantly between the three tools examined here.

However, the preparation of LAH flake platforms, through retouching and edge grinding,

elicited the greatest loads in this study. Indeed, the action of preparing a flake’s platform

prior to its removal required significantly (22–40%) more pressure than soft or hard

hammer flake removals in the same reduction sequences (Table 4; Fig. 7). Compared

to Oldowan or EAH flake removals, mean pressures are 55–59% (>110 kPa) greater

during LAH platform preparation events (Tables 1 and 4; Fig. 7). This result suggests that
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Figure 8 Linear regression between the combined peak pressures recorded on the non-dominant hand

of knappers during platform preparation events (grinding and trimming) and the sequence of that

platform preparation events (R2= .416). All data are from LAH reduction sequences only.

Full-size DOI: 10.7717/peerj.5399/fig-8

platform preparation techniques may only have been possible for hominins capable of

performing particularly forceful precision grips. These grips would have required greater

force than those needed for earlier stone tool types. Arguably, only once hominins evolved

enhanced manipulative capabilities in response to selective pressure exerted by earlier

manual behaviours, would the innovation of later Acheulean handaxe forms, produced

using the preparation of flake platforms, have been possible. Such behaviours include flake

tool use, hammerstone use, and Oldowan/EAH core manipulation (Marzke, 1997;Marzke,

2013; Kivell, 2015; Key & Dunmore, 2015; Williams-Hatala et al., 2018). As highlighted by

Tocheri et al. (2008), fossil hand anatomy indicates the continued derivation of hominin

manual capabilities subsequent to the onset of the Acheulean, which may have facilitated

the forceful grips used for securing the core during platform preparation events, required

for LAH production.

During platform preparation events edges are modified either via the removal of very

small flakes when isolating as well as reshaping platforms or altering their angles, or they
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can be reduced, bevelled, reshaped and isolated through forceful grinding actions. In each

case, these actions require the precise but forceful application of stone or antler against

the handaxe’s edge. In turn, it is essential for handaxes to remain stable throughout this

process so that the percussor or grinding stone is applied only to the specific area being

shaped (for refined bifaces flake platforms are often <10 × 5 mm). Regarding small flake

removals, it is the highly precise nature of the removals that necessitates a particularly firm

and steady grip on the handaxe.

The act of grinding a handaxe’s edge in preparation for a flake removal, however, also

requires the input of substantial and prolonged forces through an abrasive stone onto the

biface’s edge. In addition to their extended duration, it is likely that the dominant hand

at times creates forces in excess of those observed during flake detachments. Certainly,

during edge grinding the palm contributes substantially to the loads transferred onto a

core, something that is impossible during most hammerstone strikes (and therefore flake

detachments). While previous biomechanical studies of the dominant hand have tended

to overlook edge grinding events (although see: Marzke & Shackley, 1986), and thus these

claims cannot yet be substantiated, our pressure data clearly identifies a requirement to

oppose substantial reaction forces during platform preparation events. More specifically,

these pressures are significantly greater than those observed during flake removals.

When LAHs are secured during platform preparation events up to 42% of the pressure

variation recorded here can be attributed to the stage of a handaxe’s production,

demonstrating proportionally greater force is required to prepare platforms for

progressively refined flake removals (Fig. 8). This relationship cannot be straightforwardly

attributed to participant fatigue, as platform preparation events and flake removals were

undertaken throughout reductions and no fatiguing was reported or observed. Rather the

form of the handaxe (core) being supported and secured is likely responsible for this result.

As any reduction sequence progresses, cores become smaller (Clarkson, 2013; Douglass

et al., 2018) and handaxe size has been experimentally demonstrated to have a strong

negative relationship with reduction intensity (Shipton & Clarkson, 2015a; Shipton &

Clarkson, 2015b). Marzke & Shackley (1986) found that as reduction sequences progress

the thumb and distal aspects of the fingers are increasingly used in isolation when gripping

the core to secure it against hammerstone strikes (see also: Pouydebat et al., 2009). As a

corollary, both the greater surface area of the palm and the most ulnar digits (fourth and

fifth) are used progressively less (Marzke et al., 1998), which concentrates manual forces on

the radial three digits. This concentration of force thereby increases the pressures required

to produce, typically smaller, LAH’s.

The stage of a handaxe’s reduction also has potential to impact its volumetric distribution

and shape (Crompton & Gowlett, 1993). Archer & Braun (2010) demonstrated that as

reduction sequences progress, a handaxe’s centre of mass moves first to the centre of the

tool and subsequent thinning flakes move it to the tool’s base. As highlighted by Faisal

et al. (2010), this results in an increased requirement to properly secure and brace the

tool during flake removals and platform preparation events. Certainly, during the latter

stages of LAH production there is increased risk that a biface will break (i.e., fracture in an

unintended way) when flake removals are instigated. This may be through the intended
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fracture ‘diving’ through the biface when searching for the route of least resistance, or

by reaction forces propagating through the tool and creating stress enough to fracture

in additional locations (often the tip). In both cases, the principle means for a knapper

to prevent these mistakes (other than choosing suitable flakes to remove) is by forcefully

bracing the length of the biface. While most effect sizes were small, the other regression

analyses support this idea as flake and EAH regressions display negative relationships with

pressure but LAH sequences show positive relationships. During flake and EAH reductions

the reducing core mass requires less support and stabilisation, resulting in lower manual

pressure. While this may also characterise early stages of LAH production, as sequences

progress, pressure increases substantially. It is likely that the production of bifacially flaked

tools with even lower thickness to width ratios, such as Solutrean or Clovis points (e.g.,

Smallwood, 2010; Eren et al., 2013), would require even greater pressures.

