
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Sloan, Tom and Hernandez-Castro, Julio (2018) Dismantling OpenPuff PDF steganography.
 Digital Investigation, 25 . pp. 90-96. ISSN 1742-2876.

DOI

https://doi.org/10.1016/j.diin.2018.03.003

Link to record in KAR

http://kar.kent.ac.uk/67242/

Document Version

Publisher pdf

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/189720548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dismantling OpenPuff PDF steganography

Thomas Sloan*, Julio Hernandez-Castro

University of Kent, School of Computing, Canterbury, CT2 7NF, UK

a r t i c l e i n f o

Article history:

Received 9 October 2017

Received in revised form

5 February 2018

Accepted 12 March 2018

Available online xxx

Keywords:

Steganography

Steganalysis

OpenPuff

Privacy

a b s t r a c t

We present a steganalytic attack against the PDF component of the popular OpenPuff tool. We show that

our findings allow us to accurately detect the presence of OpenPuff steganography over the PDF format

by using a simple script. OpenPuff is a prominent multi-format and semi-open-source stego-systemwith

a large user base. Because of its popularity, we think our results could potentially have relevant security

and privacy implications. The relative simplicity of our attack, paired with its high accuracy and the

existence of previous steganalytic findings against this software, warrants major concerns over the real

security offered by this steganography tool.

© 2018 Elsevier Ltd. All rights reserved.

Introduction

Steganography is the process of hiding information in plain

sight. This can be used to carry out secret communications or avoid

suspicion over the exchange of information. It is important to

emphasise that the objectives of steganography are very different

to those of cryptography. The latter provides confidentiality but

does not disguise the existence of secret data, which is obvious to

any observer and can even be automatically detected due to the

high entropy of encrypted data. Steganography, however, aims to

avoid detection under all circumstances, even when an active

warden has full access to all exchanged data. In most cases, steg-

anographic tools and algorithms will also use cryptography to

encrypt the contents that will be later hidden, but their objectives

are more ambitious; data should be exchanged without raising any

suspicion. This ultimately aims for carrier files to be indistin-

guishable from unmodified, clean sources. Consequently, the main

objective of steganalysis, the associated discipline, is the pursuit of

identifying and proving the existence of steganography. Additional

objectives could be to estimate the size of the hidden contents, and

in a few cases fully recover the hidden message and/or key used.

The techniques used by the steganalyst will vary, depending on the

embedding algorithm that has been used, but will often be statis-

tically themed or system based.

Modern steganography is often aimed at digital media. There is

a myriad of tools able to perform steganography over different

carrier formats, such as images, audio, video, executable files,

games, VoIP, P2P, etc. Any format that contains some form of

redundancy can ultimately be employed for steganography (Provos

and Honeyman, 2003).

Relevance of modern steganography

Steganography, very much like cryptography, is a dual-use

technology. On the one side, it can be used to evade censorship in

circumstances where free speech or the free flow of information is

limited or restricted. Another use of steganography is to evade the

increasingly prying eyes of snooping governments across the

world, that try to ban or limit encryption with the excuse that

terrorist and other criminals also use it. On the other side, this is

partly true as steganography can also help cyber-criminals and

terrorists to conceal their communications while exchanging

important information and evading prosecution. Steganography is

then both a very useful and necessary tool for providing the general

public with increased privacy and anonymity, but also can poten-

tially help a very small minority of its users to avoid detectionwhile

planning or committing malicious activities. It should be emphas-

ised that steganography tools and its community of users will often

have legitimate reasons (i.e. journalists, civil rights and democracy

activists under threat of imprisonment, etc.) to use steganography

as a means to communicate safely (The Guardian Project, 2017).

However, it is unfortunately the criminal use of steganography

* Corresponding author.

E-mail addresses: ts424@kent.ac.uk (T. Sloan), jch27@kent.ac.uk (J. Hernandez-

Castro).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

https://doi.org/10.1016/j.diin.2018.03.003

1742-2876/© 2018 Elsevier Ltd. All rights reserved.

