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Abstract

Transitive closure logic is a known extension of first-order logic obtained by introducing a

transitive closure operator. While other extensions of first-order logic with inductive definitions

are a priori parametrized by a set of inductive definitions, the addition of the transitive closure

operator uniformly captures all finitary inductive definitions. In this paper we present an

infinitary proof system for transitive closure logic which is an infinite descent-style counterpart

to the existing (explicit induction) proof system for the logic. We show that, as for similar

systems for first-order logic with inductive definitions, our infinitary system is complete for the

standard semantics and subsumes the explicit system. Moreover, the uniformity of the transitive

closure operator allows semantically meaningful complete restrictions to be defined using simple

syntactic criteria. Consequently, the restriction to regular infinitary (i.e. cyclic) proofs provides

the basis for an effective system for automating inductive reasoning.
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1 Introduction

A core technique in mathematical reasoning is that of induction. This is especially true

in computer science, where it plays a central role in reasoning about recursive data and

computations. Formal systems for mathematical reasoning usually capture the notion of

inductive reasoning via one or more inference rules that express the general induction schemes,

or principles, that hold for the elements being reasoned over.

Increasingly, we are concerned with not only being able to formalise as much mathematical

reasoning as possible, but also with doing so in an effective way. In other words, we seek to

be able to automate such reasoning. Transitive closure (TC) logic has been identified as a

potential candidate for a minimal, ‘most general’ system for inductive reasoning, which is

also very suitable for automation [1, 10, 11]. TC adds to first-order logic a single operator
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for forming binary relations: specifically, the transitive closures of arbitrary formulas (more

precisely, the transitive closure of the binary relation induced by a formula with respect to

two distinct variables). In this work, for simplicity, we use a reflexive form of the operator;

however the two forms are equivalent in the presence of equality. This modest addition

affords enormous expressive power: namely it provides a uniform way of capturing inductive

principles. If an induction scheme is expressed by a formula ϕ, then the elements of the

inductive collection it defines are those ‘reachable’ from the base elements x via the iteration

of the induction scheme. That is, those y’s for which (x, y) is in the transitive closure of ϕ.

Thus, bespoke induction principles do not need to be added to, or embedded within, the

logic; instead, all induction schemes are available within a single, unified language. In this

respect, the transitive closure operator resembles the W-type [22], which also provides a

single type constructor from which one can uniformly define a variety of inductive types.

TC logic is intermediate between first- and second-order logic. Furthermore, since the TC

operator is a particular instance of a least fixed point operator, TC logic is also subsumed

by fixed-point logics such as the µ-calculus [19]. However, despite its minimality TC logic

retains enough expressivity to capture inductive reasoning, as well as to subsume arithmetics

(see Section 4.2.1). Moreover, from a proof theoretical perspective the conciseness of the

logic makes it of particular interest. The use of only one constructor of course comes with a

price: namely, formalizations (mostly of non-linear induction schemes) may be somewhat

complex. However, they generally do not require as complex an encoding as in arithmetics,

since the TC operator can be applied on any formula and thus (depending on the underlying

signature) more naturally encode induction on sets more complex than the natural numbers.

Since its expressiveness entails that TC logic subsumes arithmetics, by Gödel’s result,

any effective proof system for it must necessarily be incomplete for the standard semantics.

Notwithstanding, a natural, effective proof system which is sound for TC logic was shown

to be complete with respect to a generalized form of Henkin semantics [9]. In this paper,

following similar developments in other formalizations for fixed point logics and inductive

reasoning (see e.g. [4, 5, 6, 24, 27]), we present an infinitary proof theory for TC logic which,

as far as we know, is the first system that is (cut-free) complete with respect to the standard

semantics. More specifically, our system employs infinite-height, rather than infinite-width

proofs (see Section 3.2). The soundness of such infinitary proof theories is underpinned

by the principle of infinite descent: proofs are permitted to be infinite, non-well-founded

trees, but subject to the restriction that every infinite path in the proof admits some infinite

descent. The descent is witnessed by tracing terms or formulas for which we can give a

correspondence with elements of a well-founded set. In particular, we can trace terms that

denote elements of an inductively defined (well-founded) set. For this reason, such theories

are considered systems of implicit induction, as opposed to those which employ explicit rules

for applying induction principles. While a full infinitary proof theory is clearly not effective,

in the aforementioned sense, such a system can be obtained by restricting consideration

to only the regular infinite proofs. These are precisely those proofs that can be finitely

represented as (possibly cyclic) graphs.

These infinitary proof theories generally subsume systems of explicit induction in expressive

power, but also offer a number of advantages. Most notably, they can ameliorate the primary

challenge for inductive reasoning: finding an induction invariant. In explicit induction

systems, this must be provided a priori, and is often much stronger than the goal one is

ultimately interested in proving. However, in implicit systems the inductive arguments and

hypotheses may be encoded in the cycles of a proof, so cyclic proof systems seem better for

automation. The cyclic approach has also been used to provide an optimal cut-free complete
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proof system for Kleene algebra [15], providing further evidence of its utility for automation.

In the setting of TC logic, we observe some further benefits over more traditional formal

systems of inductive definitions and their infinitary proof theories (cf. LKID [6, 21]). TC (with

a pairing function) has all first-order definable finitary inductive definitions immediately

‘available’ within the language of the logic: as with inductive hypotheses, one does not need

to ‘know’ in advance which induction schemes will be required. Moreover, the use of a single

transitive closure operator provides a uniform treatment of all induction schemes. That is,

instead of having a proof system parameterized by a set of inductive predicates and rules

for them (as is the case in LKID), TC offers a single proof system with a single rule scheme

for induction. This has immediate advantages for developing the metatheory: the proofs of

completeness for standard semantics and adequacy (i.e. subsumption of explicit induction) for

the infinitary system presented in this paper are simpler and more straightforward. Moreover,

it permits a cyclic subsystem, which also subsumes explicit induction, to be defined via a

simple syntactic criterion that we call normality. The smaller search space of possible proofs

further enhances the potential for automation. TC logic seems more expressive in other ways,

too. For instance, the transitive closure operator may be applied to arbitrarily complex

formulas, not only to collections of atomic formulas (cf. Horn clauses), as in e.g. [4, 6].

