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On the approximate periodicity of sequences attached to

noncrystallographic root systems

Philipp Lampe

July 15, 2016

Abstract

We study Fomin-Zelevinsky’s mutation rule in the context of noncrystallographic root sys-
tems. In particular, we construct approximately periodic sequences of real numbers for the
noncrystallographic root systems of rank 2 by adjusting the exchange relation for cluster alge-
bras. Moreover, we describe matrix mutation classes for type H3 and H4.

1 Introduction

Fomin and Zelevinsky have introduced cluster algebras in an impactful article [3, Definition 2.3].
In the last ten years diverse authors have found cluster algebra structures in various branches of
mathematics such as representation theory, algebra and combinatorics. To define a cluster alge-
bra, Fomin-Zelevinsky have defined seeds and mutations of seeds. Here, a seed (without frozen
variables) is a pair (x, B) which consists of a cluster and a mutation matrix. The cluster x =
(x1, x2, . . . , xn) is a sequence of cluster variables and the mutation matrix B is a skew-symmetrizable
integer n × n matrix. Given an initial seed, the cluster algebra is now defined to be generated by
all cluster variables in all seeds that are obtained from the initial seed by a sequence of mutations.
The natural number n is called the rank of the cluster algebra.

Some cluster algebras are of finite type and some cluster algebras are of infinite type. Here,
we say a cluster algebra is of finite type if the mutation process yields only finitely many cluster
variables. In another impactful article, Fomin-Zelevinsky [4, Theorem 1.4] have classified the
cluster algebras of finite type via finite type root systems. The theorem implies that finite type
cluster algebras (without frozen variables) are in bijection with Dynkin diagrams of type An(n ≥ 1),
Bn(n ≥ 2), Cn(n ≥ 3), Dn(n ≥ 4), En(n = 6, 7, 8), F4, and G2.

These Dynkin diagrams classify crystallographic root systems. In particular, such a diagram
visualizes the Coxeter structure of the Weyl group of the corresponding root system. In the setup
of cluster algebras, the crystallographic condition yields integer entries in the mutation matrix B.
On the other hand, finite Coxeter groups are in bijection with Coxeter-Dynkin diagrams. Coxeter-
Dynkin diagrams do not necessarily satisfy the crystallographic condition. Examples of non crys-
tallographic Coxeter groups are dihedral groups (with Coxeter-Dynkin diagram I2(m) with m = 5
or m ≥ 7) and the symmetry group of the icosahedron (with Coxeter-Dynkin diagram H3).

The aim of this note is to generalize Fomin-Zelevinsky’s matrix and seed mutation to non-
crystallographic root systems. For every noncrystallographic root system of rank 2 the mutation
class of the B-matrix contains two elements. Given two initial positive real numbers we define a
sequence of real numbers by adjusting the exchange relations for cluster algebras to our setup. It
turns out that the sequence is no longer a periodic sequence, but it is an almost periodic sequence
meaning that it is approximately equal to a periodic sequence. For the noncrystallographic root
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system of type H3 the mutation class of the B-matrix is finite, but we do not observe the phe-
nomenon of almost periodicity. The question of approximate periodicity in this setup has also
been touched by Reading-Speyer, see Armstrong [1, Problem 6.4].

2 Background

2.1 Fomin-Zelevinsky’s cluster algebras

In this section we wish to recall the definition of Fomin-Zelevinsky’s cluster algebras. We only
consider coefficient-free cluster algebras without frozen variables over the field of rational num-
bers.

Let n ≥ 1 be an integer and let u1, u2, . . . , un be algebraically independent variables over the
field Q of rational numbers. The field F = Q(u1, u2, . . . , un) of rational functions is also called
the ambient field. A cluster is a sequence x = (x1, x2, . . . , xn) ∈ Fn of algebraically independent
elements. An n × n matrix B = (bij) with integer entries is called skew-symmetrizable if there exists
a diagonal n × n matrix D = diag(d1, d2, . . . , dn) with positive integer diagonal entries such that
the matrix DB is skew-symmetric, i. e. dibij = −djbji for all 1 ≤ i, j ≤ n. In this case, the diagonal
matrix D is called a skew-symmetrizer of B. A seed is a pair (x, B) formed by a cluster x and a
skew-symmetrizable integer n × n matrix B. We denote the set of seeds by S .

