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ABSTRACT

This paper presents a methodology for early detection of audio

events from audio streams. Early detection is the ability to infer an

ongoing event during its initial stage. The proposed system consists

of a novel inference step coupled with dual parallel tailored-loss

deep neural networks (DNNs). The DNNs share a similar architec-

ture except for their loss functions, i.e. weighted loss and multitask

loss, which are designed to efficiently cope with issues common to

audio event detection. The inference step is newly introduced to

make use of the network output for recognizing ongoing events. The

monotonicity of the detection function is required for reliable early

detection, and will also be proved. Experiments on the ITC-Irst

database show that the proposed system achieves state-of-the-art de-

tection performance. Furthermore, even partial events are sufficient

to achieve good performance similar to that obtained when an entire

event is observed, enabling early event detection.

Index Terms— Audio event detection, early detection, deep

neural networks, monotonicity

1. INTRODUCTION

Great progress has been made in recent years on the problem of au-

dio event detection, in both methodologies [1, 2, 3, 4, 5] as well

as available datasets [6, 7, 8, 9]. However, many previous works fo-

cused only on classifying audio events after fully observing an entire

event. We are still missing an important aspect of audio event detec-

tion: namely, the early detection of ongoing events, such as from

live audio streams. Early AED differs from standard AED by requir-

ing ongoing events to be recognized as early as possible, or when

given only a partial observation of the beginning of an event [10].

The ability to reliably detect ongoing events at their early stage is

important in many scenarios, such as surveillance and safety-related

applications, which require low latency reaction to potentially dan-

gerous events. However, this requires monotonicity in the detection

function, which is not easily fulfilled with methods used to recognize

complete events [10, 11].

There has been an influx of works employing deep networks,

such as DNNs [1, 12], convolutional neural networks (CNNs) [2, 13,

4, 14], and recurrent neural networks (RNNs) [3, 15], for audio event

analysis. However, these works primarily focused on new network

architectures. Little attention has been paid on loss functions to ad-

dress the common issues of audio event detection in audio streams

and, more importantly, to enable inferring an ongoing event at its

early stage. To this end, we propose two tailored loss functions: (1)

weighted loss for unbalanced foreground/background classification

∗The work was performed when H. Phan was at the Institute of Signal
Processing, University of Lübeck.
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Fig. 1. An overview of the proposed system.

and (2) multitask loss for jointly modelling event class distribution

(i.e. event classification) and event temporal structures (i.e. regres-

sion for event boundary estimation). These loss functions are used

with two DNNs which are operating in parallel as demonstrated in

Fig. 1. Furthermore, a novel inference scheme is introduced to make

use of the network outputs to infer ongoing events for early detec-

tion. Intuitively, the confidence score of a given target event occur-

ring will gradually accumulate when each incoming audio frames

describing that event is analysed. Since the confidence score is a

monotonic function (see Section 2.4), an event which is detectable

by the system can be reliably detected early in time as soon as the

accumulated confidence score reaches a predetermined threshold.

Our work builds upon our previous deep learning innova-

tions [16, 10, 17]. In [16, 10], different random decision forests

were learned separately for event classification and event boundary

estimation. Although these two tasks can be jointly learned with

classification-regression forests [17], they are class-specific. In con-

trast, the proposed multitask DNN is a single model for multiple

classes and multiple tasks simultaneously. It is also worth mention-

ing that the tailored loss functions were used by our AED system

[18] for the DCASE 2017 challenge [7]. However, the simple me-

dian filtering detection used in that preliminary work is not capable

of early event detection. The novel inference scheme proposed in

this work is explicitly designed to overcome this limitation.

