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Abstract 

Global tiger Panthera tigris populations mostly survive within the geographically fragmented forest 

patches, thereby limited genetic exchange between isolated populations. Assessing the genetic status of 

these populations can reveal the effects of dispersal barriers and provide critical insights to guide future 

conservation actions. Using non-invasively collected biological samples, we investigated fine-scale 

genetic structure of tigers in the Sundarbans mangrove forests intersected by the complex river systems, 

and which holds one of the largest global tiger populations. We genotyped 52 tiger samples at 10 

polymorphic microsatellite loci, and sequenced 33 of them for a total of 1,263 base-pairs at four 

mitochondrial gene fragments. Microsatellite analyses exhibit a signature of fine-scale genetic 

structure, which might have been the consequence of limited tiger dispersal due to wide rivers across 

the Sundarbans. Similarly, mitochondrial data show a historic pattern of population isolation that might 

be due to wider rivers across the entire Sundarbans shared by Bangladesh and India. Given the intrinsic 

nature of the mangrove habitat embedded with numerous rivers, increased commercial traffic and 

human activities may further impede tiger dispersal across wide rivers, escalating further genetic 

isolation of the Sundarbans tigers.  

 

Keywords: Bangladesh; genetic structure; river impact; Sundarbans; tiger  
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Introduction 

Human-induced historic land change across Asia has transformed the once widespread forested areas 

into a series of isolated patches, threatening the survival of many forest-dependent species (Walker et 

al. 2000; Loxterman 2011). Large carnivores like the tigers can be acutely affected by such habitat 

fragmentation, which greatly restricts their genetic viability through reducing the effective population 

size in any one forest patch (Smith, 1993). Moreover, habitat fragmentation resulting in a limited tiger 

dispersal (Ewers and Didham 2005; Joshi et al. 2013) promotes the loss of genetic diversity, and 

induces genetic ‘isolation by distance’ between populations (Wright 1943; O’Brien et al. 1985; Vila et 

al. 2003; Liberg et al. 2005). Such isolated populations are highly susceptible to environmental 

stochasticity, increasing the likelihood of population extinction (Woodroffe 2000). Approximately 

4,000 individual tigers left in the world (Seidensticker, 2010) now live within isolated forest patches 

(Walston et al. 2010) across just 7% of their historic range (Sanderson et al. 2006), and have already 

lost 93% mitochondrial genetic variants (Mondol et al. 2013).  

The Sundarbans mangrove forests shared between Bangladesh and India is one of the six regional 

Tiger Conservation Landscapes (TCLs) of global priority (Sanderson et al. 2006), and supports one of 

largest populations of Bengal tigers (Barlow 2009; Dey et al. 2015; Aziz et al. 2017a). However, tigers 

in the Sundarbans have long been isolated from the nearest TCL (e.g., Similipal Tiger Reserve in West 

Bengal, India) by approximately 200 km of agricultural lands and human settlements (Sanderson et al. 

2006), thereby limiting any opportunity of gene flow between populations. The Sundarbans itself is a 

series of muddy, densely vegetated islands separated by waterways of varying widths, some of which 

may be barriers to tiger dispersal within this landscape (Naha et al. 2016). For instance, radio-collaring 

studies have revealed that tigers rarely cross the rivers wider than 400 m in India Sundarbans (Naha et 

al. 2016) as well as 600 m in Bangladesh Sundarbans (Barlow 2009), suggesting that tiger movement 

might have been compromised by wide rivers in this mangrove forests. Several studies have highlighted 

the morphological adaptation (Barlow et al. 2010) and genetic distinctiveness (Singh et al. 2015) of the 

Sundarbans tigers, however none have examined the effect of barriers on the fine-scale genetic 

structure of the population. Understanding how landscape barriers facilitate or deter gene flow is a high 

priority management need for an endangered population surviving in a changing forest habitat (Sork 

and Waits 2010).  

The objectives of this study were therefore to investigate the fine-scale genetic structure and to 

assess how rivers influencing the genetic architecture of tigers living in the Sundarbans. This study is 

the first of its kind for the Sundarbans tigers that provides useful information to guide long-term genetic 

management of this uniquely adapted tiger population.  

  

Methods 

Study area  

Of the 10,263 km2 of the world largest mangrove forest shared between Bangladesh and India (Giri et 

al. 2007), the Bangladesh part covers 6,017 km2, of which 4,267 km2 is forest and the remaining area is 

water (Iftekhar and Islam 2004). The north and east sides of the forest are bounded by dense human 

settlements and agriculture land, and to the south by the Bay of Bengal (Fig. 1). The Bangladesh 
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Sundarbans (hereafter Sundarbans) is managed as Reserve Forest, except three forest areas that have 

been designated as wildlife sanctuaries: Sundarbans West (715 km2), Sundarbans South (370 km2) and 

Sundarbans East (383 km2). 

The Sundarbans supports a relatively high species diversity compared to other mangrove forests of 

the world. For instance, previous studies have reported 330 species of plants, over 400 species of fishes, 

35 species of reptiles, more than 300 species of birds and 42 species of mammals from this habitat 

(IUCN–Bangladesh 2001; Islam and Wahab 2005). Although leopards (Panthera pardus) coexist with 

tigers in many of the Asian forest landscapes (Karanth and Sunquist 2000), the leopard however 

became extinct from the Sundarbans about a century ago (Seidensticker and Hai 1983). Currently, 

several species of small cats including fishing cat (Prionailurus viverrinus), jungle cat (Felis chaus) 

and leopard cat (Prionailurus bengalensis) are found in the Sundarbans. 

