
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Brookhouse, James and Otero, Fernando E.B. (2018) Post-Processing Methods to Enforce Monotonic
Constraints in Ant Colony Classification Algorithms. In: 2018 International Joint Conference
on Neural Networks, 8-13 July 2018, Rio de Janeiro, Brazil. (In press)

DOI

Link to record in KAR

http://kar.kent.ac.uk/67177/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/189720492?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Post-Processing Methods to Enforce Monotonic

Constraints in Ant Colony Classification Algorithms

James Brookhouse

School of Computing

University of Kent

Chatham Maritime, UK

Email: jb765@kent.ac.uk

Fernando E. B. Otero

School of Computing

University of Kent

Chatham Maritime, UK

Email: F.E.B.Otero@kent.ac.uk

Abstract—Most classification algorithms ignore existing do-
main knowledge during model construction, which can decrease
the model’s comprehensibility and increase the likelihood of
model rejection due to users losing trust in the models they
use. One approach to encapsulate this domain knowledge is
monotonic constraints. This paper proposes new monotonic
pruners to enforce monotonic constraints on models created by an
existing ACO algorithm in a post-processing stage. We compare
the effectiveness of the new pruners against an existing post-
processing approach that also enforce constraints. Additionally,
we also compare the effectiveness of both these post-processing
procedures in isolation and in conjunction with favouring con-
straints in the learning phase. Our results show that our pro-
posed pruners outperform the existing post-processing approach
and the combination of favouring and enforcing constraints at
different stages of the model construction process is the most
effective solution.

I. INTRODUCTION

Data mining focuses on the automated search for useful

patterns in data [1]. Classification is the most studied task in

data mining, where the problem involves a set of instances—

each instance is described by a set of predictor attribute

values with an associated target class value. The goal of

a classification algorithm is to find the best classifier that

accurately represents the relationships between predictor and

class attribute values, and therefore classification problems can

be viewed as optimisation problems. There are many classifi-

cation algorithms in the literature, in many of these algorithms

they concentrate on producing accurate models at the expense

of other goals. Accuracy is an important goal, however, there

are other goals that exist. These other goals can be just as

important or more important depending on the application.

Alternative goals can include a model’s comprehensibility,

or its ability to preserve existing domain knowledge. These

features can contribute towards model acceptance by domain

experts.

Model rejection by domain experts is a possibility if a

model does not preserve existing patterns as it would seem

counter intuitive. Hoover and Perez [2] state that the economic

field scepticism towards data mining as a technique to search

for models is due to the discovery of accidental correlations:

“Data mining is considered reprehensible largely because the

world is full of accidental correlations, so that what a search

turns up is thought to be more a reflection of what we want to

find than what is true about the world.” [2, p. 197]. Semantic

constraints allow model construction to be guided by providing

information on real correlations present within the data. While

there are a number of different semantic constraint types, we

explore the implementation of monotonic constraints in the

discovery of classification rules.

In this paper we have focused on one particular encapsula-

tion of domain knowledge, monotonic constraints. Monotonic

constraints are simple relationships that guide the creation of

models. We compared an existing post-processing additive

monotonic approach, which enforces monotonic constraints

by adding conditions to the model, against a new set of

post-processing pruners that remove conditions from a model

to enforce constraints. We also investigate the reliance on

purely post-processing steps to enforce these constraints, or if

constraints should be incorporated into the learning phase as

soft constraints. This is achieved with the use of an ACO-based

rule learner, which is able to favour monotonic constraints

during the model construction.

The rest of this paper is structured as follows. Firstly,

Section II summarises the existing work from the literature.

Section III describes the existing ACO algorithm that favours

monotonic constraints in the learning phase along with the

suite of monotonic pruners that can be applied in the post-

processing phase. Section IV presents our results on thir-

teen UCI Machine Learning datasets, including a comparison

between four monotonic ACO-based algorithms. Finally, we

discuss our results and present our conclusions and possible

future research directions in Section V.

II. BACKGROUND

A. Ant Colony Classification Algorithms

The first ACO classification algorithm, called Ant-Miner,

was proposed in [3]. Ant-Miner follows a sequential covering

strategy, where individual rules are created by an ACO pro-

cedure, then data instances that are covered by the rule are

removed from the training data. The main idea is to search

for the best classification rule given the current training data

at each iteration of the sequential covering. Ants traverse a

construction graph selecting terms to create a rule in the form

IF term1 AND ... AND termn THEN class, where

the IF-part represents the antecedent and the THEN-part is

TABLE I
SIMPLE HOUSE RENTAL DATA SET. THE DEPENDENT ATTRIBUTE IS THE

RENTAL VALUE WHILE FLOOR AREA AND LOCATION ARE INDEPENDENT

ATTRIBUTES

Target Attribute Predictor Attributes

Rental Value Floor Area Location

Medium 45 2
High 80 1
Low 33 3

Medium 65 2
High 100 2

the class prediction. Each ant starts with an empty rule and

iteratively selects terms to add to its partial rule based on

their values of the amount of pheromone τ and a problem-

dependent heuristic information η, similarly to Ant System

(AS) [4]. Following on Ant-Miner’s success, many extensions

have been proposed in the literature [5]: they involve different

rule pruning and pheromone update procedures, new rule

quality measures and heuristic information.

