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Abstract

Most modern applications interact with external services and

access data in structured formats such as XML, JSON and

CSV. Static type systems do not understand such formats,

often making data access more cumbersome. Should we give

up and leave the messy world of external data to dynamic

typing and runtime checks? Of course, not!

We present F# Data, a library that integrates external

structured data into F#. As most real-world data does not

come with an explicit schema, we develop a shape inference

algorithm that infers a shape from representative sample

documents. We then integrate the inferred shape into the F#

type system using type providers. We formalize the process

and prove a relative type soundness theorem.

Our library significantly reduces the amount of data ac-

cess code and it provides additional safety guarantees when

contrasted with the widely used weakly typed techniques.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features

Keywords F#, Type Providers, Inference, JSON, XML

1. Introduction

Applications for social networks, finding tomorrow’s weather

or searching train schedules all communicate with external

services. Increasingly, these services provide end-points that

return data as CSV, XML or JSON. Most such services do

not come with an explicit schema. At best, the documenta-

tion provides sample responses for typical requests.

For example, http://openweathermap.org/current con-

tains one example to document an end-point to get the cur-

rent weather. Using standard libraries, we might call it as1:

let doc = Http.Request("http://api.owm.org/?q=NYC")
match JsonValue.Parse(doc) with
| Record(root)→
match Map.�nd "main" root with
| Record(main)→
match Map.�nd "temp" main with
| Number(num)→ printfn "Lovely %f!" num
| _→ failwith "Incorrect format"

| _→ failwith "Incorrect format"
| _→ failwith "Incorrect format"

The code assumes that the response has a particular shape

described in the documentation. The root node must be a

record with a main field, which has to be another record

containing a numerical temp field representing the current

temperature. When the shape is different, the code fails.

While not immediately unsound, the code is prone to errors

if strings are misspelled or incorrect shape assumed.

Using the JSON type provider from F# Data, we can write

code with exactly the same functionality in two lines:

type W = JsonProvider "http://api.owm.org/?q=NYC"

printfn "Lovely %f!" (W.GetSample().Main.Temp)

JsonProvider "..." invokes a type provider [23] at compile-

time with the URL as a sample. The type provider infers the

structure of the response and provides a type with a GetSam-
ple method that returns a parsed JSON with nested properties

Main.Temp, returning the temperature as a number.

In short, the types come from the sample data. In our

experience, this technique is both practical and surprisingly

effective in achieving more sound information interchange

in heterogeneous systems. Our contributions are as follows:

• We present F# Data type providers for XML, CSV and

JSON (§2) and practical aspects of their implementation

that contributed to their industrial adoption (§6).

• We describe a predictable shape inference algorithm for

structured data formats, based on a preferred shape rela-

tion, that underlies the type providers (§3).

• We give a formal model (§4) and use it to prove relative

type safety for the type providers (§5).

2. Type providers for structured data

We start with an informal overview that shows how F# Data

type providers simplify working with JSON and XML. We

introduce the necessary aspects of F# type providers along

the way. The examples in this section also illustrate the key

design principles of the shape inference algorithm:

1 We abbreviate the full URL and omit application key (available after

registration). The returned JSON is shown in Appendix A and can be

used to run the code against a local file.

http://openweathermap.org/current


• The mechanism is predictable (§6.5). The user directly

works with the provided types and should understand

why a specific type was produced from a given sample.

• The type providers prefer F# object types with properties.

This allows extensible (open-world) data formats (§2.2)

and it interacts well with developer tooling (§2.1).

• The above makes our techniques applicable to any lan-

guage with nominal object types (e.g. variations of Java

or C# with a type provider mechanism added).

• Finally, we handle practical concerns including support

for different numerical types, null and missing data.

The supplementary screencast provides further illustration

of the practical developer experience using F# Data.2

2.1 Working with JSON documents

The JSON format is a popular data exchange format based

on JavaScript data structures. The following is the definition

of JsonValue used earlier (§1) to represent JSON data:

type JsonValue =

| Number of �oat

| Boolean of bool

| String of string

| Record of Map string, JsonValue

| Array of JsonValue[]

| Null

The earlier example used only a nested record containing
a number. To demonstrate other aspects of the JSON type
provider, we look at an example that also involves an array:

[ { "name":"Jan", "age":25 },

{ "name":"Tomas" },

{ "name":"Alexander", "age":3.5 } ]

The standard way to print the names and ages would be to

pattern match on the parsed JsonValue, check that the top-

level node is a Array and iterate over the elements checking

that each element is a Record with certain properties. We

would throw an exception for values of an incorrect shape.

As before, the code would specify field names as strings,

which is error prone and can not be statically checked.

Assuming people.json is the above example and data is a

string containing JSON of the same shape, we can write:

type People = JsonProvider "people.json"

for item in People.Parse(data) do

printf "%s " item.Name

Option.iter (printf "(%f)") item.Age

We now use a local file as a sample for the type inference, but

then processes data from another source. The code achieves

a similar simplicity as when using dynamically typed lan-

guages, but it is statically type-checked.

Type providers. The notation JsonProvider "people.json"
passes a static parameter to the type provider. Static pa-

rameters are resolved at compile-time and have to be con-

stant. The provider analyzes the sample and provides a

type People. F# editors also execute the type provider at

development-time and use the provided types for auto-

completion on “.” and for background type-checking.

The JsonProvider uses a shape inference algorithm and

provides the following F# types for the sample:

type Entity =
member Name : string
member Age : option �oat

type People =
member GetSample : unit → Entity[]
member Parse : string → Entity[]

The type Entity represents the person. The field Name is

available for all sample values and is inferred as string.

The field Age is marked as optional, because the value is

missing in one sample. In F#, we use Option.iter to call the

specified function (printing) only when an optional value is

available. The two age values are an integer 25 and a float

3.5 and so the common inferred type is �oat. The names of

the properties are normalized to follow standard F# naming

conventions as discussed later (§6.3).

The type People has two methods for reading data. Get-
Sample parses the sample used for the inference and Parse
parses a JSON string. This lets us read data at runtime, pro-

vided that it has the same shape as the static sample.

Error handling. In addition to the structure of the types,

the type provider also specifies the code of operations such

as item.Name. The runtime behaviour is the same as in the

earlier hand-written sample (§1) – a member access throws

an exception if data does not have the expected shape.

Informally, the safety property (§5) states that if the in-

puts are compatible with one of the static samples (i.e. the

samples are representative), then no exceptions will occur. In

other words, we cannot avoid all failures, but we can prevent

some. Moreover, if http://openweathermap.org changes

the shape of the response, the code in §1 will not re-compile

and the developer knows that the code needs to be corrected.

Objects with properties. The sample code is easy to write

thanks to the fact that most F# editors provide auto-completion

when “.” is typed (see the supplementary screencast). The

developer does not need to examine the sample JSON file to

see what fields are available. To support this scenario, our

type providers map the inferred shapes to F# objects with

(possibly optional) properties.

