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Abstract

We develop a theory of refinement for timed asynchronous systems, in the setting of Communicating

Timed Automata (CTA). Our refinement applies point-wise to the components of a system of CTA, and

only affecting their time constraints — in this way, we achieve compositionality and decidability. We then

establish a decidable condition under which our refinement preserves behavioural properties of systems,

such as their global and local progress. Our theory provides guidelines on how to implement timed

protocols using the real-time primitives of programming languages. We validate our theory through a

series of experiments, supported by an open-source tool which implements our verification techniques.
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1 Introduction

Formal reasoning of real-time computing systems is supported by established theories and frame-

works based on e.g., timed automata [4, 32, 44]. In the standard theory of timed automata, com-

munication between components is synchronous: a component can send a message only when its

counterpart is ready to receive it. However, in many concrete scenarios, such as web-based systems,

communications are asynchronous and often implemented through middlewares supporting FIFO

messaging [5,42]. These systems can be modelled as Communicating Timed Automata (CTA) [29],

an extension of timed automata with asynchronous communication. Asynchrony comes at the price

of an increased complexity: interesting behavioural properties, starting from reachability, become

undecidable in the general case, both in the timed [1, 22] and in the untimed [14] setting. Several

works propose restrictions of the general model, or sound approximate techniques for the verifica-

tion of CTA [11,22]. These works leave one important problem largely unexplored: the link between

asynchronous timed models and their implementations.

Relations between models at different levels of abstraction are usually expressed as refinements.

These have been used, e.g., to create abstract models which enhance effectiveness of verification

techniques (e.g., abstraction refinement [25, 43], time-wise refinement [40]), or to concretize ab-

stract models into implementations [21, 23]. Existing notions of refinement between timed models

are based on synchronous communications [7,17,26,33]. Asynchronous refinement has been invest-

igated in the untimed setting, under the name of subtyping between session types [8, 20, 24, 34–36].
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To our knowledge, no notion of refinement has been yet investigated in the asynchronous timed set-

ting. The only work that studies a notion close to that of refinement is [12], which focusses on the

relation between timed multiparty session types and their implementations (processes in an extended

π-calculus). The work in [12] has two main limitations. First, their model is not as general as CTA:

in particular, it does not allow states with both sending and receiving outgoing transitions (so-called

mixed states). Mixed states are crucial to capture common programming patterns like timeouts [38]

(e.g. a server waiting for a message that sends a timeout notification after a deadline). Some pro-

gramming languages provide specific primitives to express timeouts, e.g. the receive/after construct

of Erlang [6]. The second limitation of [12] is that its calculus is very simple (actions are statically

set to happen at precise points in time), and cannot express common real-world blocking receive

primitives (with or without timeout) that listen on a channel until a message is available.

To be usable in practice, a theory of refinements should support real-world programming patterns

(e.g., timeouts à la Erlang) and primitives, and feature decidable notions of refinement. Further, re-

finement should be compositional (i.e. a system can be refined by refining its single components,

independently), and preserve desirable properties (e.g., progress) of the system being refined. These

goals contrast with the fact that, in general (e.g. when refinements may arbitrarily alter the interaction

structures) establishing if an asynchronous FIFO-based communication model is a refinement of an-

other is undecidable, even in the untimed setting [15,30]. Therefore, when defining an asynchronous

refinement, a loss of generality is necessary to preserve decidability.

Contributions

We develop a theory of asynchronous timed refinement for CTA. Our main purpose is to study

preservation of behavioural properties under refinement, focussing on two aspects: timed behaviour

and progress. The former kind of preservation, akin timed similarity [18], ensures that the observable

behaviour of the concrete system can be simulated by the abstract system. The latter requires that

refinement does not introduce deadlocks, either globally (i.e., the whole system gets stuck), or locally

(i.e., a single CTA gets stuck, although the whole system may still proceed).

Refinement We introduce a new refinement relation, which is decidable and compositional, so

enabling modular development of systems of CTA. Our refinement is structure preserving, i.e. it

may only affect time constraints: refinements can only restrict them; further, for receive actions,

refinements must preserve the deadline of the original constraint (i.e., the receiving component must

be ready to receive until the very last moment allowed of the original constraint). This way of refining

receive actions, and structure preservation, are key to obtain decidability and other positive results.

Furthermore, structure preservation reflects the common practice of implementing a model: starting

from a specification (represented as a system of CTA), one derives an implementation by following

the interaction structure of the CTA, and by adjusting the timings of actions as needed, depending

on implementation-related time constraints, and on the programming primitives one wants to use

for each action (e.g., blocking/unblocking, with/without timeout). We illustrate in Section 6 how to

exploit our theory in practice, to implement progress-preserving timed protocols in Go.

Positive and negative results Our main positive result (Theorem 26) is a decidable condition

called Locally Latest-Enabled Send Preservation (LLESP) ensuring preservation of timed behaviour,

global and local progress under our refinement. Our refinement and the LLESP condition naturally

apply to most of the case studies found in literature (Section 4) In Section 6 we show how our tool

and results can be used to guide the implementation of timed protocols with the Go programming

language. We also considered other refinement strategies: (i) arbitrary restriction of constraints of

send and receive actions (similarly to [12]), and (ii) asymmetric restriction where constraints of send
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actions may be restricted, and those of receive actions may be relaxed (this is the natural timed

extension of the subtyping relation in [24]). Besides being relevant in literature, (i) and (ii) reflect

common programming practices: (i) caters for e.g. non-blocking receive with constraint reduced to

an arbitrary point in the model’s guard, and (ii) caters e.g. for blocking receive without timeouts. For

(i) and (ii) we only have negative results, even when LLESP holds, and if mixed states are forbidden

(Fact 27). Our negative results have a practical relevance on their own: they establish that if you

implement a CTA as described above, you have no guarantees of behaviour/progress preservation.

A new semantics for CTA The original semantics for CTA [29] was introduced for studying

decidability issues for timed languages. To achieve such goals, [29] adopts the usual language-based

approach of computability theory: (1) it always allows time to elapse, even when this prevents the

system from performing any available action, and (2) it rules out ‘bad’ executions a posteriori, e.g.

only keeping executions that end in final states. Consider, for example, the following two CTA:

As : q0 q1
sr!a(x ≤ 2) Ar :

q′
0 q′

1

sr?a(y ≤ 3)

The CTA As models a sender s who wants to deliver a message a to a receiver r. The guard

x ≤ 2 is a time constraint, stating that the message must be sent within 2 time units. The receiver

wants to read the message a from s within 3 time units. In [29], a possible (partial) computation of

the system (As, Ar) would be the following:

γ0 = ((q0, q′
0), (ε, ε), {x, y 7→ 0}) 5−→ ((q0, q′

0), (ε, ε), {x, y 7→ 5})

The tuple γ0 at the LHS of the arrow is the initial configuration of the system, where both CTA

are in their initial states; the pair (ε, ε) means that the communication queues between r and s

are empty; the last component means that the clocks x and y are set to 0. The label on the arrow

represents a delay of 5 time units. This computation does not correspond to a reasonable behaviour

of the protocol: we would expect the send action to be performed before the deadline expires.

