
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

de Lemos, Rogerio Foreword. In: Mistrík, Ivan and Galster, Matthias and Maxim, Bruce and
Bahsoon, Rami, eds. Software Engineering for Variability Intensive Systems: Foundations and
Applications. CRC Press. (In press)

DOI

Link to record in KAR

http://kar.kent.ac.uk/67032/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/189720369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The ability of handling change has been an innate property of software systems. Although

very brittle when dealing with some flaws, overall software has proven to be, within certain

limits, sufficiently malleable towards human imperfections (related to the specification,

implementation, evaluation and operation of systems). The reason for this is that software

engineers have successfully dealt with a wide range of changes, mostly at development-

time, by defining appropriate processes, techniques and tools target to emerging needs.

This has come at a cost by developing systems that are not able to account for variations

that might be known during development-time. A source for these variations is the

incorporation of changes that are expected to affect the system after its deployment. As a

consequence, any changes that emerge at run-time that are not considered at

development-time, need to be handled at the next maintenance cycle. This has proven to be

a costly way of developing systems that is not sustainable at the long run since the software

landscape is ever evolving, with increasing levels of system complexity regarding both

system behaviour and structure.

New approaches are needed for handling changes since these cannot be dealt exclusively at

development-time. For example, not all changes can be foreseen at development-time

when disparate components (or component systems) interact, which may lead to emergent

behaviours. Changes also need to be dealt at deployment- and run-time, without

interrupting the services provided by the system, and without any human involvement. This

is particularly the case of variability-intensive systems. These are systems that can be

derived from a single specification, and because of that they can be easily modified in order

to handle change. Hence the demand to define new development processes that are able to

produce, deploy, operate and maintain software that is effective, efficient and provable.

When dealing with variability-intensive systems, amongst the several promising approaches,

dynamic software product lines (DSPL) and self-adaptation (based on an explicit feedback

control loop) might provide the appropriate foundation for architecting resilient systems

(i.e., systems that support the persistence of service delivery that can justifiably be trusted,

when facing changes). Both DSPL and self-adaptation are able to deal with change at run-

time, and architectures take a centre stage when reacting to change (at least for some

classes of self-adaptive systems).

These two approaches should not be seen as competing in their usage, they are

complementary. Moreover, complementarity is not restricted to which circumstances one

or the other approach should be used, complementarity is also related to their combined

usage. In other words, a feedback control loop (the basis of self-adaptive systems) should be

able to manage effectively and efficiently the processes associated with dynamic software

product lines. How this can be achieved, it is not clear if we consider the whole process

starting from feature modelling.

In the context of resilience, depending on the criticality of the system, different degrees of

assurances are required, and here dynamic software product lines might be useful in

assisting the structuring of evidence. The latter is fundamental when building arguments

that justify the level of trust that can be placed on the system - the 'provable' factor

mentioned above. Based on this, we identify two key processes that should be related at

system deployment-time: the process responsible for the provision of services and their

quality, and the process responsible for the generation, collection and analysis of evidence

to be used in the formulation of assurance arguments. These processes are related because

of the decision whether to deploy or not a modified/adapted system. The formulation of

assurance arguments, and their evolution as the system adapts, should also be supported by

a dynamic process since small system variances may require a different line of assurance

argumentation. Again, this is not the case for “one size fits all” since variations are expected

between arguments. That is the reason why the motivation behind software product lines

should also be inspirational when defining new approaches for formulating assurance

arguments when building, deploying and operating resilient variability-intensive systems.

Rogério de Lemos

April 2018