This is demonstrated by the fact that Age becomes an

optional member. An alternative is to provide two different

record types (one with Name and one with Name and Age),

2 Available at http://tomasp.net/academic/papers/fsharp-data.

http://openweathermap.org
http://tomasp.net/academic/papers/fsharp-data


but this would complicate the processing code. It is worth

noting that languages with stronger tooling around pattern

matching such as Idris [12] might have different preferences.

2.2 Processing XML documents

XML documents are formed by nested elements with at-

tributes. We can view elements as records with a field for

each attribute and an additional special field for the nested

contents (which is a collection of elements).
Consider a simple extensible document format where a

root element <doc> can contain a number of document ele-
ments, one of which is <heading> representing headings:

<doc>

<heading>Working with JSON</heading>

<p>Type providers make this easy.</p>

<heading>Working with XML</heading>

<p>Processing XML is as easy as JSON.</p>

<image source="xml.png" />

</doc>

The F# Data library has been designed primarily to simplify

reading of data. For example, say we want to print all head-

ings in the document. The sample shows a part of the doc-

ument structure (in particular the <heading> element), but it

does not show all possible elements (say, <table>). Assum-

ing the above document is sample.xml, we can write:

type Document = XmlProvider "sample.xml"

let root = Document.Load("pldi/another.xml")
for elem in root.Doc do
Option.iter (printf " - %s") elem.Heading

The example iterates over a collection of elements returned

by root.Doc. The type of elem provides typed access to

elements known statically from the sample and so we can

write elem.Heading, which returns an optional string value.

Open world. By its nature, XML is extensible and the sam-

ple cannot include all possible nodes.3 This is the fundamen-

tal open world assumption about external data. Actual input

might be an element about which nothing is known.

For this reason, we do not infer a closed choice between

heading, paragraph and image. In the subsequent formaliza-

tion, we introduce a top shape (§3.1) and extend it with la-

bels capturing the statically known possibilities (§3.5). The

labelled top shape is mapped to the following type:

type Element =

member Heading : option string
member Paragraph : option string
member Image : option Image

Element is an abstract type with properties. It can represent

the statically known elements, but it is not limited to them.

For a table element, all three properties would return None.

Using a type with optional properties provides access to

the elements known statically from the sample. However the

user needs to explicitly handle the case when a value is not a

statically known element. In object-oriented languages, the

same could be done by providing a class hierarchy, but this

loses the easy discoverability when “.” is typed.

The provided type is also consistent with our design prin-

ciples, which prefers optional properties. The gain is that the

provided types support both open-world data and developer

tooling. It is also worth noting that our shape inference uses

labelled top shapes only as the last resort (Lemma 1, §6.4).

2.3 Real-world JSON services

Throughout the introduction, we used data sets that demon-
strate the typical problems frequent in the real-world (miss-
ing data, inconsistent encoding of primitive values and het-
erogeneous shapes). The government debt information re-
turned by the World Bank4 includes all three:

[ { "pages": 5 },

[ { "indicator": "GC.DOD.TOTL.GD.ZS",

"date": "2012", "value": null },

{ "indicator": "GC.DOD.TOTL.GD.ZS",

"date": "2010", "value": "35.14229" } ] ]

First, the field value is null for some records. Second, num-

bers in JSON can be represented as numeric literals (without

quotes), but here, they are returned as string literals instead.5

Finally, the top-level element is a collection containing two

values of different shape. The record contains meta-data with

the total number of pages and the array contains the data. F#

Data supports a concept of heterogeneous collection (out-

lined in in §6.4) and provides the following type:

type Record =
member Pages : int

type Item =
member Date : int
member Indicator : string
member Value : option �oat

type WorldBank =
member Record : Record
member Array : Item[]

The inference for heterogeneous collections infers the mul-

tiplicities and shapes of nested elements. As there is exactly

one record and one array, the provided type WorldBank ex-

poses them as properties Record and Array.

In addition to type providers for JSON and XML, F# Data

also implements a type provider for CSV (§6.2). We treat

CSV files as lists of records (with field for each column) and

so CSV is handled directly by our inference algorithm.

3 Even when the document structure is defined using XML Schema,

documents may contain elements prefixed with other namespaces.
4 Available at http://data.worldbank.org
5 This is often used to avoid non-standard numerical types of JavaScript.

http://data.worldbank.org


3. Shape inference for structured data

The shape inference algorithm for structured data is based

on a shape preference relation. When inferring the shape,

it infers the most specific shapes of individual values (CSV

rows, JSON or XML nodes) and recursively finds a common

shape of all child nodes or all sample documents.

We first define the shape of structured data σ. We use the

term shape to distinguish shapes of data from programming

language types τ (type providers generate the latter from the

former). Next, we define the preference relation on shapes σ

and describe the algorithm for finding a common shape.

The shape algebra and inference presented here is influ-

enced by the design principles we outlined earlier and by the

type definitions available in the F# language. The same prin-

ciples apply to other languages, but details may differ, for

example with respect to numerical types and missing data.

3.1 Inferred shapes

We distinguish between non-nullable shapes that always

have a valid value (written as σ̂) and nullable shapes that

encompass missing and null values (written as σ). We write

ν for record names and record field names.

σ̂ = ν {ν1 :σ1, . . . , νn :σn, ρi}

| �oat | int | bool | string

σ = σ̂ | nullable σ̂ | [σ] | any | null | ⊥

Non-nullable shapes include records (consisting of a name

and fields with their shapes) and primitives. The row vari-

ables ρi are discussed below. Names of records arising from

XML are the names of the XML elements. For JSON records

we always use a single name •. We assume that record fields

can be freely reordered.

We include two numerical primitives, int for integers and

�oat for floating-point numbers. The two are related by the

preference relation and we prefer int.
Any non-nullable shape σ̂ can be wrapped as nullable σ̂

to explicitly permit the null value. Type providers map nul-
lable shapes to the F# option type. A collection [σ] is also

nullable and null values are treated as empty collections.

This is motivated by the fact that a null collection is usu-

ally handled as an empty collection by client code. However

there is a range of design alternatives (make collections non-

nullable or treat null string as an empty string).

The shape null is inhabited by the null value (using an

overloaded notation) and ⊥ is the bottom shape. The any
shape is the top shape, but we later add labels for statically

known alternative shapes (§3.5) as discussed earlier (§2.2).

During inference we use row-variables ρi [1] in record

shapes to represent the flexibility arising from records in

samples. For example, when a record Point {x 7→ 3} occurs

in a sample, it may be combined with Point { x 7→ 3, y 7→ 4}
that contains more fields. The overall shape inferred must

account for the fact that any extra fields are optional, giving

an inferred shape Point {x : int, y :nullable int }.

any

stringȝ {ȝ1:İ1,  , ȝn:İn} ٣
float

bool

int

any

string?ȝ {ȝ1:İ1,  , ȝn:İn}?

null

float?

bool?

int?