To capture this intuition, we introduce a semantics of CTA, requiring that the elapsing of time

does not disable the send action in As. Namely, we can procrastinate the send for 2 time units; then,

time cannot delay further, and the only possible action is the send:

γ0
2−−−→ ((q0, q′

0), (ε, ε), {x, y 7→ 2}) sr!a−−−→ ((q1, q′
0), (a, ε), {x, y 7→ 2})

We prove (Theorem 7) that our semantics enjoys a form of persistency: if at least one receive

action is guaranteed to be enabled in the future (i.e. a message is ready in its queue and its time

constraint is satisfiable now or at some point in the future) then time passing preserves at least one of

these guaranteed actions. Instead, time passing can disable all send actions, but only if it preserves

at least one guaranteed receive.

It is well known that language-based approaches are not well suited to deal with concurrency

issues like those addressed in this paper. To see this, consider the following CTA, where the states

with a double circle are accepting:

q0 q1

Ap : pq!a(y ≤ 1)
p0 p1

Aq : pq?a(x ≤ 1)
q0 q1

A
′

p : pq!a(y ≤ 2)

The systems S = (Ap, Aq) and S′ = (A′
p, Aq) accept the same language, namely t0 pq!a t1 pq?a t2

with t0 + t1 ≤ 1 and t2 ∈ R≥0. So, the language-based approach does not capture a fundamental

difference between S and S′: S enjoys progress, while S′ does not. Our approach to defining CTA

semantics provides us with a natural way to reason on standard properties of protocols like progress,

and to compare behaviours using e.g., (bi)simulation.
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receive {s,a1} -> Body1

. . .

{s,ak} -> Bodyk

after 10 -> p!b

q0 · · ·

q1

qk

q′

sr?a1
(x < 10)

sr?a
k(x < 10)

rp!b(x = 10)

Figure 1 The receive/after pattern of Erlang (left), and the corresponding CTA (right).

Our semantics allows for CTA with mixed states, by extending the one in [11] (where, instead,

mixed states are forbidden). As said above, mixed states enable useful programming patterns. Con-

sider e.g. the code snippet in Figure 1 (left), showing a typical use of the receive/after construct

in Erlang. The snippet attempts to receive a message matching one of the patterns {s,a1},. . . ,{s,ak},

where s represents the identifier of the sender, and a1,. . . ,ak are the message labels. If no such mes-

sage arrives within 10 ms, then the process in the after branch is executed, sending immediately a

message b to process p. This behaviour can be modelled by the CTA in Figure 1 (right), where q0 is

mixed. Our semantics properly models the intended behaviour of timeouts.

Urgency Another practical aspect that is not well captured by the existing semantics of CTA [11,

29] is urgency. Indeed, while in known semantics receive actions can be deferred, the receive prim-

itives of mainstream programming languages unblock as soon as the expected message is available.

These primitives include the non-blocking (resp. blocking) WaitFreeReadQueue.read() (resp.

WaitFreeReadQueue.waitForData()) of Real-Time Java [16], and receive...after in Erlang,

just to mention some. Analysing a system only on the basis of a non-urgent semantics may result

in an inconsistence between the behaviour of the model and that of its implementation. To correctly

characterise urgent behaviour, we introduce a second semantics (Definition 28), that is urgent in

what it forces receive actions as soon as the expected message is available. Theorem 29 shows that

the urgent semantics preserves the behaviour of the non-urgent. However, the urgent semantics does

not enjoy the preservation results of Theorem 26. Still, it is possible to obtain preservation under

refinement by combining Theorem 26 with Theorem 33. More specifically, the latter ensures that, if

a system of CTA enjoys progress in the non-urgent semantics, then it will also enjoy progress in the

urgent one, under a minor and common assumption on the syntax of time constraints. So, one can

use Theorem 26 to obtain a progress-preserving refinement (in the non-urgent semantics), and then

lift the preservation result to the urgent semantics through Theorem 33. Overall, our theory suggests

that, despite the differences between semantics of CTA and programming languages, verification

techniques based on CTA can be helpful for implementing distributed timed programs.

Artifact and experiments We validate our approach through a suite of use cases, which we

analyse through a tool we have developed to experiment with our theory (https://github.com/

cta-refinement). The suite includes real-world use cases, like e.g. SMTP [41] and Ford Credit

web portal [39]. Experimentation shows that for each use case we can find a refinement which

implements the specification in a correct way. All use cases require less than twenty control states,

and our tool takes a few milliseconds to perform the analysis. In the absence of larger use cases in

literature, we tried the tool on a deliberately large example with thousands of states and multiple

clocks: even in that case, termination time is in the order of dozens of minutes. Performance data, as

well as the proofs of our statements, are available at www.cs.kent.ac.uk/people/staff/lb514/catr.html.
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2 Communicating Timed Automata

We assume a finite set P of participants, ranged over by p, q, r, s, . . . , and a finite set A of messages,

ranged over by a, b, . . . We define the set C of channels as C = {pq | p, q ∈ P and p 6= q}. We denote

with A∗ the set of finite words on A (ranged over by w, w′, . . . ), with ww′ the concatenation of w

and w′, and with ε the empty word.

Clocks, guards and valuations. Given a (finite) set of clocks X (ranged over by x, y, . . . ), we

define the set ∆X of guards over X (ranged over by δ, δ′, . . . ) as follows:

δ ::= true | x ≤ c | c ≤ x | ¬δ | δ1 ∧ δ2 (c ∈ Q≥0)

We denote with V = X → R≥0 the set of clock valuations on X . Given t ∈ R≥0, λ ⊆ X , and a

clock valuation ν, we define the clock valuations: (i) ν + t as the valuation mapping each x ∈ X

to ν(x) + t; (ii) λ(ν) as the valuation which resets to 0 all the clocks in λ ⊆ X , and preserves to

ν(x) the values of the other clocks x 6∈ λ. Furthermore, given a set K of clock valuations, we define

the past of K as the set of clock valuations ↓ K = {ν | ∃δ ≥ 0 : ν + δ ∈ K}. The semantics of

guards is defined as function J·K : ∆X → ℘(V), where: JtrueK = V, Jx ≤ cK = {ν | ν(x) ≤ c},

Jδ1 ∧ δ2K = Jδ1K ∩ Jδ2K, J¬δK = V \ JδK, and Jc ≤ xK = {ν | c ≤ ν(x)}.