Let k ∈ {1, 2, . . . , n} be a natural number. A mutation in direction k is a map µk : S → S , (x, B) 7→
µk(x, B) = (x′, B′), where x′ = (x′1, x′2, . . . , x′n) is the sequence that we obtain from the cluster x by
replacing the variable xk with

x′k =
1

xk

(

∏
bik>0

xbik

k + ∏
bik<0

x−bik

k

)
∈ F ,

and keeping all other cluster variables x′i = xi with i 6= k, and B′ = (b′ij) is the n × n matrix with

b′ij =

{
−bij, if k ∈ {i, j};

bij +
|bik|bkj+bik|bkj|

2 , otherwise.

For every seed (x, B) ∈ S the pair µk(x, B) = (x′, B′) is again seed, i. e. the elements of the
sequence x′ are also algebraically independent over the field of rational numbers and the matrix
B′ has integer entries and is skew-symmetrizable (with the same skew-symmetrizer D). Thus the
map µk : S → S is well-defined.

Fomin-Zelevinsky’s mutation of seeds has many remarkable properties. Firstly, for every in-
dex k we have µ2

k = idS so that the map µk is an involution. We declare two seeds (x, B), (x′, B′) ∈
S to be mutation equivalent if there exists a sequence (k1, k2, . . . , kr) of indices such that (x, B) =
(µk1

◦ µk2
◦ . . . ◦ µkr

)(x′, B′). In this case we write (x, B) ≃ (x′, B′). It follows that ≃ is an equiva-
lence relation on the set of all seeds.

Suppose that (x, B) is an initial seed. The cluster algebra A(x, B) ⊆ F is the Q-subalgebra
generated by all cluster variables x′k in all seeds (x′, B′) that are mutation equivalent to (x, B). By
construction we have A(x, B) ⊆ F . More generally, Fomin-Zelevinsky’s Laurent phenomenon [3,
Theorem 3.1] asserts that A(x, B) ⊆ Q[x±1

1 , x±1
2 , . . . , x±1

n ]. More generally, every cluster variable is

an element in the ring Z[x±1
1 , x±1

2 , . . . , x±1
n ].

2.2 Cluster algebras of rank 2

A skew-symmetrizable integer 2 × 2 matrix has the form B = ±
(

0 a
−b 0

)
for some natural numbers

a, b ≥ 1. Note that the two possible choices of the sign yield isomorphic cluster algebras which we
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will denote by A(a, b). We can parametrize the cluster variables in A(a, b) by the set of integers,
so that we obtain cluster variables xi, with i ∈ Z, and clusters (xi−1, xi), with i ∈ Z. The equation

xi−1xi+1 =

{
xa

i + 1, if i is even;

xb
i + 1, if i is odd;

describes the mutation from the cluster (xi−1, xi) to the cluster (xi, xi+1). Fomin-Zelevinsky’s clas-
sification theorem implies that the cluster algebra A(a, b) is of finite type if and only if ab < 4. In
these cases, the sequence (xi)i∈Z is a periodic sequence. The period of the sequence is equal to 5,
6, or 8 when (a, b) is equal to (1, 1), (2, 1), or (3, 1).

Assume that A(a, b) is of finite type and let i ∈ Z be an integer. Due to the Laurent phe-
nomenon we can write xi = f (x1, x2)/(xa1

1 xa2
2 ) for some polynomial f ∈ Z[x1, x2]. It is easy to see

that in these cases the constant term in the polynomial f (x1, x2) is always equal to 1. Evaluation of
the Laurent polynomial at the pair (x1, x2) yields a function xi : R+ × R+ → R+. Motivated from
tropical geometry, we could approximate xi ≈ 1/(xa1

1 xa2
2 ). In this paper we wish to introduce an

approximation, which is more accurate than the tropical approximation and also works in a more
general (noncrystallographic) setup where we do not have a Laurent phenomenon.