[İ]

٣
Non-nullable shapes

Nullable shapes

Figure 1. Important aspects of the preferred shape relation

3.2 Preferred shape relation

Figure 1 provides an intuition about the preference between

shapes. The lower part shows non-nullable shapes (with

records and primitives) and the upper part shows nullable

shapes with null, collections and nullable shapes. In the dia-

gram, we abbreviate nullable σ as σ? and we omit links be-

tween the two parts; a shape σ̂ is preferred over nullable σ̂ .

Definition 1. For ground σ1, σ2 (i.e. without ρi variables),

we write σ1 ⊑ σ2 to denote that σ1 is preferred over σ2. The

shape preference relation is defined as a transitive reflexive

closure of the following rules:

int ⊑ �oat (1)

null ⊑ σ (for σ 6= σ̂) (2)

σ̂ ⊑ nullable σ̂ (for all σ̂) (3)

nullable σ̂1 ⊑ nullable σ̂2 (if σ̂1 ⊑ σ̂2) (4)

[σ1] ⊑ [σ2] (if σ1 ⊑ σ2) (5)

⊥ ⊑ σ (for all σ) (6)

σ ⊑ any (7)

ν {ν1 :σ1, .., νn :σn} ⊑
ν {ν1 :σ

′

1, .., νn :σ
′

n}
(if σi ⊑ σ

′

i) (8)

ν {ν1 :σ1, .., νn :σn} ⊑
ν {ν1 :σ1, .., .., νm :σm}

(when m ≤ n) (9)

Here is a summary of the key aspects of the definition:

• Numeric shape with smaller range is preferred (1) and we

choose 32-bit int over �oat when possible.

• The null shape is preferred over all nullable shapes (2),

i.e. all shapes excluding non-nullable shapes σ̂. Any non-

nullable shape is preferred over its nullable version (3)

• Nullable shapes and collections are covariant (4, 5).

• There is a bottom shape (6) and any behaves as the top

shape, because any shape σ is preferred over any (7).

• The record shapes are covariant (8) and preferred record

can have additional fields (9).



csh(σ, σ) = σ (eq)
csh([σ1], [σ2]) = [csh(σ1, σ2)] (list)

csh(⊥, σ) = csh(σ,⊥) = σ (bot)
csh(null, σ) = csh(σ, null) = ⌈σ⌉ (null)
csh(any, σ) = csh(σ, any) = any (top)

csh(�oat, int) = csh(int, �oat) = �oat (num)
csh(σ2, nullable σ̂1 ) = csh(nullable σ̂1 , σ2) = ⌈csh(σ̂1, σ2)⌉ (opt)

csh(ν {ν1 :σ1, . . . , νn :σn}, ν {ν1 :σ
′

1, . . . , νn :σ
′

n}) = ν {ν1 :csh(σ1, σ
′

1), . . . , νn :csh(σn, σ
′

n)} (recd)
csh(σ1, σ2) = any (when σ1 6= ν {. . .} or σ2 6= ν {. . .}) (any)

⌈σ̂⌉ = nullable σ̂ (non-nullable shapes)
⌈σ⌉ = σ (otherwise)

⌊nullable σ̂ ⌋ = σ̂ (nullable shape)
⌊σ⌋ = σ (otherwise)

Figure 2. The rules that define the common preferred shape function

3.3 Common preferred shape relation

Given two ground shapes, the common preferred shape is the

least upper bound of the shape with respect to the preferred

shape relation. The least upper bound prefers records, which

is important for usability as discussed earlier (§2.2).

Definition 2. A common preferred shape of two ground

shapes σ1 and σ2 is a shape csh(σ1, σ2) obtained according

to Figure 2. The rules are matched from top to bottom.

The fact that the rules of csh are matched from top to bottom

resolves the ambiguity between certain rules. Most impor-

tantly (any) is used only as the last resort.

When finding a common shape of two records (recd)

we find common preferred shapes of their respective fields.

We can find a common shape of two different numbers

(num); for two collections, we combine their elements (list).

When one shape is nullable (opt), we find the common non-

nullable shape and ensure the result is nullable using ⌈−⌉,
which is also applied when one of the shapes is null (null).

When defined, csh finds the unique least upper bound of

the partially ordered set of ground shapes (Lemma 1).

Lemma 1 (Least upper bound). For ground σ1 and σ2, if

csh(σ1, σ2) ⊢ σ then σ is a least upper bound by ⊒.

Proof. By induction over the structure of the shapes σ1, σ2.

Note that csh only infers the top shape any when on of the

shapes is the top shape (top) or when there is no other option

(any); a nullable shape is introduced in ⌈−⌉ only when no

non-nullable shape can be used (null), (opt).

3.4 Inferring shapes from samples

We now specify how we obtain the shape from data. As

clarified later (§6.2), we represent JSON, XML and CSV

documents using the same first-order data value:

d = i | f | s | true | false | null

| [d1; . . . ; dn] | ν {ν1 7→ d1, . . . , νn 7→ dn}

The definition includes primitive values (i for integers, f for

floats and s for strings) and null. A collection is written as a

list of values in square brackets. A record starts with a name

ν, followed by a sequence of field assignments νi 7→ di.

Figure 3 defines a mapping S(d1, . . . , dn) which turns a

collection of sample data d1, . . . , dn into a shape σ. Before

applying S, we assume each record in each di is marked

with a fresh row inference variable ρi. We then choose a

ground, minimal substitution θ for row variables. Because

ρi variables represent potentially missing fields, the ⌈−⌉
operator from Figure 2 is applied to all types in the vector.

This is sufficient to equate the record field labels and

satisfy the pre-conditions in rule (recd) when multiple record

shapes are combined. The csh function is not defined for

two records with mis-matching fields, however, the fields

can always be made to match, through a substitution for row

variables. In practice, θ is found via row variable unification

[17]. We omit the details here. No ρi variables remain after

inference as the substitution chosen is ground.

Primitive values are mapped to their corresponding shapes.

When inferring a shape from multiple samples, we use the

common preferred shape relation to find a common shape

for all values (starting with ⊥). This operation is used when

calling a type provider with multiple samples and also when

inferring the shape of collection values.