Actions. We denote with Act = C × {!, ?} × A the set of untimed actions, and with TActX =

Act × ∆X × 2X the set of timed actions (ranged over by ℓ, ℓ′, . . .). A (timed) action of the form

sr!a(δ, λ) is a sending action: it models a participant s who sends to r a message a, provided that

the guard δ is satisfied. After the message is sent, the clocks in λ ⊆ X are reset. An action of the

form sr?a(δ, λ) is a receiving action: if the guard δ is satisfied, r receives a message a sent by s,

and resets the clocks in λ ⊆ X afterwards. Given ℓ = pr!a(δ, λ) or ℓ = qp?a(δ, λ), we define:

(i) msg(ℓ) = a, (ii) guard(ℓ) = δ, (iii) reset(ℓ) = λ, (iv) subj(ℓ) = p, and (v) act(ℓ) is pr! (in the

first case) or qp? (in the second case). We omit δ if true, and λ if empty.

CTA and systems of CTA. A CTA A is a tuple of the form (Q, q0, X, E), where Q is a finite set

of states, q0 ∈ Q is the initial state, X is a set of clocks, and E ⊆ Q × TActX × Q is a set of edges,

such that the set
⋃

{subj(e) | e ∈ E} is a singleton, that we denote as subj(A). We write q
ℓ
−→ q′

when (q, ℓ, q′) ∈ E. We say that a state is sending (resp. receiving) if it has some outgoing sending

(resp. receiving) edge. We say that A has mixed states if it has some state which is both sending and

receiving. We say that a state q is final if there exist no ℓ and q′ such that (q, ℓ, q′) ∈ E. Systems

of CTA (ranged over by S, S′, . . .) are sequences (Ap)p∈P , where each Ap = (Qp, q0p, Xp, Ep) is a

CTA, and (i) for all p ∈ P , subj(Ap) = p; (ii) for all p 6= q ∈ P , Xp ∩ Xq = ∅ = Qp ∩ Qq.

Configurations. CTA in a system communicate via asynchronous message passing on FIFO

queues, one for each channel. For each couple of participants (p, q) there are two channels, pq and

qp, with corresponding queues wpq (containing the messages from p to q) and wqp (messages from q

to p). The state of a system S, or configuration, is a triple γ = (~q, ~w, ν) where: (i) ~q = (qp)p∈P

is the sequence of the current states of all the CTA in S; (ii) ~w = (wpq)pq∈C with wpq ∈ A∗ is a

sequence of queues; (iii) ν :
⋃

p∈P Xp → R≥0 is a clock valuation. The initial configuration of S is

γ0 = (~q0, ~ε, ν0) where ~q0 = (q0p)p∈P , ~ε is the sequence of empty queues, and ν0(x) = 0 for each

x ∈
⋃

p∈P Xp. We say that (~q, ~w, ν) is final when all q ∈ ~q are final.

We introduce a new semantics of systems of CTA, that generalises Definition 9 in [11] to account

for mixed states. To this aim, we first give a few auxiliary definitions. We start by defining when a

guard δ′ is satisfiable later than δ in a clock valuation.
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◮ Definition 1 (Later satisfiability). For all ν, we define the relation ≤ν as:

δ ≤ν δ′ ⇐⇒ ∀t ∈ R≥0 : ν + t ∈ JδK =⇒ ∃t′ ≥ t : ν + t′ ∈ Jδ′K

The following lemma states some basic properties of later satisfiability.

◮ Lemma 2. The relation ≤ν is a total preorder, for all clock valuations ν. Further, for all

guards δ, δ′, for all t ∈ R≥0, and c, d ∈ Q≥0: (a) (x ≤ c) ≤ν (x ≤ c + d); (b) δ ∧ δ′ ≤ν δ′;

(c) δ ≤ν δ′ =⇒ δ ≤ν+t δ′.

◮ Definition 3 (FE, LE, ND). In a configuration (~q, ~w, ν), we say that an edge (q, ℓ, q′) ∈ Ep is

future-enabled (FE), latest-enabled (LE), or non-deferrable (ND) iff, respectively:

∃t ∈ R≥0. ν + t ∈ Jguard(ℓ)K (FE)

∀ℓ′, q′′ : (q, ℓ′, q′′) ∈ Ep =⇒ guard(ℓ′) ≤ν guard(ℓ), and (q, ℓ, q′) is FE (LE)

∃s, w′ : act(ℓ) = sp?, wsp = msg(ℓ)w′ and (q, ℓ, q′) is FE (ND)

An edge is FE when its guards can be satisfied at some time in the future; it is LE when no other

edge (starting from the same state) can be satisfied later than it. The type of action (send or receive)

and the co-party involved are immaterial to determine FE and LE edges. A receiving edge is ND

when the expected message is already at the head of the queue, and there is some time in the future

when it can be read. Note that an edge (q, sp?a(δ, λ), q′) is deferrable when wsp = bw′ and a 6= b

(i.e., the first message in the queue is not the expected one). Non-deferrability is not affected by the

presence of send actions in the outgoing edges. It could happen that two receiving edges in a CTA

are ND, if both expected messages are in the head of each respective queue.

The semantics of systems is given as a timed transition system (TLTS) between configurations.

◮Definition 4 (Semantics of systems). Given a system S, we define the TLTS JSK as (Q, L, →),

where (i) Q is the set of configurations of S, (ii) L = Act∪R≥0, (iii) γ = (~q, ~w, ν) α−→ (~q′, ~w′, ν′) = γ′

holds when one of the following rules apply:

1. α = sr!a, (qs, α(δ, λ), q′
s) ∈ Es, and (a) q′

p = qp for all p 6= s; (b) w′
sr = wsra and

w′
pq = wpq for all pq 6= sr; (c) ν′ = λ(ν) and ν ∈ JδK;

2. α = sr?a, (qr, α(δ, λ), q′
r) ∈ Er, and (a) q′

p = qp for all p 6= r; (b) wsr = aw′
sr and

w′
pq = wpq for all pq 6= sr; (c) ν′ = λ(ν) and ν ∈ JδK;

3. α = t ∈ R≥0, and (a) q′
p = qp for all p ∈ P; (b) w′

pq = wpq for all pq ∈ C; (c) ν′ = ν + t;

(d) for all p ∈ P , if some sending edge starting from qp is LE in γ, then such edge is LE also in

γ′; (e) for all p ∈ P , if some edge starting from qp is ND in γ, then there exists an edge starting

from qp that is ND in γ′.

We write γ−→γ′ when γ α−→γ′ for some label α, and γ α−→ if γ α−→γ′ for some configuration γ′. We

denote with −→∗ the reflexive and transitive closure of −→.

Rules (1), (2) and the first three items of (3) are adapted from [11]. In particular, (1) allows a

CTA s to send a message a on channel sr if the time constraints in δ are satisfied by ν; dually, (2)

allows r to consume a message from the channel, if δ is satisfied. In both rules, the clocks in λ are

reset. Rule (3) models the elapsing of time. Items (a) and (b) require that states and queues are not

affected by the passing of time, which is implemented by item (c). Items (d) and (e) put constraints

on when time can pass. Condition (d) requires that time passing preserves LE sending edges: this

means that if the current state of a CTA has the option to send a message (possibly in the future),

time passing cannot prevent it to do so. Instead, condition (e) ensures that, if at least one of the

expected messages is already at the head of a queue, time passing must still allow at least one of the

messages already at the head of some queue to be received.