Wider implications

Stout and colleagues (Stout et al., 2008; Stout et al., 2015), and more recently Muller,

Clarkson & Shipton (2017), have demonstrated that Acheulean handaxe production

requires increased visuomotor coordination, hierarchical organisation and is more

cognitively demanding than Oldowan flake tool production. Wynn (2002) and Muller,

Clarkson & Shipton (2017) further suggest late Acheulean handaxe production sequences

to be more complex than those required for early Acheulean handaxes. When combined

with the present study, the production of later Acheulean handaxes could, therefore,

also be considered a biomechanically and cognitively more demanding behaviour than

earlier types of stone tool production. Although earlier research hinted at how manually

demanding later handaxes were to produce (e.g., Krantz, 1960; Marzke & Shackley, 1986),

it is only now that there are empirical data in support of this conclusion. Earlier work

by Faisal et al. (2010) investigated the manipulative complexity (variation) of Oldowan

and late Acheulean handaxe reduction strategies did not find any notable differences in

digit joint or abduction angles. Our platform preparation results may, at first, appear in

contrast to those reported by Faisal et al. (2010) insofar as we did find significant manual

differences between Oldowan flake and late Acheulean handaxe production. Each study,

however, investigates or infers a distinct biomechanical element of stone tool production.

That is, the manual demands associated with joint angle complexity are not tantamount

to demands associated with loading levels. So while the complexity of these behaviours

have not been demonstrated to be different (Faisal et al., 2010), the production of late

Acheulean is still a more demanding manual behaviour, but only in terms of the manual

pressure levels resisted and exerted.

Key and colleagues (Key et al., 2017; Key & Lycett, in press) have argued that the

production of large flakes (e.g., >10 cm) via hard hammer percussion and the effective use

of handaxes, which are both characteristic features of early Acheulean tool assemblages

(De la Torre & Mora, 2014), required manual biomechanical prerequisites prior to their

widespread adoption by hominin populations. The present study suggests that the removal

of bifacial flakes from a core when shaping an EAH is no more demanding, in terms of

loading on the non-dominant hand, than the removal of flakes from a core during more
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straightforward Oldowan core reduction strategies. So, while there may be other manual

prerequisites prior to the adoption of early Acheulean technologies (Key et al., 2017; Key

& Lycett, in press), the loads required to secure cores do not appear to be one. As far as the

present study demonstrates, we can attribute the specific technological development of core

shaping through bifacial flake removals (n.b. not large flake production or the effective use

of these tools (Key et al., 2017; Key & Lycett, in press)) to be more likely linked to changes

in hominin cognitive, cultural, or linguistic capabilities (Wynn, 2002; Uomini & Meyer,

2013; Stout et al., 2014; Morgan et al., 2015; Schillinger, Mesoudi & Lycett, 2015; Stout et al.,

2015; Lycett et al., 2016), or increased functional and ecological demands for large tools

with scalloped cutting edges (Jones, 1980; Key & Lycett, 2017a; Key & Lycett, 2017b; Wynn

& Gowlett, 2018), than biomechanical restrictions.

Further technological considerations

Our finding that flaking success cannot be attributed to pressure levels when securing

cores demonstrates that, for skilled knappers at least, other factors are more important in

determining flake detachment success. We are not suggesting that a secure and forceful

grip on stone cores is not essential to the successful removal of flakes. Neither do we mean

to imply that the loads required to secure a core do not change in response to different

morphological or technological aspects of a tool production sequence (e.g., flake and core

size, platform angle, percussor type). The high but variable loads exhibited here attest to

these requirements, as do results reported in previous studies (Marzke et al., 1998; Key &

Dunmore, 2015). Rather, our results demonstrate that the visuomotor control of skilled

flint knappers during stone tool production is such that they can appropriately judge

manual pressure requirements during flake detachments with equal success across the

three types of reduction strategies examined here. Although, of course, there is potential

for considerable variation in appropriate or necessary pressure outputs (cf. Rein, Nonaka

& Bril, 2014; Key et al., 2017). Given the experience of the knappers used in this study,

indications of advanced motor-skills during flake detachments are not surprising (Nonaka,

Bril & Rein, 2010). Nonetheless, it is interesting that the success of flake removals by skilled

flintknappers cannot be attributed to the use of higher or lower than required loading

through the non-dominant, core securing, hand. It is beyond the scope of the present

study to comment on whether the success of flake removals by novice knappers can, at

least in part (Nonaka, Bril & Rein, 2010; Stout et al., 2015), be attributed to an inability to

appropriately judge the loads required to secure a core. Interestingly, the ratio of ∼4:1

successful to unsuccessful flake removals (991 successful and 243 unsuccessful flake) across

the LAH reductions was repeated when only flake removals performed immediately after

platform preparation events were considered (160 successful and 38 unsuccessful flaking

attempts). Indicating that, at least for expert knappers, the preparation of flake platforms

does not increase the success of flake removals.