One potential drawback of using sequential covering to cre-

ate a list of rules is that there is no guarantee that the best list of

rules is created. Ant-Miner (and the majority of its extensions)

perform a greedy search for the list of best rules, using an

ACO procedure to search for the best rule given a set of data

instances, and it is highly dependant on the order that rules are

created. Therefore, they are limited to creating the list of best

rules, which does not necessarily corresponds to the best list

of rules. cAnt-MinerPB is an ACO classification algorithm that

employs an improved sequential covering strategy to search for

the best list of classification rules [6]. While Ant-Miner uses

an ACO procedure to create individual rules in a one-at-a-

time (sequential covering) fashion, cAnt-MinerPB employs an

ACO procedure to create a complete list of rules. Therefore,

it can search and optimise the quality of a complete list of

rules instead of individual rules—i.e., it is not concerned by

the quality of the individual rules as long as the quality of the

entire list of rules is improving.

B. Monotonic Constraints

When existing domain knowledge is available, monotonic

constraints can incorporate this knowledge into the construc-

tion of new models. For example, if you consider house rent

the price can/will depend on the location and floor area. Table

I shows a simple hypothetical rental dataset. One relationship

in this data set is that houses in better locations (lower values

of attribute Location) increase their rental price. This is the

case for all possible pairs in the data set.

Monotonicity is found in many different fields including

house/rental prices, medicine, finance and law. Looking at

the first example of rental prices, it can be expected that

as the location of a property becomes better (lower value

of Location) its rental value will also increase—this can be

seen in the example data shown in Table I. The majority of

classification algorithms are not monotonically aware and do

not enforce this relationship during model construction, yet

still produce good models. However, if models violate these

constraints they may not be accepted by experts as valid, and

therefore, conforming to monotonicity constraints may help

improve model acceptance [7], [8].

Monotonicity can be defined formally in the following

manner. Let X = X1×X2×· · ·×Xi be the instance space of

i attributes, Y be the target space, and function f : X → Y . It

is also assumed that both the instance space and target space

have an ordering. A function can then be considered monotone

if:

∀x,x′ ∈ X : x ≤ x
′ =⇒ f(x) ≤ f(x′) , (1)

where x and x
′ are two vectors in instance space, x =

(x1, x2, · · · , xi) [9]. In other words, f(x) is monotonic if and

only if all the pairs of examples x, x
′ are monotonic with

respect to each other.

C. Enforcing Monotonicity Constrains

Monotonicity can be enforced in a number of different

stages in the data mining process. In the model construc-

tion stage the algorithm creates monotonic models, possibly

constraining the search. Also, constraints can be enforced in

a post-processing stage via the modification of constructed

models to enforce monotonic constraints.

Constraints also appear in two different forms hard or

soft. Hard constraints are enforced rigidly and will reject

any new model or change to an existing model that would

cause a violation. Good models can be rejected due to small

violations in their monotonicity when this hard constraint

method is used. The second method, soft constraints, balances

the monotonicity of a model against its quality, allowing small

violations to exist if they sufficiently increase the quality—i.e.,

monotonic constraints are favoured.

1) Model Construction: Soft constraints have been imple-

mented in the model construction stage by Ben-David [10].

Ben-David assigns a non-monotonicity index to each tree

produced. This index is the ratio between the number of non-

monotonic leaf node pairs and the maximum number of pairs

that could have been non-monotonic.

First, a non-monotonic n-dimensional matrix constructed

where n is the number of branches in the tree. This matrix

is used to find the number of violations in the current tree,

and used to find the tree’s non-monotonicity index. The

non-monotonicity index can be converted to an ambiguity

score and then incorporated with the tree’s accuracy score.

The accuracy of the models produced were not significantly

degraded compared to the original algorithm, however the

combined metric did produce fewer models that breached the

monotonicity constraints [10].

Ben-David has also investigated monotonic ordinal clas-

sifiers, proposing the hypothesis that adding monotonicity

constraints to learning algorithms will impair their accuracy

against those that do not. Ordinal classifiers are classifiers that

allow discrete categories to have an order, for example credit

rating has an obvious order if the categories are poor, ac-

ceptable and good. There were two unexpected results. It was

found that ordinal classifiers did not significantly improve their

accuracy over non-ordinal classifiers. Secondly, the monotonic

algorithms were not able to significantly outperform a simple

majority-based classifier. It is theorised that these results were

due to noisy data sets: the monotonic classifiers enforced hard

constraints, in the presence of noisy data a softer approach

may lead to better results [11].

Brookhouse and Otero have introduced two ACO-based

algorithms cAnt-MinerPB+MC [12] and Ant-Miner-RegMC

[13] that enforce monotonicity constraints for the classification

and regression task, respectively. Both algorithms enforced

soft constraints during rule construction by incorporating a

measure of monotonicity into a rule’s quality, which is then

incorporated into the pheromone matrix of the ant colony. In

cAnt-MinerPB+MC, a naive pruner is used to enforce hard

constraints in a post processing step—cAnt-MinerPB+MC is

discussed in more detail in Section III-A.

