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Abstract—In this paper we introduce a new algorithm, called
Ant-Miner-RegMA to tackle the regression problem using an
archive-based pheromone model. Existing regression algorithms
handle continuous attribute using a discretisation procedure,
either in a preprocessing stage or during rule creation. Using an
archive as a pheromone model, inspired by the ACO for Mixed-
Variable (ACOMV), we eliminate the need for a discretisation
procedure. We compare the proposed Ant-Miner-RegMA against
Ant-Miner-Reg, an ACO-based regression algorithm that uses
a dynamic discretisation procedure, inspired on M5 algorithm,
during rule construction process. Our results show that Ant-
Miner-RegMA achieved a significant improvement in the relative
root mean square error of the models created, overcoming the
limitations of the dynamic discretisation procedure.

I. INTRODUCTION

Data mining is the automated process of extracting useful

and usable patterns from data [1]. The field of data mining

comprises of a number of tasks which can be roughly divided

into descriptive tasks (e.g., association rule mining, clustering)

and predictive tasks (e.g., regression, classification). In this

paper we will focus on the task of discovering regression

rules. The regression task involves the creation of a model

that predicts a continuous dependent attribute based on a

number of independent attributes or regressors. Unlike the

classification task, which aims to predict the value of a nominal

dependent variable (i.e., a variable that has a number of

predefined categories), regression aims to predict a continuous

value with no predefined categories or boundaries. Similarly to

classification rules, regression rules can be represented using

the form IF-THEN, where the antecedent of the rule repre-

sented by IF contains logical tests involving the independent

attributes, while the THEN is the consequent of the rule and

makes the rules prediction if the tests in the antecedent are

satisfied. When combined as a list, regression rules provide a

comprehensible prediction model.

Ant Colony Optimization (ACO) [2] has been adapted to

solve data mining problems such as classification, clustering

and regression. In most cases, these approaches use a graph-

based pheromone model, which is used to guide the ants

in a discrete search space. The solution components of the

problem are represented by nodes of a graph and ants traverse

this graph to produce a solution. Most data mining problems

contains continuous attributes, therefore these approaches have

to be adapted to handle continuous attributes. The majority of

ACO-based algorithms that handle continuous attributes use a

discretisation procedure which take place in a preprocessing

stage or during rule creation.

Recently, Laio et al. [3] proposed a new approach for

ACO-based algorithms to handle mixed variable (continu-

ous, ordinal and discrete) optimisation problems, called Ant

Colony Optimization for Mixed Variable (ACOMV). ACOMV

replaces the graph-based pheromone model with an archive-

based pheromone model to guide ants in mixed variables

search space using different sampling strategies according to

the variable type. Helal and Otero [4], [5] presented the first

data mining approach, to the best of our knowledge, that used

an archive-based pheromone model instead of a graph-based

pheromone model for classification problem.

Brookhouse and Otero [6] have successfully used an ACO-

based algorithm, called Ant-Miner-Reg, to create regression

rules. Ant-Miner-Reg uses a sequential covering strategy to

create a rule list using an ACO rule creation procedure with a

graph-based pheromone model. Ant-Miner-Reg uses a M5 [7]

inspired dynamic discretisation procedure to handle continu-

ous attributes during the rule creation rather than requiring

the discretisation of continuous values as a pre-processing

step. Ant-Miner-Reg significantly outperformed SeCoReg [8],

a greedy sequential covering algorithm, without increasing the

average number of terms required to classify an instance.

In this paper we propose the use of an archive-based

pheromone model to better handle continuous values in regres-

sion problems. By incorporating a similar strategy as ACOMV,

different attributes types (categorical and continuous) can be

handled directly, without requiring a discretisation procedure.

We compared our proposed algorithm against Ant-Miner-Reg

in nineteen publicly available datasets and used the Wilcoxon

signed-rank test to determine the significance between the

difference in performance.