Our semantics (Definition 4) enjoys two classic properties [38] of timed systems, recalled below.
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q0 q1
A1 :

sr!a(x < 3)

sr!b(x < 2)

q2 q3
A2 :

sr?a(y ≤ 4)

sr?b(y = 5)

q0 q1
A3 :

rp?a(x < 2)

ps!b(x < 4)

Figure 2 A collection of CTA, to illustrate the semantics of systems.

◮ Definition 5.

γ t−→γ′ ∧ γ t−→γ′′ =⇒ γ′ = γ′′ (Time determinism)

γ t + t′

−−−→γ′ ⇐⇒ ∃γ̃ : γ t−→γ̃ ∧ γ̃ t′

−→γ′ (Time additivity)

◮ Lemma 6. The semantics of CTA enjoys time determinism and time additivity [38].

Our semantics does not, instead, enjoy persistency [38], because the passing of time can sup-

press the ability to perform some actions. However, it enjoys a weaker persistency property, stated

by Theorem 7. More specifically, if a receive action is ND, then time passing cannot suppress all

receive actions: at least a ND action (not necessarily the first one) always remains FE after a delay.

Instead, time passing can disable all send actions, but only if it preserves at least a ND receive action.

◮ Theorem 7 (Weak persistency). For all configurations γ, γ′:

γ t′

−→ rp?−−→ ∧ γ t−→γ′ =⇒ ∃γ′′, s, t′′ : γ′ t′′

−→γ′′ ∧ p has a ND edge in γ′′

γ t′

−→ pr!−−→ ∧ γ t−→γ′ =⇒ ∃γ′′, s, t′′ : γ′ t′′

−→γ′′ ∧ p has a FE sending edge or a ND edge in γ′′

Definition 8 below will be useful to reason on executions of systems.

◮ Definition 8 (Maximal run). A run of a system S starting from γ is a (possibly infinite) sequence

ρ = γ1
t1−→ γ′

1
α1−→ γ2

t2−→ · · · with γ1 = γ and αi ∈ Act for all i. We omit the clause “starting from

s” when γ = γ0. We call trace the sequence t1 α1 t2 · · · . For all n > 0, we define the partial

functions: conf n(ρ) = γn, delayn(ρ) = tn, actn(ρ) = αn. We say that a run is maximal when it is

infinite, or given its last element γn it never happens that γn
t−→ α−→, for any t ∈ R≥0 and α ∈ Act.

We show the peculiarities of our semantics through the CTA in Figure 2. First, consider the

system composed of A0 and A0. A possible maximal run of (A0, A0) from the initial configuration

γ0 = ((q0, q2), ~ε, ν0) is the following:

γ0
2−−→ γ1 = ((q0, q2), (ε, ε), ν0 + 2) sr!a−−→ γ2 = ((q1, q2), (a, ε), ν0 + 2)

1.5−−−→ γ3 = ((q1, q2), (a, ε), ν0 + 3.5) sr?a−−−→ γ4 = ((q1, q3), (ε, ε), ν0 + 3.5)

The first delay transition is possible because there are no ND edges in A0 (both edges are send-

ing), and the LE edge (q0, sr!a(x < 3), q1), continues to be LE in ν0 + 2; further, in A0 there are no

LE sending edges, and no ND edges (since the queue sr is empty). Note that condition (d) prevents

γ0 from making transitions with label t ≥ 3, since (q0, sr!a(x < 3), q1) is LE in γ0, but it is not LE

in ν0 + t if t ≥ 3. The transition from γ1 to γ2 corresponds to a send action. The delay transition

from γ2 to γ3 is possible because the state of A0 is final, while the state q2 of A0 has a ND edge,

(q2, sr?a(y ≤ 4), q3), which is still ND at ν0 + 3.5. Note instead that condition (e) prevents γ2

from making a transition with t > 2, because no edge is ND in ν0 + 2 + t if t > 2. Indeed, the last

moment when the edge (q2, sr?a(y ≤ 4), q3) is FE is y = 4. Finally, the transition from γ3 to γ4

corresponds to a receive action.

The CTA A0 has mixed states, with the send action enabled for longer than the receive action.

We show the behaviour of A0 (abstracting from its co-parties that, we assume, always allow delays
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e.g. have all guards set to true). This CTA has a LE sending action (q0, ps!b(x < 4), q1) in the initial

configuration γ0. Hence, condition (d) is satisfied in γ0 iff the delay t is less than 4. Condition (e)

is satisfied in γ0, as there are no ND edges. When A0 is at state q0, with wrp = a and ν(x) = 0,

the CTA allows a delay t iff t < 2: later, no edge would be ND, so (e) would be violated. If the

message a is in the queue but it is too late to receive it (i.e., ν(x) ≥ 2), then the receive action would

be deferrable, and so a delay would be allowed — if condition (d) is respected.

3 Compositional asynchronous timed refinement

In this section we introduce a decidable notion of refinement for systems of CTA. Our system refine-

ment is defined point-wise on its CTA. Point-wise refinement A′ ⊑1 A only alters the guards, in the

refined CTA A′, while leaving the rest unchanged. The guards of A′ — both in send and receive ac-

tions — must be narrower than those of A. Further, the guards in receive actions must have the same

past in both CTA. Formally, to define the relation A′ ⊑1 A we use structure-preserving functions

that map the edges of A into those of A′, preserving everything but the guards.

◮ Definition 9 (Structure-preserving). Let E, E′ be sets of edges of CTA. We say that a function

f : E → E′ is structure-preserving when, for all (q, ℓ, q′) ∈ E, f(q, ℓ, q′) = (q, ℓ′, q′) with

act(ℓ) = act(ℓ′), msg(ℓ) = msg(ℓ′), and reset(ℓ) = reset(ℓ′).

◮ Definition 10 (Refinement). Let A = (Q, q0, X, E) and A′ = (Q, q0, X, E′) be CTA. The

relation A′ ⊑1 A holds whenever there exists a structure-preserving isomorphism f : E → E′ such

that, for all edges (q, ℓ, q′) ∈ E, if f(q, ℓ, q′) = ℓ′, then:

(a) Jguard(ℓ′)K ⊆ Jguard(ℓ)K;

(b) if (q, ℓ, q′) is a receiving edge, then ↓ Jguard(ℓ′)K = ↓ Jguard(ℓ)K.

Condition (a) allows the guards of send/receive actions to be restricted. For receive actions, condi-

tion (b) requires restriction to preserve the final deadline.

System refinement reflects a modular engineering practice where parts of the system are imple-

mented independently, without knowing how other parts are implemented.