2) Post-Processing: Feelders [8] has suggested that using

non-monotonic criteria in tree construction is not beneficial

as splits later in the construction process can transform a tree

from a state of non-monotonicity to one that is. Therefore,

Feelders has suggested several pruning methods to make the

minimal number of changes to make a tree monotonic in a

post-processing phase [8].

The first proposed pruner is the Most Non-monotone Parent

(MNP) method, which aims to prune the node that gives

the most number of monotone pairs. This method has the

disadvantage of possibly creating more non-monotonic pairs

than it removes leading to a net increase in non-monotonicity.

The second method proposed is the Best Fix (BF) method,

which prunes the node that gives the biggest reduction in

non-monotonicity. While it solves the problem with the first

pruner, it is more computationally expensive. The authors have

also combined these pruning methods with existing complexity

pruning methods and found that the monotonic trees produced

no significant difference in performance compared to trees

produced without monotonic pruning. However, it was ob-

served that the trees produced were smaller, which aids the

comprehensibility of the models produced further [8].

3) Additive monotonic post-processing with RULEM: Ver-

beke et al. introduced a new algorithm, RULEM [14], that

tackles the monotonic problem in a different way. While still

a post-processing technique, RULEM adds additional new

rules to the list of rules to force monotonic behaviour. One

advantage of RULEM is any learning algorithm that can

produce a model that can be transformed into a list of rules

can be fixed and made monotonic.

RULEM fixes a list of rules by adding new rules to

fix any non-monotonic features. RULEM first creates an n-

dimensional matrix, where n is the number of attributes in the

solution space. Rules from the original list of rules are then

added to this solution space, claiming the regions that they

cover. Any non-monotonic region can then be identified and

rules iteratively generated to fix these regions with respect

to the existing rules. Finally these rules are compacted to

reduce the number of rules added. The new compacted rules

are then added to the top of the rule list to ensure they create

a monotonic list of rules.

III. DISCOVERING MONOTONIC CLASSIFICATION RULES

This section provides an overview of cAnt-MinerPB and

the soft constraints found in cAnt-MinerPB+MC. Finally, an

overview of the proposed hard pruning strategy found in cAnt-

MinerPB+MCP. A high-level pseudocode of these algorithms

is shown in Algorithm 1, where the differences among them

are highlighted.

A. cAnt-MinerPB with monotonicity constraints

As we discussed in Section II-A, cAnt-MinerPB is an ACO

classification algorithm that employs an improved sequential

covering strategy to search for the best list of classification

rules. In summary, cAnt-MinerPB works as follows. Each ant

starts with an empty list of rules and iteratively adds a new

rule to this list. In order to create a rule, an ant adds one term

at a time to the rule antecedent by choosing terms to be added

to the current partial rule based on the amount of pheromone

(τ) and a problem-dependent heuristic information (η). Once

a rule is created, it undergoes a pruning procedure. Pruning

aims at removing irrelevant terms that might be added to a

rule due to the stochastic nature of the construction process: it

starts by removing the last term that was added to the rule and

the removal process is repeated until the rule quality decreases

when the last term is removed or the rule has only one term

left. Finally, the rule it is added to current list of rules and the

training examples covered by the rule are removed.1 An ant

creates rules until the number of uncovered examples is below

a pre-defined threshold.

At the end of an iteration, when all ants have created a list

of rules, the best list of rules (determined by an error-based

list quality function) is used to update pheromone values,

providing a positive feedback on the terms present in the

rules—the higher the pheromone value of a term, the more

likely it will be chosen to create a rule. This iterative process

is repeated until a maximum number of iterations is reached

or until the search stagnates.

cAnt-MinerPB+MC is an extension of cAnt-MinerPB which

incorporates monotonic constraints into the model construc-

tion phase and post processing. It takes advantage of cAnt-

MinerPB’s global list construction when optimising for both

accuracy and monotonicity. This is achieved by modifying the

quality function to include a monotonic correctness function

along with the conventional accuracy based measure (line

16)—this is the same function that is used in the soft pruner

and shown by equations 2 and 3. Line 12 shows the addition of

a soft pruner that uses a modified quality function to prune the

rules during the construction phase, which will be discussed in

detail in Section III-B. This soft rule pruner replaces the rule

pruner present in cAnt-MinerPB. cAnt-MinerPB+MCP also

adds a hard monotonic pruner (line 26) to enforce monotonic

1An example is covered by a rule when it satisfies all terms (attribute-value
conditions) in the antecedent of the rule.

Algorithm 1: High-level pseudocode of the cAnt-

MinerPB+MC(P) algorithm. The main differences com-

pared to cAnt-MinerPB [6] are found on lines 12, 16 and

26.

Input: training instances

Output: best discovered list of rules

1. InitialisePheromones();

2. listgb ← {};
3. t← 0;

4. while t < maximum iterations and not stagnation do

5. listib ← {};
6. for n ← 1 to colony size do

7. instances← all training instances;

8. listn ← {};
9. while |instances| > maximum uncovered do

10. ComputeHeuristicInformation(instances);

11. rule ← CreateRule(instances);

12. SoftPruner(rule, listn);
13. instances←

instances− Covered(rule, instances);

14. listn ← listn + rule;

15. end while

16. if Quality(listn) > Quality(listib) then

17. listib ← listn;

18. end if

19. end for

20. UpdatePheromones(listib);
21. if Quality(listib) > Quality(listgb) then

22. listgb ← listib;

23. end if

24. t← t+ 1;

25. end while

26. HardPruner(listgb);
27. return listgb;

constraints rigidly ensuring the final model will always be

monotonic.

