
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 

for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research

The version in the Kent Academic Repository may differ from the final published version. 

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: 

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Ferroni, Filippo and Grassi, Stefano and Leon-Ledesma, Miguel A.  (2018) Selecting structural
innovations in DSGE models.   Journal of Applied Econometrics .    ISSN 0883-7252.    (In press)

DOI

Link to record in KAR

http://kar.kent.ac.uk/67280/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/189720578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Selecting Structural Innovations in DSGE models∗

Filippo Ferroni

Chicago FED

Stefano Grassi

Department of Economics and Finance,

University of Rome ‘Tor Vergata’

Miguel A. León-Ledesma

School of Economics and MaGHiC

University of Kent

March 8, 2018

Abstract

DSGE models are typically estimated assuming the existence of certain structural shocks that drive
macroeconomic fluctuations. We analyze the consequences of estimating shocks that are “non-existent”
and propose a method to select the economic shocks driving macroeconomic uncertainty. Forcing the
these non-existing shocks in estimation produces a downward bias in the estimated internal persistence
of the model. We show how these distortions can be reduced by using priors for standard deviations
whose support includes zero. The method allows us to accurately select shocks and estimate model
parameters with high precision. We revisit the empirical evidence on an industry standard medium-scale
DSGE model and find that government and price markup shocks are innovations that do not generate
statistically significant dynamics.
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1 Introduction

One of the key challenges of modern macroeconomics rests on the identification of the sources of aggregate

fluctuations. By specifying a coherent probabilistic structure of economically interpretable endogenous

and exogenous processes, DSGE models represent ideal candidates to pin down the shocks driving business

cycle fluctuations.1 A tacit but widespread assumption in the empirical literature on DSGE model estima-

tion is that exogenous disturbances do exist in the sense that they capture aggregate economic uncertainty

(up to a vector of idiosyncratic measurement errors). Common estimation practice implicitly “imposes”

these structural shocks by restricting their standard deviation to be non-zero. In a Bayesian context, this

assumption is reflected on the prior distributions imposed on the standard deviations of DSGE model

shocks (e.g. typically an Inverse Gamma prior, IG henceforth). In classical statistics, standard deviations

are re-parameterized by taking logarithmic transformations. In doing so, we rule out boundary solutions

and, by construction, innovations always exist.2

In this paper, we address two related questions. First, we ask what are the consequences of imposing

possibly non-existent shocks for the estimation of deep parameters of DSGE models. Second, we provide

an easily implementable method to select the “true” shocks that drive macroeconomic fluctuations.

From an empirical point of view, there is mounting evidence that some of the structural DSGE shocks

are unlikely to capture aggregate uncertainty and rather absorb misspecified propagation mechanisms of

endogenous variables (see Schorfheide, 2013 for an overview). Moreover, it is not infrequent that shocks

with dubious structural interpretation are used with the sole purpose of avoiding stochastic singularity

and this complicates inference when they turn out to matter, say, for output or inflation fluctuations (see

Chari et al., 2008 and Sala et al., 2010). This is an important question in modern stochastic models

of economic fluctuations. Empirically, these models face two challenges. First, unveiling the structural

innovations that set off fluctuations. Second, identifying the key transmission mechanisms that transform

these innovations into business cycles. There is a large literature on the latter. However, because we

impose the existence of a set of economic shocks, we do not yet understand what are the consequences for

inference when estimating a vector of time series with an ‘excessive’ number of structural disturbances,

i.e. what are the consequences for inference when estimating non-existent DSGE shocks? This is our first

question mentioned above.

When taking the model to the data, we want to be able to test, rather than merely postulate, the

existence of certain shocks. I.e., we want to be able to select which innovations are significant drivers

of aggregate uncertainty. This is the second problem we tackle. To be able to estimate the possibly

rank deficient covariance matrix of structural shocks, we need to 1) add idiosyncratic measurement errors

1See Smets and Wouters (2007) and Justiniano et al. (2010) amongst many others.
2We use the term “structural” shock throughout the paper to refer to shocks that have an economic interpretation and that

affect the dynamics of the model. I.e. they are relevant sources of uncertainty. These shocks could also be termed “fundamental”,
but we prefer to term them structural to avoid confusion with the terminology used in other streams of the literature dealing
with very different problems to ours.
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and 2) abandon standard IG priors and use distributions (univariate or multivariate) that allow for zero

variances (or null eigenvalues).

Imposing a non-existent exogenous process has serious consequences for inference. In particular, we

argue that it generates a downward bias in the estimate of the internal persistence of the model. In

particular, when the econometrician assumes that the rank of the covariance matrix of economic shocks, Σ,

is larger than the one of the true DGP, autoregressive parameters and parameters controlling the internal

persistence of the model are grossly underestimated. Thus, we unveil a trade-off between including a

wide set of potential sources of impulses (say in order to match more observable variables) and correctly

identifying the model parameters that drive propagation. We then show that these distortions are reduced

by considering priors on the structural shocks’ covariance matrix that allow for rank deficiency. In the

context of uncorrelated disturbances, truncated or un-truncated priors can be implemented as long as they

attribute non-zero probability to zero standard deviations. Proper priors such as normal3 or exponential

distributions have appealing properties since they allow us to recover existent and non-existent shocks in

situations where the true number and combination of structural shocks is unknown 4.

We explore the consequences of our approach in an empirical application and revisit the evidence of

an industry-standard DSGE model. We estimate the Smets and Wouters (2007) model (SW hereafter) on

seven key US quarterly macroeconomic time series, namely, the growth rate of real output, consumption,

investment, wages, and hours worked, the inflation rate, and the short run interest rate. For comparability

proposes, we consider the original data span, 1968-2004, and only depart from the baseline specification

of the model by adding measurement errors on each observable and by assuming normal priors on the

standard deviation of shocks. We identify as common sources of fluctuations technology shocks, monetary

policy surprises, risk-premium, and investment demand shocks. Government spending and price markup

shocks do not generate statistically significant transmission dynamics for the variables considered, only

when assuming normal priors. Wage markup shocks are only marginally significant. The choice of the

priors for standard deviations (STDs hereafter) matters for the estimates of the structural parameters

of the SW model and, as a consequence, matters when studying the transmission mechanism of eco-

nomic impulses (with non-zero variance). Relative to a model estimated without measurement errors, the

responses of macro variables to risk-premium shocks are more persistent and hump shaped. When we

impose the existence of structural and measurement error shocks (both with inverse gamma priors), we

obtain unrealistically strong responses to monetary policy surprises. In this empirical application, we also

find that prior specification comparisons in terms of marginal likelihoods are difficult to interpret as the

3Normal priors have support from +∞ to −∞, whereas standard deviations are positive. We discuss below how we exploit
the uni- or bi-modality of the posterior to select which shocks are statistically non-existent.

4In the online appendix A.4 we consider a more general structural shocks covariance matrix where innovations can be
correlated. We propose considering the conjugate Metropolis-within-Gibbs sampler proposed in Cúrdia and Reis (2010) adapted
for rank deficient covariance matrices. In a rank deficient environment, we consider the singular inverse Wishart (IW) distribution
(see Uhlig, 1994 and Dı́az-Garćıa and Gutiérrez-Jáimez, 1997) and the conjugacy results in Dı́az-Garćıa and Gutiérrez-Jáimez
(2006).
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marginal likelihood estimates using inverse gamma priors are hugely influenced by the parameters shaping

the prior (especially its location).