The remainder of this paper is organised as follows. We

begin by reviewing the literature of existing regression algo-

rithms, archive-based ACO algorithms, and Ant-Miner-Reg in

Section II. Section III present our proposed Ant-Miner-RegMA

algorithm. The computational results are presented in Section

IV, and finally conclusion and direction for future work are

discussed in Section V.



II. BACKGROUND

There are three main areas of related work, existing regres-

sion rule learners, the existing archive-based ACO algorithms,

and the existing ACO-based algorithm for regression Ant-

Miner-Reg.

Conventional regression models take the form of linear and

non-parametric equations [9], however, we will be focusing on

regression rule learners. One of the classical regression rule

learners is M5’ Rules [10] which builds on the model tree

learner M5 [7]. M5’ Rules uses sequential covering to build a

list of rules, each iteration of the sequential covering algorithm

produces a complete M5 tree which is then flattened into rules

and the best rule generated is added to the partial rule list. M5

uses an interesting strategy to cope with continuous attributes:

it chooses the split points in its dynamic discretisation step

by trying to maximise the expected error reduction. In this

case the error is considered to be the standard deviation of the

dependent attribute in the generated subsets.

Before Ant-Miner-Reg, the only known swarm intelligence

rule miner was Minnaert and Martens’ PSOminer [11]. Like

M5’ Rules, PSOminer uses a sequential covering strategy to

generate a rule list however instead of using M5 as the rule

generating procedure, a Particle Swarm Optimisation (PSO) is

used. The attributes in a dataset are encoded onto a particle as

the particles position in the attribute space. PSOminer showed

promising initial results however its development was not

continued.

Ant Colony Optimization has been successfully used to

generate classification rules, most notably Ant-Miner [12] and

the suite of algorithms developed as extensions to the original.

While the majority use a graph-based model, an archive-based

model has been successful in creating classification rules.

Ant-MinerMA proposed by Helal and Otero [4] is the first

Ant-Miner classification algorithm to use an archive-based

pheromone model instead of a graph-based pheromone model

to the best of our knowledge. The archive was used to

sample conditions to create rules, instead of ants traversing a

construction graph. This approach showed competitive results

compared to cAnt-Miner, a graph-based ACO classification

algorithm. The archive-based pheromone model significantly

improved the runtime, since it eliminated the need for a dis-

cretisation procedure. cAnt-Miner uses a Minimum Descrip-

tion Length (MDL) procedure as a discretisation procedure,

which is proposed by Otero et al. [13]. The MDL procedure

was used to find the best possible split point, with respect to

the class value of the rule. This process became expensive

in terms of runtime when the number of instances available

increased in a dataset. Ant-MinerMA removed this expensive

process with a faster implementation of the archive, where

the archive would be used to find the split points instead,

improving the runtime in classification problems while not

compromising the accuracy. One limitation of Ant-MinerMA,

was as the number of attributes increased over 50, the runtime

increased compared to cAnt-Miner.

An automatic algorithm design approach for Ant-

MinerMA+G [5] was created to overcome this problem, which

combines the graph-based and archive-based pheromone mod-

els. This automatically configured algorithm outperformed

the original cAnt-Miner algorithm to a significant level, and

solved the problems Ant-MinerMA faced when dealing with a

large number of attributes. The improvement came from the

graph-based pheromone model which allowed the algorithm

to quickly identify irrelevant attributes and ignore them during

the rule creation process.

Brookhouse and Otero introduced the first Ant-Miner algo-

rithm for regression, Ant-Miner-Reg [6]. Ant-Miner-Reg uses

the same sequential covering approach adopted by Ant-Miner

and couples this with the dynamic discretisation procedure

used in Quinlan’s M5 [7].

Ant-Miner-Reg creates a rule list as follows. First n rules

are created by the colony, where each ant traverses a graph of

attribute nodes and values to build the antecedent of a rule.