Topography of the Sundarbans is less than 1 m above the sea level (Canonizado and Hossain 1998), 

and consists of tangled region of estuaries, rivers and watercourses, enclosing a vast number of low-

lying swampy forest islands of various shapes and sizes (Prain 1979). All major rivers flow from north 

to south, which are interconnected by the east-west narrow channels of rivers and creeks (Islam and 

Wahab 2005). Three mighty rivers, namely the Arpangassia (width: 1.2-2.8 km), the Sibsa (width: 1.3-

3.4 km) and the Passur (width: 1.4-3.1 km) divide the forest into three larger isolated regions (Fig. 1). 

In addition, the rivers Raimangal (width: 1.5-2.8 km) and Harinbhanga (width: 2.9-4.4 km) mark the 

international boundary and bisect the entire forest into Bangladesh and Indian Sundarbans. Most of 

these major rivers have been used as cargo channels as well as other human activities for centuries.     

 

Sample collection 

Non-invasive biological samples (scat and hair of tigers) were collected from different areas of the 

Sundarbans, with purposive sampling from isolated forest patches separated by the rivers Arpangassia, 

Sibsa and Passur. Firstly, we intensively sampled four geographically isolated areas of the Sundarbans 

using 2×2 km sample grids (detail protocol and sampling effort were described in Aziz et al. 2017a). 

Briefly, six survey teams comprising four members in each walked on transect line in each sample grid 

whilst actively searched for suspected scats and hairs. Once a sample block was surveyed with one to 

three repeated transects, teams moved to the next sample block. Secondly, we sampled the remaining 

forest areas opportunistically, with specific focus to cover outside of these four sample blocks. We 

collected deposited scats, and hairs left in scratch marks on trees, and recorded the location of each 

sample using a handheld Global Positioning System (GPS) Garmin GPSMAP 64. During the survey, a 

total of 512 biological samples were collected (Table 1). Winter months were chosen for sampling to 

avoid extreme weather conditions (e.g., rains and tidal surges in summer), with sampling from 20 

November 2014 to 26 February 2015.   

All biological samples were transported from Bangladesh to the United Kingdom under the 

Convention on International Trade in Endangered Species (CITES) (Permit No. BD 9118404), and 

authorisation of the Department for Environment, Food and Rural Affairs, United Kingdom (AHVLA 

authorization: TARP/2015/111).  
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DNA extraction and sample screening  

DNA extraction and analyses were performed at the Conservation Genetics Laboratory of the Durrell 

Institute of Conservation and Ecology, University of Kent, UK. Two isolated laboratory spaces were 

used for analyses of all biological samples to prevent potential contamination. All scat samples were 

prepared for DNA extraction under pre-sterilized fume hood conditions in batches of 10 samples. The 

workstation was sterilized before and after each use by irradiation using UV light and cleaned using 

10% bleach. All PCR reactions were carried out in a separate laboratory under a fume hood pre-

irradiated using UV light. 

Genomic DNA from scat and hair samples was extracted using QIAamp DNA Stool mini kits and 

QIAamp DNA Blood and Tissue kits (QIAGEN Inc.), respectively, following the manufacturer’s 

instructions. Approximately 200 mg of scat material was scraped from the outer surface of each scat 

sample with a sterilized razor blade and then incubated overnight with 1.5 ml ASL buffer on a 

mechanical rotator at 56 ºC. The DNA supernatant from the sample was lysed with 300 µl AL buffer 

plus 25 µl proteinase K and incubated at 70 ºC for 15 min. Four microliters of carrier RNA 

(ThermoFisher Scientific, UK) was added to AL buffer to increase DNA yield from scat samples. To 

extract DNA from blood, tissue, and hair samples, we used DNeasy™ Blood and Tissue Kits (QIAGEN 

Inc.); approximately 10 hairs of each sample was added to 300 µl AL buffer incorporating 20 µl of 

proteinase K and 20 µl of DTT (Dithiothreitol, Biotech) and then incubated at 56 ºC overnight or until 

the sample was completely digested. The DNA was eluted in 75 µl of buffer solution. We maintained 

strict protocols to reduce the chances of contamination by using aerosol barrier pipette tips, separate pre 

and post PCR rooms and UV PCR hoods for sample preparation. A negative control (with no biological 

material) was included with each batch of extractions to monitor for possible contamination during the 

DNA extraction procedure. To confirm that scats had been deposited by tigers rather than non-target 

wild cat species, extracted DNA was screened using tiger-specific primers to amplify a 245 base-pair 

fragment (fwd TTACTAGGACTCCTCCTAGCC; rev GAATAGGGTTGTGATGGCCCC) of  the 

tiger cytochrome b gene (Mondol et al., 2009a; Mukherjee et al., 2007). In this screening process, PCR 

cycling conditions consisted of an initial hot start of 95 ºC for 1 min followed by 45 cycles of 95 °C for 

15 s, 55 °C for 15 s and 72 °C for 15 s, and a final incubation period of 10 mins at 72 °C using a G-

Storm Thermal Cycler (Labtech France). PCR reaction volumes (total 27 µl) contained 3 µl of template 

DNA, 12.5 µl MyTaq Redmix (containing dNTPs and MgCl2; Bioline, UK), 5 µM of each forward and 

reverse primer, 4 µM BSA (Bovine Serum Albumin, New England Biolabs Inc.) and 8.5 µl dH2O. PCR 

products were purified and sequenced using a 3730XL analyser (Macrogen, Amsterdam, Netherlands). 