◮ Definition 11 (System Refinement). Let S = (A1, . . . , An), and let S′ = (A′
1, . . . , A′

n). We

write S ⊑ S′ iff Ai ⊑1 A′
i for all i ∈ 1 . . . n.

◮ Example 12. With the CTA below, we have: A′
s ⊑1 As, A′

r ⊑1, Ar, and A′′
r 6⊑1 Ar.

As : q0 q1
sr!a(x ≤ 2) A′

s : q0 q1
sr!a(x > 1.5 ∧ x ≤ 1.8)

Ar :
q′

0 q′
1

sr?a(y ≤ 2) A′
r :

q′
0 q′

1

sr?a(y = 2) A′′
r :

q′
0 q′

1

sr?a(y = 1.8)

Theorem 13 establishes decidability of ⊑1. This follows by the fact that CTA have a finite

number of states and that: (i) the function ↓ JδK is computable, and the result can be represented as

a guard [10, 27]; (ii) the relation ⊆ between guards is computable.

◮ Theorem 13. Establishing whether A′ ⊑1 A is decidable.

We now formalise properties of systems of CTA that one would like to be preserved upon re-

finement. Behaviour preservation, which is based on the notion of timed similarity [18], requires

that an implementation (refining system) at any point of a run allows only actions that are allowed

by its specification (refined system). Below, we use ⊎ to denote the disjoint union of TLTSs, i.e.

(Q1, Σ1, →1) ⊎ (Q2, Σ2, →2) = (Q1 ⊎ Q2, Σ1 ∪ Σ2, {((i, q), a, (i, q′)) | (q, a, q′) ∈→i}), where

Q1 ⊎ Q2 = {(i, q) | q ∈ Qi}.
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◮ Definition 14 (Timed similarity). Let (Q, L, →) be a TLTS. A timed simulation is a relation

R ⊆ Q × Q such that, whenever γ1 R γ2:

∀α ∈ L : γ1
α−→γ′

1 =⇒ ∃γ′
2 : γ2

α−→γ′
2 and γ′

1 R γ′
2

We call timed similarity (in symbols, .) the largest timed simulation relation.

◮ Definition 15 (Behaviour preservation). Let R be a binary relation between systems. We

say that R preserves behaviour iff, whenever S1 R S2, we have (1, γ1
0) . (2, γ2

0) in the TLTS

JS1K ⊎ JS2K, where γ1
0 and γ2

0 are the initial configurations of S1 and S2.

◮ Example 16 (Behaviour preservation). Let R be the inclusion of runs, let S1 = (As, A′
r) and

S2 = (As, Ar), where:

q0 q1
As :

sr!a(x < 2)

sr!b(x > 2)

q2 q3
Ar :

sr?a(y < 2)

sr?b(true)

q2 q3
A′

r :
sr?a(y < 2)

sr?b(y > 7)

We have that S2 R S1, while S1 R S2 does not hold, since the traces with b in S1 strictly include

those of S2. The relation R preserves timed behaviour in {S1, S2}: indeed, (γ2
0 , 1) . (γ1

0 , 2) follows

by trace inclusion and by the fact that S1, S2 have deterministic TLTS. Now, let S3 be as S2, but

for the guard of sr?b(true), which is replaced by y < 2. We have that S3 R S2, and R preserves

timed behaviour in {S2, S3}. However, S3 does not allow to continue with the message exchange: b

is sent too late to be received by r, who keeps waiting while b remains in the queue forever. ◭

As shown by Example 16, behaviour preservation may allow a system (e.g., S3) to remove “too

much” from the runs of the original system (e.g., S2): while ensuring that no new actions are in-

troduced, it may introduce deadlocks. So, besides behaviour preservation we consider two other

properties: global progress of the overall system, and local progress of each single participant.

◮ Definition 17 (Global/local progress). We say that a system S enjoys

global progress when: ∀γ : γ0−→∗γ not final =⇒ ∃t ∈ R≥0, α ∈ Act : γ t−→ α−→

local progress when: ∀γ, p : γ0−→∗γ = (~q, ~w, ν) and ~q ∋ qp not final =⇒

∀ maximal runs ρ from γ : ∃n : subj(actn(ρ)) = p

◮ Lemma 18. If a system enjoys local progress, then it also enjoys global progress.

The converse of Lemma 18 does not hold, as witnessed by Example 19.

◮ Example 19 (Global vs. local progress). Consider the following CTA:

Ap :
q0

pq!a(x ≤ 2, {x})

Aq :
q1

pq?a(y < 1, {y})

A′
q :

q2

pq?a(y = 2, {y})

The system (Ap, Aq) enjoys global progress, since, in each reachable configuration, Ap can always

send a message (hence the system makes an action in Act). However, if Ap sends a after time 1, then

Aq cannot receive it, since its guard y < 1 is not satisfied. Formally, in any maximal run starting

from ((q0, q1), (a, ε), {x, y 7→ 1}), there will be no actions with subject q, so (Ap, Aq) does not

enjoy local progress. The system (Ap, A′
q), instead, enjoys both global and local progress. ◭

◮ Definition 20 (Progress preservation). Let R be a binary relation between systems. We say

that R preserves global (resp. local) progress iff, whenever S1 R S2 and S2 enjoys global (resp.

local) progress, then S1 enjoys global (resp. local) progress.

◮ Example 21. Let S1, S2, S3 be as in Example 16. While S1 and S2 enjoy local and global

progress, S3 does not enjoy neither. Hence, R = {(S2, S1), (S3, S1), (S3, S2)} (i.e., trace inclusion

restricted to the three given systems), does not preserve local nor global progress. ◭
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4 Verification of properties of refinements

We now study preservation of behaviour/progress upon refinements. Our first result is negative: in

general, refinement does not preserve behaviour nor (local/global) progress, even for CTA without

mixed states. This is shown by the following examples.

◮ Example 22. Consider Ap and A′
p below, with A′

p ⊑1 Ap.

p0 p1 p2
Ap :

qp?a(x ≥ 2) pq!b(true)

p0 p1 p2
A′

p :
qp?a(x ≥ 2) pq!b(x = 0)

When Ap reaches p1, the guard of the outgoing edge is satisfiable. Instead, A′
p gets stuck in p1.

◮ Example 23. Let S = (Ap, Aq), and let S′ = (A′
p, Aq), where:

p0 p1
Ap :

qp?a(x ≤ 2)

pq!b(x ≤ 3)

p0 p1
A′

p :
qp?a(x ≤ 2)

pq!b(x ≤ 1)

q0 q1
Aq : pq?b(y = 4)

We have that A′
p ⊑1 Ap, and so S′ ⊑ S. Behaviour is not preserved as S′ allows the run γ0

4−→, while

S does not. This is because Ap has a LE sending edge, which prevents step 4−→ by condition 3(d)

of Definition 4, while A′
p does not have a LE sending edge. Progress (local and global) is enjoyed

by S. Instead, S′ does not enjoy progress: S′ allows γ0
2−→γ = ((p0, q0), ~ε, ν0 + 2), but there are no

t and α ∈ Act such that γ t−→ α−→ as the sending action is expired and all the queues are empty. ◭

The issue in Example 23 is that a LE sending edge, which was crucial for making execution progress,

is lost after the refinement. In Definition 25 we devise a decidable condition — which we call LLESP

after locally LE send preservation — that excludes scenarios like the above. In Theorem 26 we show

that, with the additional LLESP condition, ⊑1 guarantees preservation of behaviour and progress.