If the ant discovers a node representing a continuous attribute

a value is generated via a dynamic discretisation method that

attempts to find the optimal split points for that attribute in

the set of uncovered instances. When the antecedent of a rule

is created the prediction is generated by the calculating the

mean value of any instances covered by the new rule. Once

all the rules are created the best rule generated is used to

update the pheromone matrix of the colony. This procedure is

repeated until the maximum number of iterations is reached,

at which point the best rule is then returned and added to the

list of rules under construction removing any newly covered

instances from the dataset. The colony is then reset and the

ACO process repeated on the still uncovered set of instances

until all instances are covered by the rule list.

Ant-Miner-Reg generated comprehensive regression rules

that significantly outperformed SeCoReg [8]. They identified

the need to include a better continuous attribute processing

technique, which would enable the optimisation of the numeric

values chosen by fully integrating them inside the pheromone

matrix [6].

III. ARCHIVE-BASED ANT-MINER-REG

As discussed in Section II, most Ant Colony Optimization

approaches to create rules are based on a graph pheromone

model, which can directly cope with categorical attributes

while continuous attributes require either a pre-processing

or dynamic discretisation step. Liao et al., [3] introduced a

new algorithm, called Ant Colony Optimization for Mixed-

Variable (ACOMV), to deal with mixed-variable optimisation

problems. ACOMV uses an archive-based pheromone model

and sampling procedures to create a new solution, allowing

the algorithm to cope directly with categorical or continuous

(real-valued) attributes. The archive-based pheromone model

is implemented as a solution archive (A), which contains

previously generated k best solutions, to derive a probability

distribution to bias the search. Each ant starts generating a

new candidate solution. During the construction of a solution,

a probabilistic solution construction method is used to sample

new values from the archive according to the type of each



Algorithm 1: High-level pseudo code of Ant-Miner-

RegMA

Data: training data

Result: list of rules

1 RuleList ← {}
2 while |TrainingData| < MaxUncovered do

3 A ← Generate Random Rules

4 while t < MaxIterations and not Restarted do

5 At ← {}
6 while i ¡ number of ants do

7 Ri ← Create New Rule

8 Ri ← Prune(Ri)

9 Ri ← Set Consequent(Ri)

10 i← i+ 1
11 At ← Ri

12 end

13 A ← UpdateArchive(At)

14 t← t+ 1
15 if stagnation() then

16 Restart(A)

17 Restarted ← True

18 end

19 if stagnation() and Restarted then

20 Break

21 end

22 end

23 Rbest ← BestRule(A)

24 RuleList ← RuleList + Rbest

25 TrainingData ← TrainingData − covered(Rbest)

26 end

27 return RuleList

attribute. After m (colony size) solutions are created, they are

added to the archive and the archive is then sorted. At the end

of an iteration, the best k solutions are selected and a new

iteration starts.

The proposed Ant-Miner-RegMA algorithm uses ACOMV

pheromone model and search procedure to sample terms to

create regression rules. The high level pseudo code of Ant-

Miner-RegMA is shown in Algorithm 1. Ant-Miner-RegMA

starts with an empty list of rules (line 1). At each iteration

(lines 3 -25), a single rule is created. The rule creation process

starts by initialising the archive with k randomly generated

rules (line 3). At each iteration m new rules (lines 6-12) are

generated, where m is the number of ants in the colony. Rules

are added to the archive (line 12), and k+m rules are sorted.

The worst m rules are removed from the archive, limiting the

archive to k best rules found so far. The procedure to create

new rules is repeated until the maximum number of iterations

has been reached or stagnation. Stagnation is the failure of

the algorithm to find better rules for a number of iterations.

In the first case of stagnation, a restart procedure is applied;

if the algorithm reaches stagnation for a second time, the rule

creation procedure stops.

A. Rule Structure

A rule R consists of an n-dimensional terms vector, where n

is the number of attributes in the dataset. Each term ti, for i ∈
{1, n} in a R contains a flag to indicate if this term is enable

or not, an operator and value. For continuous attribute terms,

the operator can be either ≤ or >, representing conditions

where the term’s attribute value is ≤ x or > x, where x is a

real value. Categorical attribute terms have a single operator

=, representing conditions where the term’s attribute value is

= y, where y is a value in the domain of the nominal attribute.