S(i) = int S(null) = null S(true) = bool
S(f) = �oat S(s) = string S(false) = bool

S([d1; . . . ; dn]) = [S(d1, . . . , dn)]

S(ν {ν1 7→ d1, . . . , νn 7→ dn}ρi
) =

ν {ν1 : S(d1), . . . , νn : S(dn), ⌈θ(ρi)⌉}

S(d1, . . . , dn) = σn where

σ0 = ⊥, ∀i ∈ {1..n}. σi−1▽S(di) ⊢ σi

Choose minimal θ by ordering ⊑ lifted over substitutions

Figure 3. Shape inference from sample data



tag = collection | number
| nullable | string
| ν | any | bool

tagof(string) = string
tagof(bool) = bool
tagof(int) = number

tagof(�oat) = number

tagof(any σ1, . . . , σn ) = any
tagof(ν {ν1 : σ1, . . . , νn : σn}) = ν

tagof(nullable σ̂ ) = nullable
tagof([σ]) = collection

csh(any σ1, . . . , σk, . . . , σn , any σ′

1, . . . , σ
′

k, . . . , σ
′

m ) =
any csh(σ1, σ

′

1), . . . , csh(σk, σ
′

k), σk+1, . . . , σn, σ
′

k+1
, . . . , σ′

m

For i, j such that (tagof(σi) = tagof(σ′

j))⇔ (i = j) ∧ (i ≤ k)

(top-merge)

csh(σ, any σ1, . . . , σn ) = csh(any σ1, . . . , σn , σ) =
any σ1, . . . , ⌊csh(σ, σi)⌋, . . . , σn

For i such that tagof(σi) = tagof(⌊σ⌋)

(top-incl)

csh(σ, any σ1, . . . , σn ) = any σ1, . . . , σn, ⌊σ⌋ (top-add)

csh(σ1, σ2) = any〈⌊σ1⌋, ⌊σ2⌋〉 (top-any)

Figure 4. Extending the common preferred shape relation for labelled top shapes

3.5 Adding labelled top shapes

When analyzing the structure of shapes, it suffices to con-

sider a single top shape any. The type providers need more

information to provide typed access to the possible alterna-

tive shapes of data, such as XML nodes.

We extend the core model (sufficient for the discussion of

relative safety) with labelled top shapes defined as:

σ = . . . | any σ1, . . . , σn

The shapes σ1, . . . , σn represent statically known shapes

that appear in the sample and that we expose in the provided

type. As discussed earlier (§2.2) this is important when read-

ing external open world data. The labels do not affect the

preferred shape relation and any σ1, . . . , σn should still be

seen as the top shape, regardless of the labels6.

The common preferred shape function is extended to find

a labelled top shape that best represents the sample. The new

rules for any appear in Figure 4. We define shape tags to

identify shapes that have a common preferred shape which is

not the top shape. We use it to limit the number of labels and

avoid nesting by grouping shapes by the shape tag. Rather

than inferring any int, any bool, �oat , our algorithm joins

int and �oat and produces any �oat, bool .

When combining two top shapes (top-merge), we group

the annotations by their tags. When combining a top with an-

other shape, the labels may or may not already contain a case

with the tag of the other shape. If they do, the two shapes

are combined (top-incl), otherwise a new case is added (top-

add). Finally, (top-all) replaces earlier (any) and combines

two distinct non-top shapes. As top shapes implicitly permit

null values, we make the labels non-nullable using ⌊−⌋.
The revised algorithm still finds a shape which is the least

upper bound. This means that labelled top shape is only

inferred when there is no other alternative.

Stating properties of the labels requires refinements to the

preferred shape relation. We leave the details to future work,

but we note that the algorithm infers the best labels in the

sense that there are labels that enable typed access to every

possible value in the sample, but not more. The same is the

case for nullable fields of records.

4. Formalizing type providers

This section presents the formal model of F# Data integra-

tion. To represent the programming language that hosts the

type provider, we introduce the Foo calculus, a subset of

F# with objects and properties, extended with operations for

working with weakly typed structured data along the lines of

the F# Data runtime. Finally, we describe how type providers

turn inferred shapes into Foo classes (§4.2).

τ = int | �oat | bool | string | C | Data
| τ1 → τ2 | list τ | option τ

L = type C(x : τ) =M

M = member N : τ = e

v = d | None | Some(v) | new C(v) | v1 :: v2
e = d | op | e1 e2 | λx.e | e.N | new C(e)
| None | match e with Some(x)→ e1 |None→ e2
| Some(e) | e1 = e2 | if e1 then e2 else e3 | nil
| e1 :: e2 | match e with x1 :: x2 → e1 | nil→ e2

op = convFloat(σ, e) | convPrim(σ, e)
| convField(ν1, ν2, e, e) | convNull(e1, e2)
| convElements(e1, e2) | hasShape(σ, e)

Figure 5. The syntax of the Foo calculus

6 An alternative would be to add unions of shapes, but doing so in a way

that is compatible with the open-world assumption breaks the existence

of unique lower bound of the preferred shape relation.



Part I. Reduction rules for conversion functions

hasShape(ν {ν1 :σ1, . . . , νn :σn}, ν
′ {ν′1 7→ d1, . . . , ν

′

m 7→ dm}) (ν = ν′) ∧
( ((ν1 = ν′1) ∧ hasShape(σ1, d1)) ∨ . . . ∨ ((ν1 = ν′m) ∧ hasShape(σ1, dm)) ∨ . . .∨
((νn = ν′1) ∧ hasShape(σn, d1)) ∨ . . . ∨ ((νn = ν′m) ∧ hasShape(σn, dm)) )

hasShape([σ], [d1; . . . ; dn]) hasShape(σ, d1) ∧ . . . ∧ hasShape(σ, dn)
hasShape([σ], null) true

convFloat(�oat, i) f (f = i)
convFloat(�oat, f) f

convNull(null, e) None
convNull(d, e) Some(e d)

hasShape(string, s) true
hasShape(int, i) true
hasShape(bool, d) true (when d ∈ true, false)
hasShape(�oat, d) true (when d = i or d = f)
hasShape(_, _) false

convPrim(σ, d) d (σ, d ∈ {(int, i), (string, s), (bool, b)})

convField(ν, νi, ν {. . . , νi = di, . . .}, e) e di
convField(ν, ν′, ν {. . . , νi = di, . . .}, e) e null (∄i.νi = ν′)

convElements([d1; . . . ; dn], e) e d1 :: . . . :: e dn :: nil
convElements(null) nil

Part II. Reduction rules for the rest of the Foo calculus

(member)
type C(x : τ) = member Ni : τi = ei . . . ∈ L

L, (new C(v)).Ni  ei[x← v]

(cond1) if true then e1 else e2  e1

(cond2) if false then e1 else e2  e2

(eq1) v = v′  true (when v = v′)

(eq2) v = v′  false (when v 6= v′)

(fun) (λx.e) v  e[x← v]

(match1)
match None with
Some(x)→ e1 |None→ e2

 e2

(match2)
match Some(v) with
Some(x)→ e1 |None→ e2

 e1[x← v]

(match3)
match nil with
x1 :: x2 → e1 | nil→ e2

 e2

(match4)
match v1 :: v2 with
x1 :: x2 → e1 | nil→ e2

 e1[x← v]

(ctx) E[e] E[e′] (when e e′)

Figure 6. Foo – Reduction rules for the Foo calculus and dynamic data operations

Type providers for structured data map the “dirty” world

of weakly typed structured data into a “nice” world of strong

types. To model this, the Foo calculus does not have null
values and data values d are never directly exposed. Further-

more Foo is simply typed: despite using class types and ob-

ject notation for notational convenience, it has no subtyping.