Sequences were edited with Jalview v2 (Waterhouse et al. 2009) and then cross-checked and aligned 

with sequences from the GenBank database (National Center for Biotechnology Information, NCBI) to 

confirm species identity for each sample prior to downstream genotyping analysis. 

 

Microsatellite genotyping and individual identification  

Microsatellite markers (repeated sequence of nucleotides) are commonly used to investigate genetic 

structure (Mondol et al. 2009b; Reddy et al. 2012), spatial genetics (Sharma et al. 2012), and genetic 

connectivity between tiger populations (Joshi et al. 2013). In this study, we used a panel of 10 

microsatellites from a set of 14 optimised polymorphic loci (Aziz et al. 2017a), to amplify tiger-
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authenticated DNA samples (Table S1). Four multiplexes were designed to include the full set of loci. 

All forward primers were fluorescently labelled for gene-scanning (Table S1). Each microsatellite PCR 

reaction volume (10 µl) contained 3 µl of DNA template, 5 µl Qiagen multiplex PCR buffer mix 

(Qiagen Inc.), 0.2 µM forward primer, 0.2 µM reverse primer (Eurofins Genomics), and 2 µM BSA. 

For all multiplex reactions, the PCR temperature regime included an initial denaturation step for 15 min 

at 95 °C with 45 cycles of denaturation (94 °C for 30 s), annealing (Ta ranges from 52 °C to 57 °C for 

90 s for four multiplexes; details in Table 2), extension (72 °C for 90 s), and a final extension of 10 

mins at 72 °C, using a G-Storm Thermal Cycler. All PCR products were genotyped using an Applied 

Biosystems 3730 DNA Analyser and ROX 500 ROX™ as the size-standard. Alleles were identified and 

scored using GENEMAPPER v3.7 (Applied Biosystems, MA, USA). We employed the comparative 

genotyping approach (Frantz et al. 2003; Hansen et al. 2008) by ensuring that equivalent 

heterozygote genotype profiles were scored at least twice and corresponding homozygote genotypes 

at least three times (up to a maximum of five) for each sample. This approach ensured a level of 

rigour in resolving the true genotype and was less laborious and more cost-effective than the multiple 

tube approach (Taberlet et al. 1997). A consensus genotype was achieved if genotypes matched 100% 

at all loci in at least three repeats. Any samples that could not be scored consistently across amplifiable 

loci in the repeated genotype profiles were removed from the analysis (Jackson et al. 2016).  

We used CERVUS V3.0 (Marshall et al. 1998) to identify unique or recaptured genotypes from 

pooled samples. A detailed procedure of individual identification can be found in Aziz et al. (2017a). In 

short, matching genotypes based on five or more loci were considered to be sourced from the same 

individual (Mondol et al. 2009a). Incomplete or partial genotype profiles amplified at a minimum of 

five of the 10 loci set were also used to identify unique and recaptured individuals following the 

approaches of previous studies in tigers (Bhagavatula and Singh 2006; Mondol et al. 2009a), and 

badgers (Frantz et al. 2003). 

We used MICROCHECKER v2.2.3 (van Oosterhout et al. 2004) to check genotyping errors due to 

stuttering (e.g., incorrect repeats, typographic errors). Allele frequencies, observed (Ho) and expected 

(He) heterozygosity, allelic dropout and false alleles were estimated using GIMLET V1.3.3 (Valiere 

2002). Linkage disequilibrium and departure from Hardy-Weinberg equilibrium (HWE) were tested in 

GENEPOP v4.2 (Raymond and Rousset 1995).   

 

Mitochondrial DNA sequencing 

Variable mitochondrial gene fragments are commonly used in investigating phylogenetic relationship 

(Luo et al. 2004) as well as genetic status of tigers (Mondol et al. 2009b). To generate mitochondrial 

DNA dataset from tiger-authenticated DNA samples, a total of nine primer sets (optimised from 

Mondol et al. 2009b; Table S2) were used to amplify four gene fragments: control region (CR), 

cytochrome b (cyt b), NADH dehydrogenase subunits 2 (ND2), and NADH dehydrogenase subunits 5 

(ND5). These four fragments were chosen primarily because these genes showed sufficient variability 

across tiger populations (Luo et al. 2004; Mondol et al. 2009b), which also allowed us to compare our 

sequence data with these studies. To amplify DNA fragments, PCR reactions were conducted in 27 µl 

reaction volumes which contained 3 µl template DNA, 12.5 µl MyTaq Redmix (Bioline), 5 µM of each 

primer, and 10.5 µl of dH2O. PCR amplification was performed using a G-Storm Thermal Cycler 
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(Labtech France). The PCR profile comprised of initial denaturation (95 °C for 1 m); 45 cycles of 

denaturation (95 °C for 30 s), annealing (Ta for 15 s), extension (72 °C for 30 s) and a final extension 

phase (72 °C for 10 m). All amplicons were examined by agarose gel electrophoresis to check for a 

clean single band and to check for any signs of contamination. PCR products were purified and 

amplified using a 3730xl analyser (Macrogen, Amsterdam, Netherlands).  

