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Abstract

This paper presents an improved deep embedding learn-

ing method based on convolutional neural networks (CNN)

for short-duration speaker verification (SV). Existing deep

learning-based SV methods generally extract frontend embed-

dings from a feed-forward deep neural network, in which the

long-term speaker characteristics are captured via a pooling op-

eration over the input speech. The extracted embeddings are

then scored via a backend model, such as Probabilistic Lin-

ear Discriminative Analysis (PLDA). Two improvements are

proposed for frontend embedding learning based on the CNN

structure: (1) Motivated by the WaveNet for speech synthesis,

dilated filters are designed to achieve a tradeoff between com-

putational efficiency and receptive-filter size; and (2) A novel

cross-convolutional-layer pooling method is exploited to cap-

ture 1st-order statistics for modelling long-term speaker charac-

teristics. Specifically, the activations of one convolutional layer

are aggregated with the guidance of the feature maps from the

successive layer. To evaluate the effectiveness of our proposed

methods, extensive experiments are conducted on the modi-

fied female portion of NIST SRE 2010 evaluations, with con-

ditions ranging from 10s-10s to 5s-4s. Excellent performance

has been achieved on each evaluation condition, significantly

outperforming existing SV systems using i-vector and d-vector

embeddings.

Index Terms: speaker verification, convolution neural network,

dilated convolution, cross-convolutional-layer pooling

1. Introduction

Speaker verification (SV) is the task of determining whether the

claimed identity of a speaker matches an enrolled identity, ac-

cording to their speech. A typical SV system consists of a fron-

tend embedding learning stage and a backend modeling stage.

A low-dimensional embedding that is rich in speaker informa-

tion is extracted in the frontend learning stage, and the similar-

ities between embeddings are computed for verification by the

backend modelling stage.

For decades, the most successful SV systems have relied

on i-vectors with a PLDA backend [1, 2, 3, 4, 5, 6, 7], which

model speaker representations and channel variability in a low-

dimensional space. An i-vector is learned through a pipeline

of generative modelling, as shown in Section 2. Despite excel-

lent performance on long-duration evaluations, the effectiveness

of i-vectors degrades dramatically for short-duration record-

ings [8, 9].

Several methods based on deep learning have recently been

proposed to extract frontend embeddings for short-duration

SV [10, 11, 8, 9, 12]. In [10], deep neural networks (DNNs)

were employed to learn speaker embeddings, termed d-vectors.

In [12, 8], deep CNNs were exploited to model long-term tem-

poral dependencies. CNNs were shown to have better discrimi-

native ability than DNNs, leading to a certain robustness to vari-

ability caused by different channels, gender and speech con-

tent. After training, d-vectors are extracted by averaging the

last hidden layer activations for enrollment and test recordings.

In [11, 9], aggregation was improved by incorporating variance

information into speaker embeddings via statistical pooling.

However, existing deep learning methods still have several

shortcomings. One drawback is the dilemma between learning

efficiency and receptive-field size. To acquire a large receptive-

field size, a CNN may require many filters with large kernel

size, or many layers, which may be inefficient and difficult to

converge. Another weakness is that average-pooling methods

for aggregating frame-level features are insufficient, since only

0th-order statistics are utilized. Recently, statistical pooling has

shown good performance [11, 9], and hence we aim to exploit

this through a better aggregation method. Our proposed im-

proved deep embedding learning architecture is shown in Fig 1.

Its architecture is based on a fully convolutional network

structure, with two main improvements. Firstly, the dilated fil-

ters are able to achieve a better tradeoff between computational

efficiency and receptive-filter size. This is mainly inspired by

WaveNet [13], in which a dilated causal CNN is exploited to

efficiently enlarge the receptive-field size with low computation

complexity. It essence, is similar to the time-delay architec-

ture in the 1D-CNN [14]. The major improvement comes from

dilated filters that are more flexible in both the temporal and

frequency domain. Secondly, a novel cross-convolutional-layer

pooling method is proposed for better embedding learning. This

uses the feature maps of a higher layer to guide the aggregation

of activations from a convolutional layer. This successive layer

can be viewed as a probabilistic discriminative model for deriv-

ing 1st-order statistics.