In ACO terms, a pruner is a local search operator. Dur-

ing rule construction a soft pruner is used to influence

the pheromone matrix and therefore the decisions of the

colony towards good monotonic solutions. By softly enforcing

monotonic constraints globally within the ACO stage, the

optimisation of monotonicity should reduce the need to rely

on the more aggressive and potentially more damaging hard

pruners later on.

B. Soft Rule Pruning

A soft monotonic prune allows violations in the monotonic

constraint if the consequent improvement in accuracy is large

enough. The pruner operates on an individual rule and iter-

atively removes the last term until no improvement in the

rule quality is observed. Applying a soft pruner during model

creation allows the search to be guided towards monotonic

models while still allowing exploration of the search space.

As monotonicity is a global property of the model, the rule

being pruned is temporarily added to the current partial list of

rules, its non-monotonicity index (NMI) can then be used as

a metric to assess the rules monotonicity and it is given by:

NMI =

∑k

i=1

∑k

j=1 mij

k2 − k
, (2)

where mij is 1 if the pair of rules rulei and rulej violate

the constraint and 0 otherwise; k is the number of rules in

the model. The NMI of a model is constrained between zero

and one: it calculates the ratio of monotonic violating pairs

over the total possible number of prediction pairs present in

the model being tested, the lower a NMI is the better a model

is considered. If this is the first rule in the partial model it

will be automatically designated monotonic and be assigned a

non-monotonicity index of zero. The NMI is then incorporated

into the quality metric by:

Q = (1− ω) ·Accuracy + ω · (1−NMI) , (3)

where Q is the quality of a model and ω is an adjustable

weighting that sets the importance of monotonicity and ac-

curacy to the overall rule quality. Note that Equation 3 can

be used to calculate the quality of either a single rule (used

during the soft pruner, line 12 of Algorithm 1) or a complete

list of rules (line 16 and 26 of Algorithm 1).

C. Hard List Pruning

Monotonicity is a global property of a model as it requires

at least two rules to create a violation. Therefore, pruners that

operate on a global rule list are preferential to those operating

on an individual rule which can only modify a single rule

to fix the violations present in the model [15]. The original

cAnt-MinerPB+MC algorithm contained a single monotonic

backtrack pruner, now referred to as the Naive Pruner (NP).

The Naive Pruner can be very destructive if the violating rule

occurs towards the top of a rule list as the bottom section of

the list is discarded. To counteract these affect we propose

two new pruners: the Most Violations Pruner (MVP) and the

Best Fix Pruner (BFP). The three list pruners now work in

conjunction to increase the accuracy of the model returned

by cAnt-MinerPB+MC: all three pruners are applied in turn to

the constructed list and the pruner that achieves the highest

accuracy on the training set is used for the final prune.

1) Naive Pruner: The hard monotonic pruner enforces the

monotonic constraints rigidly. It operates on a list of rules as

follows: (1) the NMI of a list is first calculated (Equation 2);

(2) if it is non zero, the last term of the final rule is removed

or, if the rule contains no terms, the rule is removed; (3) the

NMI is then recalculated for the modified list of rules. This

is repeated until the NMI of the rule list is zero. Finally the

default rule is added to the end of the list if it has been removed

and the new monotonic rule list is returned. The pseudocode

for the naive pruner is shown in Algorithm 2.

Algorithm 2: Pseudocode for the Naive Pruner, where a

term is removed from the list until the NMI is zero.

Input: list

Output: list

1: while NMI(list) > 0 do

2: PruneLastTerm(list);
3: if LastRuleLength(list) == 0 then

4: RemoveLastRule(list);
5: end if

6: end while

7: return list;

Algorithm 3: Pseudocode for the Most Violations Pruner,

in each iteration the rule with the worst NMI has its last

term removed.

Input: list

Output: list

1: while NMI(list) > 0 do

2: ruleworst ← {};
3: for n ← 1 to list size do

4: if NMI(rulen) ≥ NMI(ruleworst) then

5: ruleworst ← rulen;

6: end if

7: end for

8: PruneFinalTerm(ruleworst);
9: if RuleLength(ruleworst) == 0 then

10: RemoveRule(list, ruleworst);
11: end if

12: end while

13: return list;

2) Most Violations Pruner (MVP): This pruner prunes the

worst rule in terms of NMI in the list of rules. It calculates

the NMI of each rule using Equation 2 and the rule with the

highest NMI has its final term removed. The NMI of each

rule is then recalculated and the procedure continues until the

model’s NMI is 0. In the case of a draw—e.g., with a single

pair of rules violating each other—the rule appearing lower in

the list is preferentially pruned. This decision is made as rules

towards the top of the list were generated on the full training

set and therefore likely to be more powerful than those towards

the end which are classifying fewer remaining instances. The

pseudocode for the MVP pruner is shown in Algorithm 3.