Unlike Definition 10, which is defined “edge by edge”, LLESP is defined “state by state”. This is

because LLESP preserves the existence of LE sending edges (outgoing from the given state), and

not necessarily the LE sending edge himself, making the analysis more precise.

◮ Definition 24. Let A = (Q, q0, X, E), let q ∈ Q, and let K be a set of clock valuations. We

define the following sets of clock valuations:

PreA

q = {ν0 | q0 = q} ∪ {ν | ∃q′, ℓ, ν′ : (q′, ℓ, q) ∈ E , ν′ ∈ Jguard(ℓ)K, ν = reset(ℓ)(ν′)}

LesA

q = {ν | q has a LE sending edge in ν}

PostA

q (K) =
{

ν + t
∣

∣ ν ∈ K ∧ (ν ∈ LesA

q =⇒ ν + t ∈ LesA

q )
}

We briefly comment the auxiliary definition above. The set LesA

q is self-explanatory, and its use

is auxiliary to the definition of Post. Let (~q, ~w, ν), where q is in ~q, that can be reached by the initial

configuration of some system S containing A. The set PreA

q contains all (but not only) the clock

valuations under which a configuration like the one above can be reached with a label α ∈ Act

fired by A. Instead, PostA

q (K) computes a symbolic step of timed execution, in the following

sense: if ν ∈ K and γ t−→(~q, ~w, ν′), where q is in ~q, then ν′ ∈ PostA

q (K). This is obtained by

defining PostA

q (K) as the set of clock valuations that would satisfy item (d) of Definition 4 for A at

runtime, when starting from a configuration whose clock valuation is in K. Since every configuration

reachable with a finite run and with an action in Act as last label can also be reached by a run ending

with a delay (the original run followed by a null delay), the set PostA

q (PreA

q ) contains the set of

clock valuations ν such that (~q, ~w, ν), with q is in ~q, can be reached by the initial configuration of

some system S containing A.
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◮ Definition 25 (LLESP). A relation R is locally LE send preserving (in short, LLESP) iff, for all

A = (Q, q0, X, E) and A′ = (Q, q0, X, E′) such that A′ R A, and for all q ∈ Q: PostA
′

q (Pre
A

′

q ) ∩

LesA

q ⊆ PostA
′

q (Pre
A

′

q ) ∩ Les
A

′

q . We define ⊑L
1 as the largest LLESP relation contained in ⊑1.

Basically, LLESP requires that, whenever A′ R A, if q has a LE sending edge in ν with respect to A,

then q has a LE sending edge in ν with respect to A′, where ν ranges over elements of PostA
′

q (Pre
A

′

q ).

It follows our main result: ⊑L
1 preserves behaviour and progress (both global and local). Further,

LLESP is decidable, so paving the way towards automatic verification.

◮ Theorem 26 (Preservation under LLESP). ⊑L
1 preserves behaviour, and global and local

progress. Furthermore, establishing whether A′ ⊑L
1 A is decidable.

Negative results on alternative refinement strategies Besides introducing a new refine-

ment we have investigated behavioural/progress preservation under two refinement strategies in-

spired from literature. They are both variants of our definition of refinement that alter conditions (a)

and (b) in Definition 10. The first strategy (e.g., [12]) is a naïve variant of Definition 10 where (b)

is dropped. The second strategy (e.g., [24]) is an asymmetric variant of Definition 10 that allows to

relax guards of the receive actions: (a) is substituted by Jguard(ℓ′)K ⊇ Jguard(ℓ)K and (b) is dropped.

◮ Fact 27. LLESP restrictions of ‘naïve’ and ‘asymmetric’ refinements do not preserve behaviour,

global progress, nor local progress, not even if mixed states are ruled out.

We refer to www.cs.kent.ac.uk/people/staff/lb514/catr.html for counter-examples of behaviour

and progress preservation for LLESP restrictions of ‘naïve’ and ‘asymmetric’ refinements without

mixed states. Example 23, which has mixed states, is also a counter-example for such refinements.

Experiments We evaluate our theory against a suite of protocols from literature. To support

the evaluation we built a tool that determines, given A and A′, if A′ ⊑1 A and if A′ ⊑L
1 A. For

each participant of each protocol we construct three refinement strategies. For sending edges, if

the guard has an upper bound (e.g. x ≤ 10) then we refine it with, respectively: (strategy #1) the

lower bound (e.g. x = 0), (strategy #2) the average value (e.g. x = 5), and (strategy #3) the upper

bound (if any) (e.g. x = 10). In all strategies, receiving edges are refines in the same way: if the

guard has a not strict upper bound (e.g. x ≤ 10) then we restrict the guard as its upper bound (e.g.

x = 10); if the upper bound is strict (e.g. x < 10) we ‘procrastinate’ the guard, but making it fully

left-closed (Definition 31) (e.g. 10 − ε ≤ x < 10, where we set ε as a unit of time); if there is

no upper bound (e.g. x > 10) the guard is left unchanged. Our tool correctly classifies the pairs

of CTA defined above as refinements. In Table 1 we show the output of the tool when checking

LLESP. We can see that strategies #2 and #3 never break the LLESP property. While this should

always hold for strategy #3 (procrastinating sending edges guarantees that LE sending edges are

preserved), the case for strategy #2 is incidental. Among the case studies, Ford Credit web portal

and SMTP contain mixed states (used to implement timeouts). The fact that, for each protocol, there

is always some refinement strategy that satisfies LLESP (hence a provably safe way to implement

that protocol) witnesses the practicality of our theory. Surprisingly, the states that falsify LLESP

are not mixed. The three models for which strategy #1 does not produce ‘good’ refinements suffer

from the same issue of Example 22: the guard of a sending edge is restricted in a way that makes it

possibly unsatisfiable with respect to the guard of the previous action.