Digital Investigation xxx (2018) 1e7

Please cite this article in press as: Sloan, T., Hernandez-Castro, J., Dismantling OpenPuff PDF steganography, Digital Investigation (2018), https://
doi.org/10.1016/j.diin.2018.03.003

mailto:ts424@kent.ac.uk
mailto:jch27@kent.ac.uk
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2018.03.003
https://doi.org/10.1016/j.diin.2018.03.003
https://doi.org/10.1016/j.diin.2018.03.003

which more often reaches widespread exposure through the me-

dia. Recent cases in point are the use of image steganography by a

network of Russian spies in the US (Shachtman, 2010), video

steganography usage by an Al-Qaeda operative in Germany

(Gallagher, 2012), or recent strands of malware employing steg-

anography for communication with their command and control

servers (Young, 2015).

In recent years, video steganography has become an increas-

ingly popular technique for data exfiltration. One example is the

case of an undisclosed Fortune 500 company that was hit by this

type of attack (Paganini, 2017). The use of video steganography

allowed for large amounts of sensitive data to be exfiltrated from

the company network after the breach, bypassing all the data

leakage protection (DLP) tools and intrusion detection systems

(IDS) put in place.

Paper organisation

The rest of the paper is organised as follows: We will first

introduce the OpenPuff steganography tool, covering some of its

features, and discussing its popularity and known previous attacks.

We will then focus on its operation over PDF files. Afterwards, we

will show how to construct and test an efficient distinguisher

capable of detecting its carrier files with high accuracy. Also, we

will explore how to estimate the size of the hidden data. We will

then provide additional results and insights, obtained after exten-

sively testing our proposed approach. We continue with a discus-

sion of our findings, elaborating on their potential impact. Finally,

we close the paper with some comments on the social and moral

implications of this research, together with conclusions and ideas

for future related works.

OpenPuff

OpenPuff is a tool capable of performing steganography over a

large number of different file formats, concretely (as listed on the

tool's website) sixteen, covering media such as images (bmp, jpx,

pcx, png, and tga formats), audio (aiff, mp3, NEXT/SUN, wav), video

(3gp, mp4 mpg, wob) and Flash/Adobe formats (flv, swf, and pdf).

The present study is focused on its operation over the PDF format.

OpenPuff description

OpenPuff (currently in version 4.0) is marketed as ”Yet not

another Steganography Software” and is a free semi-open-source

tool, which uses the libObfuscate v.2 library, developed by the

same author, to perform its cryptography related tasks. The

libObfuscate library implements a number of encryption algo-

rithms (including AES, Anubis, Camellia, CAST-256, Clefia, Frog,

Hierocrypt3, Idea-NXT, MARS, RC6, Saferþ, SC200, Serpent, Speed,

Twofish, and Unicorn-A). This large selection of sixteen block ci-

phers is employed to realise the concept of multi-cryptography,

first introduced by its author, where the cipher used to encrypt

data is picked pseudo-randomly. It is important to note that, as

shown in the architectural design in Fig. 1, these block ciphers are

used in the insecure ECB mode, strongly against common practice.

It may well be pertinent to add that most of these block ciphers are

considered to be very weak or, in some cases, totally broken. Most

are not currently in use, and did not even make it to the final stages

of the AES competition in 2001.

These design choices are highly non-standard, and some are

plainly wrong from a security point of view. We will discuss

these issues further in the Conclusions section. libObfuscate

also implements four hash functions, all producing a 512-bit

digest. These are Grostl, Keccak (the new SHA-3 standard),

SHA-2 and Skein. OpenPuff also offers a cryptographically

secure pseudo-random number generator (CSPRNG) based on

AES but not following any known PRNG standard. It is perhaps

relevant to stress that, although libObfuscate's source code is

available, OpenPuff is in itself closed source, so we don't know

exactly how the steganography algorithms operate. This is

again against best practice and can be considered a security

issue.