The consequent of a rule—the rule’s prediction—is a real

value, calculated as the mean value of the instances covered

by this rule in the training data.

B. Rule Quality

The quality of a regression rule is based on two factors, the

first is the quality of the prediction measured using a Relative

Root Mean Squared Error (RRMSE). The RRMSE of a rule

is defined as

LRRMSE =
LRMSE

√

1

m
Ldefault

(1)

where LRMSE is the root mean square error and LDefault is a

normalising factor that will approximately bound the RRMSE

between 0 and 1. Both LRMSE and LDefault are defined as

LRMSE =

√

√

√

√

1

m
·

m
∑

i=1

(yi − ȳi)2

Ldefault =
m
∑

i=1

(yi − y′)2

(2)

m is the total number of instances in the dataset, y is the value

of the current instance, ȳ is the predicted value of the current

instance and y′ is the mean over all instances.

The RRMSE approximately normalises the RMSE of a rule

between 0 and 1, where a value less than 1 corresponds to a

rule making a prediction better than the uncovered instances

mean and a value greater than 1 is worse than the mean.

The second factor is a measure of how generalised the rule

is, i.e., number of instances covered by the rule. Like RRMSE,

the coverage of a rule is normalised so that 0 represents a rule

covering no instances and 1 is a rule that covers all of the

instances in the dataset. The relative coverage of a rule R is

defined as

relCov =
1

m
· coverage(R) (3)

Both the RRMSE and relative coverage are combined into

a single metric Q, which is used as a rule’s quality, defined

as

Q = α · (1− LRRMSE) + (1− α) · relCov (4)



where α sets the weighting between RRSME and relative

coverage. Varying α between 0 and 1 will bias the rule quality

towards either RRMSE or relative coverage.

C. Archive Structure and Initialisation

The archive consist of k rules sorted by their quality Q, so

that Q(R1) ≥ Q(R2) ≥ . . . ≥ Q(Rk). Each rule (solution) j

is associated with a weight ωj that is related to Q(Rj), where

ωj is calculated using a Gaussian function given by

ωj =
1

qk
√
2π

e
−(rank(j)−1)2

2q2k2 (5)

where q is used to control the influence of the top-ranked rules

on the construction of a new rule. When a new rule is created,

it probabilistically samples values around the rules with higher

weights.

The archive is initialised with k random rules. Initialisa-

tion begins by randomly enabling each term in the vector

of allowed terms. These enabled terms are then initialised

according to their types.

If the term is continuous, then an unbiased random probabil-

ity is used to set the operator from the set {≤, >}. The value of

the continuous term is a random value generated in the range

found in the training data for that attribute. For categorical

terms, the only operator = is added and the value set randomly

to one of the values in the domain of the attribute.

Rules are then pruned to disable irrelevant terms that might

be enabled by the stochastic nature of the initialisation. If the

number of instances covered by a rule is greater or equal to a

user-defined minimum limit, the rule is added to the archive,

if it doesn’t a new rule is generated instead. Finally, rules are

sorted according to their quality.

D. Sampling Procedures

There are two types of sampling procedures used in Ant-

Miner-RegMA to select values for rule terms: categorical and

continuous sampling.

1) Categorical sampling: The categorical sampling is im-

plemented using the same approach as ACOMV. Given a cat-

egorical attribute i that has ti possible values, an ant chooses

probabilistically a value vil of the available {vi1, . . . , viti}
values. The probability of selecting a value vil is given by

pil =
αl

ti
∑

j=1

αj

(6)

where αl is the weight associated to each value of the

categorical attribute, calculated as

αl =















ωjl

ui
l

+ q
η

, if(η > 0, ui
l > 0)

ωjl

ui
l

, if(η = 0, ui
l > 0)

q
η

, if(η > 0, ui
l = 0)

(7)

where ωjl is the weight of the highest rule that uses the value

vil for attribute i in the archive, ui
l is the number of rules

that use the value vil for attribute i in the archive (ui
l = 0

corresponds to the special case where vil is not used by the

rules in the archive), η is the number of values from ti that are

not used in the archive (η = 0 corresponds to the special case

where all values are used), and q is the same parameter used in

Equation (5). The categorical sampling procedure allow an ant

to consider two components when sampling a new value. The

first component biases the sampling towards values that are

used in high-quality rules, but do not occur very frequently

in the archive. The second component biases the sampling

towards unexplored values in that attribute.