3) Best Fix Pruner (BFP): The third global pruner attempts

to fix the rule that would give the greatest reduction in the

model’s NMI. The pseudocode for the best fix pruner is shown

in Algorithm 4. Each non-monotonic rule in the complete

model is pruned backwards from the last term until a change

in the model’s NMI is detected. The pruned rule that led to

the largest decrease in NMI is kept, the remaining rules are

restored to their original state. This process is repeated until

the model becomes monotonic. For the same reasons explained

in the MVP approach, draws are solved by pruning the rule

lower in the list.

Algorithm 4: Pseudocode for the Best Fix Pruner, in each

iteration the rule that will decrease the NMI by the largest

amount will be pruned.

Input: list

Output: list

1: while NMI(list) > 0 do

2: rulebi ← {};
3: best improvement← 0;

4: for n ← 1 to list size do

5: ruleprune ← PruneRule(rulen);
6: improvement← NMI(list)− NMI(listprune);
7: if improvement ≥ best improvement then

8: rulebi ← rulen;

9: best improvement← improvement;

10: end if

11: end for

12: rulebi ← PruneRule(rulebi);
13: end while

14: return list;

D. Monotonic Pruning Walkthrough

While the global optimisation of monotonicity when the

ant colony generates a list of rules should reduce the need

for additional aggressive pruning, the two new pruners aim

to reduce the potential destructive affects further. Consider

the following example, using a car efficiency dataset with a

constraint that more powerful cars will have a lower efficiency.

An execution of cAnt-MinerPB+MC would possibly produce

the list of rules below:

1) IF Power ≥ 250 THEN High

2) IF Cylinders = 6 AND Power ≤ 200 THEN Low

3) IF Doors = 2 THEN Medium

4) IF Power ≤ 200 THEN High

5) IF <empty> THEN Medium

We can see that there is a monotonic violation between rules

1 and 2 as a car with a lower power can have a worse

fuel efficiency (rule 2) than one with more power (rule 1).

To ensure monotonicity, the Naive pruner would produce the

following monotonic rule list (with the default rule being

automatically re-added to ensure full coverage):

1) IF Power ≥ 250 THEN High

2) IF Cylinders = 6 THEN Low

3) IF <empty> THEN Medium

while the more sophisticated monotonic pruners MVP and

BFP would produce the following monotonic rule list:

1) IF Power ≥ 250 THEN High

2) IF Cylinders = 6 THEN Low

3) IF Doors = 2 THEN Medium

4) IF Power ≤ 200 THEN High

5) IF <empty> THEN Medium

As can be seen, this is a far less destructive change than

the Naive pruner, which would potentially induce a smaller

change in the rule lists predictive accuracy.

TABLE II
DATA SETS FROM THE UCI [16] USED IN EXPERIMENTS, INCLUDING ATTRIBUTE AND CONSTRAINTS INFORMATION. THE CONSTRAINTS INFORMATION

CONTAIN THE ATTRIBUTE NAME, DIRECTION OF CONSTRAINT, EITHER ↑ (INCREASING) OR ↓ (DECREASING), AND ITS CORRESPONDING NMI.

Attributes Constraint

Name Size Nominal Continuous Attribute Direction NMI

Abalone 4176 1 7 Shell Weight ↑ 0.8062

Australian Credit 689 9 6 A8 ↓ 0.9925

Bank Marketing 4520 9 7 Loan ↓ 0.9859

Cancer 698 0 10 USize ↑ 0.0059

Car 1727 6 0 Safety ↑ 0.0460

Credit Screen 689 9 6 A4 ↑ 0.9444

German Credit 689 9 6 Credit History ↓ 0.9189

Haberman 305 0 3 PosNode ↑ 0.0861

MPG 397 0 7 Horsepower ↓ 0.0566

Pima 767 0 8 PGC ↑ 0.0947

User Knowledge 402 0 5 PEG ↑ 0.9764

Wine 177 0 13 Flavanoids ↓ 0.964

Wine Quality 1598 0 11 Alcohol ↑ 0.8373

TABLE III
ACCURACY OF THE FIVE MONOTONIC RULE LEARNERS. OLM IS AN EXISTING MONOTONIC LEARNER, THE OTHER FOUR ALGORITHMS ARE ACO-BASED

ALGORITHMS USING A COMBINATION OF SOFT CONSTRAINTS AND HARD CONSTRAINTS AT DIFFERENT STAGES OF THE CONSTRUCTION PROCESS. THE

BEST RESULT FOR EACH DATA SET IS SHOWN IN BOLD.