We show that the explicit and cyclic TC systems are equivalent under arithmetic, as is

the case for LKID [3, 26]. However, there are cases in which the cyclic system for LKID is

strictly more expressive than the explicit induction system [2]. To obtain a similar result for

TC, the fact that all induction schemes are available poses a serious challenge. For one, the

counter-example used in [2] does not serve to show this result holds for TC. If this strong

inequivalence indeed holds also for TC, it must be witnessed by a more subtle and complex

counter-example. Conversely, it may be that the explicit and cyclic systems do coincide for

TC. In either case, this points towards fundamental aspects that require further investigation.

The rest of the paper is organised as follows. In Section 2 we reprise the definition of

transitive closure logic and both its standard and Henkin-style semantics. Section 3 presents

the existing explicit induction proof system for TC logic, and also our new infinitary proof

system. We prove the latter sound and complete for the standard semantics, and also derive

cut-admissibility. In Section 4 we compare the expressive power of the infinitary system

(and its cyclic subsystem) with the explicit system. Section 5 concludes and examines the

remaining open questions for our system as well as future work. Due to lack of space, proofs

are omitted but can be found in an extended version [12].

2 Transitive Closure Logic and its Semantics

In this section we review the language of transitive closure logic, and two possible semantics

for it: a standard one, and a Henkin-style one. For simplicity of presentation we assume

(as is standard practice) a designated equality symbol in the language. We denote by

v[x1 := an, . . . , xn := an] the variant of the assignment v which assigns ai to xi for each

i, and by ϕ
{

t1
x1

, . . . , tn
xn

}

the result of simultaneously substituting each ti for the free

occurrences of xi in ϕ.

◮ Definition 1 (The language LRTC). Let σ be a first-order signature with equality, whose

terms are ranged over by s and t and predicates by P , and let x, y, z, etc. range over

a countable set of variables. The language LRTC consists of the formulas defined by the

grammar:

ϕ,ψ ::= s = t | P (t1, . . . , tn) | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ∀x.ϕ | ∃x.ϕ | (RTCx,y ϕ)(s, t)

CSL 2018



16:4 Uniform Inductive Reasoning in Transitive Closure Logic via Infinite Descent

As usual, ∀x and ∃x bind free occurrences of the variable x and we identify formulas up to

renaming of bound variables, so that capturing of free variables during substitution does not

occur. Note that in the formula (RTCx,y ϕ)(s, t) free occurrences of x and y in ϕ are also

bound (but not those in s and t).

◮ Definition 2 (Standard Semantics). Let M = 〈D, I〉 be a first-order structure (i.e. D is a

non-empty domain and I an interpretation function), and v an assignment in M which we

extend to terms in the obvious way. The satisfaction relation |= between model-valuation

pairs 〈M,v〉 and formulas is defined inductively on the structure of formulas by:

M, v |= s = t if v(s) = v(t);

M, v |= P (t1, . . . , tn) if (v(t1), . . . , v(tn)) ∈ I(P );

M, v |= ¬ϕ if M, v 6|= ϕ;

M, v |= ϕ1 ∧ ϕ2 if both M,v |= ϕ1 and M, v |= ϕ2;

M, v |= ϕ1 ∨ ϕ2 if either M,v |= ϕ1 or M, v |= ϕ2;

M, v |= ϕ1 → ϕ2 if M, v |= ϕ1 implies M,v |= ϕ2;

M, v |= ∃x.ϕ and M,v |= ∀x.ϕ if M, v[x := a] |= ϕ for some (respectively all) a ∈ D;

M, v |= (RTCx,y ϕ)(s, t) if v(s) = v(t), or there exist a0, . . . , an ∈ D (n > 0) s.t. v(s) = a0,

v(t) = an, and M,v[x := ai, y := ai+1] |= ϕ for 0 ≤ i < n.

We say that a formula ϕ is valid with respect to the standard semantics when M,v |= ϕ

holds for all models M and valuations v.

We next recall the concepts of frames and Henkin structures (see, e.g., [18]). A frame is

a first-order structure together with some subset of the powerset of its domain (called its set

of admissible subsets).

◮ Definition 3 (Frames). A frame M is a triple 〈D, I,D〉, where 〈D, I〉 is a first-order

structure, and D ⊆ ℘(D).

Note that if D = ℘(D), the frame is identified with a standard first-order structure.

◮ Definition 4 (Frame Semantics). LRTC formulas are interpreted in frames as in Definition 2

above, except for:

M, v |= (RTCx,y ϕ)(s, t) if for every A ∈ D, if v(s) ∈ A and for every a, b ∈ D: a ∈ A

and M,v[x := a, y := b] |= ϕ implies b ∈ A, then v(t) ∈ A.

We now consider Henkin structures, which are frames whose set of admissible subsets is

closed under parametric definability.

◮ Definition 5 (Henkin structures). A Henkin structure is a frame M = 〈D, I,D〉 such that

{a ∈ D | M,v[x := a] |= ϕ} ∈ D for every ϕ, and v in M .

We refer to the semantics induced by quantifying over the (larger) class of Henkin structures

as the Henkin semantics.