OpenPuff popularity

Despite its highly unusual and sometimes very questionable

design criteria, OpenPuff has received notoriously positive feedback

and enjoys a very good reputation. Users appear to appreciate its

versatility, simplicity, and ability to perform over multiple media. It

is quite common to find recommendations and positive reviews for

OpenPuff (Zukerman, 2013), which has been short-listed in a

number of ”Best security tools” or ”Best steganography tools” ar-

ticles, some recently and by prestigious media and cyber-security

experts (Hosmer, 2012). Although details are not available on the

tool's website, third party sites reveal large download numbers

(these figures are as of 27/09/2017), as shown in Table 1. We expect

the total numbers of downloads to be significantly higher than

those shown below.

Related work

Known steganalytic results against OpenPuff are surprisingly

scarce. To the best of our knowledge, much of the related work

in this avenue of steganography has been reported in just two

academic publications: A recent attack targets the MP4 compo-

nent (Sloan and Hernandez-Castro, 2015). This work takes

advantage of OpenPuff's modification of MP4 flags that are

commonly set to a null value. Based on this observation, a script

is proposed which, after being extensively tested, demonstrates

high detection accuracy. As a result, the MP4 component of

OpenPuff should be considered broken and hence totally inse-

cure. The audio component of OpenPuff was examined by Liu

et al. (2011) who were able to successfully detect OpenPuff

steganography as implemented on an older version of the tool

(v3.10). The authors proposed the StegAD scheme to detect audio

steganography in cloud services, using an enhanced version of

the RS algorithm originally proposed by Fridrich et al (Fridrich

and Goljan, 2002).

The use of PDF steganography has been explored both inside

and outside academic literature. Several embedding algorithms

have been proposed by researchers, while a number of tools also

exist for public and commercial use. In current literature, algo-

rithms can either target the PDF format directly, or exploit a form of

ASCII steganography, which can then be converted from one text-

type format to another. Rafat & Sher (Rafat and Sher, 2013) pro-

pose an ASCII based steganographic algorithm robust enough to

allow conversion between MS Word and PDF files without losing

any of the embedded content.

Alizadeh et al. (Alizadeh-Fahimeh et al., 2012) examine a num-

ber of existing techniques for PDF steganography including word/

character embedding and themanipulation of incremental updates.

However, these are not robust techniques and cannot be used

outside of the PDF environment. The authors also examine similar

T. Sloan, J. Hernandez-Castro / Digital Investigation xxx (2018) 1e72

Please cite this article in press as: Sloan, T., Hernandez-Castro, J., Dismantling OpenPuff PDF steganography, Digital Investigation (2018), https://
doi.org/10.1016/j.diin.2018.03.003

but more efficient embedding algorithms such as steganography

via hidden PDF components and the manipulation of margins and

TJ operators. The authors continue the work of Zhong et al. (2007)

and develop two similar algorithms, one with slightly better se-

curity but lower capacity, the other with higher capacity but

provably worse security.

Furthermore, tools such as StegoStick, DeEgger Embedder,

wbStego are examples of the many available to the general public

that can perform steganography over PDF files.

On the other hand, there is only a handful of published

steganalytic attacks against PDF in the existing literature. One

such example is a detection method for word shift steganography

in PDF, by Lingjun et al. (2008). The authors propose a blind

steganalytic attack against steganography through inter-word

space length, through the analysis of the statistical properties

of spacing.

OpenPuff PDF steganography

In this section, we present our findings on the operation of

OpenPuff over PDF carrier files. For context, we will also include a

very brief introduction to the PDF format, highlighting just the

basic knowledge required to understand the attack discussed. We

will also detail very briefly the state-of-the-art, to put OpenPuff's

algorithm into perspective.

The PDF format

The contents of this section are largely based on (Incorporated,

2006; King, 2005) to which we refer any interested readers for

further technical info.

