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Abstract: In real applications, data envelopment analysis (DEA) models with Russell 

measures are widely used although their theoretical studies are scattered over the 

literature. They often have seemingly similar structures but play very different roles in 

performance evaluation. In this work, we systematically examine some of the models 

from the viewpoint of preferences used in their Production Possibility Sets (PPS). We 

identify their key differences through the convexity and free-disposability of their 

PPS. We believe that this study will provide guidelines for the correct use of these 

models. Two empirical cases are used to compare their differences.  

Keywords: DEA; Russell measures; Preference; Production possibility sets; Free 

disposability 

1. Introduction 

 Data envelopment analysis (DEA) is a systematic approach for analyzing the 

performance of organizations and operational processes, which was first proposed by 

Charnes, et al. (1978), based on economic theory and linear programming. The DEA 

models can facilitate comprehensive measurement using input/output data to evaluate 

the relative efficiency of decision making units (DMUs) without a prior knowledge of 

input/output functions and weights. Now there are numerous theoretical and empirical 

researches into the DEA method, which has been extended to many areas, including 

private sectors and public sectors. Its theories and applications can be found in various 

books and surveys like Coelli, et al. (2005), Cook, et al. (2007), Cooper, et al. (2004), 
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Cooper, et al. (2006), Cooper, et al. (2007), Liu, et al. (2015b), Ray (2004), Zhu 

(2009), and Zhu, et al. (2007). 

 In the original DEA models, the radial measures were used. Later on the Russell 

measures were found to be useful, see Fare and Lovell (1978) for an early study of 

efficiency measures, and remark in Bogetoft and Hougaard (1999),Levkoff et al. (2012), 

Russell, et al. (2009) for some studies of the Russell measures. For the DEA models 

with the Russell measrues, see Aparicio and Pastor (2013), Cooper, et al. (2007), 

Mirsalehy et al (2014) , Pastor, et al. (1999), Tone (2001), Zhu(1996), Zhu(1998), and 

Zhou, et al.(2013), which can be used to measure the non-radial part of efficiency. 

 There are many different DEA models with the Russell measures in the literature. 

It is often confusing in empirical applications as which should be applied, as although 

often having seemingly similar structures, they have in fact very different emphases in 

empirical applications as to be seen later. Therefore, there is a need to examine their 

characteristics to provide useful advice for the empirical applications. In this work, we 

will systematically study them from the viewpoint of the preferences used in their 

Production Possibility Sets (PPS) since a DEA model is essentially determined from 

its PPS and measure. We find that some of the Russell DEA models use the Pareto 

preference in their PPS as in the classic DEA models with the radial measure so that 

their emphasis is to measure non-radial part of efficiency in empirical applications. 

However, we find that the other Russell DEA models use very different preferences in 

their PPS, and then their emphasis is not to measure the non-radial part of efficiency, 

but to measure some compensable sums of the relative measures of the input/output 

components. Thus one uses them whenever one wishes to compare some total sums of 

input/output componets, rather than their individual components (more details are in 

Section 6). Therefore, we are able to provide some useful guidance for using (or not 

using) which DEA models with the Russell measures in empirical studies.   

 The structure of the paper is as follows: In Section 2, we will introduce some 

DEA models with Russell measures. In Section 3 we will discuss the convexity and 

free-disposability of the PPS for general preferences. Then in Section 4 we examine 
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the convexity and free-disposability of the PPS for the DEA models with the Russell 

measures. In final section, we compare those models in case studies.   

2. Some DEA models with Russell measures 

 Let ),,1)(,( njYX jj   be DMUs and for DMU j, let 
ijx  and 

rjy  represent its 

i-th (i=1,…m) input and r-th (r=1,…s) output. In this work, we assume that all the 
components of inputs/outputs are positive. The standard input and output oriented 
DEA models with the Russell measure read respectively (Cooper, et al. 2007), 
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 As mentioned before, those models are used widely to measure the non-radial 
part of efficiency for DMUs. It is also possible to introduce weights in the objective 
functions to express the relative importance of the inputs or outputs. However, these 
models do not increase their discrimination power in the sense that if a DMU is 
efficient in a standard DEA model with the radial measure, it also so with the Russel 
measures. What is more, it is clear that if a DMU is efficient in one of the above 

models then its component scores i  are all the unity even if one of the inputs or 

outputs does not really perform well relatively. To address these issues, other models 
with the Russell measures are introduced. The first example reads as follows (see Zhu 
(1996), assume all the components of inputs/outputs are positive): 