It is worth noting that the inclusion of equality in the basic language is merely for

notational convenience. This is because the RTC operator allows us, under both the standard

and Henkin semantics, to actually define equality s = t on terms as (RTCx,y ⊥)(s, t).
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(Axiom):
ϕ ⇒ ϕ

(WL):
Γ ⇒ ∆

Γ, ϕ ⇒ ∆
(WR):

Γ ⇒ ∆

Γ ⇒ ∆, ϕ

(=L1):
Γ ⇒ ϕ

{

s
x

}

,∆

Γ, s = t ⇒ ϕ
{

t
x

}

,∆
(=L2):

Γ ⇒ ϕ
{

t
x

}

,∆

Γ, s = t ⇒ ϕ
{

s
x

}

,∆
(=R):

⇒ t = t

(∨L):
Γ ⇒ ϕ,∆ Γ, ψ ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆
(∧L):

Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆
(→L):

Γ ⇒ ϕ,∆ Γ, ψ ⇒ ∆

Γ, ϕ → ψ ⇒ ∆
(¬L):

Γ ⇒ ϕ,∆

Γ,¬ϕ ⇒ ∆

(∨R):
Γ ⇒ ϕ,ψ,∆

Γ ⇒ ϕ ∨ ψ,∆
(∧R):

Γ ⇒ ϕ,∆ Γ ⇒ ψ,∆

Γ ⇒ ϕ ∧ ψ,∆
(→R):

Γ, ϕ ⇒ ψ,∆

Γ ⇒ ϕ → ψ,∆
(¬R):

Γ, ϕ ⇒ ∆

Γ ⇒ ¬ϕ,∆

(∃L):
Γ, ϕ ⇒ ∆

x 6∈ fv(Γ,∆)
Γ, ∃x.ϕ ⇒ ∆

(∀L):
Γ, ϕ

{

t
x

}

⇒ ∆

Γ, ∀x.ϕ ⇒ ∆
(Cut):

Γ ⇒ ϕ,∆ Σ, ϕ ⇒ Π

Γ,Σ ⇒ ∆,Π

(∃R):
Γ ⇒ ϕ

{

t
x

}

,∆

Γ ⇒ ∃x.ϕ,∆
(∀R):

Γ ⇒ ϕ,∆
x 6∈ fv(Γ,∆)

Γ ⇒ ∀x.ϕ,∆
(Subst):

Γ ⇒ ∆

Γ
{

t1

x1

, . . . , tn

xn

}

⇒ ∆
{

t1

x1

, . . . , tn

xn

}

Figure 1 Proof rules for the sequent calculus LK= with substitution.

3 Proof Systems for LRTC

In this section, we define two proof systems for LRTC. The first is a finitary proof system

with an explicit induction rule for RTC formulas. The second is an infinitary proof system,

in which RTC formulas are simply unfolded, and inductive arguments are represented via

infinite descent-style constructions. We show the soundness and completeness of these proof

systems, and also compare their provability relations.

Our systems for LRTC are extensions of LK=, the sequent calculus for classical first-order

logic with equality [16, 28] whose proof rules we show in Fig. 1.3 Sequents are expressions of

the form Γ ⇒ ∆, for finite sets of formulas Γ and ∆. We write Γ,∆ and Γ, ϕ as a shorthand

for Γ ∪ ∆ and Γ ∪ {ϕ} respectively, and fv(Γ) for the set of free variables of the formulas in

the set Γ. A sequent Γ ⇒ ∆ is valid if and only if the formula
∧

ϕ∈Γ ϕ →
∨

ψ∈∆ ψ is.

3.1 The Finitary Proof System

We briefly summarise the finitary proof system for LRTC. For more details see [10, 11]. We

write ϕ(x1, . . . , xn) to emphasise that the formula ϕ may contain x1, . . . , xn as free variables.

◮ Definition 6. The proof system RTCG for LRTC is defined by adding to LK= the following

inference rules:

Γ ⇒ ∆, (RTCx,y ϕ)(s, s) (1)

Γ ⇒ ∆, (RTCx,y ϕ)(s, r) Γ ⇒ ∆, ϕ
{

r
x

, t
y

}

Γ ⇒ ∆, (RTCx,y ϕ)(s, t)
(2)

3 Here we take LK= to include the substitution rule, which was not a part of the original systems.

CSL 2018



16:6 Uniform Inductive Reasoning in Transitive Closure Logic via Infinite Descent

Γ, ψ(x), ϕ(x, y) ⇒ ∆, ψ
{

y
x

}

Γ, ψ
{

s
x

}

, (RTCx,y ϕ)(s, t) ⇒ ∆, ψ
{

t
x

} x 6∈ fv(Γ,∆) and y 6∈ fv(Γ,∆, ψ) (3)

Rule (3) is a generalized induction principle. It states that if an extension of formula ψ is

closed under the relation induced by ϕ, then it is also closed under the reflexive transitive

closure of that relation. In the case of arithmetic this rule captures the induction rule of

Peano’s Arithmetics PA [11].

3.2 Infinitary Proof Systems

We now present our infinitary proof systems for LRTC which are based on the principle of

infinite descent. This is in contrast to infinite-width proof systems based on a variant of the

infinite branching ω-rule [25, 17]. Such systems have been widely investigated and known to

be useful for attaining completeness (e.g. for arithmetics). Nonetheless, the infinite ω-rule

renders them practically useless for automated reasoning. Since our motivation here is that

of effectiveness and automation we opt for a finite system in which we allow infinite-height,

non-well-founded proofs.

◮ Definition 7. The infinitary proof system RTCωG for LRTC is defined like RTCG, but

replacing Rule (3) by:

Γ, s = t ⇒ ∆ Γ, (RTCx,y ϕ)(s, z), ϕ
{

z
x

, t
y

}

⇒ ∆

Γ, (RTCx,y ϕ)(s, t) ⇒ ∆
(4)

where z is fresh, i.e. z does not occur free in Γ, ∆, or (RTCx,y ϕ)(s, t). The formula

(RTCx,y ϕ)(s, z) in the right-hand premise is called the immediate ancestor (cf. [7, §1.2.3])

of the principal formula, (RTCx,y ϕ)(s, t), in the conclusion.