4.1 The Foo calculus

The syntax of the calculus is shown in Figure 5. The type

Data is the type of structural data d. A class definition L

consists of a single constructor and zero or more parameter-

less members. The declaration implicitly closes over the

constructor parameters. Values v include previously defined

data d; expressions e include class construction, member

access, usual functional constructs (functions, lists, options)

and conditionals. The op constructs are discussed next.

Dynamic data operations. The Foo programs can only

work with Data values using certain primitive operations.

Those are modelled by the op primitives. In F# Data, those

are internal and users never access them directly.

The behaviour of the dynamic data operations is defined

by the reduction rules in Figure 6 (Part I). The typing is

shown in Figure 7 and is discussed later. The hasShape

function represents a runtime shape test. It checks whether

a Data value d (Section 3.4) passed as the second argument

has a shape specified by the first argument. For records, we

have to check that for each field ν1, . . . , νn in the record,

the actual record value has a field of the same name with a

matching shape. The last line defines a “catch all” pattern,

which returns false for all remaining cases. We treat e1 ∨ e2
and e1 ∧ e2 as a syntactic sugar for if . . then . . else so the

result of the reduction is just a Foo expression.

The remaining operations convert data values into values

of less preferred shape. The convPrim and convFloat oper-

ations take the required shape and a data value. When the

data does not match the required type, they do not reduce.

For example, convPrim(bool, 42) represents a stuck state,

but convFloat(�oat, 42) turns an integer 42 into a floating-

point numerical value 42.0.

The convNull, convElements and convField operations

take an additional parameter e which represents a function

to be used in order to convert a contained value (non-null

optional value, list elements or field value); convNull turns

null data value into None and convElements turns a data

collection [d1, . . . , dn] into a Foo list v1 :: . . . :: vn :: nil
and a null value into an empty list.



L; Γ ⊢ d : Data L; Γ ⊢ i : int L; Γ ⊢ f : �oat

L; Γ, x : τ1 ⊢ e : τ2
L; Γ ⊢ λx.e : τ2

L; Γ ⊢ e2 : τ1 L; Γ ⊢ e1 : τ1 → τ2

L; Γ ⊢ e1 e2 : τ2

L; Γ ⊢ e : Data

L; Γ ⊢ hasShape(σ, e) : bool

L; Γ ⊢ e : Data τ ∈ {int, �oat}

L; Γ ⊢ convFloat(σ, e) : �oat

L; Γ ⊢ e1 : Data L; Γ ⊢ e2 : Data→ τ

L; Γ ⊢ convNull(e1, e2) : option〈τ〉

L; Γ ⊢ e : Data
prim ∈ {int, string, bool}

L; Γ ⊢ convPrim(prim, e) : prim

L; Γ ⊢ e1 : Data
L; Γ ⊢ e2 : Data→ τ

L; Γ ⊢ convElements(e1, e2) : list〈τ〉

L; Γ ⊢ e1 : Data
L; Γ ⊢ e2 : Data→ τ

L; Γ ⊢ convField(ν, ν′, e1, e2) : τ

L; Γ ⊢ e : C
type C(x : τ) = .. member Ni : τi = ei .. ∈ L

L; Γ ⊢ e.Ni : τi

L; Γ ⊢ ei : τi type C(x1 : τ1, . . . , xn : τn) = . . . ∈ L

L; Γ ⊢ new C(e1, . . . , en) : C

Figure 7. Foo – Fragment of type checking

Reduction. The reduction relation is of the formL, e e′.

We omit class declarations L where implied by the context

and write e ∗ e′ for the reflexive, transitive closure of .

Figure 6 (Part II) shows the reduction rules. The (mem-

ber) rule reduces a member access using a class definition

in the assumption. The (ctx) rule models the eager evalua-

tion of F# and performs a reduction inside a sub-expression

specified by an evaluation context E:

E = v :: E | v E | E.N | new C(v, E, e)

| if E then e1 else e2 | E = e | v = E

| Some(E) | op(v, E, e)

| match E with Some(x)→ e1 |None→ e2
| match E with x1 :: x2 → e1 | nil→ e2

The evaluation proceeds from left to right as denoted by

v, E, e in constructor and dynamic data operation arguments

or v :: E in list initialization. We write e[x ← v] for the

result of replacing variables x by values v in an expression.

The remaining six rules give standard reductions.

Type checking. Well-typed Foo programs reduce to a

value in a finite number of steps or get stuck due to an error

condition. The stuck states can only be due to the dynamic

data operations (e.g. an attempt to convert null value to a

number convFloat(�oat, null)). The relative safety (Theo-

rem 3) characterizes the additional conditions on input data

under which Foo programs do not get stuck.

Typing rules in Figure 7 are written using a judgement

L; Γ ⊢ e : τ where the context also contains a set of class

declarations L. The fragment demonstrates the differences

and similarities with Featherweight Java [10] and typing

rules for the dynamic data operations op:

– All data values d have the type Data, but primitive data

values (Booleans, strings, integers and floats) can be im-

plicitly converted to Foo values and so they also have a

primitive type as illustrated by the rule for i and f .

– For non-primitive data values (including null, data col-

lections and records), Data is the only type.

– Operations op accept Data as one of the arguments and

produce a non-Data Foo type. Some of them require a

function specifying the conversion for nested values.

– Rules for checking class construction and member access

are similar to corresponding rules of Featherweight Java.

An important part of Featherweight Java that is omitted here

is the checking of type declarations (ensuring the members

are well-typed). We consider only classes generated by our

type providers and those are well-typed by construction.

4.2 Type providers

So far, we defined the type inference algorithm which pro-

duces a shape σ from one or more sample documents (§3)

and we defined a simplified model of evaluation of F# (§4.1)

and F# Data runtime (§4.2). In this section, we define how

the type providers work, linking the two parts.

All F# Data type providers take (one or more) sample

documents, infer a common preferred shape σ and then use

it to generate F# types that are exposed to the programmer.7

Type provider mapping. A type provider produces an F#

type τ together with a Foo expression and a collection of

class definitions. We express it using the following mapping:

JσK = (τ, e, L) (where L, ∅ ⊢ e : Data→ τ)

The mapping JσK takes an inferred shape σ. It returns an F#

type τ and a function that turns the input data (value of type

Data) into a Foo value of type τ . The type provider also

generates class definitions that may be used by e.

Figure 8 defines J−K. Primitive types are handled by a

single rule that inserts an appropriate conversion function;

convPrim just checks that the shape matches and convFloat
converts numbers to a floating-point.

7 The actual implementation provides erased types as described in [23].

Here, we treat the code as actually generated. This is an acceptable

simplification, because F# Data type providers do not rely on laziness or

erasure of type provision.