 

Fine-scale genetic structure analysis 

We used Bayesian clustering approach to assess the fine-scale genetic structure in the program 

STRUCTURE v2.3.4 (Pritchard et al. 2000). The STRUCTURE determines the most likely number of 

genetic clusters (K) by assigning each individual tiger to the most likely clusters using multiple Markov 

Chain Monte Carlo (MCMC) algorithms for multilocus genotypes. The STRUCTURE was run with 

admixture and correlated allele frequency models (Falush et al. 2003), using an initial burn-in length of 

20,000 followed by a total run length of 500,000 iterations (Pritchard et al. 2000). The admixture model 

assumes that individuals can be of mixed ancestry, and is thus more suitable to studying populations 

that are harder to split into arbitrary predefined populations. Ten independent runs were performed, 

each time inferring the number of genetically distinct clusters (K = 1-10), in order to verify that the 

estimates are consistent across the runs (Pritchard et al. 2000). Posterior likelihood values for the most 

likely K and ∆K were evaluated following the Evanno method (Earl and VonHoldt 2012) in STRUCTURE 

HARVESTER (Evanno et al. 2005; Earl and VonHoldt 2012), and averages for the proportions of 

individual assignment for the 10 independent runs were estimated using CLUMPP v1.1.2 (Jakobsson and 

Rosenberg 2007). The proportion of individuals assigned to each cluster was then graphically displayed 

using POPHELPER (Francis 2017) and geographically plotted with ArcGIS v10.3 to denote clustered 

individuals across the Sundarbans landscape. 

The GENELAND v1.0.7 using geo-referenced multilocus genotypes of sampled individuals was 

applied to infer and locate genetic discontinuities between tiger populations within the domain of the 

Sundarbans (Guillot et al. 2005b) which further improve the STRUCTURE inferences. In GENELAND, we 

processed all parameters including K simultaneously by the MCMC algorithm following 

recommendations of Guillot et al. (2005a). We followed two steps to run the algorithm: a first run to 

infer K, and a second run with K fixed at the previously inferred value to estimate other parameters 

(individual assignment to the inferred populations). The first step was replicated 10 times to check for 

convergence, allowing K to vary between 1and 10 clusters. The parameters set for the run were 5 ×105 

MCMC iterations, maximum rate of Poisson process fixed to 500, maximum number of nuclei in the 

Poisson-Voronoi tessellation fixed to 200, and with true spatial coordinates. The Dirichlet model was 

used for its better performance than the alternative model (Guillot et al. 2005a). We then inferred the 

number of population clusters from the modal K of these 10 runs, and ran the MCMC 100 times with K 

fixed to this number, and other parameters similar to the runs with variable K. We calculated the mean 

logarithm of posterior probability for each of the 100 runs, and selected the 10 runs with the highest 

values. The posterior probability of population membership for each pixel of the spatial domain was 

computed for each of these 10 runs (with a burn-in of 5 ×104 iterations). The number of pixels was set 

to 900 pixels along the X axis and 750 along the Y axis, to avoid having two individuals in the same 
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pixel. We then computed the posterior probability of population membership for each individual within 

the spatial domain. We finally checked the consistency of results across these 10 runs.  

 

Spatial genetic structure analysis  

We investigated spatial genetic structure, i.e., isolation by distance by autocorrelation analyses that 

reveals the level of variations of genetic distance as a function of geographic distance (Peakall et al. 

2003; Guillot et al. 2005a; Peakall and Smouse 2012). This multivariate spatial analysis aids in 

understanding the fine-scale genetic structure generated by multiple loci on spatial scale (Peakall et al. 

2003). First, a linear pairwise geographic distance was calculated as the Euclidean geographic distance 

between geographic locations of all sampled tigers. Then a pairwise squared genetic distance was 

calculated using the microsatellite genotype data. These two distance matrices were then used to 

estimate a spatial autocorrelation coefficient (r), bounded by -1, +1, which is a measure of the genetic 

similarity between pairs of individuals whose geographic separation falls within the specified distance 

classes (Smouse and Peakall 1999). These distance classes were determined in the program GenAlEx 

v6.5 using default setting (Smouse and Peakall 1999; Peakall and Smouse 2012), which created 11 

geographic distance classes with 8 km interval between the minimum and maximum sample distances. 

A test for statistical significance was conducted by 9,999 random permutations to create a 95% 

confidence interval around a null hypothesis of ‘no spatial genetic structure’ (r = 0), and 9,999 

bootstrap resampling to create a 95% confidence interval around the mean estimate of r.    

To complement the spatial autocorrelation analysis, a Mantel test was performed using the pairwise 

geographic and genetic distances (Mantel 1967; Smouse and Peakall 1999). The Mantel test was carried 

out with 9,999 permutations to test for statistical significance of the correlation coefficient (r) between 

the geographic and genetic distances, with a significant correlation being indicative of spatial genetic 

structure exists in the sampled population (Mantel 1967; Smouse et al. 1986). The spatial genetic 

autocorrelation, and Mantel test analyses were performed using the software package GenAlEx v6.5 

(Peakall and Smouse 2012).  

 

Phylogenetic structure analysis 

The sequenced datasets of four mitochondrial gene fragments were edited and aligned in Jalview v2 

(Waterhouse et al. 2009), and concatenated into a complete dataset in SEQUENCEMATRIX (Vaidya et al. 