There is an asymmetry between Rule (2), in which the intermediary is an arbitrary term

r, and Rule (4), where we use a variable z. This is necessary to obtain the soundness of the

cyclic proof system. It is used to show that when there is a counter-model for the conclusion

of a rule, then there is also a counter-model for one of its premises that is, in a sense that

we make precise below, ‘smaller’. In the case that s 6= t, using a fresh z allows us to pick

from all possible counter-models of the conclusion, from which we may then construct the

required counter-model for the right-hand premise. If we allowed an arbitrary term r instead,

this might restrict the counter-models we can choose from, only leaving ones ‘larger’ than

the one we had for the conclusion. See Lemma 15 below for more details.

Proofs in this system are possibly infinite derivation trees. However, not all infinite

derivations are proofs: only those that admit an infinite descent argument. Thus we use the

terminology ‘pre-proof’ for derivations.

◮ Definition 8 (Pre-proofs). An RTCωG pre-proof is a possibly infinite (i.e. non-well-founded)

derivation tree formed using the inference rules. A path in a pre-proof is a possibly infinite

sequence of sequents s0, s1, . . . (, sn) such that s0 is the root sequent of the proof, and si+1 is

a premise of si for each i < n.

The following definitions tell us how to track RTC formulas through a pre-proof, and

allow us to formalize inductive arguments via infinite descent.

◮ Definition 9 (Trace Pairs). Let τ and τ ′ be RTC formulas occurring in the left-hand side

of the conclusion s and a premise s′, respectively, of (an instance of) an inference rule. (τ, τ ′)

is said to be a trace pair for (s, s′) if the rule is:
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the (Subst) rule, and τ = τ ′θ where θ is the substitution associated with the rule instance;

Rule (4), and either:

a) τ is the principal formula of the rule instance and τ ′ is the immediate ancestor of τ , in

which case we say that the trace pair is progressing;

b) otherwise, τ = τ ′.

any other rule, and τ = τ ′.

◮ Definition 10 (Traces). A trace is a (possibly infinite) sequence of RTC formulas. We say

that a trace τ1, τ2, . . . (, τn) follows a path s1, s2, . . . (, sm) in a pre-proof P if, for some k ≥ 0,

each consecutive pair of formulas (τi, τi+1) is a trace pair for (si+k, si+k+1). If (τi, τi+1) is

a progressing pair then we say that the trace progresses at i, and we say that the trace is

infinitely progressing if it progresses at infinitely many points.

Proofs, then, are pre-proofs which satisfy a global trace condition.

◮ Definition 11 (Infinite Proofs). A RTCωG proof is a pre-proof in which every infinite path

is followed by some infinitely progressing trace.

Clearly, we cannot reason effectively about such infinite proofs in general. In order to

do so we need to restrict our attention to those proof trees which are finitely representable.

These are the regular infinite proof trees, which contain only finitely many distinct subtrees.

They can be specified as systems of recursive equations or, alternatively, as cyclic graphs

[14]. Note that a given regular infinite proof may have many different graph representations.

One possible way of formalizing such proof graphs is as standard proof trees containing open

nodes (called buds), to each of which is assigned a syntactically equal internal node of the

proof (called a companion). Due to space limitation, we elide a formal definition of cyclic

proof graphs (see, e.g., Sect. 7 in [6]) and rely on the reader’s basic intuitions.

◮ Definition 12 (Cyclic Proofs). The cyclic proof system CRTCωG for LRTC is the subsystem

of RTCωG comprising of all and only the finite and regular infinite proofs (i.e. those proofs

that can be represented as finite, possibly cyclic, graphs).

Note that it is decidable whether a cyclic pre-proof satisfies the global trace condition,

using a construction involving an inclusion between Büchi automata (see, e.g., [4, 26]).

However since this requires complementing Büchi automata (a PSPACE procedure), our

system cannot be considered a proof system in the Cook-Reckhow sense [13]. Notwithstanding,

checking the trace condition for cyclic proofs found in practice is not prohibitive [23, 29].

3.3 Soundness and Completeness

The rich expressiveness of TC logic entails that the effective system RTCG which is sound

w.r.t. the standard semantics, cannot be complete (much like the case for LKID). It is

however both sound and complete w.r.t. Henkin semantics.

◮ Theorem 13 (Soundness and Completeness of RTCG [9]). RTCG is sound for standard

semantics, and also sound and complete for Henkin semantics.

Note that the system RTCG as presented here does not admit cut elimination. The culprit

is the induction rule (3), which does not permute with cut. We may obtain admissibility

of cut by using the following alternative formulation of the induction rule which, like the

induction rule for LKID, incorporates a cut with the induction formula ψ.

Γ ⇒ ψ
{

s
x

}

Γ, ψ(x), ϕ(x, y) ⇒ ψ
{

y
x

}

Γ, ψ
{

t
x

}

⇒ ∆

Γ, (RTCx,y ϕ)(s, t) ⇒ ∆
x 6∈ fv(Γ,∆), y 6∈ fv(Γ,∆, ψ)

CSL 2018
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For the system with this rule, a simple adaptation of the completeness proof in [9], in the

spirit of the corresponding proof for LKID in [6], suffices to obtain cut-free completeness.

However, the tradeoff is that the resulting cut-free system no longer has the sub-formula

property. In contrast, cut-free proofs in RTCG do satisfy the sub-formula property, for a

generalized notion of a subformula that incorporates substitution instances (as in LK=).

We remark that the soundness proof of LKID is rather complex since it must handle

different types of mutual dependencies between the inductive predicates. For RTCG the proof

is much simpler due to the uniformity of the rules for the RTC operator.

The infinitary system RTCωG, in contrast to the finitary system RTCG, is both sound and

complete w.r.t. the standard semantics. To prove soundness, we make use of the following

notion of measure for RTC formulas.

◮ Definition 14 (Degree of RTC Formulas). For φ ≡ (RTCx,y ϕ)(s, t), define δφ(M,v) = 0 if

v(s) = v(t), and δφ(M,v) = n if v(s) 6= v(t) and a0, . . . , an is a minimal-length sequence of

elements in the domain of M such that v(s) = a0, v(t) = an, and M,v[x := ai, y := ai+1] |= ϕ

for 0 ≤ i < n. We call δφ(M,v) the degree of φ with respect to the model M and valuation v.