The Portable Document Format, known widely as PDF, is a

document format published originally by Adobe as a proprietary

model in 1993. It was not until 2008 that it was published as an

open standard, as ISO 32000-1:2008. The functionality of a PDF file

is largely determined by a series of objects such as dictionaries,

arrays, streams and other values (character sets, operators, etc) that

act as metadata to describe the file. The PDF syntax is best under-

stood by thinking of it in four parts, as described below:

� Objects. A PDF document is a data structure composed from a

small set of basic types of data objects.

� File structure. The PDF file structure determines how objects are

stored in a PDF file, how they are accessed, and how they are

updated. This structure is independent of the semantics of the

objects.

� Document structure. The PDF document structure specifies how

the basic object types are used to represent components of a PDF

document: pages, fonts, annotations, and so forth.

� Content streams. A PDF content stream contains a sequence of

instructions describing the appearance of a page or other

graphical entities. These instructions, while also represented as

Fig. 1. OpenPuff cryptographic architecture, from (Oliboni, 2017).

Table 1

Approximate download figures for OpenPuff as of 27/09/2017.

Website Downloads in Last Lear Total downloads

http://download.cnet.com/OpenPuff/3000-2092_4-75450743.html 2038 8637

http://www.pcworld.com/product/1252470/openpuff.html 0 1420

http://www.softpedia.com/get/Authoring-tools/Authoring-Related/Puff.shtml 808 59,002

http://www.downloadcrew.co.uk/article/27852-openpuff 462 2406

http://www.freewarefiles.com/OpenPuff_program_58719.html 694 5274

http://www.majorgeeks.com/files/details/openpuff.html 1229 10,004

http://www.winpenpack.com/en/download.php?view.913 311 3271

http://www.baixaki.com.br/download/openpuff.htm 494 3499

http://www.brothersoft.com/openpuff-34008.html 13 38,956

http://openpuff.en.uptodown.com/ 686 2200

Total 6735 134,669

T. Sloan, J. Hernandez-Castro / Digital Investigation xxx (2018) 1e7 3

Please cite this article in press as: Sloan, T., Hernandez-Castro, J., Dismantling OpenPuff PDF steganography, Digital Investigation (2018), https://
doi.org/10.1016/j.diin.2018.03.003

http://download.cnet.com/OpenPuff/3000-2092_4-75450743.html
http://www.pcworld.com/product/1252470/openpuff.html
http://www.softpedia.com/get/Authoring-tools/Authoring-Related/Puff.shtml
http://www.downloadcrew.co.uk/article/27852-openpuff
http://www.freewarefiles.com/OpenPuff_program_58719.html
http://www.majorgeeks.com/files/details/openpuff.html
http://www.winpenpack.com/en/download.php?view.913
http://www.baixaki.com.br/download/openpuff.htm
http://www.brothersoft.com/openpuff-34008.html
http://openpuff.en.uptodown.com/

objects, are conceptually distinct from the basic objects that

represent the document structure.

It may be handy for understanding later sections of this work to

become more familiar with how streams operate. In (Incorporated,

2006), we find that a stream object is a sequence of bytes.

Furthermore, a streammay be of unlimited length, whereas a string

shall be subject to an implementation limit. For this reason, objects

with potentially large amounts of data, such as images and page

descriptions, shall be represented as streams. A stream consists of a

dictionary followed by zero or more bytes bracketed between the

keywords stream (followed by newline) and endstream. The

keyword stream that follows the stream dictionary is followed by

an end-of-line marker consisting of either a CARRIAGE RETURN and

a LINE FEED or just a LINE FEED, and not by a CARRIAGE RETURN

alone. The sequence of bytes that make up a stream lie between the

end-of-line marker following the stream keyword and the end-

stream keyword; the stream dictionary specifies the exact number

of bytes. There should be an end-of-line marker after the data and

before endstream; this marker shall not be included in the stream

length. There shall not be any extra bytes, other than white space,

between endstream and endobj. Fig. 2 provides illustrative exam-

ples of the PDF format.