2) Continuous sampling: Continuous sampling imple-

mented using the same approach as ACOR [14], which is

used in ACOMV. First, an ant chooses probabilistically a rule

from the archive, before the rule creation process. This rule is

used to sample continuous values around it for all continuous

attributes. The probability of choosing rule j is given by

pj =
ωj

k
∑

l=1

ωl

(8)

where ωj is the weight associated with the j-th rule in the

archive calculated according to Equation (5). Let Ri denote

a new solution sampled by ant i around the chosen solution

Rj for continuous attribute a, the Gaussian probability density

function (PDF) is given by

Ria ∼ N(Rja, σja) (9)

σja = ξ

K
∑

l=1,j 6=l

|Rla −Rja|
K − 1

(10)

where Rja is the value of the variable a in the selected rule j

of the archive, σja is the average distance between the value

of the variable a in the rule j and the value of a in all the

other rules in the archive (given by Equation 10), and ξ is a

user-defined value representing the convergence speed of the

algorithm.

E. Rule Creation

Rule creation starts by choosing probabilistically whether

to include each term or not. The decision is handled using a

categorical sampling to choose a {TRUE, FALSE} value. If the

term is enabled (TRUE value), we set the operator according to

the attribute type. If the attribute is categorical, it is set to =.

If it is continuous, the decision is handled using a categorical

sampling to choose an operator from the set {≤, >}, with the

only difference being only the subset of rules that have this

term enabled are considered in Equation (7).

The value of the new rule’s term is then sampled. If the term

is continuous, we use the continuous sampling procedure only

considering the subset of rules that have this term enabled

and use the same operator as the new term. If the attribute is

categorical, we use the categorical sampling procedure only

considering the subset of rules that have this term enabled.

After a term is created and added to the partial rule, we

apply the rule to the training data. If the number of instances



TABLE I
PARAMETERS: ANT-MINER-REGMA USES THE FIRST THREE PARAMETERS

IN TABLE, WHILE REMAINING ARE USED BY BOTH ANT-MINER-REGMA

AND ANT-MINER-REG.

Parameters Value

q 0.025495
ξ 0.6795
R 90
Minimum Covered 10
Max Uncovered 10
Max Iterations 1500
Number of Ants 60
Stagnation Test 10
α 0.59

covered by the rule after the addition of the new term is less

than the minimum covered instances, the term is disabled. This

process is repeated until all terms are considered.

Finally, a local search procedure is applied. The local search

procedure is inspired by the threshold-aware pruner found in

[13]. Firstly, the quality of the rule is calculated according

to Equation (4). Then, the last term is then disabled and

the quality re-calculated. If the quality of the (pruned) rule

decreases, the term is re-enabled and the procedure stops;

otherwise, the procedure is repeated until a decrease in quality

is observed.

IV. RESULTS

We compared our proposed algorithm Ant-Miner-RegMA

against Ant-Miner-Reg. The experiments are conducted using

nineteen regression datasets publicly available from the UCI

Machine Learning Repository [15]—details are shown in Table

II. Ant-Miner-RegMA uses the first three parameters in Table

I for the archive setting, while the remaining parameters are

used by both algorithms. We ran both algorithms for five times

with ten-fold cross-validation for a total of fifty runs each

dataset and reported the average performance of the models

produced by each algorithm—shown in Table III in terms

of relative root mean square error (RRMSE). For statistical

significance testing of the difference in RRMSE, we used

Wilcoxon signed-rank test. The result of the statistical testing

is shown in Table IV.