JσpK = τp, λx.op(σp, x), ∅ where

σp, τp, op ∈ { (bool, bool, convPrim)
(int, int, convPrim), (�oat, �oat, convFloat),
(string, string, convPrim) }

J ν {ν1 : σ1, . . . , νn : σn} K =

C, λx.new C(x), L1 ∪ . . . ∪ Ln ∪ {L} where

C is a fresh class name

L = type C(x1 :Data) =M1 . . .Mn

Mi = member νi : τi = convField(ν, νi, x1, ei),
τi, ei, Li = JσiK

J [σ] K = list τ , λx.convElements(x, e′), L where

τ, e′, L = Jσ̂K

J any σ1, . . . , σn K =
C, λx.new C(x), L1 ∪ . . . ∪ Ln ∪ {L} where

C is a fresh class name

L = type C(x : Data) = M1 . . .Mn

Mi = member νi : option τi =
if hasShape(σi, x) then Some(ei x) else None

τi, ei, Li = JσiKe, νi = tagof(σi)

Jnullable σ̂ K =

option τ , λx.convNull(x, e), L

where τ, e, L = Jσ̂K

J⊥K = JnullK = C, λx.new C(x), {L} where

C is a fresh class name

L = type C(v : Data)

Figure 8. Type provider – generation of Foo types from inferred structural types

For records, we generate a class C that takes a data value

as a constructor parameter. For each field, we generate a

member with the same name as the field. The body of the

member calls convField with a function obtained from JσiK.

This function turns the field value (data of shape σi) into a

Foo value of type τi. The returned expression creates a new

instance of C and the mapping returns the class C together

with all recursively generated classes. Note that the class

name C is not directly accessed by the user and so we can

use an arbitrary name, although the actual implementation in

F# Data attempts to infer a reasonable name.8

A collection shape becomes a Foo list τ . The returned

expression calls convElements (which returns the empty list

for data value null). The last parameter is the recursively ob-

tained conversion function for the shape of elements σ. The

handling of the nullable shape is similar, but uses convNull.
As discussed earlier, labelled top shapes are also gener-

ated as Foo classes with properties. Given any σ1, . . . , σn ,

we get corresponding F# types τi and generate n members

of type option τi . When the member is accessed, we need

to perform a runtime shape test using hasShape to ensure

that the value has the right shape (similarly to runtime type

conversions from the top type in languages like Java). If the

shape matches, a Some value is returned. The shape infer-

ence algorithm also guarantees that there is only one case

for each shape tag (§3.3) and so we can use the tag for the

name of the generated member.

Example 1. To illustrate how the mechanism works, we

consider two examples. First, assume that the inferred shape

is a record Person { Age :option int , Name : string }. The

rules from Figure 8 produce the Person class shown below

with two members.

The body of the Age member uses convField as specified

by the case for optional record fields. The field shape is nul-

lable and so convNull is used in the continuation to convert

the value to None if convField produces a null data value

and hasShape is used to ensure that the field has the cor-

rect shape. The Name value should be always available and

should have the right shape so convPrim appears directly in

the continuation. This is where the evaluation can get stuck

if the field value was missing:

type Person(x1 : Data) =

member Age : option int =

convField(Person,Age, x1, λx2 →

convNull(x2, λx3 → convPrim(int, x3)) )

member Name : string =

convField(Person,Name, x1, λx2 →

convPrim(string, x2)))

The function to create the Foo value Person from a data

value is λx.new Person(x).

Example 2. The second example illustrates the handling of

collections and labelled top types. Reusing Person from the

previous example, consider [any Person {. . .}, string ]:

type PersonOrString(x : Data) =

member Person : option Person =

if hasShape(Person {. . .}, x) then

Some(new Person(x)) else None

member String : option string =

if hasShape(string, x) then

Some(convPrim(string, x)) else None

The type provider maps the collection of labelled top shapes

to a type list PersonOrString and returns a function that

parses a data value as follows:

8 For example, in {"person":{"name":"Tomas"}}, the nested record

will be named Person based on the name of the parent record field.



λx1 → convElements(x1λx2 → new PersonOrString(x2))

The PersonOrString class contains one member for each of

the labels. In the body, they check that the input data value

has the correct shape using hasShape. This also implicitly

handles null by returning false. As discussed earlier, labelled

top types provide easy access to the known cases (string or

Person), but they require a runtime shape check.

5. Relative type safety

Informally, the safety property for structural type providers

states that, given representative sample documents, any code

that can be written using the provided types is guaranteed to

work. We call this relative safety, because we cannot avoid

all errors. In particular, one can always provide an input that

has a different structure than any of the samples. In this case,

it is expected that the code will throw an exception in the

implementation (or get stuck in our model).

More formally, given a set of sample documents, code

using the provided type is guaranteed to work if the inferred

shape of the input is preferred with respect to the shape of

any of the samples. Going back to §3.2, this means that:

– Input can contain smaller numerical values (e.g., if a

sample contains float, the input can contain an integer).

– Records in the input can have additional fields.

– Records in the input can have fewer fields than some of

the records in the sample document, provided that the

sample also contains records that do not have the field.

– When a labelled top type is inferred from the sample,

the actual input can also contain any other value, which

implements the open world assumption.

The following lemma states that the provided code (gener-

ated in Figure 8) works correctly on an input d′ that is a

subshape of d. More formally, the provided expression (with

input d′) can be reduced to a value and, if it is a class, all its

members can also be reduced to values.

Lemma 2 (Correctness of provided types). Given sample

data d and an input data value d′ such that S(d′) ⊑ S(d)
and provided type, expression and classes τ, e, L = JS(d)K,

then L, e d′  ∗ v and if τ is a class (τ = C) then for all

members Ni of the class C, it holds that L, (e d′).Ni  
∗ v.

Proof. By induction over the structure of J−K. For prim-

itives, the conversion functions accept all subshapes. For

other cases, analyze the provided code to see that it can work

on all subshapes (for example convElements works on null
values, convFloat accepts an integer). Finally, for labelled

top types, the hasShape operation is used to guaranteed the

correct shape at runtime.

This shows that provided types are correct with respect to

the preferred shape relation. Our key theorem states that, for

any input which is a subshape the inferred shape and any

expression e, a well-typed program that uses the provided

types does not “go wrong”. Using standard syntactic type

safety [26], we prove type preservation (reduction does not

change type) and progress (an expression can be reduced).

Theorem 3 (Relative safety). Assume d1, . . . , dn are sam-

ples, σ = S(d1, . . . , dn) is an inferred shape and τ, e, L =
JσK are a type, expression and class definitions generated by

a type provider.

For all inputs d′ such that S(d′) ⊑ σ and all expressions

e′ (representing the user code) such that e′ does not contain

any of the dynamic data operations op and any Data values

as sub-expressions and L; y : τ ⊢ e′ : τ ′, it is the case that

L, e[y ← e′ d′] ∗ v for some value v and also ∅;⊢ v : τ ′.

Proof. We discuss the two parts of the proof separately as

type preservation (Lemma 4) and progress (Lemma 5).

Lemma 4 (Preservation). Given the τ, e, L generated by a

type provider as specified in the assumptions of Theorem 3,

then if L,Γ ⊢ e : τ and L, e ∗ e′ then Γ ⊢ e′ : τ .