3 Approximately periodic sequences attached to noncrystallographic

root systems of rank 2

3.1 The definition of the almost periodic sequences for type I

The Dynkin diagrams attached to the cluster algebras A(1, 1), A(2, 1) and A(3, 1) are A2, B2 and
G2, respectively. The corresponding Coxeter groups are the dihedral symmetry groups of the
equilateral triangle, the square and the regular hexagon. More generally, the Coxeter-Dynkin
diagram associated with the dihedral group of symmetries of the regular m-gon, for some m ≥ 3,
consists of two vertices that are joined by an edge of weight a = 4 cos2( π

m ). Note that a ≥ 1.
Generalizing the classical construction, the two possible orientations of the diagram yield two
possible mutation matrices B = ±

(
0 a
−1 0

)
. With this data we associate the following recursion. Let

x = (x1, x2) be an initial cluster consisting of positive real numbers x1 and x2. Define a sequence
(xi)i∈Z of positive real numbers by

xi−1xi+1 =

{
xa

i + 1, if i is even;

xi + 1, if i is odd.
(1)

In contrast to the cases m = 3, 4, 6 the sequences are neither periodic nor do we notice the
Laurent phenomenon. But we observe some approximate periodicity: in the case m = 5 (where
we have a = 4 cos2(π

5 ) = 1
2(3 +

√
5) ≈ 2.618033988) we have randomly chosen starting values

x1 = 0.829497 and x2 = 0.363532 from the open interval (0, 1), and computed the first few terms
numerically, as the first two columns in Figure 1 illustrate. After 14 steps, we always get close to
our starting values, e. g. x−5 ≈ x9 and x−4 ≈ x10. The same phenomenon also occurs for other
values of m, and the number of steps is either m+ 2 or 2(m + 2) depending on the parity of m. The
aim of this section is to explain this phenomenon. From now on we assume that m > 4, because
in the other cases we have exact periodicity. Note that m > 4 implies a > 2.

3.2 A recursion formula for a subsequence

It is enough to look at every other term of the sequence (xi)i∈Z, because we can recover every term
from the exchange relation (1) once we know its neighbors. To this end, let us define a sequence
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n xn Yn/2 relative error

−6 0.935815 0.919721 0.017198
−5 0.136311
−4 1.214248 1.170883 0.035714
−3 19.531300
−2 16.908654 16.788570 0.007102
−1 84.093907
0 5.032565 4.881875 0.029943
1 0.829497
2 0.363532 0.363532 0.000000
3 1.290794
4 6.301497 6.301497 0.000000
5 96.739925
6 15.510588 15.228954 0.018158
7 13.546623
8 0.937851 0.919721 0.019332
9 0.136223

10 1.211518 1.170883 0.033541

Figure 1: An example of an approximately periodic sequence (xn) with m = 5

(yi)i∈Z of positive real numbers by putting yi = x2i for all integers i ∈ Z. As above, we can view
every element yi = yi(x1, x2) as a function R+ × R+ → R+ in the initial values x1, x2. We will
see that the sequence (yi)i∈Z is almost periodic; this will imply that the original sequence (xi)i∈Z

is also almost periodic. The following proposition shows that there is a self-contained recursion
formula for the elements of the sequence (yi)i∈Z.

Proposition 3.1. Let i ∈ Z be an integer. Then the elements yi−1 yi and yi+1 satisfy the equation
yi−1yiyi+1 = yi−1 + yi+1 + ya−1

i .

Proof. Let i ∈ Z be an integer. By construction we have yi−1 = x2i−2, yi = x2i and yi+1 = x2i+2.
Note that yi−1yi − 1 = x2i−1 and yiyi+1 − 1 = x2i+1. The relation (yi−1yi − 1)(yiyi+1 − 1) = ya

i + 1

yields yi−1yiyi+1 = yi−1 + yi+1 + ya−1
i .

3.3 An approximation of the sequence

We define another sequence (Yi)i∈I . Moreover, we view the sequence (Yi)i∈I as a numerical ap-
proximation of the sequence (yi)i∈I . The index set I is equal to I = {−2,−1, 0, 1, . . . , m

2 } if m is

even and to I = {−m+1
2 ,−m−1

2 , . . . , m+3
2 , m+5

2 } if m is odd. In both cases, we put Y1 = y1 and
Y2 = y2, and define the other elements in the sequence recursively. We put:

Y0 =
Y2

Y1Y2 − 1
; Y−1 =

Ya−1
0

Y0Y1 − 1
; Y−2 =

Ya−1
−1

Y0Y−1
=

Ya−2
−1

Y0
;

Y3 =
Ya−1

2

Y1Y2 − 1
; Yi+1 =

Ya−1
i

Yi−1Yi
=

Ya−2
i

Yi−1
for 3 ≤ i ≤ m−1

2 .
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for all m. If m is odd, then we define the missing elements in the sequence as follows:

Y(m+3)/2 =
Ya−1
(m+1)/2

+Y(m−1)/2

Y(m+1)/2Y(m−1)/2
, Y(m+5)/2 =

Y(m+1)/2

Y(m+3)/2Y(m+1)/2 − 1
,

Yi−1 =
Ya−1

i

Yi+1Yi
=

Ya−2
i

Yi+1
for − m−3

2 ≤ i ≤ −2, Y−(m+1)/2 =
Ya−1
−(m−1)/2

+Y−(m−3)/2

Y−(m−1)/2Y−(m−3)/2
.

Using the relations Y1 = x2 and Y2 = x4 =
1+x1+xa

2
x1x2

, we can view every element Yi = Yi(x1, x2)
as a real-valued function in the initial variables x1, x2 as above. Note that x3 = Y1Y2 − 1. Moreover,
(Y0Y1 − 1)(Y1Y2 − 1) = 1 implies Y0Y1 − 1 = x−1

3 . Thus we have Y2 = Y0x3.

Next, we will give an explicit formula for the elements of the sequence (Yi)i∈Z. To do so, we
define a sequence (gi)i≥0 of integers by g0 = 0, g1 = 1 and gi+1 = (a − 2)gi − gi−1 for i ≥ 1. The
following proposition relates the two sequences.

Proposition 3.2. Let i ∈ I. If 0 ≤ i ≤ m−3
2 , then we have Yi+2 = Y

gi+gi+1

2 x
−gi

3 = Y
gi+gi+1

0 x
gi+1

3 .

Moreover, if 0 ≤ i ≤ m−1
2 , then we have Y−i = Y

gi+gi+1

2 x
−gi+1

3 = Y
gi+gi+1

0 x
gi

3 .

Proof. The relation Y2 = Y0x3 implies Y
gi+gi+1

2 x
−gi

3 = Y
gi+gi+1

0 x
gi+1

3 and Y
gi+gi+1

2 x
−gi+1

3 = Y
gi+gi+1

0 x
gi

3

for all i. Trivially, we have Y2 = Y1
2 x0

3 and Y0 = Y1
0 x0

3, so that the formulae hold true for i = 0. By
definition, we have Y3 = Ya−1

2 x−1
3 and Y−1 = Ya−1

0 x1
3 so that the formulae hold true for i = 1. The

general case follows from the definition of the sequence (Yi)i∈Z by mathematical induction.

Proposition 3.2 asserts that the sequence (gi)i∈Z controls the sequence (Yi)i∈Z. The following
Proposition states the main features of this sequence. We denote by ω = exp( 2πi

m ) ∈ C the root of
unity and by ω ∈ C its complex conjugate.

Proposition 3.3. The sequence (gi)i≥0 is periodic. The period is equal to m, if m is odd, and equal
to m

2 , if m is even. Moreover, the following formula holds true for all natural numbers i ≥ 0:

gi =
ωi − ωi

ω − ω
. (2)

Proof. Note that the sequence (gi)i∈Z is a homogeneous linear recurrence relation with character-
istic polynomial X2 − (a − 2)X + 1. By elementary trigonometry we have a − 2 = 4 cos2( π

m )− 2 =

2 cos( 2π
m ) so that the characteristic polynomial splits as (X − ω)(X − ω). Therefore, the sequence

(gi)i∈Z is a C-linear combination of the sequences (ωi)i∈N and (ωi)i∈N. A comparison of coeffi-
cients for the initial values g0 and g1 yields equation (2).

Note that the previous proposition implies that gi is positive if 1 ≤ i ≤ m−1
2 . Similarly, gi is

negative if −m−1
2 ≤ i ≤ −1. Moreover |gi| ≥ 1 unless i ∈ {m

2 , 0,m±1
2 }. The explicit formula implies

that the following terms in the sequence (Yi)i∈N are equal.

Theorem 3.4. If m is even, then the equations Y−2 = Y(m−2)/2 and Y−1 = Ym/2 hold. If m is odd,
then the equations Y−(m+1)/2 = Y(m+3)/2 and Y−(m−1)/2 = Y(m+5)/2 hold.