2011). To assess phylogenetic relationships between tiger populations of Bangladesh and Indian 

Sundarbans, previously reported haplotype sequence data (TIG23 and TIG 29; Mondol et al., 2009b) 

were obtained from GenBank (https://www.ncbi.nlm.nih.gov/genbank/; accession number for TIG23: 

EU661642 and TIG29: EU661648), and added to our concatenated sequence dataset. A median joining 

haplotype network was constructed in the program PopART v1.7 (http://popart.otago.ac.nz) to 

demonstrate evolutionary relationship of tiger population in the Sundarbans.  
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Results 

Genetic diversity  

We utilized 53 individual tiger samples from a total of 125 samples that yielded genotype profiles for a 

minimum of five to 10 microsatellite loci. The mean proportion of loci typed was 87% across the 

dataset, with a mean polymorphic information content (PIC) of 0.64. All loci were polymorphic with a 

mean number of alleles of 5.50 ± SD 1.65 per locus. The overall expected heterozygosity (He) and 

observed heterozygosity (Ho) were 0.68 ± SD 0.04 and 0.37 ± SD 0.02, respectively. This result 

indicates that the tiger population in the Sundarbans might have lost some levels of genetic diversity. 

Several loci exhibit significant deviations from Hardy-Weinberg equilibrium (HWE) but no linkage 

disequilibrium was found between loci pairs (Table 2). Data available from the Dryad Digital 

Repository: https://doi.org/10.5061/dryad.3f1647m. 

 

Fine-scale genetic structure  

The model-based clustering technique implemented in STRUCTURE suggested three ancestral gene 

clusters within the tiger population of the Bangladesh Sundarbans (K = 3, where K is the number of 

genetic population cluster) (Fig. 2, 3). The STRUCTURE also detected another peak at K = 7, indicating a 

possibility of further fine-scale genetic structure within the population (Fig. 2, 3). At K = 3, the cluster 1 

(red) included the highest (40%) number of individuals predominantly distributed to the western part of 

the river Arpangassia. The estimated probability (q) of individual membership was higher for this 

cluster, ranging from 0.495 to 0.969, with q > 0.817 for 71% individuals. The population cluster 2 

(blue) and cluster 3 (cyan) containing 32% and 28% of individuals respectively were distributed to the 

regions between Arpangassia and Sibsa, and Sibsa and Baleshwar rivers respectively. The estimated 

probability of individual membership to the cluster 2 (q = 0.429-0.712) and cluster 3 (q = 0.372-0.716) 

showed relatively higher amount of shared alleles among the populations across eastern regions of the 

Arpangassia (Fig. 4). With regard to the clusters at K = 7, the estimated probability of individual 

membership was unevenly distributed, specific to several clines in the remote southeast islands, lending 

additional support for subtle genetic structure within the population. 

The spatial model-based clustering technique implemented in the GENELAND resulted in an 

interesting genetic structure at K = 7, corresponding to the fine-scale genetic patterns detected at 

STRUCTURE analysis. The distribution of membership coefficients across the sampled population has 

revealed six genetics clusters containing majority of sampled populations, alongside the seventh ‘ghost 

cluster’.  Specifically, the cluster a (Dobeki; denoted by location name; Fig. 1, 5) contained individuals 

with high membership coefficients distributed principally between Kalagachhia and Jamuna rivers on 

the east of the Arpangassia river. Similarly, the genetic cluster b (Supati) was located in the further east 

of the Passur river; the cluster c (Notabeki) between Mahmuda and Raimongal rivers; the cluster d 

(Hangsha Raj) between Passur and Sibsa rivers; the cluster e (Harbaria) between Sibsa and Passur 

rivers, and the cluster f (Haldibunia) between Harinbhanga and Raimongal rivers (Fig. 1, 5). The 

distribution of membership coefficients was higher for the clusters Supati, Hangsha Raj, Notabeki and 

Haldibunia than the Passur and Dobeki. The seventh cluster did not contain any individuals, therefore 

considered as a ghost cluster.  

https://doi.org/10.5061/dryad.3f1647m
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Spatial genetic structure 

Genetic isolation by distance analysis exhibited a pattern of genetic differentiation with increase of 

geographic distances. Analysis showed that distance between genotypes as a function of genetic 

correlation was significantly positive from zero to 24 km (r = 0.038, p = 0.002) whilst significantly 

negative (r = -0.044, p = 0.002) from 72 km onwards (Fig. 6). Similarly, the Mantel test with pairwise 

geographic and pairwise genetic distance revealed a significant positive relationship (r = 0.161, p = 

0.01), indicating significant genetic differentiation in relation to geographic distance (Fig. 7). Both of 

these tests showed a reasonable decline of genetic similarity among individuals living further apart, 

however this pattern is unusual for the highly dispersal animals such as tigers. 

 

Phylogenetic structure 

We detected two haplotypes (denoted as SBT1 and SBT2) from concatenated sequences of four 

mitochondrial genes comprising 1263 base-pairs from 33 tiger samples (Fig. 8). Sixty four percent 

samples contained haplotype SBT2 while 36% the SBT1. Remarkably 90% sampled individuals in the 

western region of the Arpangassia carried the haplotype SBT1, suggesting a clear distinct pattern of 

historical isolation of these individuals from the remaining populations. Conversely, 80%, 67%, and 

94% individuals in the eastern regions of the Arpangassia, Sibsa and Passur respectively shared the 

haplotype SBT2. The overall haplotype distribution clearly showed a gradient that distinguishes tigers 

in the western region of the Arpangassia from the rest of the Sundarbans (Fig. 8a). These two 

haplotypes have been submitted to Genbank with accession numbers MH427526-MH427533.  