2. THE PROPOSED APPROACH

An overview of the proposed system is illustrated in Fig. 1. A

continuous audio signal is firstly decomposed into frames. Each

frame is then presented to the weighted-loss and multitask-loss

DNNs denoted as DNN-1 and DNN-2, respectively. The former is

used to determine whether the input frame is foreground or back-

ground whereas the latter is employed for joint event classification

and event boundary estimation. DNN-1 and DNN-2 share a similar

architecture, including three fully connected layers as demonstrated

in Fig. 2 and Table 1. The differences are the dropout probability

[19], which is 0.5 and 0.2 for DNN-1 and DNN-2 respectively, the

output layer, and the loss function. Note that the DNNs are operate

in parallel rather than as a cascade in [18, 10, 16]. The network

outputs are then used in the inference step to compute a confidence

score that a target event is occurring at a certain time index.
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Fig. 2. The proposed DNN architecture.

2.1. DNN-1: Fore-/background classification with weighted loss

In general, for audio event detection in continuous streams, the

number of background frames is significantly larger than foreground

ones. This leads to a skewed classification problem with a domi-

nance of the background samples. Since foreground samples are

more valuable than background ones, we penalize the network more

for false negative errors than for false positives. The weighted loss

is designed for this purpose.

Let {(x1,y1) , . . . , (xN ,yN )} denote a training set of N exam-

ples where x ∈ R
D denotes a feature vector of size D. y ∈ {0, 1}2

denotes a binary one-hot encoding vector where 0 and 1 indicate

background and foreground categories, respectively. The weighted

loss reads,

Ew(θ) = −
1

N

(

λfg

N
∑

n=1

Ifg(xn)yn log
(

ŷn(xn ,θ)
)

+ λbg

N
∑

n=1

Ibg(xn)yn log
(

ŷn(xn ,θ)
)

)

+
λ

2
‖θ‖2

2
, (1)

where θ denotes the network’s trainable parameters. Ifg(x) and

Ibg(x) are indicator functions which specify whether the sample x

is foreground or background, respectively. λfg and λbg are penal-

ization weights for false negative errors and false positive errors , re-

spectively. The hyper-parameter λ is used to trade-off the error terms

and the ℓ2-norm regularization term, ‖.‖2
2
. The posterior probability

ŷ(x ,θ) is obtained by applying a softmax to the output layer.

2.2. DNN-2: Joint event classification and boundary estimation

with multitask loss

We enforce DNN-2 to jointly model the class distribution for event

classification and the event temporal structures for event boundary

estimation, similarly to [16, 17]. The proposed multi-task loss is

specialized for this purpose. Multitask modelling can also be in-

terpreted as implicit regularization, which is expected to improve

generalization of a network [20, 21].

In addition to the one-hot encoding vector y ∈ {0, 1}C , where

C is the number of event categories, we associate a sample x with

a distance vector d = (don, doff) ∈ R
2. don and doff denote the

distances from the audio frame x to the corresponding event onset

and offset [16, 10]. The distances are further normalized to [0, 1].

Table 1. The parameters of the DNNs. A dropout probability of 0.5

and 0.2 is used for DNN-1 and DNN-2, respectively.

Layer Size Activation Dropout

fc1 512 ReLU 0.5/0.2

fc2 256 ReLU 0.5/0.2

fc3 512 ReLU 0.5/0.2
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Fig. 3. The output layer and the prediction of the multi-task DNN.

The output layer of DNN-2 consists of two variables: ȳ =
(ȳ1, ȳ2, . . . , ȳC) and d̄ = (d̄on, d̄off) as illustrated in Fig. 3. The

network predictions for class posterior probability ŷ = (ŷ1, ŷ2, . . . , ŷC)

and distance vector d̂ = (d̂on, d̂off) are then obtained by:

ŷ = softmax(ȳ), (2)

d̂ = sigmoid(d̄). (3)

Given a training set {(x1,y1,d1) , . . . , (xN ,yN ,dN )} of N

examples, DNN-2 is trained to minimize the multi-task loss:

Emt(θ) = λclassEclass(θ) + λdistEdist(θ) + λconfEconf(θ) +
λ

2
‖θ‖2

2
,

(4)

where

Eclass(θ) = −
1

N

N
∑

n=1

yn log
(

ŷn(xn ,θ)
)

, (5)

Edist(θ) = −
1

N

N
∑

n=1

∥

∥

∥
d− d̂n (xn,θ)

∥

∥

∥

2

2

, (6)

Econf(θ) = −
1

N

N
∑

n=1

∥

∥

∥

∥

∥

∥

yn − ŷn

I
(

dn, d̂n (xn,θ)
)

U
(

dn, d̂n (xn,θ)
)

∥

∥

∥

∥

∥

∥

2

2

. (7)

Eclass, Eclass, and Econf in the above equations are so-called class

loss, distance loss, and confidence loss, respectively. The terms

λclass, λdist, and λconf represent the weighting coefficients for three

corresponding loss types. The class loss complies with the common

cross-entropy loss to penalize classification errors whereas the dis-

tance loss penalizes event onset and offset distance estimation errors.

Furthermore, the confidence loss penalizes both classification errors

and distance estimation errors. The functions I(d, d̂) and U(d, d̂)
in (7) calculate the intersection and the union of the ground-truth

event boundary and the predicted one respectively, given by:

I
(

d, d̂
)

= min
(

don, d̂on

)

+min
(

doff, d̂off

)

, (8)

U
(

d, d̂
)

= max
(

don, d̂on

)

+max
(

doff, d̂off

)

. (9)

While the network may favour optimizing the class loss or the

distance loss to reduce the total loss Emt(θ), the confidence loss en-

courages it to optimize both losses at the same time. This is expected

to accelerate and facilitate the learning process.

2.3. Inference

Our prior work [18] employed a simple inference step for event de-

tection, which only used the output of one DNN plus the predicted
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Fig. 4. Alignment of the “door knock” confidence score and the

ground-truth boundaries. The regions of confidence score above the

threshold are considered as detected “door knock” events.

class labels of a second DNN, combined with median filtering for

label smoothing. The estimated event boundaries were completely

ignored. Furthermore, that inference scheme could not guarantee

early event detection ability since the detection function did not ful-

fil the monotonicity requirement [11, 10] . In this paper we propose

an inference scheme that utilizes all available predicted quantities

about target events. We will prove the monotonicity of the detec-

tion function, which is key to enabling the network to reliably detect

target events early in time.

Let n,m > 0 both denote the frame time indices. Given a test

audio frame xm at the time index m, the time index n is considered

to be in the region of interest (ROI) of the network prediction if the

following condition is fulfilled:

m− d̂on(xm) ≤ n ≤ m+ d̂off(xm), (10)

where d̂off(xm) and d̂off(xm) represent the event onset and offset

distances predicted by DNN-2. Note that these predicted distances

need to be restored their original scales beforehand. The confidence

score that a target event of class c ∈ {1, 2, . . . , C} occurs at the time

index n is then given by,

fc(n |xm) =

{

P1 (1 |xm)P2 (c |xm) if (10) holds,

0 otherwise .

(11)

In (11), P1 (1 |xm) represents the posterior probability xm is clas-

sified as foreground by DNN-1 and P2 (c |xm) denotes the poste-

rior probability xm is classified as the target class c by DNN-2. The

confidence score obtained by the network predictions given all audio

frames then reads as,

fc(n) =
∑

m

fc(n |xm). (12)

Fig. 4 demonstrates the confidence score obtained for “door knock”

events occurring in a test audio signal of the ITC-Irst dataset [22].

A class-specific threshold βc is then applied to the confidence score

fc(n) for detection purposes, as demonstrated in Fig. 4.