Soundness then follows from the following fundamental lemma.

◮ Lemma 15 (Descending Counter-models). If there exists a standard model M and valuation

v that invalidates the conclusion s of (an instance of) an inference rule, then 1) there exists

a standard model M ′ and valuation v′ that invalidates some premise s′ of the rule; and

2) if (τ, τ ′) is a trace pair for (s, s′) then δτ ′(M ′, v′) ≤ δτ (M,v). Moreover, if (τ, τ ′) is a

progressing trace pair then δτ ′(M ′, v′) < δτ (M, v).

As is standard for infinite descent inference systems [4, 5, 6, 15, 23, 29], the above result

entails the local soundness of the inference rules (in our case, for standard first-order models).

The presence of infinitely progressing traces for each infinite path in a RTCωG proof ensures

soundness via a standard infinite descent-style construction.

◮ Theorem 16 (Soundness of RTCωG). If there is a RTCωG proof of Γ ⇒ ∆, then Γ ⇒ ∆ is

valid (w.r.t. the standard semantics)

The soundness of the cyclic system is an immediate corollary, since each CRTCωG proof is

also a RTCωG proof.

◮ Corollary 17 (Soundness of CRTCωG). If there is a CRTCωG proof of Γ ⇒ ∆, then Γ ⇒ ∆ is

valid (w.r.t. the standard semantics)

Following a standard technique (as used in e.g. [6]), we can show cut-free completeness of

RTCωG with respect to the standard semantics.

◮ Definition 18 (Schedule). A schedule element E is defined as any of the following:

a formula of the form ¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ,ϕ → ψ;

a pair of the form 〈∀xϕ, t〉 or 〈∃xϕ, t〉 where ∀xϕ and ∃xϕ are formulas and t is a term;

a tuple of the form 〈(RTCx,y ϕ)(s, t), r, z,Γ,∆〉 where (RTCx,y ϕ)(s, t) is a formula, r is

a term, Γ and ∆ are finite sequences of formulas, and z is a variable not occurring free in

Γ, ∆, or (RTCx,y ϕ)(s, t); or

a tuple of the form 〈s = t, x, ϕ, n,Γ,∆〉 where s and t are terms, x is a variable, ϕ is a

formula, n ∈ {1, 2}, and Γ and ∆ are finite sequences of formulas.

A schedule is a recursive enumeration of schedule elements in which every schedule element

appears infinitely often (these exist since our language is countable).
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Each schedule corresponds to an exhaustive search strategy for a cut-free proof for each

sequent Γ ⇒ ∆, via the following notion of a ‘search tree’.

◮ Definition 19 (Search Tree). Given a schedule {Ei}i>0, for each sequent Γ ⇒ ∆ we

inductively define an infinite sequence of (possibly open) derivation trees, {Ti}i>0, such that

T1 consists of the single open node Γ ⇒ ∆, and each Ti+1 is obtained by replacing all suitable

open nodes in Ti with applications of first axioms and then the left and right inference rules

for the formula in the ith schedule element.

We give the definition of Ti+1 when Ei is an RTC schedule element, i.e. of the form

〈(RTCx,y ϕ)(s, t), r, z,Γ,∆〉 (the other cases are similar). Ti+1 is then obtained by:

1. first closing as such any open node that is an instance of an axiom (after left and right

weakening, if necessary);

2. next, replacing every open node Γ′, (RTCx,y ϕ)(s, t) ⇒ ∆′ of the resulting tree for

which Γ′ ⊆ Γ and ∆′ ⊆ ∆ with the derivation:

Γ′, (RTC x,y ϕ)(s, t), s = t ⇒ ∆′ Γ′, (RTC x,y ϕ)(s, t), (RTC x,y ϕ)(s, z), ϕ
{

z
x
, t

y

}

⇒ ∆′

Γ′, (RTC x,y ϕ)(s, t) ⇒ ∆′
(4)

3. finally, replacing every open node Γ′ ⇒ ∆′, (RTCx,y ϕ)(s, t) of the resulting tree with

the derivation:

Γ′ ⇒ ∆′, (RTC x,y ϕ)(s, t), (RTC x,y ϕ)(s, r) Γ′ ⇒ ∆′, (RTC x,y ϕ)(s, t), ϕ
{

r
x
, t

y

}

Γ′ ⇒ ∆′, (RTC x,y ϕ)(s, t)
(2)

The limit of the sequence {Ti}i>0 is a possibly infinite (and possibly open) derivation tree

called the search tree for Γ ⇒ ∆ with respect to the schedule {Ei}i>0, and denoted by Tω.

Search trees are, by construction, recursive and cut-free. We construct special ‘sequents’

out of search trees, called limit sequents, as follows.

◮ Definition 20 (Limit Sequents). When a search tree Tω is not an RTCωG proof, either: (1) it

is not even a pre-proof, i.e. it contains an open node; or (2) it is a pre-proof but contains an

infinite branch that fails to satisfy the global trace condition. In case (1) it contains an open

node to which, necessarily, no schedule element applies (e.g. a sequent containing only atomic

formulas), for which we write Γω ⇒ ∆ω. In case (2) the global trace condition fails, so there

exists an infinite path {Γi ⇒ ∆i}i>0 in Tω which is followed by no infinitely progressing

traces; we call this path the untraceable branch of Tω. We then define Γω =
⋃

i>0 Γi and

∆ω =
⋃

i>0 ∆i, and call Γω ⇒ ∆ω the limit sequent.4

Note that use of the word ‘sequent’ here is an abuse of nomenclature, since limit sequents

may be infinite and thus technically not sequents. However their purpose is not to play a

role in syntactic proofs, but to induce counter-models as follows.

◮ Definition 21 (Counter-interpretations). Assume a search tree Tω which is not a RTCωG
proof with limit sequent Γω ⇒ ∆ω. Let ∼ be the smallest congruence relation on terms such

that s ∼ t whenever s = t ∈ Γω. Define a structure Mω = 〈D, I〉 as follows (where [t] stands

for the ∼-equivalence class of t):

D = {[t] | t is a term} (i.e. the set of terms quotiented by the relation ∼).