As shown in Table III, Ant-Miner-RegMA shows an im-

provement in RRMSE compared to Ant-Miner-Reg, outper-

forming Ant-Miner-Reg in sixteen of the nineteen datasets.

Most notably, Ant-Miner-RegMA improved the RRMSE by

80% in the Yacht dataset: Ant-Miner-Reg’s RRMSE is 1.0120

while Ant-Miner-RegMA’s RRMSE is 0.2091. Based on our

results, it is clear that the introduction of archive-based

pheromone model in Ant-Miner-RegMA resulted in an im-

provement in the model creation. Ant-Miner-Reg uses the

M5 dynamic discretisation procedure when creating terms

for continuous attributes, while Ant-Miner-RegMA’s archive-

based pheromone model is responsible for generating and

improving the values chosen for the continuous attributes

terms.

TABLE II
NUMBER OF INSTANCES AND ATTRIBUTE MAKEUP OF THE NINETEEN

DATASETS USED IN THE EXPERIMENTS.

Attributes
Name Instances Categorical Continuous

WPBC r 194 0 33
CPU 209 1 8
Yacht 308 0 7
MPG 410 2 5
Housing 452 1 13
Forest Fire 517 2 11
Istanbul 536 0 8
Efficiency 768 0 9
Stock 950 0 10
Concrete 1030 0 9
Flare 1066 10 1
Airfoil 1503 0 6
Red Wine 1599 0 12
Skill Craft 3338 0 20
Elevator 9517 0 7
CCPP 9568 0 5
Bike Share 17379 0 13
Energy Data 19735 0 25
Pm 25 41757 1 12

TABLE III
AVERAGE RRMSE OF THE MODEL PRODUCED BY EACH ALGORITHM

OVER FIVE RUNS OF TENFOLD CROSS-VALIDATION.

Dataset Ant-Miner-RegMA Ant-Miner-Reg

WPBC r 1.0356 1.0224

CPU 0.5038 0.8233
Yacht 0.2091 1.0120
MPG 0.5374 0.6419
Housing 0.5986 0.9782
Forest Fire 1.5326 1.0334

Istanbul 0.7948 0.8341
Efficiency 0.2348 0.4288
Stock 0.3258 0.7434
Concrete 0.7239 0.9636
Flare 0.9956 0.9987
Airfoil 0.8165 0.9715
Red Wine 0.9898 0.9757

Skill Craft 0.8536 0.8912
Elevator 0.7585 0.7882
CCPP 0.3557 0.4769
Bike Share 0.6412 0.9941
Energy Data 0.9775 0.9971
Pm 25 0.9389 0.9982

In terms of computational time, Ant-Miner-RegMA did not

improve the runtime as seen in Table V. This is different

than what was observed in classification problems, where

the introduction of an archive-based pheromone model did

significantly improve the runtime by eliminating the need for

a discretisation procedure. Looking at the datasets where Ant-

Miner-RegMA runtime was significantly higher—Bike Share

(17379 instance), Energy Data (19735 instances) and Pm 25

(41757 instances)—we noticed that Ant-Miner-Reg produces

very generalised rules with a RRMSE closer to the mean

(0.9941, 0.9971, and 0.9982 respectively), while Ant-Miner-

RegMA produces more specific rules for those dataset with an

improved RRMSE (0.6412, 0.9775, and 0.9389 respectively).

We hypothesise that when the dataset is more complex, Ant-



TABLE IV
WILCOXON SIGNED-RANK TEST (AT THE α = 0.05 LEVEL) ON RRMSE.

STATISTICALLY SIGNIFICANT DIFFERENCES ARE SHOWN IN BOLD.

Size W+ W- Z p

RRMSE 18 23 167 -2.8974 0.00374

TABLE V
AVERAGE RUNTIME IN SECONDS OF THE MODEL PRODUCED BY EACH

ALGORITHM OVER FIVE RUNS OF TENFOLD CROSS-VALIDATION.

