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Photonic Compressive Sensing Enabled Data Efficient Time Stretch 

Optical Coherence Tomography 
 

Chaitanya K. Mididoddi, Chao Wang
 

School of Engineering and Digital Arts, University of Kent, Canterbury, CT2 7NT, U.K. 

ABSTRACT   

Photonic time stretch (PTS) has enabled real time spectral domain optical coherence tomography (OCT). However, this 

method generates a torrent of massive data at GHz stream rate, which requires capturing as per Nyquist principle. If the 

OCT interferogram signal is sparse in Fourier domain, which is always true for samples with limited number of layers, it 

can be captured at lower (sub-Nyquist) acquisition rate as per compressive sensing method. In this work we report a data 

compressed PTS-OCT system based on photonic compressive sensing with 66% compression with low acquisition rate 

of 50MHz and measurement speed of 1.51MHz per depth profile. A new method has also been proposed to improve the 

system with all-optical random pattern generation, which completely avoids electronic bottleneck in traditional binary 

pseudorandom binary sequence (PRBS) generators.   

Keywords: Optical Coherence Tomography, Compressive sensing, Dispersion, Time stretch 

 

1. INTRODUCTION  

Optical coherence tomography (OCT)1,2 has widespread applications in medicine and engineering. Time domain OCT 

(TD-OCT) was first demonstrated3 followed by spectral domain OCT (SD-OCT), which offers superior sensitivity and 

higher scanning rate compromising axial scanning range. Swept source OCT (SS-OCT), another variant of SD-OCT has 

been demonstrated, which has achieved MHz scanning rate by rapidly sweeping the optical wavelengths across a broad 

bandwidth. The wavelength sweeping speed is further improved by photonic time stretch (PTS) method4. PTS-OCT has 

enabled detection of transient and fast changing dynamics5 with an unprecedented A-scan rate of 90 MHz. 

However, the PTS-OCT systems5,6 always suffer from continuous massive data generation and the requirement of high 

speed acquisition equipment. On the other hand, compressive sensing (CS) enables detection of spectrally sparse signals 

with low acquisition speed7,8. Photonic compressive sensing9 have wide spread applications in single-pixel optical 

imaging10, gas sensing11, and blind spectrum sensing12,13. There has been a demonstration of compressive sensing to 

study the effectiveness in optical coherence tomography system by direct sampling the OCT data with SD-OCT method 

followed by digital compressive sensing approach14. In this work, we reported and experimentally demonstrated data 

efficient PTS-OCT system based on photonic compressive sensing achieving 66% compression ratio with A-scan rate of 

1.51MHz for a single layer measurement15,16. 

Figure 1 shows the schematic diagram of the proposed system. A passively mode-locked laser (MLL) generates 

ultrashort optical pulse train at a specific repetition rate. Dispersion compensating fibre (DCF) is used as a dispersion 

stretcher to disperse the broadband optical pulses and hence achieves frequency-to-time mapping. The time stretched 

optical pulses are then directed via an optical circulator to a Michelson OCT set up, which emulates a single layer 

sample. The layer depth profile is set up by optical path length difference between a fixed mirror in one arm and a 

movable mirror in the other arm. The spatial depth of the sample is first mapped to free spectral range (FSR) of optical 

spectral interferogram and further to the period of a temporal waveform due to dispersion-induced one-to-one mapping 

between frequency and time domain. 

Each encoded optical pulse is then electro-optically mixed with a unique binary pseudorandom binary sequence (PRBS) 

using a Mach-Zehnder modulator (MZM). Integration of the mixed optical pulse to produce a single measurement is 

optically implemented by using a length of single mode fiber (SMF) with opposite dispersion profile to that of dispersion 

stretcher. This process compresses the encoded and mixed optical pulse to picosecond pulse width, which represents a 

linear combination of PRBS and the encoded optical pulse. A low speed PD with bandwidth identical to the pulse train 

repetition rate is used to measure the power of compressed pulse, generating one element in the measurement matrix. 
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Considering total M distinct PRBS sequences, M measurements are recorded and sampled at the repetition rate of MLL 

using a real-time oscilloscope. 

In compressive sensing model, the original signal x[N], sparse in domain Ȍ, is modulated by the PRBS ĭ at a Nyquist 

rate with length N. After obtaining the measurement vector y with length M (M<N) with each of M PRBS patterns, the 

measurement vector can be represented as y = ĭx = ĭ×(Ȍ-1
s) = ș×s, where s denotes the representation of input signal x 

in domain Ȍ. In reconstruction process, we can retrieve s from y and ș by solving the algorithm of min(||s||)1) subject to 

y=ș×s. Finally, the signal x is calculated from its Ȍ domain representation s. 

 

 

Figure 1. Schematic diagram of the proposed compressive sensing PTS-OCT system. AWG: arbitrary waveform 

generator, PRBS: pseudo random bit sequence, Cir.: Circulator, MZM: Mach-Zehnder modulator, SMF: Single mode 

fibre, PD: Photodetector. 