Both objects and, in particular, streams play an important role in

OpenPuff steganography over PDF files.

Testing and results

In this section, we present the analytic framework that we

developed to carry out our successful attack against OpenPuff, and

the corresponding results of our analysis. Through our testing

method, we analyse the PDF steganography component of Open-

Puff. From this, we have constructed a distinguisher and a message

estimator (as shown in Appendix 1), to detect the presence of

OpenPuff PDF steganography. These tests are discussed and shown

in Section Testing and results.

Construction of a distinguisher and estimator

OpenPuff claims that data is pre-encrypted with multi-

cryptography before being embedded into a file. The message is

then scrambled (shuffled with random indexes), whitened

(mixed with a high amount of noise, taken from an independent

CSPRNG seeded with hardware entropy) and encoded (with

adaptive non-linear encoding, that takes also original carrier bits

as input). This stego-system also claims ”modified carriers will

need much less change and deceive many steganalytic tests (e.g.:

chi square test).”

OpenPuff PDF steganography embeds data through the modifi-

cation of end-of-line (EOL) markers, called ’white-space characters'.

In particular, the carriage return (CR) and line feed (LF) characters

Fig. 2. Components (left) and structure (right) of a PDF file, accessed from (Incorporated, 2006).

T. Sloan, J. Hernandez-Castro / Digital Investigation xxx (2018) 1e74

Please cite this article in press as: Sloan, T., Hernandez-Castro, J., Dismantling OpenPuff PDF steganography, Digital Investigation (2018), https://
doi.org/10.1016/j.diin.2018.03.003

are used to denote newlines in the metadata of a file. These are

represented by 0�0A and 0x0D in hex, which we can use as a key

identifier for the detection of OpenPuff PDF steganography. This is

determined by our testing of OpenPuff's embedding impact over

clean PDF files.

As shown in Fig. 3, the CR and LF characters are flipped once

modified. Embedding modifications by OpenPuff will not be

detected through analysis of file metadata via PDF parsers. Use of

PDF-parser alongside WinMerge revealed identical files. This em-

phasises that the OpenPuff embedding algorithm requires more

focused analysis.

When the original file employs exclusively the 0�0A character,

OpenPuff operates in exactly the opposite fashion. Again, it is the

coexistence of both 0x0D and 0�0A markers that reveal hidden

contents, because the tool never flips all available values, as it has a

maximum capacity of 50%. Because of this, a method can be con-

structed to perform analysis of PDF files and extract CR þ LF char-

acters. We have developed a proof of concept for this which is

shown alongside our testing in Section Testing.

In addition to our detection scheme, we constructed an esti-

mator to determine the maximum possible number of bytes that

could be embedded within each file. The following calculation es-

timates the maximum possible embedded size by using least

squares (Lu et al., 2004).1

maxhiddensize ¼ 0.2204 � occurf11 þ 0.2117 �

occurf21 þ 0.2115 � occurf31-194.6563
2

Table 2 shows a sample of 10 files with the given maximum

capacity for each PDF file and our scheme's estimation. Each file

is from a self-created dataset using our proof-of-concept

(Appendix A).

Testing

To examine the accuracy of the distinguisher, two separate

rounds of testing are performed. The first round of testing uses a

small dataset and non-random data embedding. The second

series of tests comprises a significantly larger dataset and random

embedded data.

First round of testing

In the first round of testing, we obtained a total of 3000 PDF files.

These were accessed through a webcrawler that traversed three

separate locations. The first was a random selection of urls gener-

ated from the DMOZ archive (AOL, 2015). The second dataset of PDF

files was downloaded from the Archive.org website and the third

set of PDFs were obtained from Google Scholar. These were tested

in three batches of size 1,000 candidate PDFs which were run

through the OpenPuff embedding algorithm and successful carriers

were embedded with a small txt file that contained a single letter

’a’. This resulted in a total of 50 successful candidate carrier files

that had information embedded via OpenPuff. In addition to this,

false positive rates for the distinguisher were also tested. Tables 3

and 4 provide an overview of these tests.