 4 









































mi

srs

nj

srysy

mixx

m

i

r

j

rr

n

j
r jj

ii

n

j
ijj

m

i
i

,,1,0

,,1,0

,,1,0

,,1,

,,1,

1
min

0
1

0
1

1



















  (2.3)  

Note that this model loses the usual constraints of the input orientated Russell DEA 

model: },,1,10{ mii  , so that ),,1( mii  may be greater than the unity as 

shown in the following:  

Table 2.1 An illustrative example of Model 2.3 

DMUs DMU1 DMU2 DMU3 

Input1 2 13 15 

Input2 12 1 3 

Output1 3 6 10 

Min.Objective   1 1 1 

1  1 1 1.4444 

2  1 1 0.5556 

 This is very different from the standard DEA models with the Russell measures, 

where if the total score is unity then so are all the subscores i . Thus one advantage 

of this model is that we can further differentiate the performance of efficient DMUs. 

Zhu (2009) has discussed these in detail. 

 The second example of the DEA models (Output-orientated) reads as follows (see 

Zhu(1996)), assume all the components of inputs/outputs are positive): 
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   (2.4) 

 Note that this model loses the usual constraints of the output orientated Russell 

DEA model: 1r  so that r  may be less than the unity, similarly as we showed in 

the first model. The above two DEA models have been studied in detail in Zhu(1996) 

and Zhu(2009), where their duals were derived among the other things. These DEA 

models have been widely used in the literature; see Chen, et al. (2004), Seiford, et al. 

(1998), Seifort, et al. (2003), and Zhu (2009).  

 As explained in Zhu (1996), these two models mentioned above look like some 

minor extensions of the standard Russell DEA models to deal with wider applications. 

In fact, they are quite different from the standard DEA models 2.1 and 2.2. The first 

indication can be seen from the following Table 2.2, which represents the computation 

results for an example of Model 2.4. 

 It is clear that all the efficiency scores of the DMUs are less than the unity. Thus 

the DEA scores cannot be directly used as an efficiency measure as they do not satisfy 

the first axiom given in Fare and Lovell (1978) for a proper efficiency. This seems to 

indicate that there are some essential differences between the standard DEA models 

(with either the radial or Russell measures) and those models, which are important to 

guide proper uses of them and have not been systematically studied until now.  
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Table 2.2 An illustrative example of Model 2.4 

DMUs DMU1 DMU2 DMU3 DMU4 DMU5 

Input1 1 1 1 1 1 

Output1 1 1 2 6 3 

Output2 2 3 3 2 4 

Max.Objective 3.5 3.333 1.833 1.25 1.25 

1  6 6 3 0.5 2 

2  1 0.667 0.667 2 0.5 

 Much related to Models (2.1-2.4) are the additive models: It was shown in Liu, et 

al. (2010) that with the translations of sr
y
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the models with Russell measures and with slacks measures are in fact equivalent.  

 Thus here we introduce two additive models, which will be examined later and 

shown that they have many advances over Models 2.3-2.4.  
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(2.6) 

 Let us note that in the input oriented model (2.5), the slacks for the inputs may be 

negative and so are those for outputs in Model (2.6). Thus they are closely related to 

Models (2.3-2.4). However, it will be shown later that they are in fact quite different 

from the viewpoint of the convexity and preferences of their PPS. Furthermore, if we 

constraint the slacks to be non-negative, they will boil down to Models (2.1-2.2) see 
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Liu, et al. (2010).  

3 Preference and free-disposability in PPS of DEA models 

 It is well-known that a DEA model can be completely presented by its PPS and its 

measure as below. Let ),,1)(,( njYX jj   be DMUs, and if we use a radial measure 

with P representing the PPS, the output oriented DEA model with the radial measure 

reads: 1 0 0max {( , ) }X Y P    .  