2. RESULTS 

 
Figure 2. a) Time domain waveform of encoded pulse shown in red and the waveform obtained after compressive 

sensing is shown in blue. b) RF spectral domain of input (red) and reconstructed (blue) 

 
To demonstrate the system, an experimental set up has been constructed as per Figure. 1. The MLL (Calmar Mendocino) 

generates ultrashort optical pulses at 50 MHz repetition rate with pulse width 800 fs and optical bandwidth of 12 nm at 

1550 nm central wavelength. The total dispersion of the DCF stretcher is -1040ps/nm. The interferometer has been 

configured to have optical path length difference of 0.81 mm, which is mapped to a temporal waveform with RF carrier 

frequency of 650 MHz, as shown in Figure 2.a. in red color. The corresponding electrical spectrum is shown in Figure 

2.b in red color. To detect this signal using uniform sampling, it would require 1.3 GS/s acquisition speed according to 
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Shannon-Nyquist sampling theorem. However, since the signal is sparse in frequency domain, it can be detected at a 

lower acquisition speed thanks to compressive sensing.  

In our system, we used an arbitrary waveform generator (AWG) to generate PRBS sequences at 2.5 GS/s for random 

mixing. Considering the pulse train period of 20 ns, the overall sequence length is N = 50 per single optical pulse. 

Integration of mixed optical pulses is implemented in the optical domain based on pulse compression using opposite 

dispersion profile by 60 km single mode fibre. Therefore, a high-speed sample-and-hold electronic integrator is avoided. 

The AWG is synchronized to repetition rate of MLL to establish a deterministic electro-optic mixing process so that one 

to one mapping can be achieved for compressed measurement with a given binary PRBS pattern. Optical integration 

results in compressed pulse and a low speed detector is sufficient to capture the single-element power measurement for 

each individual pulses. In this case, since the repetition rate of the MLL is 50 MHz, the measured optical power would 

represent linear combination of PRBS and encoded signal. After compressive sensing and reconstruction, the resultant 

temporal waveform is shown in Figure 2.a. in blue color with corresponding FFT is shown in Figure 2.b in blue color 

which is in well agreement with the given input tone. Since only 33 measurements are required to reconstruct one depth 

profile with size of 50, compression ratio of 66% is obtained. At the same time, the overall axial scanning rate is reduced 

to 1.51 MHz. 

3. DISCUSSION 

 

Figure 3. Simulation results of compressive sensing of single tone signal 1GHz with L1 reconstruction algorithm. a) FFT 

spectrum of the original (red) and the reconstructed (blue) signals; b) Time domain of original(red) and 

reconstructed(blue) signal 

 
The results have been obtained with low speed photo detector which is independent of RF frequency. However, the 

compression ratio for a single tone reconstruction is expected to be less than 10%. Considering a single tone 1 GHz 

signal at 10 Gb/s sampling rate, the overall signal length is N = 200 as shown in Figure 3 in both frequency and time 

domains in red dots. A set of binary random sequences have been mixed and integrated with the signal. Using L1 

reconstruction, the reconstructed signal in FFT and time domains are shown in Figure 3 in blue color. As observed, the 

bandwidth occupied by the single tone is 50MHz and the number of non-zero tones are 3 and the number of 

measurements are as low as 10 making the compression ratio 5% whereas the signal in the schematic is a convolution of 

single tone signal with time stretched MLL Gaussian pulses, which results in semi sparse signal with more non zero 

frequency tones, 27 in this case, which need to be retrieved. Figure 2 shows the single tone signal convoluted with time 

stretched MLL Gaussian pulses. As the number of measurements required linearly dependent on sparse tones, the 

number of measurements required are higher in this case17.  

Secondly, the A-scan range or the maximum RF frequency retrieved by the system dependant on the maximum analog 

bandwidth of the digital to analog converter (DAC) in AWG in this case, which is around 1.25 GHz for proper 

generation of PRBS sequences. In addition, to achieve random mixing with PRBS patterns, a high-frequency Mach-

Zehnder modulator (MZM) is always required. To compensate the loss involved in electro-optic modulation we need to 

employ an additional optical amplifier. This whole equipment would make the system bulky and costly.  
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There have been several approaches in sensing and imaging with all-optically generated random patterns. An optical 

image is reconstructed with multiply scattering medium18 and spectral resonance modulation19 where the scattering 

medium in this case is a conglomeration of multiple cavities of various lengths, followed by demonstration of 

wavelength dependant scattering of TiO2 tipped fibre20. Here we proposed a new all-fiber technique for optical random 

pattern generation using a cascaded dispersion unbalanced Mach-Zehnder interferometer (MZI) structure. By varying the 

optical delay in one of the arms, the frequency chirp profiles of the MZI can be changed and the cascaded response 

would produce distinct patterns after wavelength-to-time mapping. The cross correlation between any two generated 

random patterns has been estimated to be less than 75% through numerical simulations16.   

The cascaded MZI structure in our proposed system replaces traditional AWG and MZM and produces random patterns 

in optical domain directly as shown in Figure 4. As this is a linear system, the interchangeability of mixing and encoding 

stages doesn�t affect the performance of our compressive sensing system. 

 

Figure 4. Proposed all-optical random patterns based OCT system that can sense the OCT image 
 

 

4. CONCLUSION 

We experimentally demonstrated data efficient real-time PTS-OCT system based on photonic compressive sensing, 

which achieved 66% compression ratio at 50 MHz acquisition speed with 1.51 MHz axial scanning rate. We also 

proposed a cost effective solution for capturing profile information through all optical random pattern generation based 

on cascaded MZI structure with opposite dispersion profile, which completely eliminate the electronic bottleneck in 

conventional photonic compressive sensing systems. 
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