Dataset Ant-Miner-RegMA Ant-Miner-Reg

WPBC r 0.51 0.25

CPU 0.23 0.46
Yacht 0.20 0.31
MPG 0.26 0.24

Housing 0.43 0.26

Forest Fire 0.99 0.42

Istanbul 0.39 0.38

Efficiency 0.70 0.39

Stock 0.85 0.40

Concrete 1.29 0.44

Flare 0.84 0.25

Airfoil 0.92 0.57

Red Wine 0.94 0.61

Skill Craft 10.12 0.93

Elevator 4.65 2.28

CCPP 2.29 12.22
Bike Share 223.52 2.13
Energy Data 582.38 4.62

Pm 25 615.24 6.81

Miner-Reg struggles to find good split points and produces

very simple overgeneralised rules that cover large sections

of the search space. This can be seen in the RRMSE of

models produced for large datasets, identifying a potential

limitation of using M5 dynamic discretisation procedure to

create regression rules. The dynamic discretisation procedures

in classification and regression Ant-Miner algorithms operate

differently. In regression, the dynamic discretisation procedure

aims to find the optimal split point for a continuous attribute

in the set of uncovered instances, without considering how

other attributes will alter the final prediction the rule. This

limits the interaction between the creation of condition and

the rule’s final consequent, which is unknown during rule

creation. In classification, the dynamic discretisation procedure

aims to find the optimal split points for an attribute in the set

of uncovered instances taking into account maximisation of a

known target class, which improves the rule prediction. The

archive-based approach overcomes this difficulty as the values

chosen for continuous attributes are optimised in conjunction

with all attributes and not in isolation.

Although Ant-Miner-RegMA did not improve the runtime of

the Ant-Miner-Reg, the improvement in RRMSE shows great

promise for regression problems. This confirms the hypothesis

that the archive-based pheromone model improves the values

chosen for the continuous attributes conditions in regression

problem reaching better rules with overall lower RRMSE—

Table IV shows Ant-Miner-RegMA achieved a statistically

significant improvement with a value of p = 0.00374 with

respect to Ant-Miner-Reg using Wilcoxon signed-rank test (at

the α = 0.05 level) on RRMSE.

V. CONCLUSION

This paper presented an ACO-based regression algo-

rithm, called Ant-Miner-RegMA, which uses an archive-based

pheromone model to handle both categorical and continuous

attributes. The proposed algorithm significantly outperforms

Ant-Miner-Reg, producing models with better relative root

mean square error. The results showed an interesting com-

parison on how the archive-based pheromone model affected

regression problems differently to classification problems.

While Ant-MinerMA improved the runtime of the graph-based

algorithm in classification problems, improvements on the

quality of the rule lists were not observed [4]. The opposite

was observed in Ant-Miner-RegMA, where the archive-based

algorithm improved the relative root mean square error of

the model while increasing the runtime. The results confirm

that the proposed Ant-Miner-RegMA improved the dynamic

discretisation for continuous attributes, reinforcing the signif-

icant benefits of using an archive-based pheromone model in

regression problems.

Future investigation is required to realise the full potential of

adding the archive-based pheromone model to rule discovery

in regression algorithms. Using an archive-based pheromone

improved the quality of the models created in ACO-based

regression algorithm. It would be interesting to further inves-

tigate the effect of incorporating a graph pheromone model

in combination with an archive-based pheromone model,

where the graph pheromone model is responsible for selecting

attributes and the archive pheromone model for optimising

their values. Generating rule lists in each colony iteration,

instead of a single rule, to allow the rule interactions to

be optimised is also an interesting research directions worth

further exploration.

REFERENCES

[1] U. Fayyad, G. Piatetsky-Shapiro, and P. Smith, “From data mining
to knowledge discovery: an overview,” in Advances in Knowledge

Discovery & Data Mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smith,
and R. Uthurusamy, Eds. MIT Press, 1996, pp. 1–34.

[2] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” IEEE Transac-

tions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66, Apr 1997.

[3] T. Liao, K. Socha, M. Montes de Oca, T. Stützle, and M. Dorigo, “Ant
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