2.4. Monotonicity of the detection function

The monotonicity of the detection confidence score can be proved

easily. Let fm̄(n) denote the accumulated confidence score up to

the current time index m̄ > 0. That is,

fm̄(n) =

m̄
∑

m=1

f(n |xm), (13)

where f(n) is given in (12). Note that we ignore the class label here

for simplicity. Formally, we then have,

fm̄(n) =
m̄
∑

m=1

f(n |xm) ≤
m̄
∑

m=1

f(n |xm) + f(n |xm̄+1)

=

m̄+1
∑

m=1

f(n |xm) = fm̄+1(n). (14)

The monotonicity property is guaranteed since, from (11),

f(n |xm) ≥ 0 for all m ≥ 0. The monotonicity can be interpreted

as: the more the detector knows about the target event, the higher

confidence it gains about occurrence of the target event. As soon as

the accumulated confidence score reaches a pre-determined detec-

tion threshold, the event is considered detected. It is unnecessary for

the system to see the entire event before triggering the detection.

3. EXPERIMENTS

3.1. Experimental setup

Dataset. We conducted experiments on the ITC-Irst dataset of

the CLEAR 2006 challenge [22, 23]. The data was recorded in a

meeting-room environment with twelve recording sessions in total.

There are 16 semantic event categories each of which has approx-

imately 50 occurrences in the recordings. Following the CLEAR

2006 challenge setup [22], twelve out of 16 event categories were

evaluated while the rest was considered as background. Further-

more, nine out of twelve recordings were used for training and the

remaining three were used for evaluation. Only the single channel

named TABLE 1 was used in the experiments.

Features. An audio signal was decomposed into frames of

length 100 ms with a hop size of 10 ms. 64 log-Gammatone spectral

coefficients [24] in the frequency range of 50 Hz to 22050 Hz were

then extracted for each frame. In addition, we considered a context

of five frames for classification purpose. The feature vector for a

context window was formed by simply concatenating feature vectors

of its five constituent frames.

Parameters. For the weighted loss in (1), we set λfg = 2 and

λbg = 1 which are inversely proportional to the ratio of foreground

and background examples in the training data. As a result, false neg-

atives are penalized twice as much as false positives. The associated

weights of the multi-task loss in (4) were set to λclass = 1, λdist = 2,

and λconf = 1. We set λdist larger than λclass and λconf to encour-

age DNN-2 to focus more on modelling event temporal structures.

In addition, we set the regularization parameter λ = 10−3 for both

losses. The DNNs were trained using the Adam optimizer [25] with

a learning rate of 10−4. DNN-1 was trained for 25 epochs with a

batch size of 256 whereas DNN-2 was trained for 25 epochs with a

batch size of 128.

The detection confidence scores were normalized to [0, 1] and

the class-wise detection thresholds were searched in the range of

[0, 1] with a step size of 0.1 via 9-fold cross-validation on the train-

ing data. Those threshold values which yielded maximum class-

specific F1-scores were retained.

Baseline. For comparison, we used the early event detection

system based on random regression forests proposed in [10] as the

baseline. The setting for the random-forest classification and ran-

dom regression forests was unchanged from [10] apart for a minor

improvement in the inference step. That is, we allowed audio frames

to contribute to boundary estimations of all event classes instead of

a single class as in [10]. The class-wise contribution was weighted

by the posterior probability that the frame is classified into the cor-

responding class. The baseline was run for five times and its average

performance was reported.

Evaluation metrics. Two metrics were used for evaluation:
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Fig. 5. Development of the online performance curves of different categories. The offline performances are used as reference.

Table 2. ER (%) and F1-score (%) obtained by different detec-

tion systems. Bold denotes where the proposed system performed

equally to or better than the baseline.

Event Type
ER F1-score

Reg.

Forests
DNN

Reg.