The haplotypes reported from the Indian Sundarbans (Mondol et al. 2009b) and this study revealed 

that there are three haplotypes within the entire tiger population of the Sundarbans. Interestingly, the 

haplotype SBT1 was identical to the haplotype TIG29 reported by Mondol et al. (2009b) from the 

Indian Sundarbans. Therefore the haplotype SBT2 is unique to the Bangladesh Sundarbans while the 

haplotype TIG23 to the Indian Sundarbans (Fig. 8b). 

 

Discussion 

Genetic diversity 

Overall a low level of genetic diversity was found in the Sundarbans tiger population compared to the 

populations in the Indian landscapes. For example, the mean number of alleles observed in this study 

(5.50) is reasonably lower than reported for Northeast India (6.61; n=15; Borthakur et al. 2013).  

Similarly, the observed heterozygosity in the tiger population of the Bangladesh Sundarbans (Ho = 

0.37) is also lower than the tiger population in the Indian Sundarbans (Ho = 0.49; n=13; Singh et al., 

2015) and Northeast India (Ho = 0.47; n=15; Borthakur et al. 2013). The overall lower levels of allele 

diversity and heterozygosity in the Sundarbans population could be attributed to the fact that this 

population has long been isolated from the nearest tiger populations of Similipal tiger reserve in West 

Bengal of India, thereby completely wiped out any chance of gene flow between the populations. 

Moreover, it has been shown that habitat fragmentation limits population connectivity (Frankham 1996) 

that reduces genetic diversity and increases population differentiation (Johansson et al. 2007; Dixo et al. 

2009). Furthermore, the lower level of genetic diversity might be linked to limited connectivity between 
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locally isolated populations created by large river systems within the Sundarbans. Of note, it is not 

unlikely that the observed differences could also be due to the differences in sample area, nuclear 

markers and size of sample used in these studies (Borthakur et al. 2013; Singh et al. 2015).  

 

Fine-scale genetic structure  

The genetically most distinct population cluster exists in the western regions of the Arpangassia river, 

suggesting that a fine-scale genetic structure has been developed within tiger population of the 

Sundarbans. With regard to the three genetic clusters (K = 3) detected by the STRUCTURE, a stronger 

population genetic differentiation was revealed in the western part of the Arpangassia rivers from the 

remaining tiger populations. Although the analysis of the posterior likelihood values in Evano 

procedure suggesting K = 3 as the most reliable genetic clusters for the tiger population (Pritchard et al. 

2000), a subtle signal for substructure also appeared at K = 7. Overall individual membership 

probabilities to the population cluster 2 and cluster 3 showed a moderate level of shared alleles between 

the rivers Sibsa and Passur, whilst the population in the western region of Arpangassia river retained 

the lower level of shared alleles with the rest of the populations. Although STRUCTURE has failed to 

detect genetic evidences for stronger population isolation between Sibsa and Passur rivers, some level 

of gene flow might have been maintained between these populations.  However, the weaker genetic 

structure in these regions could be linked to limited number of samples (n=3) obtained from the area 

between Sibsa and Passur rivers, and relatively low level of polymorphic markers used (5.5 

alleles/locus) compared to other studies (Oyler-McCance et al. 2012; Yumnam et al. 2014). In regard to 

the substructure at K = 7, it is not entirely unlikely that the cryptic genetic substructures might already 

have developed within the population because of isolated forest islands due to hundreds of rivers. This 

finding was further corroborated by the results of GENELAND which detected cryptic genetic signature 

for the Sundarbans populations. Therefore, all  six genetic clusters detected in the GENELAND might not 

be unexpected as these clusters have been widely distributed as well as isolated by rivers having high 

(1.2-4.4 km) and moderate (>1 km) widths (Fig. 1, 5). Specifically, the cluster Supati, Hangsha Raj, 

Notabeki and Haldibunia showed a profound genetic structure than the Passur and Dobeki. This pattern 

of genetic clustering could be explained by the river systems as such that these four distinct genetic 

clusters (Supati, Hangsha Raj, Notabeki and Haldibunia) are separated by rivers laid at north-south 

direction. Conversely the latter two clusters (Dobeki and Passur) are within the same spatial domain 

between wide rivers (Fig. 1). This further suggests that wider rivers might be precluding tiger dispersal 

from east to west and vice-versa whilst the north-south movement might not have been restrained to 

that extent. It is understood that in GENELAND, the ghost cluster, with no individuals assigned, is not 

uncommon but is a poorly understood phenomenon (Guillot et al. 2005b) which however could be 

linked to heterogeneous sample distribution (Fontaine et al. 2007).   

A recent study using GPS-Satellite and VHS radio-collars fitted to three male and three female 

tigers in the Indian Sundarbans found that tigers rarely cross the rivers greater than 400 m (Naha et al. 

2016) as well as 600 m wide (Barlow 2009). Therefore, we reasonably expect that the tiger population 

of the Sundarbans would have developed a fine-scale genetic structure.  