The selection of a candidate PDF file for OpenPuff appears to be a

highly selective process, based on the small number of successfully

modified files (approximately 1.6%). Due to the exclusive modifi-

cation of white-space characters, a PDF file can only be used if the

file contains enough carrier bytes.

Second round of testing

The second round of testing included a significantly larger

dataset. These were downloaded in three separate instances from

Archive.org, using the search phrases ”PDF00, ”Computing”, and

”Medical”. The new datasets comprised a total of 13,000 PDF files.

From this, 135 were eligible candidates for OpenPuff

steganography.

For each eligible PDF file, OpenPuff embedded random data at

the maximum capacity offered by the tool. The distinguisher

demonstrated results similar to that shown for the first series of

tests with again 100% accuracy for each stego-object analysed (see

Table 5).

False positives produced similar results to those shown on the

first series of tests. A false positive rate of 0.5% will ensure that

investigative time spent addressing these flagged objects is mini-

mal (see Table 6).

This method of false positive testing covers a diverse range of

PDF files. These are from many different creators and sources, and

in some cases do not specifically follow official standards for the

generation of PDF files.

Fig. 3. Hex analysis of EOL components modified by OpenPuff.

Table 2

Estimator results.

File Maximum Capacity (bytes) Estimation (bytes) Error (%)

Test File 1 80 90.64 þ13.3

Test File 2 112 110.74 �1.1

Test File 3 64 54.25 �15.2

Test File 4 544 545.19 þ0.2

Test File 5 224 218.34 �2.5

Test File 6 864 858.92 �0.5

Test File 7 80 84.01 þ5.0

Test File 8 1232 1219.72 �0.9

Test File 9 80 76.62 �4.2

Test File 10 416 412.68 �0.7

Table 3

Accuracy results for first series of tests.

Datasets Number of files Processed by OpenPuff (%) Detection Rate

Dataset 1 1000 10 (1.0%) 100%

Dataset 2 1000 13 (1.3%) 100%

Dataset 3 1000 27 (2.7%) 100%

Table 4

False positive results for first series of tests.

Number of files False Positives/Negatives Accuracy

3000 (FP test) 13/1 99.6%
1 The full script can be shown in Appendix A.
2 The full script can be shown in Appendix A.

T. Sloan, J. Hernandez-Castro / Digital Investigation xxx (2018) 1e7 5

Please cite this article in press as: Sloan, T., Hernandez-Castro, J., Dismantling OpenPuff PDF steganography, Digital Investigation (2018), https://
doi.org/10.1016/j.diin.2018.03.003

http://Archive.org
http://Archive.org

Impact of findings

A total of 16,000 PDF files were downloaded and examined

using our proposed distinguisher. The results of our tests along-

side other existing attacks in literature reveal an unprecedented

vulnerability in a tool that is surprisingly highly recommended.

This is the second identified case in which OpenPuff embeds

hidden data through manipulation of metadata components. This

shows that it may work in a similar fashion for other embedding

algorithms for OpenPuff. If other formats can also be attacked

using similar techniques, then any use of the tool would be

inadvisable. There appears to be a significant lack of PDF steg-

anography tools, not only in academic literature, but also gener-

ally available to the public. This may result in people hiding

sensitive information with OpenPuff, which as we have shown

can be detected. As a result, it is important to stress that this tool

should not be used in any security setting.

Conclusion

In this paper, we present the first attack against the PDF

component of the OpenPuff embedding algorithm. The high ac-

curacy of our distinguisher paired with the simplicity of the

attack raises serious concerns about the tool's security and its

true steganographic capabilities. In light of our results, we believe

that the PDF component of OpenPuff should be considered

completely broken and therefore not fit for purpose. Having

studied the way in which OpenPuff hides data over PDF files,

many similarities appear with previous results over MP4. This

leads us to believe that other methods of OpenPuff steganog-

raphy will be performed via only the most simplistic metadata

manipulations. As a consequence of this and until further

research is carried out, we strongly discourage the use of the

OpenPuff tool and dispute the author's claim that this tool is

“suitable for highly sensitive data covert transmission”.