Forests
DNN

door knock 1.7 0.0 99.2 100.0

door slam 0.0 0.0 100.0 100.0

steps 15.0 16.7 92.5 91.7
chair moving 48.3 16.7 84.4 92.0

spoon cup jingle 3.3 0.0 98.3 100.0

paper wrapping 0.0 0.0 100.0 100.0

key jingle 5.0 8.3 97.7 95.7
keyboard typing 41.7 16.7 81.5 91.7

phone ring 23.5 17.4 89.9 100.0

applause 0.0 0.0 100.0 100.0

cough 16.7 25.0 92.2 88.0
laugh 16.7 33.3 90.9 81.8
Overall 15.1 11.0 93.1 95.2

event-wise detection error rate (ER) and event-wise detection accu-

racy in terms of F1-score.

3.2. Experimental resutls

Offline performance. The detection performance achieved by the

proposed system as well as the baseline when entire events are seen

by the systems are shown in Table 2. Overall, the proposed system

significantly outperform the regression-forest baseline, improving

the F1-score from 93.1% to 95.2% and reducing the ER from 15.1%
to 11.0%. Note that the performance of the regression-forest base-

line reported here is slightly better than that in [10] due to the im-

provement in the inference step as mentioned in Section 3.1. The re-

sults obtained by the proposed system are even better than those ob-

tained by the regression-forest system with verification (i.e. 94.6%
on F1-score [26]).

In term of class-wise performance, the proposed DNN system

performed reasonably well on most of the target event categories

even though the employed DNN architecture is relatively simple.

Interestingly, events that involve the human vocal tract were the ex-

ception, which we postulate is due to the lack of feature invariance

caused by vocal tract length variation. A more complex neural net-

work, or a CNN [18] or RNN would be likely to perform better,

however fine-tuning the network architecture is not the main focus

of this work, it is primarily the early detection capability..

Online performance. To verify the early detection ability of the

proposed system, as in [10], a test audio stream was simulated as a

sequence of audio frames coming to the system sequentially one-by-

one. As a new event frame was available, the detection performance

was re-evaluated and recorded. The offline performance was used

as reference. Fig. 5 illustrates how the online performance curves

develop as functions of the number of observed event frames. As

expected, for all categories, as more event frames are seen by the

system, the online F1-scores continually increase while the online

ERs scores decrease, until both match the offline scores. More im-

portantly, the online curves always reach the offline ones before the

events end, meaning that those events detectable by the system are

always detected before they finish. Consider the “laugh” category

as an example; about 50% of events are correctly detected within

the first 100 audio frames (equivalent to 1.0 seconds). The curve

reaches the offline F1-score (i.e. 81.8%) after observing about 120

frames (equivalent to 1.2 seconds). As “laugh” events last for ap-

proximately 400 frames, the online system needs less than 30% of

the event intervals to achieve the same detection accuracy as the of-

fline system.

Discussion. One can see small fluctuations of the online F1-

score and ER curves from Fig. 5. This does not mean that confi-

dence scores themselves fluctuate. In fact, this highlights the way an

audio event is considered to be detected: the center of the detected

event must fall inside the corresponding ground-truth event and vice

versa. Furthermore, with the proposed inference scheme, the region

of segmented events is quite narrow, particularly at their early stages.

As a result, they can be off-center with respect to the ground-truths

and hence counted as detection errors. This is valid for applications

in which event segmentation is unimportant, but does lead to room

for further investigation into better segmentation strategies.

4. CONCLUSIONS

We presented an AED system which is able to infer ongoing events

in audio streams and reliably detect them at their early stages. The

key components of the proposed system are a pair of tailored-loss

DNNs coupled with a novel inference scheme. The weighted-loss

DNN was designed to cope with unbalanced foreground/background

classification while the multitask-loss DNN was encouraged to

jointly model event class distribution and event boundary estima-

tion. Finally, the inference step made use of the network outputs to

compute a confidence score that a target event is occurring at a cer-

tain time index. The monotonicity of the detection function, needed

for reliable early detection, was also proved. Experiments on the

standard ITC-Irst dataset yielded not only state-of-the-art detection

performance, but also a demonstration of reliable early detection

abilities of the proposed system.
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