The genetic connectivity between tiger populations across Indian landscapes has been hampered by 

human-induced landscape features such as human density, intensity of roads and human habitations 
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(Joshi et al. 2013; Yumnam et al. 2014), fortunately no such landscape barriers yet exist in the 

Sundarbans mangrove forests. Therefore, in the absence of other landscape barriers in the Sundarbans, 

the wider rivers might have been the effective barrier to genetic exchange between locally colonised 

tiger populations within the forest islands. Several studies have detected profound influence of rivers on 

genetic structure of a range of species in the Amazon where rivers are particularly wide enough to be an 

efficient barrier (Lougheed et al. 1999; Moritz et al. 2000; Hayes and Sewlal 2004). In particular, rivers 

influenced fine-scale genetic structure in the mammalian carnivore of Stone marten, Martes foina 

(Basto et al. 2016), strictly limited gene flow in primates (Pastorini et al. 2003; Goodman and Ganzhorn 

2004; Gehring et al. 2012), Raccoon, Procyon lotor (Cullingham et al. 2009), and White-tailed deer, 

Odocoileus virginianus (Blanchong et al. 2008). However, the higher resolution of distinct genetic 

clusters in the entire Sundarbans population could be obtained using reasonable number of samples 

from each region separated by major rivers (overall sample size >200) and use of highly polymorphic 

loci (10 alleles/locus) (Oyler-McCance et al. 2012). 

 

Spatial genetic structure 

The autocorrelation analysis detected a pattern of fine-scale genetic structure within the population with 

positive correlations at smaller geographic distances, however with significance negative correlation 

beyond 72 km. This result indicates that the patterns of gene flow are not homogeneous due to natural 

(e.g., rivers) or human-induced barriers which partitions the Sundarbans habitat into discrete forest 

patches (Mona et al. 2014). This result further endorses the findings of fine-scale population genetic 

structure and phylogenetic clines detected within the population. It is generally expected that genetic 

distance increases linearly with the geographic distance in a continuously distributed population 

(Rousset 2000), however which may not be the case if gene flow is restricted within a population 

(Johansson et al. 2007; Dixo et al. 2009). The significantly negative genetic relatedness beyond 72 km 

is inconsistent whilst tiger is a long dispersal carnivore, and there are evidences that tiger are able to 

maintain reasonable genetic connectivity between populations (Sharma et al. 2012; Joshi et al. 2013). 

Therefore spatial genetic structure could have been developed within this population due to restrictive 

gene flow owing to limited dispersal between landscapes separated by wider rivers (Sokal and 

Wartenberg 1983; Epperson 1990; Naha et al. 2016). The influence of rivers and watersheds in 

developing spatial genetic structure were documented in a range of species including cetaceans 

(Fontaine et al. 2007), Sitka black-tailed deer, Odocoileus hemionus sitkensis (Colson et al. 2013), and 

Red foxes, Vulpes vulpes (Kirschning et al. 2007).  

 
Phylogenetic structure   

Spatial distribution of haplotypes in the Bangladesh Sundarbans shows a distinct pattern from west to 

east with a remarkably higher frequency of haplotype SBT1 on western side of the Arpangassia than the 

eastern regions. This trend is also aligned to the genetic structure demonstrated by the microsatellite 

data. The distribution of detected haplotypes suggests that the Arpangassia might have been a historical 

dispersal barrier in developing genetic clines within tiger populations. Similarly, the spatial distribution 

of three haplotypes within the entire tiger population displayed an interesting gradient, where the 

common haplotype shared between Bangladesh and Indian populations was surprisingly detected in the 
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western region of the Arpangassia; while the haplotype in the Bangladesh Sundarbans was 

predominantly distributed between Sibsa and Passur. This result clearly suggests that tiger population in 

the further eastern regions between Sibsa and Passur are phylogenetically divergent from the Indian 

Sundarbans, which might be due to the Raimangal and Harinbhanga rivers being significant dispersal 

barrier across the international border.  

 

Conservation implications 

Habitat connectivity is fundamental to sustaining regional tiger populations that allow normal dispersal 

thereby gene flow (Smith 1993). The Sundarbans tigers have been completely isolated from nearby 

populations by settlement and agriculture landscapes, removing any chance of future genetic exchange 

that is vital to long-term persistence of the population. Consequently, the immediate conservation effort 

should focus on increasing the tiger population size up to the carrying capacity to ensure a genetically 

viable population in the Sundarbans. This would require to curb direct poaching of tigers and their 

major prey animals, in addition to improving the quality of habitat that can support sufficient prey base 

for tigers (Aziz et al. 2017b).  

Microsatellite and mitochondrial data shows that the rivers might have been the major contributing 

factor to the genetic architecture of tigers in the Sundarbans, so ensuring population connectivity across 

wider rivers is vital to prevent further genetic differentiation. Although human activities were not 

incorporated into this analysis, similar studies in the Indian landscapes revealed that human density 

could significantly limit tiger dispersal between populations (Joshi et al. 2013; Yumnam et al. 2014). 

Therefore the future tiger management effort in the Sundarbans should aim to reduce the intensity of 

human activities (e.g., regulation of cargo movement at night and control of loud whistle from the 

vessels) across wider rivers to facilitate normal dispersal of tigers. Given the historical genetic clines 

detected within the populations between Bangladesh and Indian Sundarbans, tigers in the entire 

Sundarbans should be managed as a single population disregarding the political boundary.   
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Figure captions 
 

Fig. 1 The Bangladesh Sundarbans showing sampling locations and regions separated by the major 
rivers.  