For every k-ary function symbol f : I(f)([t1], . . . , [tk]) = [f(t1, . . . , tk)]

4 To be rigorous, we may pick e.g. the left-most open node or untraceable branch.
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For every k-ary relation symbol q: I(q) = {([t1], . . . , [tk]) | q(t1, . . . , tk) ∈ Γω}

We also define a valuation vω for Mω by vω(x) = [x] for all variables x.

Counter-interpretations 〈Mω, vω〉 have the following property, meaning that Mω is a

counter-model for the corresponding sequent Γ ⇒ ∆ if its search tree Tω is not a proof.

◮ Lemma 22. If ψ ∈ Γω then Mω, vω |= ψ; and if ψ ∈ ∆ω then Mω, vω 6|= ψ.

The completeness result therefore follows since, by construction, a sequent S is contained

within its corresponding limit sequents. Thus, for any sequent S, if some search tree Tω
contracted for S is not an RTCωG proof then it follows from Lemma 22 that S is not valid

(Mω is a counter model for it). Hence if S is valid, then Tω is a recursive RTCωG proof for it.

◮ Theorem 23 (Completeness). RTCωG is complete for standard semantics.

We obtain admissibility of cut as the search tree Tω is cut-free.

◮ Corollary 24 (Cut admissibility). Cut is admissible in RTCωG.

3.4 LRTC with Pairs

To obtain the full inductive expressivity we must allow the formation of the transitive closure

of not only binary relations, but any 2n-ary relation. In [1] it was shown that taking such

a RTCn operator for every n (instead of just for n = 1) results in a more expressive logic,

namely one that captures all finitary first-order definable inductive definitions and relations.

Nonetheless, from a proof theoretical point of view having infinitely many such operators

is suboptimal. Thus, we here instead incorporate the notion of ordered pairs and use it to

encode such operators. For example, writing 〈x, y〉 for the application of the pairing function

〈〉(x, y), the formula (RTC2
x1,x2,y1,y2

ϕ)(s1, s2, t1, t2) can be encoded by:

(RTCx,y ∃x1, x2, y1, y2 . x = 〈x1, x2〉 ∧ y = 〈y1, y2〉 ∧ ϕ)(〈s1, s2〉, 〈t1, t2〉)

Accordingly, we may assume languages that explicitly contain a pairing function, providing

that we (axiomatically) restrict to structures that interpret it as such (i.e. the admissible

structures). For such languages we can consider two induced semantics: admissible standard

semantics and admissible Henkin semantics, obtained by restricting the (first-order part of

the) structures to be admissible.

The above proof systems are extended to capture ordered pairs as follows.

◮ Definition 25. For a signature containing at least one constant c, and a binary function

symbol denoted by 〈〉, the proof systems 〈RTC〉G, 〈RTC〉
ω
G, and 〈CRTC〉

ω
G are obtained from

RTCG, RTCωG, CRTCωG (respectively) by the addition of the following rules:

Γ ⇒ 〈x, y〉 = 〈u, v〉,∆

Γ ⇒ x = u ∧ y = v,∆ Γ, 〈x, y〉 = c ⇒ ∆

The proofs of Theorems 13 and 23 can easily be extended to obtain the following results

for languages with a pairing function. For completeness, the key observation is that the

model of the counter-interpretation is one in which every binary function is a pairing function.

That is, the interpretation of any binary function is such that satisfies the standard pairing

axioms. Therefore, the model of the counter-interpretation is an admissible structure.

◮ Theorem 26 (Soundness and Completeness of 〈RTC〉G and 〈RTC〉
ω
G). The proof systems

〈RTC〉G and 〈RTC〉
ω
G are both sound and complete for the admissible forms of Henkin and

standard semantics, respectively.
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(WL,WR,Ax)
Γ, ψ

{

v
x

}

⇒ ∆, ψ
{

v
x

}

(=L)
Γ, ψ

{

v
x

}

, v = w ⇒ ∆, ψ
{

w
x

}

.

.

..

.

.

..

Γ, ψ
{

v
x

}

, (RTCx,y ϕ)(v, w) ⇒ ∆, ψ
{

w
x

}

(Subst)
Γ, ψ

{

v
x

}

, (RTCx,y ϕ)(v, z) ⇒ ∆, ψ
{

z
x

}

Γ, ψ, ϕ ⇒ ∆, ψ
{

y
x

}

(Subst)
Γ, ψ

{

z
x

}

, ϕ
{

z
x

, w
y

}

⇒ ∆, ψ
{

w
x

}

(Cut)
Γ, ψ

{

v
x

}

, (RTCx,y ϕ)(v, z), ϕ
{

z
x

, w
y

}

⇒ ∆, ψ
{

w
x

}

(4)
Γ, ψ

{

v
x

}

, (RTCx,y ϕ)(v, w) ⇒ ∆, ψ
{

w
x

}

(Subst)
Γ, ψ

{

s
x

}

, (RTCx,y ϕ)(s, t) ⇒ ∆, ψ
{

t
x

}

Figure 2 CRTC
ω
G derivation simulating Rule (3). The variables v and w are fresh (i.e. do not

occur free in Γ, ∆, ϕ, or ψ).

4 Relating the Finitary and Infinitary Proof Systems

This section discusses the relation between the explicit and the cyclic system for TC. In

Section 4.1 we show that the former is contained in the latter. The converse direction, which

is much more subtle, is discussed in Section 4.2.

4.1 Inclusion of RTCG in CRTC
ω

G

Provability in the explicit induction system implies provability in the cyclic system. The key

property is that we can derive the explicit induction rule in the cyclic system, as shown in

Figure 2.

◮ Lemma 27. Rule (3) is derivable in CRTCωG.

This leads to the following result (an analogue to [6, Thm. 7.6]).