Acknowledgments

This project has received funding from the European Union’s

Horizon 2020 research and innovation programme, under grant

agreement No.700326 (RAMSES project). The authors also want to

thank EPSRC for project EP/N024192/1, which partly supported this

work.

Appendix A. Python Implementation of OpenPuff PDF

Classifier

Table 5

Accuracy results for second series of tests.

Datasets Number of files Processed by OpenPuff (%) Detection Rate

Dataset 1 5000 56 (1.1%) 100%

Dataset 2 5000 67 (1.3%) 100%

Dataset 3 3000 12 (0.4%) 100%

Table 6

False positive results for second series of tests.

Number of files False Positives/Negatives Accuracy

13000 (FP test) 68/0 99.5%

T. Sloan, J. Hernandez-Castro / Digital Investigation xxx (2018) 1e76

Please cite this article in press as: Sloan, T., Hernandez-Castro, J., Dismantling OpenPuff PDF steganography, Digital Investigation (2018), https://
doi.org/10.1016/j.diin.2018.03.003

References

Alizadeh-Fahimeh, F., Canceill-Nicolas, N., Dabkiewicz-Sebastian, S., Vandevenne-

Diederik, D., et al., 2012. Using Steganography to Hide Messages inside PDF
Files.

AOL, 2015. Dmoz Open-content Directory. https://www.dmoz.org//. Accessed 11

April 2018.
Fridrich, J., Goljan, M., 2002. Practical steganalysis of digital images: state of the art.

In: Electronic Imaging 2002, International Society for Optics and Photonics,
pp. 1e13.

Gallagher, S., 2012. Steganography: How Al-qaeda Hid Secret Documents in a Porn
Video. www.arstechnica.com/business/2012/05/steganography-how-al-qaeda-

hid-secret-documents-in-a-porn-video/ (Accessed 19 April 2017).

Hosmer, C., 2012. Data Hiding and Steganography Report 2012. http://embeddedsw.
net/doc/OpenpuffpaperDathidingandsteganographyannualreport2012.pdf

(Accessed 11 April 2018).
Incorporated, A.S., 2006. Pdf Reference, Version 1.7, sixth ed. Online. http://www.

adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pds_reference_1e7.

pdf.
King, J.C., 2005. Adobe Introduction to the Insides of Pdf.

Lingjun, L., Liusheng, H., Wei, Y., Xinxin, Z., Zhenshan, Y., Zhili, C., 2008. Detection of
word shift steganography in pdf document. In: Proceedings of the 4th Interna-

tional Conference onSecurity and Privacy in CommunicationNetowrks, ACM, p.15.
Liu, B., Xu, E., Wang, J., Wei, Z., Xu, L., Zhao, B., Su, J., 2011. Thwarting audio steg-

anography attacks in cloud storage systems. In: Cloud and Service Computing

(CSC), 2011 International Conference on, IEEE, pp. 259e265.

Lu, P., Luo, X., Tang, Q., Shen, L., 2004. An improved sample pairs method for

detection of lsb embedding. In: International Workshop on Information Hiding.
Springer, pp. 116e127.

Oliboni C., Openpuff v4.00 steganography and watermarking, EmbeddedSW, 18/04/
2017.

P. Paganini, Hackers Used Data Exfiltration Based on Video Steganography. http://

securityaffairs.co/wordpress/30624/cyber-crime/hackers-used-data-
exfiltration-based-video-steganography.html/. (Accessed 18 April 2017).

Project, T.G., 2017. The Guardian Project. https://guardianproject.info/ (Accessed 19
April 2017).

Provos, N., Honeyman, P., 2003. Hide and seek: an introduction to steganography.
Secur. Priv. IEEE 1 (3), 32e44.

Rafat, K.F., Sher, M., 2013. Secure digital steganography for ascii text documents.