Our methodology is related to the literature on stochastic model specification search in state space

models. We draw from Frühwirth-Schnatter and Wagner (2010) for the selection of structures in unob-

served components models or in time varying parameter VAR models as in Belmonte et al. (2014) or

Eisenstat et al. (2016). We build on that literature by proposing to estimate jointly the structural param-

eters and the stochastic specification of the DSGE shock structure. Our paper is also, albeit indirectly,

related to the vast literature studying misspecification problems in DSGE model estimation. Invalid cross-

equation restrictions (e.g. Ireland, 2004, Del Negro and Schorfheide, 2009, Inoue et al., 2014), parameter

instability of various forms (e.g. Fernández-Villaverde and Rubio-Ramı́rez, 2008, Galvao et al., 2015,

Canova et al., 2015), incorrect assumptions about shock dynamics (Cúrdia and Reis, 2010), low frequency

movements mismatches (e.g. Gorodnichenko and Ng, 2010, Ferroni, 2011, Canova, 2014), etc., may all

plague inference in DSGE models. However, the literature so far is silent on the issue of interest of this

paper. We are concerned with redundant model-based shocks which can generate distorted estimates and

corrupt inference when forced to exist.5

The remainder paper is organized as follows. Section 2 presents the econometric setup and estimation

procedures. Section 3 presents the inference distortions caused by incorrect assumptions about the rank

of Σ. Section 4 presents the main results of our empirical investigation. Section 5 draws few concluding

remarks.

2 Priors for the DSGE shocks selection

Consider a DSGE model with (deep) parameters of interest Θ. The (control and state) variables of the

model, denoted by st, are driven by structural shocks with innovations ǫt. The model is characterized by

a set of equations that define the steady state values s∗ and Euler equations that describe the transition

dynamics. Linearizing around the steady state gives a system of expectational difference equations that

can be solved to yield a solution in the form of difference equations. The linearized solution of a DSGE

has the following representation:

st+1 = A(Θ)st + B(Θ)ǫt+1 ǫt+1 ∼ Nr(0,Σǫ), (1)

where A,B are nonlinear functions of the structural parameters of the model Θ, ǫt is a n× 1 vector of the

structural innovations, st is the ns × 1 vector of endogenous and exogenous states and Σǫ is a covariance

matrix of dimension n×n whose rank is r = rank(Σǫ) ≤ n. We denote by Nr(0,Σǫ) the n×1 multivariate

5There is a large literature on shocks “fundamentalness”, in particular in the VAR context, see Lippi and Reichlin (1994)
and subsequent literature. The concern in that literature focuses on the non-invertibility of the MA representation of the DSGE
model. When not invertible, with the available set of observables, it is impossible to recover all the fundamental DSGE shocks
using linear projections, i.e. VAR. Although in the text we may refer occasionally to “fundamental” sources of macroeconomic
uncertainty, we are clearly not relating to this stream of work.
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singular Normal distribution with rank r. If the eigenvalues of A(Θ) are inside the unit circle, the latter

structure can be mapped into a VMA(∞) (see Komunjer and Ng, 2011). The mapping from the model

based variables to a ny × 1 vector yt of observed times series is accomplished through a measurement

equation augmented with series specific i.i.d. shocks in order to avoid the possibly stochastically singular

model, as follows

yj,t = Φj(L;Θ)ǫt + ej,t, ǫt ∼ N(0,Σǫ), et ∼ N(0,Ω), j = 1, . . . , ny, (2)

where Φj correspond to the jth raw of Φ(L;Θ), the MA polynomial of the DSGE model observable

counterparts. The structural shocks and the measurement shocks are separately identifiable since the

former are common and the latter are series specific. Moreover and more importantly, the measurement

errors being i.i.d., they cannot explain the cross- and auto-correlation structure of the data, which is

entirely determined by the common component, i.e. the DSGE model shocks and their MA structure.

Equation (2) can be seen as an approximate dynamic factor model where the row vector Φj(L;Θ)

represents the factor loadings and ǫt the common factors (orthogonal to each other). There is, however,

an important difference. While in the factor model we are interested in the number of factors, in this

setup we are interested also in the combination of underlying common shocks since they have economic

interpretations. This can be accomplished by studying the null space of Σǫ. If we assume Σǫ diagonal, it

is sufficient to check that standard deviations are not zero. If Σǫ is a symmetric positive definite matrix,

the non-zero eigenvalues correspond to the structural shocks.6

Following the literature on Bayesian stochastic variable selection in state space models initiated by

Frühwirth-Schnatter and Wagner (2010)7, we rewrite equation (1) as follows:

s̃t+1 = A(Θ)s̃t + B(Θ)Σ1/2ǫ̃t+1 ǫ̃t+1 ∼ N(0, In),

where N(0, In) is the multivariate normal distribution with unitary variance. While the standard deviation

of ǫ̃t+1 is fixed and normalized to one in estimation, the diagonal elements of Σ1/2 are estimated. We

consider classes of prior distributions for the diagonal elements of Σ1/2 such that the probability of zero

is positive, i.e. for j = 1, . . . , nǫ we assume that P(σj = 0) > 0. It is important to notice that structural

standard deviations are not identified up to sign switch, e.g. ǫi ∼ N(0, σ2
i ) = ±σiǫ̃ ∼ N(0, 1). In other

words, the model in the equation with (−Σ1/2)(−ǫ̃t+1) is observationally equivalent to the same model

with Σ1/2ǫ̃t+1. As a consequence, the likelihood function is symmetric around zero along the σj dimension

and bimodal if the true σj is larger than zero. One could also, as it is standard practice, normalize the

6An alternative way to select the number and combination of structural DSGE shocks is to compute the marginal likelihood of
model specifications with different combinations of shocks. However, this can be time consuming because it requires estimating
each of the possible models. In models with typically 7 or 8 postulated structural shocks, the combinations of models to
compare is very large and marginal likelihood comparisons will not be a very useful tool for selection. Our argument is even
more persuasive for non-linear models for which the computation of the marginal likelihood is very burdensome.

7In the online appendix (section A.2) we briefly summarize the key ideas of this method and its correspondence with DSGE
shock selection.
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sign to a positive value and estimate the standard deviations over a non-negative support.8 We propose

to use the following priors:

1. Exponential priors:

σj ∼ Exp(λj).

With Exp priors, we fix the sign to be non-negative (but allowing for zero) prior to estimation.

In order to assess the existence of specific shocks, we rely on the confidence sets of the posterior

distribution and the statistical distance from zero.

2. Normal priors:

σj ∼ N(µj , τ
2
j ).

In principle, the likelihood can be computed for positive and negative values of the standard devi-

ation. Since the likelihood value is the same if the standard deviation is positive or negative, the

likelihood function profile is symmetric around zero. Therefore, if a shock exists, the likelihood

should be bi-modal, i.e. decreasing when we approach zero from the left or from the right. If a shock

does not exists, the likelihood is uni-modal around zero, e.g. decreasing as we move away from zero.

Accordingly, one can define a normal prior covering the entire real line support in order to exploit

this feature of the likelihood.9

One can be interested in situations where structural disturbances are correlated. In such a case, a

singular inverse Wishart prior can be imposed on the variance covariance matrix of the shocks. However,

being somehow a non-standard practice on DSGE estimation, we leave the description and the derivation

of this specific setup to the online appendix (Section A.4).