5 Preservation under an urgent semantics

The semantics in Definition 4 does not force the receive actions to happen, (unless time passing

prevents the CTA from receiving in the future, by condition 3(e). This behaviour, also present
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Case study Strategy #1 Strategy #2 Strategy #3

Ford Credit web portal [39] 7Server 3 Server

Scheduled Task Protocol [11] 3User 3Worker 3Aggregator 3User 3Worker 3Aggregator 3User 3Worker 3Aggregator

OOI word counting [37] 3Master 3Worker 3Aggregator 3Master 3Master

ATM [19] 7Bank, 3User 7Machine 3Bank 3User 3Machine 3Bank 3User

Fisher Mutual Exclusion [9] 3Producer 3Consumer 3Producer 3Producer

SMTP [41] 3Client 3Client

Table 1 Benchmarks. Participants satisfying LLESP are marked with 3, the others with 7. We omitted

participants for which the strategy was not meaningful, or gave identical results as the other columns.

in [11, 29], contrasts with the actual behaviour of the receive primitives of mainstream program-

ming languages which return as soon as a message is available. We now introduce a variant of

the semantics in Definition 4 which faithfully models this behaviour. We make receive actions ur-

gent [13, 38] by forbidding delays when a receiving edge is enabled and the corresponding message

is at the head of the queue. Below, Act? denotes the set of input labels.

◮ Definition 28 (Urgent semantics of systems). Given a system S, we define the TLTS JSKu =

(Q, L, →u), where Q is the set of configurations of S, L = Act ∪ R≥0, and:

γ α−→uγ′ ⇐⇒

{

γ α−→γ′ if α ∈ Act

γ t−→γ′ if α = t and ∀t′ < t, γ′′, α′ ∈ Act? : γ t′

−→γ′′ =⇒ γ′′ 6 α′

−−→

The non-urgent and the urgent semantics are very similar: they only differ in time actions. In the

urgent semantics, a system can make a time action t only if no receive action is possible earlier than t

(hence no message is waiting in a queue with ‘enabled’ guard). Theorem 29 formally relates the two

semantics. Since the urgent semantics restricts the behaviour of systems (by dropping some timed

transitions), the urgent semantics preserves the behaviour of the non-urgent one.

◮ Theorem 29. For all systems S, the relation {((1, γ), (2, γ)) | γ is a configuration of S} between

states of JSKu ⊎ JSK is a timed simulation.

In general, however, a system that enjoys progress with the non-urgent semantics may not enjoy

progress with the urgent one. This is illustrated by Example 30.

◮ Example 30. Consider the system S = (As, Ar), where:

As : q0 q1
sr!a(y = 0) Ar :

q′
0 q′

1

sr?a(x > 3)

With the non-urgent semantics, γ0
sr!a−−→ 3−→γ = ((q1, q′

0), (a, ε), ν0 + 3) t−→ sr?a−−−→, for all t ∈ R≥0.

With the urgent semantics, γ0
sr!a−−→u

3−→uγ 6 α−→u, for all α 6= 0. Hence, the non-urgent semantics

leads to a final state, whereas the urgent semantics does not. ◭

The issue highlighted by Example 30 is subtle (but known in literature [13]): if there is no

precise point in time in which a guard becomes enabled (e.g. in x > 3), then the run may get

stuck. In Definition 31 we deal with this issue through a restriction on guards, which guarantees

that urgent semantics preserves progress. Our restriction, generalising the notion of right-open time

progress [13] (to deal with non-convex guards), corresponds to forbidding guards defined as the

conjunction of sub-guards of the form x > c (but we allow subguards of the form x ≥ c). To keep

our results independent from the syntax of guards, our definition is based on sets of clock valuations.

◮ Definition 31 (Fully left closed). For all ν, and for all sets of clock valuations K, let Dν(K) =

{t | ν + t ∈ K} and let inf Z denote the infimum of Z. We say that a guard δ is fully left closed iff:
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q0 q1 q2

q3

AM :

MW!log

(x < 2, {x})

WM?data

(x ≥ 3 ∧ x < 9)

MW!log

(x ≤ 15, {x})

MW!end

(9 ≤ x ≤ 15, {x})

q0 q1 q2

q3

A
′

M :

MW!log

(x = 1, {x})

WM?data

(x ≥ 6 ∧ x ≤ 7)

MW!log

(x = 8, {x})

MW!end

(x = 9, {x})

q0 q1 q2

q3

A
′′

M :

MW!log

(x = 1, {x})

WM?data

(x ≥ 7 ∧ x < 9)

MW!log

(x = 10, {x})

MW!end

(x = 10, {x})

Figure 3 AM (left); A
′

M 6⊑1 AM (centre); A
′′

M ⊑1 AM (right).

∀ν : ∀K ⊆ JδK :
(

Dν(K) 6= ∅ =⇒ ν + inf Dν(K) ∈ JδK
)

. We say that a CTA is input fully left

closed when all guards in its receiving edges are fully left closed. A system is input fully left closed

when all its components are such.

Fully left closed guards ensure that there is an exact time instant in which a guard of an urgent

action becomes enabled. The requirement that left closedness must hold for any subset K of the

semantics of the guards is needed to cater for non-convex guards (i.e. guards with disjunctions).

Consider e.g. δ = 1 ≤ x ≤ 3 ∨ x > 4. While δ is left closed, it is not fully left closed: indeed, for

K = Jx > 4K ⊆ JδK, it holds that inf Dν0
(K) = 4, but ν + 4 6∈ JδK.

◮ Example 32. The guard x > 3 in Example 30 is not fully left closed, as inf Dν0
(Jx > 3K) =

inf {t | t > 3} = 3, but ν0 + 3 6∈ Jx > 3K. Instead, guard x ≥ 3 is fully left closed. Consider

now a variant of the system of Example 30 where guard x > 3 is replaced by x ≥ 3. The run

γ0
sr!a−−→u

3−→uγ would not get stuck and allow γ sr?a−−−→. ◭

The following theorem states that urgent semantics preserves progress with respect to non-urgent

semantics, when considering fully left closed systems.

◮ Theorem 33 (Preservation of progress vs. urgency). Let S be input fully left closed. If

S enjoys global (resp. local) progress under the non-urgent semantics, then S enjoys global (resp.

local) progress under the urgent semantics.

6 Implementing protocols via refinement

We illustrate how to exploit our theory to implement timed protocols, by considering the real-world

protocol in [37], which distributedly counts the occurrences of a word in a log. Because of space

limitations, we slightly simplify and adapt the protocol in [37]. The system has two nodes: a master

M and a worker W. We focus on M, modelled as AM in Figure 3 (left). AM repeatedly: sends a log to

AW, then either receives data from AW (within timeout x < 9) or sends a notice and terminates. We

implement the CTA in Go, a popular programming language with concurrency features. Here, we

just sketch an implementation which intuitively follows the CTA model. A rigorous correspondence

between the Go primitives and the CTA model (supporting e.g., automatic code generation) is a

future work that is out of the scope of this paper. We use: (i) variables of type time.Time as clocks

(e.g., x), and (ii) function rel below to return the value (of type time.Duration) of a clock (since

the last reset):

func rel(x time.Time) time.Duration {return time.Now().Sub(x)}

A naïve implementation in Go We first attempt to implement AM following A′
M (Figure 3). A′

M

is obtained from AM by restricting guards obliviously of our results. We start from the edge from q0

to q1, assuming that the preparation of the log to send takes 1s (with negligible jitter). This could

result in the snippet below:
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1 x := time.Now() // initial setting of clock x