Data set OLM cAnt-MinerPB+Pruners cAnt-MinerPB+RULEM cAnt-MinerPB+MCP cAnt-MinerPB+MC+RULEM

Abalone 0.1609 [0.0164] 0.2500 [0.0152] 0.1354 [0.0065] 0.2583 [0.0083] 0.1294 [0.0056]

Australian Credit 0.6449 [0.0646] 0.8501 [0.0562] 0.8345 [0.0097] 0.8554 [0.0402] 0.8554 [0.0402]

Bank Marketing 0.8828 [0.0482] 0.7954 [0.0242] 0.8717 [0.0097] 0.8949 [0.0131] 0.8746 [0.0343]

Cancer 0.8355 [0.0149] 0.9465 [0.0214] 0.7241 [0.0158] 0.9574 [0.0166] 0.7743 [0.0354]

Car 0.9055 [0.0187] 0.8452 [0.0274] 0.7958 [0.0096] 0.8964 [0.0149] 0.8179 [0.0356]

Credit Screen 0.5681 [0.0654] 0.8546 [0.0546] 0.8645 [0.0564] 0.8612 [0.0385] 0.8356 [0.2565]

German Credit 0.6700 [0.0153] 0.7465 [0.0674] 0.7000 [0.6874] 0.7416 [0.0369] 0.6946 [0.0645]

Haberman 0.6993 [0.0781] 0.7405 [0.0791] 0.7097 [0.6741] 0.7417 [0.0917] 0.7419 [0.0654]

MPG 0.7663 [0.0367] 0.7641 [0.0641] 0.7555 [0.0664] 0.9256 [0.0274] 0.7587 [0.0124]

Pima 0.7161 [0.0589] 0.7456 [0.0665] 0.6623 [0.0695] 0.7494 [0.0707] 0.7013 [0.0963]

User Knowledge 0.4839 [0.0398] 0.9242 [0.0157] 0.8987 [0.0678] 0.9271 [0.0355] 0.9346 [0.0646]

Wine 0.3202 [0.0201] 0.9875 [0.0264] 0.8889 [0.0345] 0.9605 [0.0377] 0.5555 [0.0564]

Wine Quality 0.2808 [0.0276] 0.5412 [0.0447] 0.3183 [0.0248] 0.5743 [0.0391] 0.3178 [0.0641]

The three pruners are computationally inexpensive in com-

parison to the main ACO optimisation stage, therefore a viable

approach to rule list pruning is to combine all three pruners

into a pruning suite where all pruners are evaluated on the

training data and the rule list with the highest predictive

accuracy on the training set is selected. At this point we

can focus only on accuracy since all rule lists at this stage

are guaranteed to be monotonic. This modified algorithm is

called cAnt-MinerPB+MCP, using the soft constraints found

in cAnt-MinerPB+MC and the proposed pruning suite for hard

constraints.

IV. RESULTS

Our results have been split into two sections, first we

will present the monotonic algorithms and then compare the

best monotonic algorithm to traditional non-monotonic rule

learners. As we are concentrating on rule induction and the

comprehensible models that they produce, we will only be

considering the performance of our algorithms against other

rule induction methods. This allows a fair comparison remov-

ing any biases that may be present due to model representation.

In all experiments, cAnt-Miner variations were configured

with a colony size of 5 ants, 500 iterations, minimum cases

covered by an individual rule of 10, uncovered instance ratio

of 0.01, and constraint weighting (ω) of 0.5 (only used by

cAnt-MinerPB+MC). The eight chosen algorithms were tested

on thirteen data sets taken from the UCI Machine Learning

Repository [16]. Table II present the details of the chosen

data sets, including a summary of the constraints used. All

independent attributes had their NMI calculated to discover

TABLE IV
AVERAGE RANKINGS AND p VALUES OF THE MONOTONIC ALGORITHMS

TESTED. RESULTS THAT SHOWED A STATISTICALLY SIGNIFICANT

DIFFERENCE ACCORDING TO THE HOLM TEST FOR α = 0.05 ARE SHOWN

IN BOLD.

Algorithm Ranking p Holm

cAnt-MinerPB+MCP 1.4910

cAnt-MinerPB+Pruners 2.5385 0.0940 0.05

cAnt-MinerPB+MC+RULEM 3.2692 4.3336E-3 0.025

OLM 3.7692 2.5318E-4 0.0167

cAnt-MinerPB+RULEM 3.9231 9.3412E-5 0.0125

good monotonic relationships—the NMI results guided the

choice of constrained attribute reported in the table.

A. Monotonic Experimental Results

To test the effectiveness of both additive and subtractive

monotonic post-processing methods, four algorithms have

been created: the first two use cAnt-MinerPB as the base with

both the monotonic pruners and RULEM as post-processing

steps; the other two algorithms use cAnt-MinerPB+MC as the

base, which incorporates the soft constraints into the model

construction and then uses either the monotonic pruners or

RULEM to enforce the constraints rigidly.

These four algorithms have also been compared against

OLM [11], a monotonic rule learner from the literature. Table

III shows the predictive accuracy of all the algorithms on

the thirteen data sets, with the standard deviation shown in

brackets. All results are the average of tenfold cross-validation,

with the stochastic ACO-based algorithms running five times

on each fold and the average taken to even out random

differences in performance. The highest accuracy achieved on

each data set is shown in bold. In summary, the two algo-

rithms that incorporate soft constraints cAnt-MinerPB+MCP

and cAnt-MinerPB+MC+RULEM achieve the best result of

all the algorithms in seven and three of the thirteen datasets,

respectively. cAnt-MinerPB+Pruners achieves the best result

in two datasets and cAnt-MinerPB+RULEM achieves one win.