3 Inference distortions with non existent DSGE shocks

We now tackle the question of whether the introduction of non-existent shocks affects the estimation of

parameters governing the impulse transmissions in the model. The conclusions derived here are based on

intuitive arguments and Montecarlo exercises. While in this section we convey the intuition using a simple

model, we also quantified the distortions induced in behavioral parameters and their policy implications

an industry-standard New Keynesian DSGE. The results are summarized below and the exercises can be

consulted in the online appendix sections A.5 and A.6.

We start first by studying the likelihood of the simplest DSGE model, a plain vanilla Real Business

Cycle (RBC) model with inelastic labor supply, full capital depreciation, and an autoregressive process of

8This formulation is a simplification of the state space form proposed in Frühwirth-Schnatter and Wagner (2010) (FS-W)
that is derived in online appendix (section A.2). The FS-W formulation is slightly more involved since their main goal is to
have a closed form expression for the marginal likelihood which is not our focus here. In the results that follow, we also used
their formulations and find no difference in the estimation results.

9Standard Bayesian simulators such as the RW Metropolis-Hastings can be employed to recover the posterior distribution
with an additional random sign switch of the shocks’ standard deviations. In the online appendix (section A.2) we describe the
procedure to introduce the sign switch in an otherwise standard MCMC routine.
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order one for total factor productivity (TFP) shocks. In this setting, an analytical solution can easily be

derived.10 We obtain the following recursive representation:

yt = zt + αkt + et et ∼ N(0, σ2
e),

zt+1 = ρzt + σǫt+1 ǫt+1 ∼ N(0, 1),

kt+1 = αkt + zt,

(3)

where small case variables indicate the log deviation of the variables from the non stochastic steady state.

In particular, kt is capital per capita, zt is TFP, yt is output per capita, and α is the capital share in

production. We assume that we observe neither the technology process nor capital. We observe output

up to a measurement error, et ∼ N(0, σ2
e).

We run a controlled experiment to measure the impact of different priors on the shock standard

deviations of the DSGE model. We simulate artificial data from the RBC model by calibrating structural

parameters values to standard values in the literature, i.e. α = 0.33, ρ = 0.95. We generate data assuming

that the technology shock standard deviation is zero and positive. We fix the variance of σe to 0.08, i.e.

the mean of the range of values of the structural standard deviation. The results obtained in this section

are largely invariant to the values of structural and non-structural parameters used to generate data, to

the the sample size, and to the location of priors and scale parameters.11

We generate 500 data points from the RBC model with the measurement error for each value of σ,

and retain the last 100 for inference. We compute and estimate the posterior kernel of σ assuming the

following priors where m stands for the mean, and SD for the standard deviation:

• IG(α, β) with α = 2.0016 and β = 0.2 that gives m = 0.2 and SD = 5;

• Normal(µ, σ2) with µ = 0.2 and σ2 = 25 that gives m = 0.2 and SD = 5;

• Exp(λ) with λ = 0.2 that gives m = 5 and SD = 5.

With an abuse of notation we indicate parameter distribution (IG, N and Exp) and in parenthesis mean

and standard deviations. While the measures of dispersion are the same across priors, the prior shape and

support are different. It is important to notice that, while for the normal and exponential distribution

third and higher moments exist, this is not true for the inverse gamma.

We first study the posterior kernel of σ conditional on the other parameters being fixed at their true

values. Being a unidimensional problem, we can directly plot the product of the likelihood times the

prior (i.e. the posterior kernel) against different values of σ. This allows us to study the behavior of the

kernel in the neighborhood of zero. Figure 1 displays the posterior kernel of σ for a range of values of σ

([−0.5, 0.5]) keeping the remaining parameters fixed at their true values. From the top left panel to the

bottom right panel, we present the four cases for the values of the true standard deviation: 0, 0.05, 0.1,

0.2. When the technology shock has zero variance, with a normal prior with loose precision the posterior

10See the online Appendix section A.1 for details.
11Results with different parameterization of the data generating process, scale and location parameters and sample size are

available on request.
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Figure 1: Posterior kernels for different values of σ’s. The figure reports the posteriors with: IG(0.2,5) prior (black dashed
line); N(0.2, 5) prior (blue dotted line); Exp(5, 5) prior (red line). The values considered are σ = {0, 0.05, 0.10, 0.20}.
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kernel of σ is uni-modal centered on zero and with a tight standard deviation. Similar conclusions apply

to the Exp prior, for which the posterior peaks at zero. Hence, the prior information on this parameter

does not distort the information of the data likelihood. By assuming an IG prior, instead, we are forcing

the kernel not to explore the region of the parameter space of a null variance and, as a consequence, we

are corrupting the information contained in the data. Second, when the technology shock is non-zero the

posterior kernel of σ is similar across prior assumptions, and in the normal case the bi-modality of the

likelihood is preserved. Therefore, normal or Exp priors do not seem to create distortions when the shock

truly exists.

The posterior moments of the full set of parameters, α, ρ, σ and ω, are computed using the Random

Walk Metropolis-Hastings algorithm12 adapted for the sign switch when assuming normal priors for σ.

We postulate a normal prior for α centered in 0.3 with 0.05 standard deviation, a beta distribution for

ρ centered in 0.5 with 0.2 standard deviation and an IG prior for the measurement error centered in 0.2

with a loose standard deviation of 4.

Table 1 reports posterior statistics assuming different prior distributions and locations for the standard

deviations. In particular, from top to bottom, for the inverse gamma prior and the normal, we move the

prior location progressively away from zero. We do not report the the results for σ > 0 since they are

similar among priors and close to the true values; they can be consulted on the online appendix (Section

B, Additional Tables and Graphs, Table 3).

There are three things to highlight. First, while the estimates of σ are very imprecise with an IG prior,

12We launched two chains of 100,000 draws using as a starting point the mode of the posterior kernel.
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Table 1: Full MCMC estimates of model (3). The model is estimated using the Normal, the IG and the Exp prior for the
standard deviations of structural shock. The table reports for all the structural parameters Θ: the posterior mode,
the lower (5%) and upper (95%) quantile(credible set) and the marginal likelihood (ML) computed with the Laplace
approximation and the modified armonic mean (in parenthesis).

σ = 0

Θ Mode [Lower,Upper] Mode [Lower,Upper] Mode [Lower,Upper]

IG(0.05,5) Normal(0.05,5) Exp(5,5)
α 0.30 [ 0.21 , 0.37 ] 0.30 [ 0.22 , 0.38 ] 0.30 [ 0.21 , 0.37 ]
ρ 0.39 [ 0.10 , 0.61 ] 0.50 [ 0.10 , 0.69 ] 0.50 [ 0.09 , 0.68 ]
σ 0.03 [ 0.01 , 0.04 ] 0.00 [ -0.05 , 0.04 ] 0.002 [ 0.001 , 0.044 ]
σe 0.09 [ 0.08 , 0.11 ] 0.09 [ 0.08 , 0.11 ] 0.10 [ 0.08 , 0.10 ]
ML 88.55 (88.48) 84.47 (84.14) 85.39 (84.38)

IG(0.1,5) Normal(0.1,5)
α 0.29 [ 0.21 , 0.37 ] 0.30 [ 0.21 , 0.37 ]
ρ 0.30 [ 0.07 , 0.51 ] 0.50 [ 0.10 , 0.69 ]
σ 0.04 [ 0.02 , 0.06 ] 0.00 [ -0.04 , 0.04 ] —–
σe 0.09 [ 0.07 , 0.10 ] 0.09 [ 0.08 , 0.11 ]
ML 87.36 (87.26) 84.47 (84.16)

IG(0.2,5) Normal(0.2,5)
α 0.29 [ 0.20 , 0.36 ] 0.29 [ 0.21 , 0.38 ]
ρ 0.20 [ 0.04 , 0.40 ] 0.50 [ 0.10 , 0.69 ]
σ 0.06 [ 0.04 , 0.08 ] 0.00 [ -0.05 , 0.04 ] —–
σe 0.08 [ 0.06 , 0.10 ] 0.09 [ 0.08 , 0.11 ]
ML 84.58 (84.49) 84.47 (84.16)
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the Normal and Exp priors with a sufficiently loose standard deviation allow the MCMC to explore more

extensively the parameter space and hence to verify ex-post if the structural disturbance exists.