Proof. Let m be even. It is easy to see that g m
2
= 0, g m

2 −1 = 1 and g m
2 −2 = a − 2, so that Ym

2
=

Ya−1
2 x2−a

3 , which agrees with Y−1 = Ya−1
0 x3 = (Y2x−1

3 )a−1x3 = Ya−1
2 x2−a

3 . Moreover, it follows that

Ym
2 −1 = Ya−2

m
2

Y−1
2 x3 = Ya−2

−1 Y−1
2 x3, which agrees with Y−2 = Ya−2

−1 Y−1
0 .
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Now let m be odd. Let us put g = g(m−1)/2. Due to Proposition 3.3 we have g(m+1)/2 =
−g, from which we conclude g(m−3)/2 = (a − 1)g and g(m+3)/2 = −(a − 1)g. Furthermore, the

recursion implies g(m−5)/2 = (a2 − 3a + 1)g. Proposition 3.2 yields

Y−(m−3)/2 = Y
(a−1)g+g
0 x

(a−1)g
3 = Y

ag
0 x

(a−1)g
3 ,

Y−(m−1)/2 = Y
g−g
0 x

g
3 = x

g
3 .

Using these expressions, we can write the next element of the sequence as

Y−(m+1)/2 =
x
(a−1)g
3 + Y

ag
0 x

(a−1)g
3

Y
ag
0 x

ag
3

= x
−g
3 (1 +Y

−ag
0 ).

On the other hand, Proposition 3.2 yields

Y(m−1)/2 = Y
(a2−3a+1)g+(a−1)g
0 x

(a−1)g
3 = Y

a(a−2)g
0 x

(a−1)g
3 ,

Y(m+1)/2 = Y
(a−1)g+g
0 x

g
3 = Y

ag
0 x

g
3 .

Using these expressions, we can write the next elements of the sequence as

Y(m+3)/2 =
Y

a(a−1)g
0 x

(a−1)g
3 + Y

a(a−2)g
0 x

(a−1)g
3

Y
a(a−1)g
0 x

ag
3

= x
−g
3 (1 + Y

−ag
0 ), (3)

Y(m+5)/2 =
Y

ag
0 x

g
3

Y
ag
0 (1 +Y

−ag
0 )− 1

= x
g
3 .

The expressions agree with the expressions that we obtain for Y−(m+1)/2 and Y−(m−1)/2, and so the
statement follows.

3.4 Numerical comparison of the two sequences

Theorem 3.5. Let i ∈ I. The element Yi = Yi(x1, x2) is an approximation of yi = yi(x1, x2) with

relative error
∣∣∣Yi−yi

yi

∣∣∣ =
∣∣∣Yi(x1,x2)−yi(x1,x2)

yi(x1,x2)

∣∣∣ = O(x1x2) for x1, x2 → 0.

Before we prove the theorem, we state a lemma. For proofs of the lemma and the theorem
recall that our assumption m > 4 implies a > 2. Moreover, note that for x1, x2 ∈ (0, 1) we have

x3 =
1+xa

2
x1

> x−1
1 > 1, Y2 =

1+x1+xa
2

x1x2
> x−1

1 x−1
2 > 1,

Y2/x3 =
1+x1+xa

2

x2(1+xa
2)
> x−1

2 > 1.

Lemma 3.6. Suppose that i ∈ I indexes some element of the sequence (Yi)i∈I .

(a) Suppose that m is even and i ∈ {0}∪ {3, 4, . . . , m−2
2 } or m is odd and i ∈ {0,−1, . . . ,−m−3

2 }∪
{3, 4, . . . , m+3

2 }. Then we may write the quotient (YiYi−1 − 1)/(YiYi−1) as 1 − ǫi for some the
real-valued function ǫi = ǫi(x1, x2) with |ǫi(x1, x2)| = O(x1x2).