Table IV shows the results of the statistical testing done on

the RRMSE results obtained in Table III, where we can see

that cAnt-MinerPB+MCP achieves the lowest (best) average

rank and significantly outperforms the monotonic learner OLM

and both ant colony variants that use RULEM post-processing

procedure.

Our results show that the algorithms that used subtractive

pruners performed better than RULEM, which uses an additive

approach. RULEM adds additional rules to a rule list, which

could lead to over-fitting of the data—if the rules added by

RULEM are good rules and therefore increase predictive accu-

racy, it would be reasonable to expect the learning algorithms

to discover them. These additionally created rules that are

added to the top of a list reduce the effectiveness of the

previously generated rules, as rules at the top of the list will

preferentially make predictions over those lower in the list.

Subtractive pruners, instead, can only generalise a rule and

allow it to cover more instances. While overly generalised

rules will hurt a models predictive accuracy, the monotonic

pruners here aim to minimise changes to the model.

Previous experiments involving RULEM have been focused

on algorithms that employ the sequential covering technique,

which generally ignores rule interactions when constructing

a model. In fact this is one of the reasons RULEM authors

focused on post-processing, as monotonicity is a global prop-

erty [14]. However, cAnt-MinerPB and its derivatives generate

an entire rule list in each iteration of the algorithm. This

allows for rule interactions to be optimised and, therefore,

the additional rules generated by RULEM may disrupt these

rule interactions present in the models, negatively affecting the

accuracy.

Due to the global optimisation of models by cAnt-MinerPB,

a logical step is to introduce monotonic constraints to the

learning phase. The decision to implement a soft constraint

regime at this stage is to nudge (bias) ants towards good

monotonic solutions while not restricting the search space they

operate in. Our experiments show that incorporating those

constraints into the learning phase minimises the changes

required in a potentially destructive post-processing step to

fix the model. Embedding constraints into the learning phase

allows the ant colony to optimise the rule list based on all

the features we required and not to enforce new requirements

after the model has been optimised.

B. Non-Monotonic Comparison Results

The best monotonic algorithm cAnt-MinerPB+MCP was also

compared to three traditional non-monotonic algorithms, JRip

[17], Quinlan’s C5.0 Rules2, and the original ACO-based algo-

rithm cAnt-MinerPB to show if any loss of predictive accuracy

has occurred due to the addition of monotonic constraints. The

results of these experiments are shown in Table V, with the

statistical analysis shown in Table VI. To summarise, while

no statistical significance was observed, cAnt-MinerPB+MCP

achieved the lowest (best) average rank and managed to out-

perform the other algorithms in six of the thirteen datasets. The

results also show that cAnt-MinerPB+MCP has not suffered a

drop in predictive accuracy compared to the original algorithm

cAnt-MinerPB with the inclusion of additional constraints

into the learning process. This is particular interesting as

Ben-David has previously suggested that enforcing monotonic

constraints may harm predictive accuracy [11]. However, we

hypothesise that if constraints are correctly identified, this

additional knowledge should allow the construction of more

accurate and generalised models, helping algorithms ignore

some of the noise present in real world data sets.

V. CONCLUSION

In conclusion, we have shown that monotonic constraints

should not be confined to a post-processing stage, but should

also be incorporated into the learning phase. The most suc-

cessful algorithm in our experiments, cAnt-MinerPB+MCP,

2https://www.rulequest.com/see5-unix.html

TABLE V
COMPARISON OF THE MODEL ACCURACY OF THE BEST MONOTONIC RULE LEARNER cANT-MINERPB+MCP TO TRADITIONAL NON-MONOTONIC RULE

LEARNERS, INCLUDING THE ORIGINAL cANT-MINERPB . THE BEST RESULT FOR EACH DATA SET IS SHOWN IN BOLD.

Data set cAnt-MinerPB+MCP JRip C5.0 Rules cAnt-MinerPB

Abalone 0.2583 [0.0083] 0.1906 [0.0284] 0.2303 [0.0310] 0.2562 [0.0215]

Australian Credit 0.8554 [0.0402] 0.8507 [0.0315] 0.8639 [0.0363] 0.8580 [0.0501]

Bank Marketing 0.8949 [0.0131] 0.8936 [0.0146] 0.8919 [0.0125] 0.8938 [0.014]

Cancer 0.9574 [0.0166] 0.9542 [0.0256] 0.9527 [0.0223] 0.9566 [0.0181]

Car 0.8964 [0.0149] 0.8646 [0.0134] 0.9543 [0.0137] 0.8929 [0.0151]

Credit Screen 0.8612 [0.0385] 0.8936 [0.0485] 0.8612 [0.0393] 0.8493 [0.0479]

German Credit 0.7416 [0.0369] 0.7350 [0.0468] 0.7120 [0.0444] 0.7490 [0.0509]

Haberman 0.7417 [0.0917] 0.7222 [0.0387] 0.7288 [0.0764] 0.7405 [0.0791]

MPG 0.9256 [0.0274] 0.9095 [0.0856] 0.9247 [0.0353] 0.9200 [0.0293]

Pima 0.7494 [0.0707] 0.7513 [0.0715] 0.7377 [0.0698] 0.7493 [0.0564]

User Knowledge 0.9271 [0.0355] 0.9280 [0.0269] 0.9281 [0.0473] 0.9254 [0.0486]

Wine 0.9605 [0.0377] 0.9494 [0.0156] 0.9436 [0.0594] 0.9444 [0.0586]

Wine Quality 0.5743 [0.0391] 0.5860 [0.0212] 0.6128 [0.0543] 0.5523 [0.0477]

TABLE VI
AVERAGE RANKINGS AND p VALUES OF THE BEST MONOTONIC

ALGORITHM cANT-MINERPB+MCP AND THREE NON-MONOTONIC RULE

LEARNERS. THE HOLM TEST WAS USED TO CHECK FOR SIGNIFICANCE AT

α = 0.05.