2 time.Sleep(time.Second * 1 - rel(x)) // sleep for 1s

3 x = time.Now() // reset x

4 MW <- "log" // send string "log" on FIFO channel MW

The statement in line 2 represents the invocation of a time-consuming function that prepares the log

to be sent in line 4 (here we send the string "log"). In general, implementations may be informed by

estimated durations of code instructions. Providing such information is made possible by orthogonal

research on cost analysis, e.g. [28]. Next, we want to (i) implement the receive action from q1 to q3

as a blocking primitive with timeout, (ii) minimise the waiting time of the master listening on the

channel, and restrict the interval to x ≥ 6 ∧ x ≤ 7. This could result in the following:

1 time.Sleep(time.Second *6 - rel(x))

2 select { case res := <- WM:

3 // here goes the implementation of edge q3 ---> q1

4 case <- time.After(time.Second * 7 + time.Nanosecond * 1 - rel(x)):

5 // here goes the implementation of edge q1 ---> q2

Note that without the addition of one nanosecond in line 4 above the snippet would implement a

constraint (x ≥ 6 ∧ x < 7). To enable the program to read the message when x = 7, we add

the smallest time unit in Go, which is negligible with respect to the protocol delays. The study of

implementability of such equality constraints at this granularity of time is left as future work.

Next, we implement the edge from q1 to q2 by substituting line 5 above with:

1 time.Sleep(time.Second *9 - rel(x))

2 x = time.Now() // reset x

3 MW <- "end" // send string "end"

The edge from q3 to q1 can be implemented in a similar way, where the sleep statement represents a

time-consuming log preparation of 1s, as before.

Assessing implementations via our tool The implementation sketched in the previous para-

graphs corresponds to A′
M (Figure 3). Analysis of A′

M with our tool reveals that A′
M 6⊑1 AM: the con-

straints of receiving edges of AM have been restricted not respecting the final deadlines. From Sec-

tion 4 we know that A′
M may not preserve behaviour and progress. Suppose that the worker node is

set to send the data to AM when x = 8.5: according to the original specification AM, this message is

in time, hence the worker will expect a log message back from the master. However, in the imple-

mentation reflected in A′
M, the master will reply with an end message, potentially causing a deadlock.

Thanks to Theorem 26 we know that we can, instead, safely restrict the constraints using ⊑1: guard

x ≥ 6 ∧ x ≤ 7 of A′
M can be amended as x ≥ 7 ∧ x < 9. After this amendment, however, the tool

detects a violation of LLESP: the deadlines set by guards of sending edges from q3 and q1 are after

the deadline of the receive action. A correct refinement A′′
M ⊑L

1 AM is shown in Figure 3 (right) and

can be used to produce the following implementation in Go:

MW := make(chan string, 100)

WM := make(chan string, 100)

go func(){

// q0 ---> q1

x := time.Now()

time.Sleep(time.Second *1 - rel(x))

x = time.Now()

MW <- "log"

// q1 ---> q3

time.Sleep(time.Second *7 - rel(x))

select {

case res := <- WM:

// q3 ---> q2

x = time.Now()

time.Sleep(time.Second *10 - rel(x))

MW <- "log"

case <- time.After(time.Second *9 - rel(x)):

// q1 ---> q2

time.Sleep(time.Second *10 - rel(x))

x = time.Now()

MW <- "end" }}()

}

Practicality In some scenarios, one may want to implement receive actions with non-blocking

primitives (unlike above, where we have used blocking ones). Non-blocking primitives can be mod-

elled as CTA refinements where constraints (e.g., x ≤ 9) are restricted to a point in time (e.g.,
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x = 9). Punctual guards can be attained in the real world by assuming a tolerance (e.g., around

9) that is negligible against the scale of x. In some cases, it may be desirable to not restrict the

constraint of receive actions, to be able to receive a message as soon as possible.

CTA can capture delays of the communication medium e.g., by adding them at the receiver

side. This is common when using semantics where actions are timeless and delays are modelled

separately, as these semantics can be encoded into ones where actions have an associated duration.

Our theory can be applied to non real-time operating systems and languages (like, e.g., Go), as

long as the time granularity of the modelled protocols is coarse enough with respect to the jitter of the

operating system / language. However, negligible delays may accumulate, eventually compromising

the correctness of long-lived protocols. In this case, adjustments like e.g. those suggested in [37] or

based on analysis on the robustness of protocols to jitters [31], may be in order to recover correctness.

7 Conclusions

Our theory provided a formal basis to support implementation of well-behaved systems from well-

behaved models. This is obtained through a decidable refinement relation, and a condition (LLESP)

that guarantees behaviour and progress preservation. To overcome the undecidability results of re-

finement in asynchronous models [15, 30], we considered “purely timed” refinements, that only af-

fect time constraints. While not fully general, our refinement captures the practical relations between

models, and implementations obtained by following them (Section 6). Moreover, our refinement and

the LLESP condition apply well to realistic protocols expressed as CTA (Section 4): for each par-

ticipant of each protocol in our portfolio, there exist one or more non-trivial (i.e. not the identity)

LLESP refinements, from which one can derive behaviour- and progress-preserving implementa-

tions of that protocol. Evaluating our theory was facilitated by a tool, that can also be used to guide

implementations. Being this the first work which enables refinements between CTA, there is no

benchmark against which to study limitations or compare with. Other “purely timed” refinements

strategies inspired by literature gave only negative results (Fact 27) when applied to the asynchron-

ous timed setting, hence e.g., even if an implementation preserves the interactions structure of the

initial CTA, and even if the timings of actions chosen for the implementation are within the range of

the guards of the initial CTA, still that implementation may not preserve behaviour or progress.

Technically, we focused on interaction-based (rather than language-based) semantics, improving

the state of the art in two ways: mixed choices and urgency. Mixed choices cannot be expressed

in models based on session types of [11, 12]. There, interactions follow two constructs: selection,

which corresponds to an internal choice of send actions, and branching, an external choice of re-

ceive actions. The behaviour of mixed states captured by our semantics falls somewhere in between

internal and external choices, so it is not expressible in the setting of [11, 12]. Besides, the known

semantics [11,12,29] do not account for urgency. Our preservation results from non-urgent to urgent

semantics pave the way to implementations of refinements that preserve behaviour and progress (e.g.

derived incrementally using the non-urgent semantics, and relying on the results in Section 4).

Other work on relating timed models with implementations is, e.g. [2, 3]. The work [2] approx-

imates dense time models in synchronous models with fixed sampling rates, so to enable for hard-

ware implementations. Here, instead, we considered asynchronous models, and delays at a coarser

granularity, aiming at time-sensitive (not necessarily real-time) languages. The work [3] generates

Erlang code from real-time Rebeca models (so, focussing on the actor model, rather than on FIFO

channels). Extending our tool in this direction is an ongoing work of ours.
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