(b) If 3 ≤ i ≤ m−1
3 , then we may write the quotient (Ya−1

i + Yi−1)/(Y
a−1
i ) as 1 + ǫ′i for some

real-valued function ǫ′i = ǫ′i(x1, x2) with |ǫ′i(x1, x2)| = O(x1x2). If −m−3
2 ≤ i ≤ 0, then we

may write the quotient (Ya−1
i + Yi+1)/(Y

a−1
i ) as 1 + ǫ′′i for some real-valued function ǫ′′i =

ǫ′′i (x1, x2) with |ǫ′′i (x1, x2)| = O(x1x2). Finally, if m is odd, then we may write the quotient
(Ya−1

(m+3)/2
+Y(m+1)/2)/Y(m+1)/2 as 1+ ǫ′′′ for some real-valued function ǫ′′′ = ǫ′′′(x1, x2) with

|ǫ′′′(x1, x2)| = O(x1x2).
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Proof of the lemma. (a) By definition we have ǫi(x1, x2) = (YiYi−1)
−1. If 3 ≤ i ≤ m+1

2 , then Proposi-
tion 3.2 implies

ǫi(x1, x2) = (YiYi−1)
−1 = (Y2/x3)

−gi−2−gi−3Y
−gi−1−gi−2

2 .

Thus, it is enough to show that gi−2 + gi−3 is nonnegative and gi−1 + gi−2 is at least 1 for 3 ≤
i ≤ m+1

2 , which follows from the explicit formula in Proposition 3.3. If m is odd and i = m+3
2 ,

then Proposition 3.2 and formula (3) imply YiYi−1 = 1 + (Y2/x3)ag
> (Y2/x3)ag from which we

conclude with the statement of the lemma by similar arguments as above. If −m−3
2 ≤ i ≤ 0, then

Proposition 3.2 implies

ǫi(x1, x2) = (YiYi−1)
−1 = (Y2/x3)

−g−i+1−g−i+2Y
−g−i−g−i+1

2 .

Thus, it is enough to show that gi+1 + gi+2 is nonnegative and gi + gi+1 is at least 1 for 0 ≤ i ≤ m−3
2 ,

which follows from the explicit formula in Proposition 3.3.

(b) By definition we have ǫ′i(x1, x2) = Yi−1/Ya−1
i for all i for which the function is defined.

Proposition 3.2 yields ǫ′i(x1, x2) = (Y2/x3)gi−3−(a−1)gi−2Y
gi−2−(a−1)gi−1

2 = (Y2/x3)−gi−1−gi−2Y
−gi−gi−1

2 .
Thus, it is enough to show that gi−1 + gi−2 and gi + gi−1 is greater than 1 for 3 ≤ i ≤ m−1

2 , which
follows from the explicit formula in Proposition 3.3. The cases ǫ′′i and ǫ′′′ are proved similarly.

With the preparation we are ready to prove the theorem:

Proof of the theorem. The statement is true for i ∈ {1, 2} because Y1 = y1 and Y2 = y2 by definition.
For i ∈ {3, 0} we can estimate the relative errors as x1, x2 → 0:

∣∣∣∣
y3 − Y3

y3

∣∣∣∣ =
∣∣∣∣∣

y1

y1 + ya−1
2

∣∣∣∣∣ =
∣∣∣∣∣

1

1 + y−1
1 ya−1

2

∣∣∣∣∣ <
∣∣∣∣∣

1

1 + y−1
1 y2

∣∣∣∣∣ <
∣∣∣∣∣

1

1 + x−1
1 x−2

2

∣∣∣∣∣ < x1x2
2 = O(x1x2),

∣∣∣∣
y0 − Y0

y0

∣∣∣∣ =
∣∣∣∣∣

ya−1
1

ya−1
1 + y2

∣∣∣∣∣ =
∣∣∣∣∣

1

1 + y1−a
1 y2

∣∣∣∣∣ <
∣∣∣∣∣

1

1 + y−1
1 y2

∣∣∣∣∣ <
∣∣∣∣∣

1

1 + x−1
1 x−2

2

∣∣∣∣∣ < x1x2
2 = O(x1x2).

For the other values of i we prove the theorem by induction on the absolute value of i. Assume
that i ≥ 3 and that the statement is true for i and i − 1. We put Yi/yi = 1 + δi and Yi−1/yi−1 =
1 + δi−1. By induction hypothesis |δi| = |δi(x1, x2)| and |δi−1| = |δi−1(x1, x2)| are real-valued
functions in the class O(x1x2). Define an auxiliary function

Ỹi+1 = Yi+1(x1, x2) =
Ya−1

i + Yi−1

YiYi−1 − 1
.