In this paper, we are interested in short-duration text-

independent SV, similar to [12]. It is worth noting that it is

easy to extend from this scenario in future, to other SV tasks

such as text-dependent and long-duration SV.

To demonstrate the effectiveness and robustness of the pro-

posed method, we have conducted extensive evaluations of

short-duration SV with experimental conditions ranging from

10s-10s to 5s-4s. Excellent performance has been achieved in

each condition when compared to state-of-the-art i-vector and

other d-vector embedding methods. The remainder of the paper

is organized as follows. Section 2 describes i-vector baseline,

Section 3 details the CNN-based SV system. Experimental re-

sults and discussion follow in Section 4 before Section 5 con-

cludes the paper.



Figure 1: Architecture of proposed CNN

Table 1: Details of CNN architecture

conv1 conv2 conv3 conv4 conv5 embedding fc

512@23× 5 512@1× 3 512@1× 3 512@1× 1 512@1× 1 512 300

2. Review of i-vector based SV

SV systems based on i-vectors with a PLDA backend currently

achieve state-of-the-art performance [2]. In these systems, the

i-vector is learned via a pipeline of generative modeling includ-

ing: (1) a universal background model (UBM) training, which

is used to collect sufficient statistics, and (2) a large loading

matrix learning, which projects a high-dimensional sufficient

statistics i.e., supervector to a low-dimensional space that con-

tains speaker information and channel variability. Specifically,

given an utterance, the speaker-dependent GMM supervector

can be defined as:

M = m+ Tw (1)

where m is the speaker-independent supervector, taken from

the UBM. T is loading matrix with low rank, seen as the total

variability matrix. And w is the speaker and channel factor with

a standard normal distribution N(0, I).

However, it is known that for short duration SV, the statis-

tics are not sufficient for reliable i-vector learning, which leads

to degraded performance [15]. Furthermore, the generative

models obtained via unsupervised learning methods may be im-

proved with discriminative models, e.g. d-vectors learned by

DNN or CNN.

3. An improved deep speaker embedding
framework

3.1. Overview

We propose an improved CNN-based deep embedding learn-

ing method for short-duration SV. The network architecture is

depicted in Fig. 1. The dilated convolution enables the net-

work to learn long-term temporal content with low computa-

tional complexity. Frame-level features are then aggregated by

cross-convolutional-layer pooling, which is designed to exploit

1st-order statistics. The proposed CNN is then trained to dis-

criminate variable-length input features between speakers in an

end-to-end manner. After training, speaker embeddings are ex-

tracted, and similarity scores calculated with a PLDA backend.

3.2. Dilated convolution

The dilated convolution was originally proposed for wavelet

decomposition to extract dense features [16].It has also been

widely used in image segmentation to increase image resolution

[17, 18, 19]. More recently, WaveNet utilized dilated convolu-

tion to enlarge the receptive field in speech synthesis [13].

The main idea of dilated convolution is to insert “holes” in

convolutional kernels so as to enlarge the receptive field. The

dilated convolution enables the convolutional kernels to filter a

larger effective area than its own size. Its receptive-field size im-

plies a convolution with a large kernel generated from an origi-

nal kernel by dilating it with zeros, and is more computationally

efficient than simply increasing the original kernel size. A di-

lation factor, defining the size of dilation, of 1.0, equates to the

standard convolution.

In this paper, we propose an efficient dilated CNN frame-

work. We stack the dilated convolutional layers to obtain large

receptive field with just a few layers, which is highly computa-

tionally efficient. The network can model long-term temporal

dependencies through the enlarged network receptive field. Di-

lated convolution enables a tradeoff to be found between learn-

ing efficiency and receptive-field size. The setup of dilation is

described Section 4.2, where an intuitive exponential increase

in dilation factor leads to an exponentially increased receptive-

field size for each CNN layer.

3.3. Cross-convolutional-layer pooling

We exploit a novel cross-convolutional-layer pooling method

to capture 1st-order statistics for modelling long-term speaker

characteristics. The cross-layer pooling method is motivated by

statistical pooling, in which high order statistics can be used to

improve performance. The cross-convolutional-layer pooling

step resides within the dotted box in the centre of Fig. 1.