 The production possibility set is defined by all ),( YX where X  can produce Y 

under certain technology. Let us emphasize that the PPS is the key to link DEA 

models with the economic theory where two key properties for the PPS are the 

convexity and free-disposability, see Cooper, et al. (2007), Pastor, et al. (1999), 

Russell, et al. (2005), Tone (2001). Suppose that ),,1)(,( njYX jj   are DMUs and 

S is the technology set, then the minimum PPS is the convex expansion of virtual 

combinations of the DMU data set:  

        }),,(,,:),{( 1
11

SYYXXYXP n

n

j
jj

n

j
jj  



  ,  

where }1),(,0:),,({
1

1 



n

j
jjnS    or }0:),,({ 1  jnS   . 

 It is clear that P is convex. Then often we have to further expand this PPS by e.g. 

free-disposability assumption. To this end we need define the so-called preferences or 

orders }{ and }{ . Then the so-called strongly free disposability assumption reads (or 

simply P is free-disposable): 

PWZYWXZPYX  ),(then,,),(If ˈ . 

 Let us emphasize that these orders are not necessarily the Pareto preference – that 

is, }{ or }{ does not necessarily mean the component-wise inequalities as in the 
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preference of Pareto (see below). Of course, in the classic DEA, the Pareto order is 

used, and }{ and }{ are just the standard vector inequalities"" , "" . Then PPS in 

the classic DEA models can be presented by 

          1
1 1

* {( , ) : , , ( , , ) }
n n

j j j j n
j j

PS X Y X X Y Y S    
 

      K . 

 Then DEA models can be derived from this PS* as shown above. In the classic 

DEA framework, where }{ and }{  are understood in the preference of Pareto (i.e., 

inequalities in componets), it is easy to check that PS* is convex and free-disposable. 

It has been realized however that some preferences other than the Pareto are useful in 

applications (Liu, et al.(2006)), and indeed they (e.g. lexicographical preference and 

matrix preference) have been used in e.g. Olympic game, research evaluation (Liu, et 

al.(2006, 2010), Zhang, et al. (2009)). For the cases where a non-Pareto preference 

}{ / }{ is used, the PPS with the strong free-disposability has the following form: 
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  . 

However, now the set PS* may not be convex as to be seen later, and the strong free 

disposability cannot be described by the nonnegative slacks conditions (as in the case 

of the Pareto). It will become clear later that the different behaviors of the above 

models are reflected by convexity and free-disposability of their PPS in certain 

preferences. In order to fully address the origins of the differences, we will examine 

briefly some basic facts on preferences below. 

3.1 Preferences and properties of PPS 

 A preference is a relationship defined for some pairs),( yx on a setX , which can 

be denoted by }{  and }{  to represent “better than”, and “worse than” (see Liu, 

et al. (1985) ), respectively. That is̍for all Xyx , i̍f yx  t̍hen “ x  is at least as 
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good as y ”; if yx  , then “ x  is at most as good as y ”. The definition of 

preference looks slightly abstract, but essentially it just clarifies the precise meanings 

for the vague expressions like “better, worse”. Clearly one should have some 

understandings of these meanings before an evaluation is carried out via DEA. The 

most classic example is the numerical order (preference) for the real numbers like 

“ 35 ” and “ 64 ”. Such an order can be generalized to a column or a table of real 

numbers – like the Pareto preference to be seen below. However unlike the real 

number preference, a pair ),( yx  generally may not have such a relationship under 

these generalized preferences: many pairs may not be comparable under these 

preferences.  

 When there exist no other elements in X , which are better than an elementx , it 

will be considered as “optimal or non-dominant” in X , although this does not really 

mean that it is better than the others in assigned preference like in the real numbers, 

since this could only mean there are many elements incomparable with it. In a sense, a 

standard DEA model is to find “optimal” DMUs in PPS under the Pareto preference, 

see, Cooper, et al. (2004) and Liu, et al. (2006).  

 Most of the preferences used in applications are Reflexive: For all x  in X , 

xx  , and Transitive: For all x , y , and z  in X , if yx   and zy  , then 

zx  . These properties usually hold in real-life applications of DEA, and they are 

defined to make sure the mathematical summaries of the value judgments of DMUs 

are consistent. Another important property of a preference is compatibility for linear 

operation: that is to say, translations and multiplication by a positive number preserve 

the preference structure (Schaefer and Wolff (1999)). We say: the preference ""  is 

linearly compatible if :  

                  0,,,   wyzxwzyx  . 