Second, while invariant for the normal prior, the marginal likelihood estimate depends on the location

of the inverse gamma prior. The closer the hyper-parameter controlling the prior mean to zero, the larger

the marginal likelihood. Hence, in principle, the marginal likelihood with inverse gamma distribution can

be informative about the size of the shock. However, the marginal likelihood with inverse gamma priors

is larger than the one obtained in the normal prior setup, which indeed is able to select the true DGP.

This feature occurs systematically and it is not the artifact of one specific realization.13 While we do

not have an analytical explanation for this result, intuitively, it may be related to the third and higher

order moments of the probability distribution. For the normal distribution, all moments higher than the

first are controlled by the scale parameter (squared variance) only. In the inverse gamma distribution,

all moments depend on the shape and scale and, therefore, when changing the prior mean (keeping the

dispersion fixed) we are implicitly changing the higher moments of the distribution (if they exist). This

makes the comparison across distributions difficult to interpret and care should be taken when expressing

a preference for the inverse gamma prior over the normal distribution by means of marginal likelihood.14

We will discuss this issue more extensively in the empirical section 4 below.

Third, when the true DGP has σ = 0 and we impose an inverse gamma prior on σ, we obtain that

the autoregressive parameter estimates are heavily downward biased. In the case of a null standard

deviation, the posterior kernel displays a clear trade off between setting the standard deviation close to

zero or reducing the persistence of the model dynamics. Since with IG priors we rule out null standard

deviations, the posterior kernel of standard deviations does not include zero and, as a consequence, the

structural shock has a dynamic impact on yt. The only way to tone down the dynamic impact of this

shock is to force the autoregressive parameter close to zero. To see this, assume that α = 0 and σ2
e = 1.

Assume that the true DGP is the one with a null standard deviation, i.e. σ = 0. We have that yt = et

and the likelihood collapses to logL(yT |y
T−1; ρ, σ = 0) ∝ −1/2

∑T
t=1

y2t . While ρ is not identifiable in the

true model, the persistence parameter becomes informative in the misspecified model. Suppose we work

with a misspecified model in which σ is fixed to a positive value, say δ > 0, which measures the degree of

misspecification, i.e. the larger this value the more severe is the misspecification. The likelihood is given

13In the online appendix (section A.5), we report the marginal likelihood estimates based on 50 different datasets generated
with σ = 0 assuming either normal or inverse gamma distributions with mean 0.05 and standard deviation 5. On average, there
is a 4 to 5 log marginal likelihood difference in favor of the inverse gamma prior over the normal prior. This difference does not
vanish with larger samples.

14In the online appendix (Section b, Additional Tables and Graphs, Table 6) we provide a decomposition of the (log-) marginal
likelihood into a constant, the determinant of the inverse Hessian, the prior, and the likelihood for different locations of the
priors. The differences in the marginal likelihood when using inverse gamma or normal priors are due entirely to the prior and
not to the likelihood or the determinant of the inverse Hessian.
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by:

logL(yT |y
T−1; ρ, σ = δ) ∝ −1/2

T
∑

t=1

log(st + 1)− 1/2

T
∑

t=1

(yt − zt|t−1)
2

1 + st

zt+1|t = (1− kt)zt|t−1 + ktyt, st+1 = kt + δ2, kt = ρ
st

1 + st
,

where the recursions are derived from the Kalman filter with s1 = δ2/(1− ρ2) and z1|0 = 0.15 In order to

minimize the information discrepancy between the misspecified model likelihood, i.e. L(yT |y
T−1; ρ, σ = δ),

and the true DGP model likelihood, i.e. L(yT |y
T−1; ρ, σ = 0), the autoregressive parameter has to go to

zero. When ρ = 0, we have kt = 0, zt|t−1 = 0, st = δ2, and the likelihood becomes:

logL(yT |y
T−1; ρ = 0, σ = δ) ∝ −T/2 log(δ2 + 1)−

T
∑

t=1

1/2
y2t

1 + δ2
.

which minimizes the distance to the likelihood of the true DGP.

3.1 Further Discussion

In fully fledged DSGE models, the persistence of model dynamics is controlled not only by the autoregres-

sive parameters, but also by the deep parameters capturing real and nominal frictions in the economy. In

a battery of controlled Montecarlo exercises, we found that when shutting down some economic shocks

in the DSGE model as presented in Smets and Wouters (2007) (henceforth SW) a substantial downward

bias in the parameters estimates arise when using IG priors, e.g. the parameters controlling price and

wage rigidity. Similarly, the dynamic transmission of shocks and variance decomposition are substantially

distorted when forcing all the shocks to exist with inverse gamma priors. Since we do not know ex-ante

what are the key shocks driving aggregate fluctuations, IG priors are problematic as they may induce bi-

ases in estimated parameters that can be sizable. Normal or Exp priors do not suffer from any particular

disadvantage when confronted with data that are generated by an unknown number of structural distur-

bances. We tested these priors on different values of the standard deviations of the structural shocks, of

the measurement errors (including zeros) and with various sample sizes. The results of these exercises can

be consulted in the online appendix.

It is also important to highlight that the non-existence results for some of the innovations are not to

be interpreted as ‘hard zeros’. While the posterior mode of the standard deviation of the some shock can

be zero, the posterior distribution of this parameter will have some probability mass on positive values.

Notice also that the autoregressive parameters of non existing shocks are not identifiable. However, since

we do not know ex-ante what the non-existing shocks are, we also ignore for which exogenous processes can

we identify the persistence coefficient. As a consequence, when estimating the model with the full set of

shocks, the likelihood along the dimension of the autoregressive parameter of these non-existing processes

is flat and the posterior overlaps with the prior. While this does not cause any problem per se, it makes

15See Durbin and Koopman (2012) for an introduction.
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the estimation inefficient. To cope with this, applied researchers can run a two step estimation procedure.

In the first stage, they estimate the full set of exogenous processes’ parameters (i.e. standard deviations

and autoregressive parameters) and identify the structural sources of fluctuations. In the second stage,

they can fix the autoregressive parameters of the non-existing shocks obtained in the first stage to avoid

the non-identifiability of the persistence coefficient.

A crucial assumption of our approach is that the vector of observed times series is generated by a

combination of structural and measurement shocks. In the absence of measurement errors, the DSGE

model with a rank deficient covariance matrix is stochastically singular and, as a consequence, impossible

to estimate with likelihood based approaches. The inclusion of measurement error allows us to avoid the

stochastic singularity problem. One may argue that measurement error sweeps the rest of the variability

of observables that is not explained by economic shocks. However, since structural shocks are common

factors and measurement errors are variable-specific shocks, when measurement errors capture a larger

proportion of the variability of a particular observable, it is precisely indicating that some postulated

structural shocks may not be true common factors.