The insight to perform cross-convolutional-layer pooling is

that it can aggregate features across different layers [20], with

formation of cross-convolutional-layer pooling defined as:

P
A,B = P (FA,FB) (2)

where FA and FB are feature maps derived from different lay-

ers in a hierarchical architecture(written as FA layer and FB

layer respectively). The shape of FA and FB are NA × CA

and NB × CB respectively (reshaped from HA × WA × CA

and HB × WB × CB respectively). PA,B is the output of

cross-convolutional-layer pooling with shape 1 × (CA × CB).
Furthermore, PA,B can be viewed as the pooled features by

concatenating the pooled features of each channel:

P
A,B = [P1,P2, ...,Pc, ...,PCB

] (3)



where, c = 1, 2, ..., CB , the shape of Pc is 1 × CA, and Pc is

defined as:

Pc =

NA∑

t=1

FB
t,cF

A
t (4)

The shape of FA
t is 1 × CA, and can be considered as the tth

feature of FA. The FB
t,c is the tth feature on the cth channel of

FB . The correspondence between FB
t,c and FA

t is defined as:

FB
t,c = fc(F

A
t ) (5)

where, fc is the nonlinear mapping function of layer FB . If

we view the FB layer as a PR extractor, and set the posterior

γt,c = FB
t,c/NA(t = 1, 2, ..., NA, c = 1, 2, ..., CB), γ

T
c =

[γ1,c, γ2,c, ..., γNA,c], then (4) could be rewritten as:

Pc =
1

NA

NA∑

t=1

γt,cF
A
t (6)

which in turn can be viewed as 1st-order Baum-Welch statistics

(FA and FB are all mean-normalized). fc can then be im-

plicitly reinterpreted as a probabilistic discriminative model for

deriving 1st-order statistics. In summary, the FB layer is used

as a guide for statistical aggregation of layer FA.

Before being fed into the subsequent layer, the resulting

cross-convolutional-layer vectors are passed through a signed

square root step, followed by l2 normalization.

3.4. Architecture of proposed CNN

The architecture of the proposed CNN is depicted in Fig 1. The

network inputs are raw MFCC features and there are five convo-

lution layers followed by cross-convolutional-layer pooling. A

fully connected layer named the embedding layer is inserted to

extract deep speaker embeddings. The last layer is a fully con-

nected layer, fed into the softmax output layer. The nonlinear

function is ReLu, and BN [21] is applied to every layer.

The network is trained to discriminate between training

speakers with cross-entropy loss. After training, speaker em-

beddings are extracted from embedding layers. The details of

the CNN architecture are summarized in Table 1 where a convo-

lution of 512@23×5, means that the number of kernels is 512,

and the kernel size is 23×5. The padding and stride of each

convolution are 0 and 1 respectively.

4. Experiments

4.1. Dataset

This paper focuses on short-duration SV, where both sides of

the verification trials are short-duration recordings. We eval-

uate the performance of the female portion of the NIST 2010

SRE evaluation [22], which is the same as [12]. To be compara-

ble with state-of-the-art approaches [9, 12], our enrolment sets

are cut into two different durations, e.g., 10s and 5s, where we

select the first 10s and 5s respectively from original recordings,

as determined by VAD. In this paper, we term 10s enrolment

and 10s test condition as 10s-10s, following notation in [12],

and apply other testing conditions similarly. Training datasets

are from NIST04-08 plus a portion of Switchboard including

male and female speakers. We construct the training dataset by

discarding any recording that is less than 5 seconds long and

any speaker with fewer than 8 recordings. After that, there are

34446 recordings of 2253 speakers remaining.

4.2. Experiment setup

In order to evaluate the performance of our proposed method,

we compare several state-of-the-art SV systems. The training

dataset for all systems is the same. For embedding systems

based on neural networks, the input features are raw MFCCs of

dimension 23, and are all mean-normalized. An energy-based

VAD is applied to filter out silent frames. Before being input to

the network, input features are sliced into short durations rang-

ing from 2s to 4s, generating 3400 features per speaker. We

utilize SGD to optimize the network with a momentum rate

of 0.9. The batch size is 64, the initial learning rate is 0.1,

and this is multiplied by 0.1 with every epoch. All of the net-

works are trained within 5 epochs to converge. After training,

the LDA and PLDA backends are employed to calculate scores.