◮ Theorem 28. CRTCωG ⊇ RTCG, and is thus complete w.r.t. Henkin semantics.

Lemma 27 is the TC counterpart of [6, Lemma 7.5]. It is interesting to note that the

simulation of the explicit LKID induction rule in the cyclic LKID system is rather complex

since each predicate has a slightly different explicit induction rule, which depends on the

particular productions defining it. Thus, the construction for the cyclic LKID system must

take into account the possible forms of arbitrary productions. In contrast, CRTCωG provides

a single, uniform way to unfold an RTC formula: the construction given in Fig. 2 is the

cyclic representation of the RTC operator semantics, with the variables v and w implicitly

standing for arbitrary terms (that we subsequently substitute for).

This uniform syntactic translation of the explicit RTCG induction rule into CRTCωG allows

us to syntactically identify a proper subset of cyclic proofs which is also complete w.r.t.

Henkin semantics.5 The criterion we use is based on the notion of overlapping cycles. Recall

the definition of a basic cycle, which is a path in a (proof) graph starting and ending at

the same point, but containing no other repeated nodes. We say that two distinct (i.e. not

identical up to permutation) basic cycles overlap if they share any nodes in common, i.e. at

5 Note it is not clear that a similar complete structural restriction is possible for LKID.
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some point they both traverse the same path in the graph. We say that a cyclic proof is

non-overlapping whenever no two distinct basic cycles it contains overlap. The restriction to

non-overlapping proofs has an advantage for automation, since one has only to search for

cycles in one single branch.

◮ Definition 29 (Normal Cyclic Proofs). The normal cyclic proof system NCRTCωG is the

subsystem of RTCωG comprising of all and only the non-overlapping cyclic proofs.

The following theorem is immediate due to the fact that the translation of an RTCG proof

into CRTCωG, using the construction shown in Figure 2, results in a proof with no overlapping

cycles.

◮ Theorem 30. NCRTCωG ⊇ RTCG.

Henkin-completeness of the normal cyclic system then follows from Theorem 30 and

Theorem 13.

4.2 Inclusions of CRTC
ω

G
in RTCG

This section addresses the question of whether the cyclic system is equivalent to the explicit

one, or strictly stronger. In [6] it was conjectured that for the system with inductive

definitions, LKID and CLKIDω are equivalent. Later, it was shown that they are indeed

equivalent when containing arithmetics [3, 26]. We obtain a corresponding theorem in

Section 4.2.1 for the TC systems. However, it was also shown in [2] that in the general case

the cyclic system is stronger than the explicit one. We discuss the general case for TC and

its subtleties in Section 4.2.2.

4.2.1 The Case of Arithmetics

Let LRTC be a language based on the signature {0, s,+}. Let RTCG+A and CRTCωG+A be

the systems for LRTC obtained by adding to RTCG and CRTCωG, respectively, the standard

axioms of PA together with the RTC -characterization of the natural numbers, i.e.:

i) sx = 0 ⇒

ii) sx = s y ⇒ x = y

iii) ⇒ x+ 0 = x

iv) ⇒ x+ s y = s (x+ y)

v) ⇒ (RTCw,u sw = u)(0, x)

Note that we do not need to assume multiplication explicitly in the signature, nor do we

need to add axioms for it, since multiplication is definable in LRTC and its standard axioms

are derivable [1, 11].

Recall that we can express facts about sequences of numbers in PA by using a β-function

such that for any finite sequence k0, k1, ..., kn there is some c such that for all i ≤ n,

β(c, i) = ki. Accordingly, let B be a well-formed formula of the language of PA with three

free variables which captures in PA a β-function. For each formula ϕ of the language of PA

define ϕβ := ϕ, and define ((RTCx,y ϕ)(s, t))β to be:

s = t ∨ (∃z, c . B(c, 0, s) ∧B(c, s z, t) ∧

(∀u ≤ z . ∃v, w . B(c, u, v) ∧ B(c, su,w) ∧ ϕβ
{

v
x

, w
y

}

))

The following result, which was proven in [8, 11], establishes an equivalence between

RTCG+A and PAG (a Gentzen-style system for PA). It is mainly based on the fact that in

RTCG+A all instances of PAG induction rule are derivable.
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◮ Theorem 31 (cf. [11]). The following hold:

1. ⊢RTCG+A ϕ ⇔ ϕβ.

2. ⊢RTCG+A Γ ⇒ ∆ iff ⊢PAG
Γβ ⇒ ∆β.

We show a similar equivalence holds between the cyclic system CRTCωG and CAG, a cyclic

system for arithmetic shown to be equivalent to PAG [26].

◮ Theorem 32. ⊢CRTCω

G
+A Γ ⇒ ∆ iff ⊢CAG

Γβ ⇒ ∆β.

These results allow us to show an equivalence between the finitary and cyclic systems for

TC with arithmetic.

◮ Theorem 33. RTCG+A and CRTCωG+A are equivalent.

Note that the result above can easily be extended to show that adding the same set of

additional axioms to both RTCG+A and CRTCωG+A results in equivalent systems. Also note

that in the systems with pairs, to embed arithmetics there is no need to explicitly include

addition and its axioms. Thus, by only including the signature {0, s} and the corresponding

axioms for it we can obtain that 〈RTC〉G+A and 〈CRTC〉
ω
G+A are equivalent.

In [3], the equivalence result of [26] was improved to show it holds for any set of inductive

predicates containing the natural number predicate N. On the one hand, our result goes

beyond that of [3] as it shows the equivalence for systems with a richer notion of inductive

definition, due to the expressiveness of TC. On the other hand, TC does not support

restricting the set of inductive predicates, i.e. the RTC operator may operate on any formula

in the language. To obtain a finer result which corresponds to that of [3] we need to further

explore the transformations between proofs in the two systems. This is left for future work.