4 Structural innovations and the role of priors for standard deviations

We now study the role played by priors on structural DSGE shocks by reconsidering the estimates of a

standard DSGE model using US macroeconomic data. We keep as benchmark the SW model.16 Although

there are many more applications of interest, here we focus on the question of whether some of the standard

impulses assumed in the existing literature are true drivers of macroeconomic fluctuations and not just

the artifact of avoiding stochastic singularity. Moreover, we try to assess the empirical relevance of the

choice of priors for STD for the transmission of DSGE shocks.

The SW model is estimated based on seven quarterly macroeconomic time series. Output growth is

measured as the percentage growth rate of Real GDP, consumption growth as the percentage growth rate of

personal consumption expenditure deflated by the GDP deflator, and investment growth as the percentage

growth rate of Fixed Private Domestic Investment deflated by the GDP deflator. Hourly compensation is

divided by the GDP price deflator in order to obtain the real wage variable. The aggregate real variables

are expressed in per capita terms using population over 16. Inflation is the first difference of the log of

the Implicit Price Deflator of GDP, and the interest rate is the Federal Funds Rate divided by four. For

comparability of estimates, we consider the same data span as in SW, 1968-2004. The mapping between

16In the appendix, we provide the log-linearized equations and a brief description of the parameters estimated and calibrates.
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observables and model based quantities is accomplished through the following measurement equations

output growth = γ̄ +∆yt + ωyey,t,

consumption growth = γ̄ +∆ct + ωcec,t,

investment growth = γ̄ +∆it + ωiei,t,

real wage growth = γ̄ +∆wt + ωwew,t,

hours = l̄ + lt + ωlel,t,

inflation = π̄ + πt + ωpep,t,

ffr = β̄ +Rt + ωrer,t,

ex,t ∼ N(0, 1) with x = y, c, i, w, l, p, r,

where all variables are measured in percent. π̄ and β̄ measure the steady state level of net inflation and

short term nominal interest rates, respectively, γ̄ captures the deterministic long-run growth rate of real

variables, and l̄ captures the mean of hours. ex,t are standardized normal i.i.d. measurement error (ME)

shocks.

We estimate and fix the same parameters as in SW with one exception. Relative to the original SW

specification, we assume that the impact of technology on government spending, ρga in their model, is

zero so that the government spending process is independent from the technology process. Priors for the

structural parameters but STD are the same as in SW. We estimate three main specifications (and several

variants, see next section):

1. The first specification (IG) coincides with the original SW setup. In this specification, we assume

that measurement error shocks are zero, i.e. ωx = 0 for x = y, c, i, w, l, p, r, and structural shock

standard deviations have an IG prior with mean 0.1 and standard deviation of 2.

2. In the second specification, we assume an IG prior on both measurement errors and structural shocks

with a very loose standard deviation (e.g. 10). We consider two variants that differ in terms of prior

location:

(a) One variant (IGIG), a ‘conventional’ one, where the mean for the structural shocks is centered

in 0.1 and for the measurement error in 0.2.

(b) One variant (IGIG∗) where the prior for measurement error is centered in 0.4 and for structural

shocks in 0.2. The latter is chosen based on marginal likelihood considerations, i.e. by selecting

the hyper-parameters on a discrete grid of values that maximize the marginal data density.

3. In the third specification, (NN), we postulate that the standard deviations of structural shocks and

measurement errors are normally distributed17 with a very loose standard deviation of 10 and with

17Given that the results using Exp and normal priors in the previous section were very similar, we report here the results
using normal priors only.
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location 0.1.18 So, in principle, we allow for the possibility that some structural and/or measurement

shocks are zero.

Table 2 reports the posterior mean and 90% confidence bands for a selection of structural parameters and

the STD of shocks.

Table 2: Posterior median and 90 % confidence bands of a selection of structural parameters in the four specifications: IG,
IGIG∗, IGIG and NN . Bottom part, Laplace approximation with decomposition.

NN IGIG∗ IGIG IG

ιp 0.46 [ 0.23, 0.71] 0.49 [ 0.26, 0.72] 0.46 [ 0.22, 0.69] 0.30 [ 0.13, 0.48]
φ 2.85 [ 2.00, 4.02] 2.23 [ 1.18, 3.50] 2.24 [ 1.14, 3.57] 6.07 [ 4.35, 7.84]
ξw 0.79 [ 0.70, 0.87] 0.78 [ 0.68, 0.86] 0.78 [ 0.69, 0.87] 0.69 [ 0.57, 0.80]
λ 0.76 [ 0.64, 0.86] 0.69 [ 0.55, 0.83] 0.73 [ 0.60, 0.86] 0.69 [ 0.62, 0.76]
ry 0.15 [ 0.09, 0.20] 0.16 [ 0.11, 0.22] 0.16 [ 0.10, 0.21] 0.09 [ 0.05, 0.12]
ρb 0.69 [ 0.55, 0.82] 0.77 [ 0.65, 0.87] 0.77 [ 0.65, 0.87] 0.23 [ 0.09, 0.38]
ρr 0.19 [ 0.04, 0.37] 0.55 [ 0.21, 0.91] 0.34 [ 0.10, 0.90] 0.16 [ 0.05, 0.27]

σa 0.36 [ 0.31, 0.41] 0.34 [ 0.28, 0.39] 0.34 [ 0.30, 0.39] 0.44 [ 0.40, 0.49]
σb 0.11 [ 0.08, 0.14] 0.10 [ 0.07, 0.13] 0.09 [ 0.07, 0.12] 0.24 [ 0.20, 0.28]
σg -0.01 [ -0.21, 0.22] 0.13 [ 0.07, 0.22] 0.08 [ 0.04, 0.18] 0.58 [ 0.53, 0.63]
σi 0.22 [ 0.11, 0.34] 0.17 [ 0.08, 0.31] 0.11 [ 0.04, 0.29] 0.40 [ 0.33, 0.49]
σr 0.21 [ 0.11, 0.25] 0.13 [ 0.07, 0.19] 0.15 [ 0.06, 0.22] 0.24 [ 0.22, 0.27]
σp -0.04 [ -0.17, 0.16] 0.10 [ 0.06, 0.15] 0.08 [ 0.03, 0.16] 0.13 [ 0.10, 0.15]
σw 0.03 [ 0.01, 0.10] 0.08 [ 0.05, 0.13] 0.05 [ 0.03, 0.09] 0.26 [ 0.22, 0.30]

log Laplace Approximation (A) -893.2 -848.8 -852.3 -904.6

log Constant 38.6 38.6 38.6 32.2
log det Hessian -117.1 -123.1 -124.1 -110.5
log Prior (B) -47.2 4.9 4.4 -25.1
log Likelihood -767.5 -769.2 -771.3 -801.1

(A) - (B) -846.0 -853.7 -856.8 -879.4

There are a number of relevant results to highlight. First, government spending (g) shocks and price

markup (p) shocks are estimated to be ‘non-existent’, since the posterior support for their standard

deviations includes zero and their posterior distributions are unimodal (not shown here). Technology

(a), investment (i), risk-premium (b) or ‘liquidity’ shocks19, and monetary policy shocks (r) are instead

estimated to be structural. The wage markup shock, however, is only marginally so.20 For the IGIG

specifications, the estimated STD of government spending and price markup shocks are smaller than in

the case with no measurement error (IG) yet still significantly different from zero.21

18The location parameter for the Normal prior is not very influential. See next section.
19As shown in Fisher (2015), the SW risk premium or preference shock can be interpreted as a structural shock to the demand

for safe and liquid assets such as short-term Treasury securities.
20If the model is estimated for rolling sub-samples, the shock appears not to be structural for the majority of the sub-samples.