The LDA dimension is 100 and scores are not normalized. We

trained the CNN by using Pytorch [23]. The six comparison

systems are;

i-vector: The training dataset for the i-vector system is the

same as the embedding system based on the neural network.

Feature vectors are extended with delta and delta-delta to be-

come 69 dimensional, which is a standard procedure. The UBM

is a 2048 component full-covariance GMM and the i-vector di-

mension is 400. The LDA and PLDA backend is the same as in

other systems and the system is implemented using Kaldi [24].

CNN-G-D1/D2: This is the first baseline. If follows Fig. 1

except that the cross-convolutional-layer pooling is replaced

with basic single-layer average pooling. In CNN-G-D1, the di-

lation factors of convolutional layers are all 1. In CNN-G-D2,

the dilation factors of convolutional layers are set to 1, 2, 4, 1

and 1 respectively.

CNN-S-D1/D2: This is the second baseline. In this case we

replace the cross-convolutional-layer pooling with single-layer

statistical pooling (i.e. this also has no cross-layer connection).

In CNN-S-D1, the dilation factors of convolutional layers are

all 1. In CNN-S-D2, the dilation factors of convolutional layers

are 1, 2, 4, 1 and 1 respectively.

CNN-C-D1/D2: This is our proposed method, as depicted

in Fig 1. In CNN-C-D1, the dilation factors of convolutional

layers are all 1. In CNN-C-D2, the dilation factors of convolu-

tional layers are 1, 2, 4, 1 and 1 respectively.

TDNN: Snyder et. al. [9] obtained state-of-the-art perfor-

mance in short-duration SV evaluation. The code1 was released

by the author. We retrained their model on our dataset using

Kaldi, and used the same setup described in their paper [9].

VGGnet: Bhattacharya et. al. [12] demonstrated the supe-

riority of deep CNNs over i-vectors for short-duration testing

trials. Since they did not release their code, we reproduced the

results that their paper reported for identical testing conditions.

However it should be noted that their training dataset was twice

as large as ours, giving their system a potential advantage.

4.3. Results for the 10s enrolment condition

In this section, we evaluate performance for 10s enrolment con-

ditions, described in Table 2. We do not show the performances

of CNN-G-D1 and CNN-S-D1 for the sake of clarity, since their

performance is inferior in each case to the -D2 system variants.

From Table 2, we can see that when we aggregate fea-

tures by average pooling, performance dramatically degrades

compared to the i-vector system. This is consistent with [10].

The CNN-S-D2 system achieves a large 18%∼24% relative im-

1https://david-ryan-snyder.github.io/2017/10/

04/model_sre16_v2.html



Table 2: EER (%) of SV in 10s-enrollment condition

System

Condition
10s – 10s 10s – 5s 10s – 4s

i-vector 17.95 20.77 22.18
CNN-G-D2 28.38 32.23 34.06
CNN-S-D2 21.47 26.05 27.81
CNN-C-D1 17.60 20.77 22.88
CNN-C-D2 16.54 20.65 21.83

CNN-C-Fusion 14.78 17.60 19.36

TDNN 16.90 20.42 21.12
VGGnet 17.51 – –

provement over CNN-G-D2. Clearly, statistical pooling, which

effectively incorporates variance information, enables an im-

provement in performance. Compared with CNN-S-D2, the

CNN-C-D2 system then obtains a further 22%, 20% and 21%

relative improvements in 10s-10s, 10s-5s and 10s-4s evaluation

respectively. In fact, CNN-C-D2 outperforms the i-vector sys-

tem for each evaluation condition.

When we compare CNN-C-D2 with CNN-C-D1, the EER

improves as expected; this demonstrates that dilation enlarges

the receptive field to yield benefit for the SV task.

CNN-C-D2 obtains state-of-the-art performance in the 10s-

10s evaluation, and achieves comparable performance to TDNN

in the 10s-5s and 10s-4s evaluations as well. However when we

fuse CNN-C-D1 and CNN-C-D2, termed CNN-C-Fusion, we

obtain better performance for each evaluation. In fact CNN-C-

Fusion system improves EER compared to the i-vector system

by 17%, 15% and 12% in 10s-10s, 10s-5s and 10s-4s evalua-

tions respectively.