Arab. J. Sci. Eng. 38 (8), 2079e2094.
Shachtman, N., 2010. Fbi: Spies Hid Secret Messages on Public Websites. http://

www.wired.com/2010/06/alleged-spies-hid-secret-messages-on-public-
websites/.

Sloan, T., Hernandez-Castro, J., 2015. Steganalysis of openpuff through atomic

concatenation of mp4 flags. Digit. Invest. 13, 15e21.
Young, L., 2015. The Dark Side of Steganography. http://spectrum.ieee.org/tech-talk/

telecom/security/the-dark-side-of-steganography/.
Zhong, S., Cheng, X., Chen, T., 2007. Data hiding in a kind of pdf texts for secret

communication. IJ Netw. Secur. 4 (1), 17e26.

Zukerman, E., 2013. Review: Openpuff Steganography Tool Hides Confidential Data
in Plain Sight 2013. http://www.pcworld.com/product/1252470/openpuff.html

(Accessed 19 April 2017).

T. Sloan, J. Hernandez-Castro / Digital Investigation xxx (2018) 1e7 7

Please cite this article in press as: Sloan, T., Hernandez-Castro, J., Dismantling OpenPuff PDF steganography, Digital Investigation (2018), https://
doi.org/10.1016/j.diin.2018.03.003

http://refhub.elsevier.com/S1742-2876(17)30328-6/sref1
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref1
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref1
https://www.dmoz.org//
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref3
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref3
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref3
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref3
http://www.arstechnica.com/business/2012/05/steganography-how-al-qaeda-hid-secret-documents-in-a-porn-video/
http://www.arstechnica.com/business/2012/05/steganography-how-al-qaeda-hid-secret-documents-in-a-porn-video/
http://embeddedsw.net/doc/OpenpuffpaperDathidingandsteganographyannualreport2012.pdf
http://embeddedsw.net/doc/OpenpuffpaperDathidingandsteganographyannualreport2012.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pds_reference_1%5F7.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pds_reference_1%5F7.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pds_reference_1%5F7.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pds_reference_1%5F7.pdf
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref7
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref8
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref8
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref8
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref9
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref9
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref9
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref9
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref10
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref10
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref10
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref10
http://securityaffairs.co/wordpress/30624/cyber-crime/hackers-used-data-exfiltration-based-video-steganography.html/
http://securityaffairs.co/wordpress/30624/cyber-crime/hackers-used-data-exfiltration-based-video-steganography.html/
http://securityaffairs.co/wordpress/30624/cyber-crime/hackers-used-data-exfiltration-based-video-steganography.html/
https://guardianproject.info/
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref14
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref14
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref14
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref15
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref15
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref15
http://www.wired.com/2010/06/alleged-spies-hid-secret-messages-on-public-websites/
http://www.wired.com/2010/06/alleged-spies-hid-secret-messages-on-public-websites/
http://www.wired.com/2010/06/alleged-spies-hid-secret-messages-on-public-websites/
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref17
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref17
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref17
http://spectrum.ieee.org/tech-talk/telecom/security/the-dark-side-of-steganography/
http://spectrum.ieee.org/tech-talk/telecom/security/the-dark-side-of-steganography/
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref19
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref19
http://refhub.elsevier.com/S1742-2876(17)30328-6/sref19
http://www.pcworld.com/product/1252470/openpuff.html

	Dismantling OpenPuff PDF steganography
	Introduction
	Relevance of modern steganography
	Paper organisation

	OpenPuff
	OpenPuff description
	OpenPuff popularity
	Related work

	OpenPuff PDF steganography
	The PDF format

	Testing and results
	Construction of a distinguisher and estimator
	Testing
	First round of testing
	Second round of testing

	Impact of findings
	Conclusion
	Acknowledgments
	Appendix A. Python Implementation of OpenPuff PDF Classifier
	References