Proof. By induction over  . The cases for the ML subset

of Foo are standard. For (member), we check that code

generated by type providers in Figure 8 is well-typed.

The progress lemma states that evaluation of a well-typed

program does not reach an undefined state. This is not a

problem for the Standard ML [15] subset and object-oriented

subset [10] of the calculus. The problematic part are the

dynamic data operations (Figure 6, Part I). Given a data

value (of type Data), the reduction can get stuck if the value

does not have a structure required by a specific operation.

The Lemma 2 guarantees that this does not happen inside

the provided type. We carefully state that we only consider

expressions e′ which “[do] not contain primitive operations

op as sub-expressions”. This ensure that only the code gen-

erated by a type provider works directly with data values.

Lemma 5 (Progress). Given the assumptions and definitions

from Theorem 3, there exists e′′ such that e′[y ← e d′] e′′.

Proof. Proceed by induction over the typing derivation of

L; ∅ ⊢ e[y ← e′ d′] : τ ′. The cases for the ML subset are

standard. For member access, we rely on Lemma 2.

6. Practical experience

The F# Data library has been widely adopted by users and

is one of the most downloaded F# libraries.9 A practical

demonstration of development using the library can be seen

in an attached screencast and additional documentation can

be found at http://fsharp.github.io/FSharp.Data.

In this section, we discuss our experience with the safety

guarantees provided by the F# Data type providers and other

notable aspects of the implementation.

9 At the time of writing, the library has over 125,000 downloads on NuGet

(package repository), 1,844 commits and 44 contributors on GitHub.

http://fsharp.github.io/FSharp.Data


6.1 Relative safety in practice

The relative safety property does not guarantee safety in

the same way as traditional closed-world type safety, but

it reflects the reality of programming with external data

that is becoming increasingly important [16]. Type providers

increase the safety of this kind of programming.

Representative samples. When choosing a representative

sample document, the user does not need to provide a sam-

ple that represents all possible inputs. They merely need to

provide a sample that is representative with respect to data

they intend to access. This makes the task of choosing a rep-

resentative sample easier.

Schema change. Type providers are invoked at compile-

time. If the schema changes (so that inputs are no longer

related to the shape of the sample used at compile-time),

the program can fail at runtime and developers have to han-

dle the exception. The same problem happens when using

weakly-typed code with explicit failure cases.

F# Data can help discover such errors earlier. Our first

example (§1) points the JSON type provider at a sample us-

ing a live URL. This has the advantage that a re-compilation

fails when the sample changes, which is an indication that

the program needs to be updated to reflect the change.

Richer data sources. In general, XML, CSV and JSON

data sources without an explicit schema will necessarily re-

quire techniques akin to those we have shown. However,

some data sources provide an explicit schema with version-

ing support. For those, a type provider that adapts automati-

cally could be written, but we leave this for future work.

6.2 Parsing structured data

In our formalization, we treat XML, JSON and CSV uni-

formly as data values. With the addition of names for records

(for XML nodes), the definition of structural values is rich

enough to capture all three formats.10 However, parsing real-

world data poses a number of practical issues.

Reading CSV data. When reading CSV data, we read each
row as an unnamed record and return a collection of rows.
One difference between JSON and CSV is that in CSV, the
literals have no data types and so we also need to infer the
shape of primitive values. For example:

Ozone, Temp, Date, Autofilled

41, 67, 2012-05-01, 0

36.3, 72, 2012-05-02, 1

12.1, 74, 3 kveten, 0

17.5, #N/A, 2012-05-04, 0

The value #N/A is commonly used to represent missing val-

ues in CSV and is treated as null. The Date column uses

mixed formats and is inferred as string (we support many

date formats and “May 3” would be parsed as date). More

interestingly, we also infer Auto�led as Boolean, because

the sample contains only 0 and 1. This is handled by adding

a bit shape which is preferred of both int and bool.

Reading XML documents. Mapping XML documents to
structural values is more interesting. For each node, we cre-
ate a record. Attributes become record fields and the body
becomes a field with a special name. For example:

<root id="1">

<item>Hello!</item>

</root>

This XML becomes a record root with fields id and • for the

body. The nested element contains only the • field with the

inner text. As with CSV, we infer shape of primitive values:

root {id 7→ 1, • 7→ [item {• 7→ "Hello!"}]}

The XML type provider also includes an option to use global

inference. In that case, the inference from values (§3.4) uni-

fies the shapes of all records with the same name. This is use-

ful because, for example, in XHTML all <table> elements

will be treated as values of the same type.

6.3 Providing idiomatic F# types

In order to provide types that are easy to use and follow the

F# coding guidelines, we perform a number of transforma-

tions on the provided types that simplify their structure and

use more idiomatic naming of fields. For example, the type

provided for the XML document in §6.2 is:

type Root =
member Id : int
member Item : string

To obtain the type signature, we used the type provider as

defined in Figure 8 and applied three additional transforma-

tions and simplifications:

• When a class C contains a member •, which is a class

with further members, the nested members are lifted into

the class C. For example, the above type Root directly

contains Item rather than containing a member • return-

ing a class with a member Item.

• Remaining members named • in the provided classes

(typically of primitive types) are renamed to Value.

• Class members are renamed to follow PascalCase nam-

ing convention, when a collision occurs, a number is ap-

pended to the end as in PascalCase2. The provided imple-

mentation preforms the lookup using the original name.

Our current implementation also adds an additional mem-

ber to each class that returns the underlying JSON node

(called JsonValue) or XML element (called XElement).
Those return the standard .NET or F# representation of the

value and can be used to dynamically access data not ex-

posed by the type providers, such as textual values inside

mixed-content XML elements.

10 The same mechanism has later been used by the HTML type provider

(http://fsharp.github.io/FSharp.Data/HtmlProvider.html), which

provides similarly easy access to data in HTML tables and lists.

http://fsharp.github.io/FSharp.Data/HtmlProvider.html


6.4 Heterogeneous collections

When introducing type providers (§2.3), we mentioned how

F# Data handles heterogeneous collections. This allows us

to avoid inferring labelled top shapes in many common sce-

narios. In the earlier example, a sample collection contains a

record (with pages field) and a nested collection with values.

Rather than storing a single shape for the collection el-

ements as in [σ], heterogeneous collections store multiple

possible element shapes together with their inferred multi-

plicity (exactly one, zero or one, zero or more):

ψ = 1? | 1 | ∗
σ = . . . | [σ1, ψ1| . . . |σn, ψn]

We omit the details, but finding a preferred common shape of

two heterogeneous collections is analogous to the handling

of labelled top types. We merge cases with the same tag (by

finding their common shape) and calculate their new shared

multiplicity (for example, by turning 1 and 1? into 1?).

6.5 Predictability and stability

As discussed in §2, our inference algorithm is designed to be

predictable and stable. When a user writes a program using

the provided type and then adds another sample (e.g. with

more missing values), they should not need to restructure

their program. For this reason, we keep the algorithm simple.