Results available on request.
21It is important to note that the fact that, for instance, shocks to government spending are found not to be structural in the
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Second, the posterior moments of deep parameters appear to be estimated differently in the three

setups. For the estimates of φ, the second derivative of the investment adjustment cost function, the

mean estimate of NN is significantly smaller than the value in IG (6.07) and larger than the values

obtained with the IGIG specifications. This figure is closer to the value (2.48) available in Christiano

et al. (2005)22; by using a IRF matching they do not need to specify and estimate the whole shock

structure of the SW model. Moreover, the price indexation parameter, ιp, is 0.30 for the IG model and

the NN estimated parameter is substantially larger. Albeit to a smaller degree, similar conclusions apply

for the estimate of ξw and λ, the wage stickiness and habit parameter respectively. Overall, estimates

of deep parameters change when we introduce measurement error shocks and allow for the possibility of

zero STD. Structural parameter estimates of the specifications where we assume IG on both measurement

error and structural shocks are similar to the NN ones, with one important exception. The estimated

persistence of the monetary policy shock in the two IGIG specifications are different from the NN (and

the IG) specification. From an economic standpoint, this parameter captures the extent to which current

monetary policy surprises are predictable using past shocks. We find that the persistence of the monetary

policy surprises is estimated to be 0.55 in the IGIG∗ model and 0.34 in the IGIG model as opposed to

values below 0.2 in the NN or IG cases. Besides the fact that the former values have weaker economic

interpretation, this parameter is crucial for the dynamic transmission of monetary policy shocks as we

will review in the next section.

Third, the table compares the marginal likelihood (ML) achieved by the different specifications by

means of Laplace Approximations. The latter is then broken down into its main components: the log

prior, the log likelihood (the sum of the one step ahead forecast errors in the Kalman Filter), the log of the

determinant of the Hessian (measuring the curvature of the likelihood around the mode), and the constant

(proportional to the sample size and to the number of parameters). The table shows that there are large

differences in ML and the highest values are attained with IGIG specifications. However, this result is

entirely driven by the prior. With the IGIG or the IGIG∗ specification, we neither describe better the

observed data nor we have more curvature around the mode. If we remove the prior contribution from

the ML, the resultant would rank the NN specification first. As pointed out in section 3, we believe that

comparing marginal likelihoods across specifications with IG and N priors is misleading; as much as using

it as a device for model selection.

In sum, normal priors identify as common sources of fluctuations technology shocks, monetary policy

surprises, risk-premium/liquidity shocks, investment demand shocks, and possibly wage markup shocks.

Accordingly, many structural parameters estimates change. This is due partly to the introduction of

NN specification does not imply that government spending is fixed. What this means is that these shocks, within the context
of the SW model, are not significant drivers of macroeconomic uncertainty. This could be the case if, for instance, these changes
to g were fully expected by agents.

22Quoting Christiano et al. (2005), “[1/φ] is the elasticity of investment with respect to a 1 percent temporary increase in the
current price of installed capital. Our point estimate implies that this elasticity is equal to 0.40”.
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measurement errors and partly to the prior assumptions about the origin of fluctuations. We investigate

this further below.

4.1 The dynamic transmission of the structural sources of fluctuations

To gauge the extent to which the assumptions about the existence of shocks affect the transmission

dynamics of the model, we study the impulse response functions of four variables of interest to the

identified sources of fluctuations. We thus neglect the response to government and price markup shocks

as they do not generate significant transmission dynamics in the NN specification (while they do with

the IG ones).

We focus our attention on the response of output growth, inflation, interest rate, and hours worked to

a supply shock (technology), to a demand shock (risk-premium/liquidity shock), and to a monetary policy

surprise. Figure 2 reports the mean estimated impulse response functions under different specifications.

The benchmark SW case (IG) is reported with black triangles, the NN specification with blue dots (with

90% gray confidence bands) and the IGIG∗ and IGIG specifications in red circles and green diamonds

respectively. We have normalized the impact of the shocks across specifications. In particular, a monetary

policy impulse generates the same impact increase in the interest rate, a supply impulse the same impact

increase in output and a demand impulse the same impact increase in consumption (not shown here). We

do not report the response function to demand and supply shocks for the IGIG specifications because

they are very similar to the NN one.

There are two important remarks arising from this picture. First, the dynamic transmissions of demand

and supply shocks are statistically different between the original SW setup (IG) and the specification

where we are agnostic about the origins of fluctuations (NN). While supply shocks generate a negative

co-movement between hours and output in both settings, the magnitude is smaller and less persistent in

the NN case (see the first row). After a technology shock, in the original SW setup, hours worked need

12 quarters to revert back to steady state, while less then 5 in the NN setup. Demand shocks (second

row) generate impulse response functions that are hump-shaped and more persistent with normal priors,

with a peak delay of 2/3 quarters.23

Second, the prior assumptions about shock standard deviations matter for the estimated transmission

dynamics of the model. The third row of figure 2 reports the transmission mechanism of monetary policy

surprises under the four different settings. In the original SW setup and the specification where we are

agnostic about the sources of fluctuations (NN), an unexpected increase in the federal fund rate of 15

basis points generates a decline in inflation of less then 5 basis points at the peak of the effect and a

decline in output of less then 20 basis points. These figures are very close to those obtained in empirical

studies using VARs (see Ramey, 2016).

23Differences in propagation and in the existence or non-existence of shocks give rise to different model conclusions. E.g. in
the online appendix we report the historical shock decomposition of output growth in terms of different economic shocks with
the IG and the NN setting. The differences are stark.
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Figure 2: Transmission mechanism of structural shocks. From top to bottom, dynamic transmission of supply (technology),
demand (liquidity preference) and monetary policy shocks to output, hours, inflation and interest rate (left to right).
Blue dots NN median estimates and gray areas the 90% confidence sets. Black triangles represent the estimates with
IG, green diamonds IGIG and red circles IGIG∗.
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In the setup with inverse gamma priors on structural and measurement errors, the same increase

generates a huge response in inflation and output, between twice to more than three times larger.24 Why

does this difference arise? In the IGIG settings we are forcing all the shocks to exist, both structural and

measurement errors. When this happens, the ‘residuals’ in the interest rate measurement equation are

forced to be explained by both a monetary policy shocks and by the interest rate measurement errors. With

a small (0.16) ρr monetary policy shocks and measurement error are difficult to separately identify as they

are both close to be i.i.d. So whenever the likelihood moves toward regions where the measurement error

STD is large, it prefers to assign different persistence to these two shocks in order to be able to distinguish

them. Since it cannot do this for the measurement error, it does it for the monetary policy shock. Hence

the large ρr, which generates a statistically large and economically implausible transmission mechanism.

24It is also noticeable the large difference between IGIG and IGIG∗, which indicates that the choice of prior location matters
for these models. This is investigated further in section 4.2 below.
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Unfortunately, being highly misspecified, this class of models are typically subject to measurement errors,

and large measurement error shocks tend to be associated with high values of the marginal likelihood.

Hence, when choosing the IGIG specification with the highest marginal likelihood (IGIG∗), a researcher

would be lead even more astray from a plausible representation of a MP shock.