Algorithm Ranking p Holm

cAnt-MinerPB+MCP 1.8077

C5.0 Rules 2.6538 0.0947 0.05

cAnt-MinerPB 2.6923 0.0806 0.025

JRip 2.8462 0.0403 0.0167

combined soft constraints in the learning phase with a suite of

new pruners that aimed to minimise any destructive changes

on the rule list while fixing any non-monotonic features.

Enforcing monotonic constraints in cAnt-MinerPB+MCP did

not have a negative effect on the accuracy of the algorithm

when compared to the original cAnt-MinerPB and classical

rule induction algorithms C5.0 Rules and JRip, which do not

enforce these constraints.

We have identified a number of possible ideas and improve-

ments for future work. Currently, cAnt-MinerPB+MCP can

cope with a single constrained attribute and, while we believe

that it is more realistic to constrain one attribute compared to

all attributes, it is common to have a number of attributes

that have some form of monotonic relationship. Another

future improvement could be the introduction of piecewise

constraints, enabling the algorithm to model more complex

relationships than simple always monotonically increasing or

decreasing ones.

REFERENCES

[1] U. Fayyad, G. Piatetsky-Shapiro, and P. Smith, “From data mining
to knowledge discovery: an overview,” in Advances in Knowledge

Discovery & Data Mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smith,
and R. Uthurusamy, Eds. MIT Press, 1996, pp. 1–34.

[2] K. Hoover and S. Perez, “Three attitudes towards data mining,” Journal

of Economic Methodology, vol. 7, no. 2, pp. 195–210, 2000.

[3] R. Parpinelli, H. Lopes, and A. Freitas, “Data mining with an ant
colony optimization algorithm,” IEEE Transactions on Evolutionary

Computation, vol. 6, no. 4, pp. 321–332, August 2002.
[4] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant System: Optimization by

a colony of cooperating agents,” IEEE Transactions on Systems, Man,

and Cybernetics – Part B, vol. 26, pp. 29–41, 1996.
[5] D. Martens, B. Baesens, and T. Fawcett, “Editorial survey: swarm

intelligence for data mining,” Machine Learning, vol. 82, no. 1, pp.
1–42, 2011.

[6] F. Otero, A. Freitas, and C. Johnson, “A New Sequential Covering Strat-
egy for Inducing Classification Rules With Ant Colony Algorithms,”
IEEE Transactions on Evolutionary Computation, vol. 17, no. 1, pp.
64–76, 2013.

[7] W. Duivesteijn and A. Feelders, “Nearest neighbour classification with
monotonicity constraints,” in Machine Learning and Knowledge Discov-

ery in Databases. Springer Berlin Heidelberg, 2008, vol. 5211 5211,
pp. 301–316.

[8] A. Feelders and M. Pardoel, “Pruning for monotone classification trees,”
in Advances in intelligent data analysis V. Springer, 2003, pp. 1–12.

[9] R. Potharst, A. Ben-David, and M. van Wezel, “Two algorithms for
generating structured and unstructured monotone ordinal data sets,”
Engineering Applications of Artificial Intelligence, vol. 22, no. 4, pp.
491–496, 2009.

[10] A. Ben-David, “Monotonicity maintenance in information-theoretic ma-
chine learning algorithms,” Machine Learning, vol. 19, pp. 29–43, 1995.

[11] A. Ben-David, L. Sterling, and T. Tran, “Adding monotonicity to
learning algorithms may impair their accuracy,” Expert Systems with

Applications, vol. 36, pp. 6627–6634, 2009.
[12] J. Brookhouse and F. E. B. Otero, “Monotonicity in ant colony classifica-

tion algorithms,” in 10th International Conference on Swarm Intelligence

(ANTS 2016). Springer, May 2016.
[13] ——, “Using an ant colony optimization algorithm for monotonic

regression rule discovery,” in Genetic and Evolutionary Computation

Conference (GECCO 2016). ACM Press, April 2016.
[14] W. Verbeke, D. Martens, and B. Baesens, “Rulem: A novel heuristic

rule learning approach for ordinal classification with monotonicity
constraints,” Applied Soft Computing, 2017.

[15] A. Feelders, “Prior knowledge in economic applications of data mining,”
in Principles of Data Mining and Knowledge Discovery, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2000, vol.
1910, pp. 395–400.

[16] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[17] W. W. Cohen, “Fast effective rule induction,” in Twelfth International

Conference on Machine Learning. Morgan Kaufmann, 1995, pp. 115–
123.