Both handaxe reduction sequences demonstrated significant pressure differences

between the hand and leg core support strategies. The EAHs required greater values

during the leg support technique while the LAH required greater values during the hand

condition. The cause of this differencemay relate to the disproportionate use of each support
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strategy at different stages of a reduction sequence, changes in grip choice and pressure

requirements as reductions progress, and the inclusion of platform preparation data in the

LAH reduction. All reduction types used the leg support strategy more frequently during

the earlier stages of a reduction sequence. This was likely because the most comfortable

way to support a particularly heavy core’s weight was by using the leg, with the hand chiefly

being used to stabilise the core against hammerstone strikes. As sequences progressed cores

became smaller, meaning that it was easier to support and secure cores using only the

hand. A shift to the more frequent use of a hand support strategy also coincided with the

already discussed need for greater pressure as cores become more ‘refined’ during platform

preparation events. The greater duration of LAH reductions would have created increased

opportunity for high loading. The greater frequency of the leg support technique during

handaxe reductions, butmost notably the LAH sequence, is likely due to the greater stability

of this technique. As handaxes become thinner relative to their thickness they are more

likely to break during flake removals. The use of the leg as a supportive structure allows

for greater areas of the biface to be firmly secured by the body, decreasing the likelihood of

it breaking during flake removals. Such comprehensive support is rarely required during

‘simple’ flake production strategies, hence, the leg support technique is more frequently

being used in early stages of flake production.

Although soft hammer percussion was used more frequently during the later stages of

LAH sequences, this percussive technique did not contribute to greater pressures values

during the hand support strategy, nor the greater pressures recorded in the later stages of

LAH reduction sequences. Indeed, soft hammer percussion required similar loads to hard

hammer percussion. This is despite soft hammers being more frequently used to remove

smaller flakes (in terms of mass, if not length), in turn requiring lower impact forces

(Dibble & Rezek, 2009) and creating lower reaction forces to be resisted. Irrespective of the

cause, our data indicates that the seemingly delayed onset and adoption of soft hammer

percussion during the later stages of the Lower Palaeolithic (Copeland, 1991; Schick &

Clark, 2003; Stout et al., 2014) cannot be attributed to biomechanical limitations in the

non-dominant hand of hominins.

Limitations

It is important to note that the pressures recorded here are not likely representative of the

total forces exerted and resisted by the non-dominant hand during stone tool production.

As past research demonstrates (Marzke & Shackley, 1986; Key & Dunmore, 2015), the palm

plays an important role in supporting cores during flake removals (e.g., Figs. 4A and 4B)

and the sensor array used here did not take this into account. It is hard to say whether

the inclusion of palmar pressure data would have altered any of the present results, but

indications of an increased reliance on distal aspect of digits during later stages of reductions

highlights the need for future research to take this into consideration. Further, although

the number of behaviours analysed here is, as far as we know, the largest yet recorded

during an investigation into stone tool related manual loading (n= 2786), only nine skilled

flintknappers were able to take part in the study. In turn, and as already discussed, there

is potential for our data to be significantly influenced by a few individuals. This includes
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differences caused by variable grinding and core securing techniques learnt as each knappers

first developed their knapping capabilities, and the possibility of an individual not providing

‘natural’ nor repeatable data on the specific day data were collected. Although there does

not appear to be any indication that this has happened, we cannot rule this possibility out

in totality. Hence, we would welcome the publication of similar studies in the future that

are able to examine increased numbers of knappers.

CONCLUSION

The Lower Palaeolithic artefact record represents the largest and most detailed record of

the minimum technological capabilities of hominins during the Plio-Pleistocene. As such

the Oldowan and Acheulean periods track significant shifts in the behaviour of hominins,

which have been investigated in terms of cognition, social transmission, environmental

factors and others. Here we investigate these transitions from a biomechanical perspective,

as inferred from manual loading data. Our results demonstrate that the digital pressures

required to forcefully secure later Acheulean handaxes during their production are not

significantly greater than those requiredwhen knapping earlier Acheulean handaxe forms or

Oldowan flakes. However, the novel LAH associated behaviour of preparing flake platforms

would have required significantly stronger grips in the non-dominant hand compared to

earlier stone tool production behaviours. Therefore, we contend that the behavioural shift

marked by the onset of platform preparation behaviours, as observed in later Acheulean

handaxe forms, may be intrinsically linked to the biomechanical capabilities of hominins,

among other factors, in a co-evolutionary manner.
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