In all, the choice of the priors for STD matters in practice. When identifying the economic sources of

fluctuations and when studying the transmission mechanism of structural shocks. It is in this sense that

we uncover a trade-off between imposing a wide set of potential sources of uncertainty and the estimation

of the parameters that drive propagation.

4.2 The sensitivity of the posterior to priors on the standard deviation

When we study models with more shocks than observables (e.g. as the SW model with measurement

errors), the likelihood has something to say about the most likely combination of shocks, i.e. the model

specification. As a consequence, the STD prior distribution does matter for the posterior analysis. De-

pending on the location and dispersion, the prior density could favor or penalize the likelihood of a specific

model shock configuration. As a result, it might influence posterior analysis; ideally, one would like to

work with priors whose hyper-parameters matter little for posterior analysis. If this is not the case, one

should be aware of the extent to which the priors on STDs influence posterior analysis.25

Postulating a normal prior on STD is largely uninfluential for the computation of the posterior pa-

rameter distributions and of the marginal likelihood (as long as we have a sufficiently loose precision). It

does not really matter if we postulate, a priori, that the STD of the measurement error on, say, interest

rate is close to zero or not. The NN setting generates estimates of the posterior distributions and of the

marginal data density that are invariant to the prior mean.

This appealing property of the normal prior on shocks’ STD does not carry over for the IG distribution,

where the posterior parameter and the marginal likelihood estimates are very sensitive to the location

parameter. In such a case, different configurations of prior means lead to different estimates of the

parameters and of the marginal likelihood; and arguably to different transmission mechanisms of the

innovations. We found large differences in parameters estimates and marginal likelihoods, of as much

as 20 log points, even for prior locations that are relatively close. However, the marginal likelihood

comparisons can be confusing as they might be driven by the priors, as it is case in Table 4.

Normal priors overcome all these concerns. They offer a natural benchmark for selecting the funda-

mental drivers of economic fluctuations and they are insensitive to the choice of prior hyper-parameters.

25In the online appendix, we document the sensitivity of the posterior estimates of parameters and marginal likelihood when
using inverse gamma priors on shocks’ standard deviations in the context of the SW model with measurement errors. In this
section, we summarized the key results of this analysis.
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5 Conclusions

One of the key questions in macroeconomics concerns the identification of the structural impulses that

set off macroeconomic fluctuations, the other key question being the identification of the propagation

mechanisms that transform shocks into business cycles. Estimated DSGE models have become the stan-

dard methodology to address this question as they provide a coherent and economically interpretable

structure. However, the widespread assumption when estimating DSGE models with likelihood methods

is that certain exogenous shocks do exist in the sense that they capture macroeconomic uncertainty. We

offer reasons for questioning this assumption and for adopting priors that allow us to test, rather than

assume, the existence of economic shocks.

We show that postulating the existence of a non-existing exogenous processes generates a substantial

downward bias in the estimates of the parameters driving internal persistence of the model. Thus, we unveil

a tradeoff between the inclusion of a potentially large number of structural innovations and estimates of the

parameters driving propagation. To prevent this problem, we propose an easily implementable strategy

of using normal (or exponential) priors on the standard deviation of shocks together with measurement

errors to avoid stochastic singularity. Our simulation evidence shows that these priors allow us to select

the true structural shocks entering the DSGE model and that the remaining parameters are estimated

with precision.

We analyzed the evidence on the existence of structural shocks in the medium-scale New Keynesian

model of Smets and Wouters (2007). We find that government spending and price markup shocks are

innovations that do not generate statistically significant dynamics, with the wage markup shock being

only marginally significant. Hence, they are not fundamental sources of macroeconomic fluctuations in the

context of that model. Technology, investment, risk-premium, and monetary policy surprises are all found

to be important for the sample and the set of observables considered. By allowing or forcing all these

(and measurement errors) shocks to play a role, substantial differences emerge in terms of the estimated

parameters and of transmission mechanism of economic shocks.
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A Appendix

A.1 Smets and Wouters (2007) model

The log linearized equilibrium conditions are summarized as follows:

yt = c/yct + i/yit + rkk/yzt + egt

ct = c1ct−1 + (1− c1)Ect+1 + c2(ht − Eht+1)− c3(rt − Eπt+1 + ebt)

it = i1it−1 + (1− i1)Etit+1 + i2qt + ǫit

qt = q1Eqt+1 + (1− q1)Er
k
t+1 − (rt − Eπt+1 + ebt)

yt = αφpkt + (1− α)φpht + φpǫ
a
t

kst = kt−1 + zt

zt = ψ/(1− ψ)rkt

kt = k1kt−1 + (1− k1)it + k2ǫ
i
t

mpt = α(kst − ht) + eat − wt

πt = π1πt−1 + π2Eπt+1 − π3mpt + ept

rkt = −(kt − ht) + wt

mwt = wt −

(

σnht +
1

1 + λ/γ
(ct − λ/γct−1)

)

wt = w1wt−1 + (1− w1)E(πt+1 + wt+1)− w2πt + w3πt−1 +mwt + ewt

Rt = ρRRt−1 + (1− ρR)(ρππt + ρy(yt − yft ) + ρ∆y∆(yt − yft )) + ert

+ flexible economy equations

where variables with time subscript are variables from the original non linear model expressed in log deviation
from the steady state. Flexible output is defined as the level of output that would prevail under flexible prices
and wages in the absence of the two mark-up shocks. Seven structural shocks. The model has five AR(1),
government, technology, preference, investment specific, monetary policy, and two ARMA(1,1) processes,
price and wage markup.

c1 = λ/γ(1 + λ/γ), c2 = [(σc − 1)(W hh/C)]/[σc(1 + λ/γ)], c3 = (1− λ/γ)/(1 + λ/γ)σc, k1 = (1− δ)/γ

k2 = (1− (1− δ)/γ)(1 + βγ1−σc)γ2φ, i1 = 1/(1 + βγ1σc), i2 = (1/(1 + βγ1−σc)γ2φ q1 = βγ−σc(1− δ),

π1 = ip/(1 + βγ1−σcip), π2 = βγ1−σc/(1 + βγ1−σcip),

π3 = 1/(1 + βγ1−σcip)[(1− βγ1−σcξp)(1− ξp)/ξp(1 + (φp − 1)ǫp)))], w1 = 1/(1 + βγ1−σc),

w2 = (1 + βγ1−σciw)/(1 + βγ1−σc), w3 = iw/(1 + βγ1−σc),

w4 = 1/(1 + βγ1−σc)[(1− βγ1−σcξw)(1− ξw)/ξw(1 + (φw − 1)ǫw)],

γ = 100(γ − 1), π = 100(π∗ − 1), β = ((π∗/(β ∗ γσc))− 1) ∗ 100

The coefficients are function of the deep parameters of the model which are summarized and described in
table 3.
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Table 3: The table reports the parameter notation (first column), the parameter description (second column) and posterior mean
estimated using MCMC or the parameters that are fixed (third column).