Fig. 2  Plot of (A) mean likelihood L(K); (B) rate of change of the likelihood distribution of mean; (C) 
absolute value of second order rate of change of the likelihood distribution of mean, with variance per 
K value from the STRUCTURE on a dataset containing 53 individuals genotyped at 10 microsatellite loci. 
Evanno method (D) detected ∆K values indicating the higher probability of number of K, that best fit 
the data. Here, three clusters are clearly detected, with the next higher ∆K at K=7.  

Fig. 3 Genetic structure of tiger population showing in the bar plot from STRUCTURE at K = 2, K = 3, K 
= 4 and K=7 for 53 individuals typed at 10 microsatellite loci. Each bar represents one individual, 
where colouration corresponds to the percentage of genotype shared with the respective cluster. For 
instance, at K = 3, red colour corresponds to the tiger population cluster 1 on the western side of the 
river Arpangasia whilst the cyan denotes the population cluster 2 between the rivers Arpangasia and 
Sibsa and the blue denotes the population cluster 3 between the rivers Sibsa and Baleshwar.    

Fig. 4 Geographical representation of the assignment probabilities for 53 tiger samples typed at 10 
microsatellite loci to each of the clusters, proportional to the colour of each pie chart: (a) K = 2, (b) K = 
3, and (c) K = 7. The placement of each pie chart indicates the sample location. Note that a distinct 
pattern of spatial genetic structure of tigers appeared in all clustered K across the western regions of the 
Sundarbans.  

Fig. 5 Maps of GENELAND individual assignments to K = 7 clusters for 53 individuals typed at 10 
microsatellite loci. The six plots represent the assignment of pixels to each cluster: cluster a (Dobeki) 
between Kalagachhia and Jamuna rivers on the east of the Arpangassia river; cluster b (Supati) located 
in the further east of the Passur river; cluster c (Notabeki) between Jamuna-Mahmuda and Raimongal 
rivers; cluster d (Hangsha Raj) between Passur and Sibsa rivers; cluster e (Harbaria) between Sibsa and 
Passur rivers, and cluster f (Haldibunia) between Harinbhanga and Raimongal rivers. The assignments 
of pixels to the seventh cluster were not shown, as no individuals were assigned to it ("ghost cluster", 
see text for details). The plot is based on the highest-probability run at that value of K. The highest 
membership values are in light yellow and the level curves illustrate the spatial changes in assignment 
values.    

Fig. 6 The spatial autocorrelation at various distance classes for 53 tiger samples of the Sundarbans 
genotyped at 10 microsatellite loci. The correlograms showing genetic correlation, r as a function of 
distance, with 95% CI about the null hypothesis of a random distribution of genotypes, and 95% 
confidence error bars around r as determined by bootstrap resampling.  

Fig. 7 The diagram showing the results of Mantel test between pairwise geographic and genetic 
distance matrices, with test of significance by permutation. The dots represent the permuted tiger 
samples, with regression line indicating the level of genetic differentiation over geographic distances.  

Fig. 8 Distribution of haplotypes identified in 33 tiger samples for 1,263 base pairs sequences across 
the (a) Bangladesh Sundarbans, and (b) the entire Sundarbans, using data from Mondol et al. (2009b) 
for Indian Sundarbans. Two haplotypes were shown in inset with sample sizes of SBT1 (n = 12) and 
SBT2 (n = 21). Note that sample locations for Mondol et al. (2009b) are approximate. 
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Table 1 Sample area and number of samples used in this study 

Sample area 
Area 

(Km2) Protection status 
Samples 
collected 

Samples 
screened 

Samples 
genotyped 

Satkhira block 342 Reserve forest 77 30 15 
West wildlife 
sanctuary 

715 
Protected area 152 82 33 

Chandpai block 544 Reserve forest 127 74 33 
East wildlife 
sanctuary 

383 
Protected area 84 44 24 

Opportunistic 
sample 

 -- 
Both types 72 35 20 

 

 



 1 

 
 
Table 2 Characteristics of microsatellite loci used: locus name, number of allele (A), observed heterozygosity (Ho), expected heterozygosity (He), polymorphic information 
content (PIC), null allele (NA), allelic dropout (AD), False allele (FA), Hardy-Weinberg Equilibrium (HWE), and the probability of identity for siblings (PIDsibs) at 10 
microsatellites for 53 individuals  
 

Locus name A Ho He PIC NA AD FA HWE PID(sibs) 
Fca304 4 0.35 0.71 0.65 0.33 0.00 0.11 No 9.77E-03 

Fca126 5 0.18 0.69 0.62 0.48 0.00 0.02 No 1.91E-03 

F41 5 0.61 0.65 0.58 0.02 0.00 0.40 Yes 9.10E-04 

Fca230 9 0.13 0.70 0.66 0.37 0.00 0.14 No 4.26E-03 

E7 4 0.30 0.45 0.38 0.19 0.00 0.10 Yes 3.00E-04 

Fca279 7 0.62 0.81 0.77 0.13 0.16 0.00 Yes 3.67E-01 

D15 4 0.49 0.74 0.68 0.20 0.11 0.00 Yes 2.25E-02 

Fca43 5 0.44 0.58 0.50 0.11 0.00 0.13 Yes 4.80E-04 

Fca90 5 0.34 0.79 0.75 0.39 0.00 0.12 No 1.40E-01 

Fca672 7 0.28 0.78 0.74 0.47 0.34 0.00 No 5.43E-02 

 

 

 

 

 

 