For example, we do not use probabilistic methods to assess

the similarity of record types, because a small change in the

sample could cause a large change in the provided types.

We leave a general theory of stability and predictability

of type providers to future work, but we formalize a brief

observation in this section. Say we write a program using a

provided type that is based on a collection of samples. When

a new sample is added, the program can be modified to run

as before with only small local changes.

For the purpose of this section, assume that the Foo cal-

culus also contains an exn value representing a runtime ex-

ception that propagates in the usual way, i.e. C[exn] exn,

and also a conversion function int that turns floating-point

number into an integer.

Remark 1 (Stability of inference). Assume we have a set of

samples d1, . . . , dn, a provided type based on the samples

τ1, e1, L1 = JS(d1, . . . , dn)K and some user code e written

using the provided type, such that L1;x : τ1 ⊢ e : τ .

Next, we add a new sample dn+1 and consider a new

provided type τ2, e2, L2 = JS(d1, . . . , dn, dn+1)K.

Now there exists e′ such that L2;x : τ2 ⊢ e
′ : τ and if

for some d it is the case that e[x ← e1 d]  v then also

e′[x← e2 d] v.

Such e′ is obtained by transforming sub-expressions of e

using one of the following translation rules:

1. C[e] to C[match e with Some(v)→ v | None→ exn]

2. C[e] to C[e.M] where M = tagof(σ) for some σ

3. C[e] to C[int(e)]

Proof. For each case in the type provision (Figure 8) an

original shape σ may be replaced by a less preferred shape

σ′. The user code can always be transformed to use the

newly provided shape:

– Primitive shapes can become nullable (1), int can become

�oat (3) or become a part of a labelled top type (2).

– Record shape fields can change shape (recursively) and

record may become a part of a labelled top type (2).

– For list and nullable shapes, the shape of the value may

change (we apply the transformations recursively).

– For the any shape, the original code will continue to work

(none of the labels is ever removed).

Intuitively, the first transformation is needed when the new

sample makes a type optional. This happens when it contains

a null value or a record that does not contain a field that all

previous samples have. The second transformation is needed

when a shape σ becomes any〈σ, . . .〉 and the third one is

needed when int becomes �oat.
This property also underlines a common way of handling

errors when using F# Data type providers. When a program

fails on some input, the input can be added as another sam-

ple. This makes some fields optional and the code can be

updated accordingly, using a variation of (i) that uses an ap-

propriate default value rather than throwing an exception.

7. Related and future work

The F# Data library connects two lines of research that

have been previously disconnected. The first is extending the

type systems of programming languages to accommodate

external data sources and the second is inferring types for

real-world data sources.

The type provider mechanism has been introduced in

F# [23, 24], added to Idris [3] and used in areas such as

semantic web [18]. The F# Data library has been developed

as part of the early F# type provider research, but previous

publications focused on the general mechanisms. This paper

is novel in that it shows the programming language theory

behind a concrete type providers.

Extending the type systems. Several systems integrate ex-

ternal data into a programming language. Those include

XML [9, 21] and databases [5]. In both of these, the system

requires the user to explicitly define the schema (using the

host language) or it has an ad-hoc extension that reads the

schema (e.g. from a database). LINQ [14] is more general,

but relies on code generation when importing the schema.

The work that is the most similar to F# Data is the data in-

tegration in Cω [13]. It extends C# language with types sim-

ilar to our structural types (including nullable types, choices

with subtyping and heterogeneous collections with multi-

plicities). However, Cω does not infer the types from sam-

ples and extends the type system of the host language (rather

than using a general purpose embedding mechanism).



In contrast, F# Data type providers do not require any

F# language extensions. The simplicity of the Foo calcu-

lus shows we have avoided placing strong requirements on

the host language. We provide nominal types based on the

shapes, rather than adding an advanced system of structural

types into the host language.

Advanced type systems and meta-programming. A num-

ber of other advanced type system features could be used

to tackle the problem discussed in this paper. The Ur [2]

language has a rich system for working with records; meta-

programming [6, 19] and multi-stage programming [25]

could be used to generate code for the provided types; and

gradual typing [20, 22] can add typing to existing dynamic

languages. As far as we are aware, none of these systems

have been used to provide the same level of integration with

XML, CSV and JSON.

Typing real-world data. Recent work [4] infers a succinct

type of large JSON datasets using MapReduce. It fuses simi-

lar types based on similarity. This is more sophisticated than

our technique, but it makes formal specification of safety

(Theorem 3) difficult. Extending our relative safety to prob-

abilistic safety is an interesting future direction.

The PADS project [7, 11] tackles a more general prob-

lem of handling any data format. The schema definitions

in PADS are similar to our shapes. The structure inference

for LearnPADS [8] infers the data format from a flat input

stream. A PADS type provider could follow many of the pat-

terns we explore in this paper, but formally specifying the

safety property would be more challenging.

8. Conclusions

We explored the F# Data type providers for XML, CSV and

JSON. As most real-world data does not come with an ex-

plicit schema, the library uses shape inference that deduces

a shape from a set of samples. Our inference algorithm is

based on a preferred shape relation. It prefers records to en-

compass the open world assumption and support developer

tooling. The inference algorithm is predictable, which is im-

portant as developers need to understand how changing the

samples affects the resulting types.

We explored the theory behind type providers. F# Data

is a prime example of type providers, but our work demon-

strates a more general point. The types generated by type

providers can depend on external input and so we can only

guarantee relative safety, which says that a program is safe

only if the actual inputs satisfy additional conditions.

Type providers have been described before, but this paper

is novel in that it explores the properties of type providers

that represent the “types from data” approach. Our experi-

ence suggests that this significantly broadens the applicabil-

ity of statically typed languages to real-world problems that

are often solved by error-prone weakly-typed techniques.
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A. OpenWeatherMap service response

The introduction uses the JsonProvider to access weather

information using the OpenWeatherMap service. After reg-

istering, you can access the service using a URL http://api.
openweathermap.org/data/2.5/weather with query string

parameters q and APPID representing the city name and ap-

plication key. A sample response looks as follows:

{

"coord": {

"lon": 14.42,

"lat": 50.09
},

"weather": [

{

"id": 802,

"main": "Clouds",

"description": "scattered clouds",

"icon": "03d"

}

],

"base": "cmc stations",

"main": {

"temp": 5,

"pressure": 1010,

"humidity": 100,

"temp_min": 5,

"temp_max": 5

},

"wind": { "speed": 1.5, "deg": 150 },

"clouds": { "all": 32 },

"dt": 1460700000,

"sys": {

"type": 1,

"id": 5889,

"message": 0.0033,

"country": "CZ",

"sunrise": 1460693287,

"sunset": 1460743037

},

"id": 3067696,

"name": "Prague",

"cod": 200

}

http://api.openweathermap.org/data/2.5/weather
http://api.openweathermap.org/data/2.5/weather
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