Taylor’s theorem for the function f (x) = (1 + x)a−1 evaluated at x = δi implies that we may
write (1 + δi)

a−1 = 1 + δi(a − 1)(1 + ξ)a−2 for some ξ between 0 and δi. We put Ya−1
i /ya−1

i =

1+ δ̃i. The previous discussion implies that the function |δ̃i| = |δ̃i(x1, x2)| is a real-valued function

in the class O(x1x2). The quotient (Ya−1
i + Yi−1)/(y

a−1
i + yi−1) lies between 1 + δ̃i and 1 + δi−1.

Hence we may write the quotient as 1 + δ′i for some the real-valued function δ′i = δ′i(x1, x2) with
|δ′i(x1, x2)| = O(x1x2). Similarly, by the induction hypothesis and the previous lemma we may

write the quotient
yiyi−1−1
YiYi−1−1 = yiyi−1−1

YiYi−1
· YiYi−1

YiYi−1−1 as 1 + δ′′i for some the real-valued function δ′′i =

δ′′i (x1, x2) with |δ′′i (x1, x2)| = O(x1x2). We conclude that the quotient Ỹi+1/yi+1 = 1 + δ′′′i for some
real-valued function δ′′′i = δ′′′i (x1, x2) with |δ′′′i (x1, x2)| = O(x1x2).

From the previous lemma we can conclude that we may write the quotient Yi+1/Ỹi+1 as 1 + ǫ̃i

for some real-valued function ǫ̃i = ǫ̃i(x1, x2) with |ǫ̃i(x1, x2)| = O(x1x2). The theorem follows
because Yi/yi = (Yi/Ỹi) · (Ỹi/yi) = (1 + ǫ̃i)(1 + δ′′′i ) with ǫ̃i + δ′′′i + ǫ̃iδ

′′′
i = O(x1x2).

The case i ≤ 0 is proved similarly.
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Thus, the sequence (yi)i∈I is approximately equal to the sequence (Yi)i∈I which can be ex-
tended to a period sequence (Yi)i∈Z in view of Theorem 3.4. Hence, the original sequence (xi)i∈Z

is approximately equal to a periodic sequence.

4 Matrix mutation with real entries

The matrix mutation rule generalizes to real entries. As before, an n × n matrix B = (bij) with real
entries is called skew-symmetrizable if there exists a diagonal n × n matrix D = diag(d1, d2, . . . , dn)
with positive real diagonal entries such that the matrix DB is skew-symmetric, i. e. dibij = −djbji

for all 1 ≤ i, j ≤ n. Let B be a real skew-symmetrizable n× n matrix and k ∈ {1, 2, . . . , n} an index.
We define the mutation of B at k to be the n × n matrix B′ = (b′ij) with entries

b′ij =

{
−bij, if k ∈ {i, j};

bij +
|bik|bkj+bik|bkj|

2 , otherwise.

As before, we denote the mutation also by B′ = µk(B). The following proposition is immediate.

Proposition 4.1. Let B be a real skew-symmetrizable n × n matrix with skew-symmetrizer D and
let k ∈ {1, 2, . . . , n}. The matrix µk(B) is again skew-symmetrizable with skew-symmetrizer D.
Moreover, µ2

k(B) = B.

As before, we define mutation equivalence to be the smallest equivalence relation on the set of
skew-symmetrizable real n × n matrices such that µk(B) ≃ B for all B and all k.

Remark 4.2. For mutation classes of integer matrices we have several structural results. There
is classification of mutation-finite, skew-symmetrizable, integer matrices by Felikson-Shapiro-
Tumarkin [2]. Effective criteria to test whether a given skew-symmetric matrix is mutation-finite
are due to Lawson [5] (via minimal mutation-infinite subquivers) and Warkentin [6] (via forks).
On the other hand, structural results for classification of mutation-finite, skew-symmetrizable, real
matrices seem to be harder, because it is easy to construct finite mutation classes, as the following
example shows.

Example 4.3. Let a, b, c, a′ , b′, c′ be positive real numbers. Consider the matrix

B =




0 a −c′

−a′ 0 b
c −b′ 0


 .

Then B is skew symmetrizable if and only if abc = a′b′c′. In particular, let a, b, c ∈ R+ such that
abc = 8. Put a′ = bc

2 , b′ = ca
2 and c′ = ab

2 . Then B is skew symmetrizable and µ1(B) = µ2(B) =
µ3(B) = −B. Hence, B is mutation finite.

The Coxeter group of type H3 is the symmetry group of the regular icosahedron. Besides the
Coxeter group of type H4, it is the only noncrystallographic Coxeter group whose rank is greater
than 2. The next lemma shows that the corresponding mutation matrices are mutation finite.