4.2.2 The General Case

As mentioned, the general equivalence conjecture between LKID and CLKIDω was refuted in

[2], by providing a concrete example of a statement which is provable in the cyclic system but

not in the explicit one. The statement (called 2-Hydra) involves a predicate encoding a binary

version of the ‘hydra’ induction scheme for natural numbers given in [20], and expresses that

every pair of natural numbers is related by the predicate.6 However, a careful examination of

this counter-example reveals that it only refutes a strong form of the conjecture, according

to which both systems are based on the same set of productions. In fact, already in [2] it is

shown that if the explicit system is extended by another inductive predicate, namely one

expressing the ≤ relation, then the 2-Hydra counter-example becomes provable. Therefore,

the less strict formulation of the question, namely whether for any proof in CLKIDωφ there is a

proof in LKIDφ′ for some φ′ ⊇ φ, has not yet been resolved. Notice that in TC the equivalence

question is of this weaker variety, since the RTC operator ‘generates’ all inductive definitions

at once. That is, there is no a priori restriction on the inductive predicates one is allowed to

use. Indeed, the 2-Hydra counter-example from [2] can be expressed in LRTC and proved in

CRTCωG. However, this does not produce a counter-example for TC since it is also provable in

RTCG, due to the fact that s ≤ t is definable via the RTC formula (RTCw,u sw = u)(s, t).

Despite our best efforts, we have not yet managed to settle this question, which appears to

be harder to resolve in the TC setting. One possible approach to solving it is the semantical

6 In fact, the falsifying Henkin model constructed in [2] also satisfies the ‘0-axiom’ (∀x.0 6= s x), and the
‘s -axiom’ (∀x, y. s x = s y → x = y) stipulating injectivity of the successor function, and so the actual
counter-example to equivalence is the sequent: (0, s )-axioms ⇒ 2-Hydra.
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standard validity
admissible

standard validity

Henkin validity
admissible

Henkin validity

(cut-free)

RTCωG

(cut-free)

〈RTC〉
ω
G

〈CRTC〉
ω
G CRTCωG

〈NCRTC〉
ω
G NCRTCωG

RTCG〈RTC〉G

〈CRTC〉
ω
G+A CRTCωG+A

〈RTC〉G+A RTCG+A

Thm. 16

Thm. 23

Thm. 13

Thm. 26

Thm. 26

⊆

⊆

⊆

⊆

Cor. 24Cor. 24

⊆⊆

Thm. 30Thm. 30

? ?

? ?

Thm. 33Thm. 33 (ext)

⊆ ⊆

⊆⊆

Figure 3 Diagrammatic Summary of our Results.

one, i.e. exploiting the fact that the explicit system is known to be sound w.r.t. Henkin

semantics. This is what was done in [2]. Thus, to show strict inclusion one could construct an

alternative statement that is provable in CRTCωG whilst also demonstrating a Henkin model

for TC that is not a model of the statement. However, constructing a TC Henkin model

appears to be non-trivial, due to its rich inductive power. In particular, it is not at all clear

whether the structure that underpins the LKID counter-model for 2-Hydra admits a Henkin

model for TC. Alternatively, to prove equivalence, one could show that CRTCωG is also sound

w.r.t. Henkin semantics. Here, again, proving this does not seem to be straightforward.

In our setting, there is also the question of the inclusion of CRTCωG in NCRTCωG, which

amounts to the question of whether overlapping cycles can be eliminated. Moreover, we can

ask if NCRTCωG is included in RTCG, independently of whether this also holds for CRTCωG.

Again, the semantic approach described above may prove fruitful in answering these questions.

5 Conclusions and Future Work

We developed a natural infinitary proof system for transitive closure logic which is cut-free

complete for the standard semantics and subsumes the explicit system. We further explored

its restriction to cyclic proofs which provides the basis for an effective system for automating

inductive reasoning. In particular, we syntactically identified a subset of cyclic proofs that

is Henkin-complete. A summary of the proof systems we have studied in this paper, and

their interrelationships, is shown in Figure 3. Where an edge between systems is labelled

with an inclusion ⊆, this signifies that a proof in the source system is already a proof in the

destination system.

As mentioned in the introduction, as well as throughout the paper, this research was

motivated by other work on systems of inductive definitions, particularly the LKID framework

of [6], its infinitary counterpart LKIDω, and its cyclic subsystem CLKIDω. In terms of

the expressive power of the underlying logic, TC (assuming pairs) subsumes the inductive
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machinery underlying LKID. This is because for any inductive predicate P of LKID, there

is an LRTC formula ψ such that for every standard admissible structure M for LRTC, P has

the same interpretation as ψ under M . This is due to Thm. 3 in [1] and the fact that the

interpretation of P must necessarily be a recursively enumerable set. As for the converse

inclusion, for any positive LRTC formula there is a production of a corresponding LKID

inductive definition. However, the RTC operator can also be applied on complex formulas

(whereas LKID productions only consider atomic predicates). This indicates that TC might

be more expressive. It was noted in [6, p. 1180] that complex formulas may be handled by

stratifying the theory of LKID, similar to [21], but the issue of relative expressiveness of the

resulting theory is not addressed. While we strongly believe it is the case that TC is strictly

more expressive than the logic of LKID, proving so is left for future work. Also left for future

research is establishing the comparative status of the corresponding formal proof systems.

In addition to the open question of the (in)equivalence of RTCG and CRTCωG in the

general case, discussed in Section 4.2, several other questions and directions for further study

naturally arise from the work of this paper. An obvious one would be to implement our

cyclic proof system in order to investigate the practicalities of using TC logic to support

automated inductive reasoning. More theoretically it is already clear that TC logic, as a

framework, diverges from existing systems for inductive reasoning (e.g. LKID) in interesting,

non-trivial ways. The uniformity provided by the transitive closure operator may offer a way

to better study the relationship between implicit and explicit induction, e.g. in the form of

cuts required in each system, or the relative complexity of proofs that each system admits.

Moreover, it seems likely that coinductive reasoning can also be incorporated into the formal

system. Determining whether, and to what extent, these are indeed the case is left for future

work.
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