Θ Description SW mean or fixed values

γ slope of the deterministic trend in technology 1.004
δ depreciation rate 0.025
εp good markets kimball aggregator 10
εw labor markets kimball aggregator 10
λw elasticity of substitution labor 1.5
cg gov’t consumption output share 0.18
β time discount factor 0.998
φp 1 plus the share of fixed cost in production 1.61
φ inverse of the elasticity of investment relative to installed capital 5.74
α capital share 0.19
λ habit in consumption 0.71
ξw wage stickiness 0.73
ξp price stickiness 0.65
iw wage indexation 0.59
ip price indexation 0.47
σn elasticity of labor supply 1.92
σc intertemporal elasticity of substitution 1.39
ψ st. st. elasticity of capital adjustment costs 0.54
ρπ monetary policy response to π 2.04
ρR monetary policy autoregressive coeff. 0.81
ρy monetary policy response to y 0.08
ρ∆y monetary policy response to y growth 0.22
ρa technology autoregressive coeff. 0.95
ρg gov spending autoregressive coeff. 0.97
ρga cross coefficient tech-gov 0
ρb technology autoregressive coeff. 0.21
ρq technology autoregressive coeff. 0.71
ρm monetary policy autoregressive coeff. 0.15
ρp price markup autoregressive coeff. 0.89
ρw wage markup autoregressive coeff. 0.96
µw wage markup ma coeff. 0
µw wage markup ma coeff. 0
σa sd technology 0.45
σg sd government spending 0.52
σb sd preference 0.25
σr sd monetary policy 0.24
σq sd investment 0
σw sd wage markup 0
σp sd price markup 0
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Table 4: Posterior median and 90 % confidence bands of the three specifications, IG, IGIG and NN under different prior
locations.

NN IGIG∗ IGIG IG
ιw 0.55 [ 0.31, 0.77] 0.62 [ 0.39, 0.83] 0.58 [ 0.35, 0.81] 0.62 [ 0.41, 0.82]
ιp 0.46 [ 0.23, 0.71] 0.49 [ 0.26, 0.72] 0.46 [ 0.22, 0.69] 0.30 [ 0.13, 0.48]
ψ 0.52 [ 0.33, 0.72] 0.51 [ 0.31, 0.71] 0.52 [ 0.32, 0.72] 0.61 [ 0.44, 0.77]
φp 1.43 [ 1.30, 1.57] 1.42 [ 1.29, 1.56] 1.41 [ 1.28, 1.55] 1.71 [ 1.58, 1.84]
α 0.22 [ 0.18, 0.27] 0.23 [ 0.18, 0.27] 0.23 [ 0.19, 0.27] 0.20 [ 0.16, 0.23]
φ 2.85 [ 2.00, 4.02] 2.23 [ 1.18, 3.50] 2.24 [ 1.14, 3.57] 6.07 [ 4.35, 7.84]
σc 1.03 [ 0.87, 1.23] 1.05 [ 0.88, 1.25] 1.03 [ 0.89, 1.19] 1.49 [ 1.24, 1.75]
σl 1.48 [ 0.38, 2.50] 1.46 [ 0.33, 2.48] 1.35 [ 0.25, 2.30] 1.75 [ 0.84, 2.71]
ξw 0.79 [ 0.70, 0.87] 0.78 [ 0.68, 0.86] 0.78 [ 0.69, 0.87] 0.69 [ 0.57, 0.80]
ξp 0.61 [ 0.52, 0.69] 0.60 [ 0.52, 0.68] 0.61 [ 0.52, 0.69] 0.67 [ 0.58, 0.75]
λ 0.76 [ 0.64, 0.86] 0.69 [ 0.55, 0.83] 0.73 [ 0.60, 0.86] 0.69 [ 0.62, 0.76]
rπ 1.97 [ 1.69, 2.27] 2.05 [ 1.78, 2.35] 2.03 [ 1.74, 2.33] 2.02 [ 1.73, 2.32]
rR 0.83 [ 0.78, 0.88] 0.82 [ 0.72, 0.88] 0.83 [ 0.74, 0.89] 0.81 [ 0.76, 0.85]
ry 0.15 [ 0.09, 0.20] 0.16 [ 0.11, 0.22] 0.16 [ 0.10, 0.21] 0.09 [ 0.05, 0.12]
r∆y 0.25 [ 0.20, 0.29] 0.24 [ 0.19, 0.29] 0.23 [ 0.18, 0.28] 0.22 [ 0.18, 0.27]
γ 0.45 [ 0.40, 0.49] 0.44 [ 0.40, 0.49] 0.45 [ 0.40, 0.49] 0.43 [ 0.40, 0.45]
π 0.67 [ 0.51, 0.84] 0.68 [ 0.51, 0.85] 0.67 [ 0.51, 0.84] 0.83 [ 0.66, 1.01]

β 0.22 [ 0.11, 0.34] 0.22 [ 0.10, 0.34] 0.22 [ 0.11, 0.35] 0.17 [ 0.08, 0.28]

l 0.23 [ -0.91, 1.42] 0.08 [ -1.11, 1.32] 0.14 [ -1.05, 1.40] 0.68 [ -1.13, 2.53]
ρa 0.94 [ 0.89, 0.99] 0.94 [ 0.90, 0.98] 0.94 [ 0.89, 0.99] 0.95 [ 0.92, 0.97]
ρb 0.69 [ 0.55, 0.82] 0.77 [ 0.65, 0.87] 0.77 [ 0.65, 0.87] 0.23 [ 0.09, 0.38]
ρg 0.48 [ 0.15, 0.80] 0.45 [ 0.13, 0.78] 0.47 [ 0.14, 0.80] 0.98 [ 0.96, 0.99]
ρi 0.74 [ 0.51, 0.97] 0.77 [ 0.47, 0.98] 0.74 [ 0.36, 0.98] 0.72 [ 0.62, 0.82]
ρr 0.19 [ 0.04, 0.37] 0.55 [ 0.21, 0.91] 0.34 [ 0.10, 0.90] 0.16 [ 0.05, 0.27]
ρp 0.37 [ 0.11, 0.65] 0.35 [ 0.09, 0.62] 0.39 [ 0.11, 0.69] 0.87 [ 0.79, 0.95]
ρw 0.98 [ 0.95, 1.00] 0.97 [ 0.94, 1.00] 0.97 [ 0.94, 1.00] 0.96 [ 0.93, 0.98]
µp 0.60 [ 0.30, 0.88] 0.62 [ 0.32, 0.89] 0.58 [ 0.26, 0.88] 0.69 [ 0.51, 0.84]
µw 0.66 [ 0.32, 0.92] 0.83 [ 0.69, 0.95] 0.74 [ 0.51, 0.92] 0.82 [ 0.71, 0.92]

σa 0.35 [ 0.31, 0.41] 0.34 [ 0.29, 0.39] 0.35 [ 0.31, 0.40] 0.44 [ 0.40, 0.49]
σb 0.11 [ 0.08, 0.15] 0.10 [ 0.07, 0.13] 0.10 [ 0.07, 0.14] 0.24 [ 0.20, 0.28]
σg 0.02 [ -0.20, 0.22] 0.14 [ 0.07, 0.22] 0.09 [ 0.04, 0.19] 0.58 [ 0.53, 0.63]
σi 0.22 [ 0.09, 0.34] 0.17 [ 0.08, 0.30] 0.11 [ 0.04, 0.27] 0.41 [ 0.34, 0.50]
σr 0.21 [ 0.10, 0.25] 0.12 [ 0.08, 0.19] 0.21 [ 0.14, 0.24] 0.24 [ 0.22, 0.27]
σp 0.00 [ -0.17, 0.16] 0.10 [ 0.06, 0.15] 0.11 [ 0.04, 0.18] 0.13 [ 0.10, 0.15]
σw 0.02 [ -0.07, 0.09] 0.08 [ 0.05, 0.12] 0.05 [ 0.03, 0.11] 0.26 [ 0.22, 0.30]
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