Lemma 4.4. Let a = 4 cos2(π
5 ). The matrices

B′ =




0 a 0
−1 0 1
0 −1 0


 , B′′ =




0 a 0 0
−1 0 1 0
0 −1 0 1
0 0 −1 0




of type H3 and H4 are mutation finite. If we identify matrices that are obtained from each other by
a simultaneous row and column permutation, then the mutation classes have sizes 16 and 82.
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Figure 2: The mutation class for H3

Proof. A calculation shows that the following set of 16 matrices is closed under mutation. Muta-
tions are visualized in the picture. The set contains the matrix B′.

1 :




0 1 0
−1 0 a
0 −1 0


 , 7 :




0 1 − a a
a − 1 0 1 − a
−1 a − 2 0


 , 12 :




0 0 1 − a
0 0 a

a − 2 −1 0


 ,

2 :




0 −1 0
1 0 a
0 −1 0


 , 8 :




0 1 − a a − 1
a − 1 0 −a
2 − a 1 0


 , 13 :




0 1 − a 0
a − 1 0 a − 1

0 2 − a 0


 ,

3 :




0 −1 a
1 0 −a
−1 1 0


 , 9 :




0 a − 1 0
1 − a 0 a − 1

0 2 − a 0


 , 14 :




0 a − 1 0
1 − a 0 1 − a

0 a − 2 0


 ,

4 :




0 1 0
−1 0 −a
0 1 0


 , 10 :




0 0 −a
0 0 a − 1
1 2 − a 0


 , 15 :




0 0 a
0 0 a − 1
−1 2 − a 0


 ,

5 :




0 −1 0
1 0 −a
0 1 0


 , 11 :




0 a − 1 1 − a
1 − a 0 0
a − 2 0 0


 , 16 :




0 0 −a
0 0 1 − a
1 a − 2 0


 .

6 :




0 a − 1 −a
1 − a 0 a

1 −1 0


 ,

A similar argument works in the case H4.

Remark 4.5. The following questions which might interesting to investigate in the future: What
is a good notion of cluster algebra in this context? For example, what is a good choice of an am-
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bient field? Does a sophisticated version of the Laurent phenomenon hold? Can we also define
approximately periodic sequences for the noncrystallographic cluster algebras of type H3 or H4?

References

[1] Drew Armstrong: Braid groups, clusters, and free probability: An Outline from the AIM workshop.
Lecture notes available online at www.aimath.org/WWN/braidgroups/braidgroups.pdf.

[2] Anna Felikson, Michael Shapiro and Pavel Tumarkin: Cluster algebras of finite mutation type
via unfoldings. International Mathematics Research Notices 8, (2012), 1768–1804. Preprint
arXiv:1006.4276.

[3] Sergey Fomin and Andrei Zelevinsky: Cluster algebras I: Foundations. Journal of the American
Mathematical Society 15, no. 2 (2002), 497–529. Preprint arXiv:math/0104151.

[4] Sergey Fomin and Andrei Zelevinsky: Cluster algebras II: Finite type classification. Inventiones
Mathematicae 154, no. 1 (2003), 63–121. Preprint arXiv:math/0208229.

[5] John Lawson: Minimal mutation-infinite quivers. Preprint arXiv:1505.01735.

[6] Matthias Warkentin: Exchange Graphs via Quiver Mutation. Dissertation, Chemnitz (2014).

10

http://www.aimath.org/WWN/braidgroups/braidgroups.pdf
http://arxiv.org/abs/1006.4276
http://arxiv.org/abs/math/0104151
http://arxiv.org/abs/math/0208229
http://arxiv.org/abs/1505.01735
http://www.qucosa.de/fileadmin/data/qucosa/documents/15317/Dissertation_Matthias_Warkentin.pdf

	1 Introduction
	2 Background
	2.1 Fomin-Zelevinsky's cluster algebras
	2.2 Cluster algebras of rank 2

	3 Approximately periodic sequences attached to noncrystallographic root systems of rank 2
	3.1 The definition of the almost periodic sequences for type I
	3.2 A recursion formula for a subsequence
	3.3 An approximation of the sequence
	3.4 Numerical comparison of the two sequences

	4 Matrix mutation with real entries