Table 3: EER (%) of SV in 5s enrollment condition

System

Condition
5s – 10s 5s – 5s 5s – 4s

i-vector 20.77 23.23 25.00
CNN-C-D1 20.07 25.35 25.75
CNN-C-D2 19.01 22.53 23.59

CNN-C-Fusion 17.60 20.42 21.83

TDNN 19.01 23.23 25.70
VGGnet – 23.16 –

4.4. Results for the 5s enrolment condition

In this section, we evaluate performance for 5s enrolment con-

ditions, described in Table 3. We omit the performance of the

CNN-G-D1/D2 and CNN-S-D1/D2 for the sake of clarity, since

they are similar to 10s enrolment in Section 4.3.

Table 3 shows that the proposed CNN-C-D2 system obtains

state-of-the-art performance in each evaluation. In Section 4.3,

TDNN obtained similarly good performance in the 10s-5s and

10s-4s evaluation, however, for this shorter duration enrolment,

TDNN is less robust. TDNN performance is slightly worser

than the i-vector system in the 5s-4s evaluation, and CNN-C-

D2 performs better than all tested systems for all experimental

conditions.

VGGnet reported state-of-the-art performance in 5s-5s

evaluation in [12], however the CNN-C-D2 system is shown

to perform better for this evaluation.

When we then fuse the CNN-C-D1 and CNN-C-D2 sys-

tems, termed CNN-C-Fusion, we gain 15%, 12% and 12% rel-

ative improvements for the 5s-10s, 5s-5s and 5s-4s evaluations

respectively.

4.5. Discussion

CNN-C-D2 demonstrates consistent improvements over CNN-

C-D1 since it has a larger receptive field. The dilated convo-

lution enlarges the filter size by dilating the filter with zeros.

However, it is possible that the two networks focus on differ-

ent patterns. The filters enlarged by dilation tend to learn global

features or patterns, while filters with no dilation are more prone

to learn local features. We infer that the two networks are thus

learning some information that may be complementary. This

appears to be confirmed by the excellent performance achieved

by the fusion system (termed CNN-C-Fusion).

We have compared the performance of average and statis-

tical pooling. If we see from the Baum-Welch statistics point

of view, average pooling can be viewed as 0th-order statis-

tics, whereas statistical pooling introduces variance which can

be viewed as being 2nd-order statistics. The results conform

that high-order statistics are significant for short-duration SV.

However, it does not make full use of covariance, since it as-

sumes that the covariance is diagonal. We thus proposed cross-

convolutional-layer pooling to capture 1st-order statistics for

modelling long-term speaker characteristics. Specifically, the

activations of one convolutional layer are aggregated with the

guidance of its successive layer. This technique achieved state-

of-the-art performance in each evaluation condition. The results

clearly demonstrate that cross-convolutional-layer pooling is a

more efficient method for the aggregation of frame-level fea-

tures.

5. Conclusions

In this paper, we present an improved deep embedding learn-

ing method based on convolutional neural networks for short-

duration speaker verification (SV). The dilated filters are de-

signed to enable a tradeoff between computational efficiency

and receptive-field size. The dilated convolution enables the

network to learn long-term temporal content with relatively low

computational complexity.

The proposed system aggregates frame-level features

through cross-convolutional-layer pooling, which enables the

system to exploit 1st-order statistics. The proposed CNNs are

trained to discriminate variable-length input features between

speakers in an end-to-end manner. After training, speaker em-

beddings are extracted, and then similarity scores are calculated

using a PLDA backend. On the modified female part of the

NIST 2010 SRE evaluation, consisting of 10s and 5s enrolment

conditions, the proposed approaches have achieved state-of-the-

art performance in each evaluation condition. Specially, results

show a 17% and 15% relative improvement for 10s-10s and 5s-

5s evaluations respectively compared with the i-vector system.

In future work, we aim to extend the proposed model to a larger

number of speakers, to further investigate the data dependency

of the feature learning approaches.
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