 There are other properties of preferences associated with the continuity, which 

relate to the openness or closeness of the PPS, and will not be discussed here.  
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Example 1: Pareto preference 

 The Pareto preference is by far the most widely used one in economic and 

management areas. We will keep using the usual inequality symbols "" , ""  for 

this preference. Let ),,( 1111 syyy  , ),,( 2122 syyy  be two outputs. Then in the 

Pareto preference, 21 yy  )( 21 yy  , or 1y is better than (worse than) 2y , if and only 

if )( 2121 rrrr yyyy  for sr ,,1 . Clearly, Pareto preference is linearly compatible 

and transitive.  

 Assuming the strong free-disposability in Pareto preference for inputs and outputs, 

then the standard PPS in DEA theory reads:  

1
1 1

* {( , ) : , , ( , , ) }
n n

j j j j n
j j

PS X Y X X Y Y S    
 

      L  

 It is well-known that PS* is convex and free-disposable. The DEA models can be 

described by PS* and the measures to be used. Let us note that Models (2.1) and (2.2) 

can be expressed as: 

0 0 1
1

1
max :{( , ) *, ( , , ), 1}.

s

r s i
r

X Y PS diag
r

   


     L  

while Models (2.3) and (2.4) cannot be so, as 0Y may not represent an improvement 

of 0Y under Pareto preference used in PS* unless 1i  . Thus different preferences 

need exploring. For a general preference f , let 

1
1 1

{( , ) : , , ( , , ) }
n n

j j j j n
j j

PS X Y X X Y Y S    
 

   f p L , 

then a DEA model can also be described by (if a Russell measure adopted):  

0 0 1
1

1
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s

r s
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 However for a general preference, is PS convex and free-disposable? Below we 

will show that the answer depends on some properties of the preference used in the 

PS.  

Proposition 3.1: If the preference used in PS is linearly compatible then PS is convex. 

It is free-disposal if the preference is transitive.  

 The proof is obvious, so it is skipped here. Otherwise the set PS may be 

non-convex or non-free-disposable, if the preference used is non-transitive or not 

linearly compatible. Furthermore for the non-transitive preferences, there may be 

contradictive loops in the sense that there are DMUs )2,,,1(  ppiZi  which 

satisfy ,121 ZZZZ p  where , ;1 , .j kZ Z j k j k p     In this case the 

meaning of comparison between DMUs is unclear, which should be an essential idea 

that underpins DEA theory. However, if the preference is not transitive but there are 

not contradictive loops then the PS is free-disposable in a weak sense: 

),and(),(,:),( {
111




n

j
jj

n

j
jj

n

j
jj XZifPSWZYYWXXZPSYXIf  

1

and ( and ) are both comparable }
n

j j
j

W Y

 . 

 It is clear that if PS is free-disposable in this weak sense then the resulting DEA 

model is the same as assuming the strong free-disposability. 

 

4. PPS of DEA Models with Russell measures  
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 Below we will examine the convexity and free-disposability of the PPS and the 

preferences used in the Models 2.1-2.6. It is clear that for Models 2.1-2.2, the 

preference used is the Pareto preference and thus their PPS are convex and 

free-disposable. Let us then examine whether it would be the same for the Models 

2.3-2.6.   

4.1 し-output preference 

 Now we can identify the preference underlying the outputs of the model (2.4) as 

follows:  

Definition 4.1: (し-output preference). For the outputs 1010 ,, YYRYY s  , if and only 

if there exist 0,,1 s   such that ,

0

101

1

11


































sss y

y

y

y




  and .1

1

1




s

r
rs

  

 It is clear that Model 2.4 uses this preference for the outputs, and the Pareto 

preference for the inputs, that is; using these two references, (2.4) can be expressed as 

(3.1). However, this preference is not transitive. For example, let’s assume three 

DMUs with outputs 
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loop in this preference: 
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 The preference is not linearly compatible. For example, here we have 4 DMUs 
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 but )()( 4231 YYYY   does 

not hold.  

Below we further show that due to the above defects, PS set may be non-convex 

and non-free-disposable. Let 2( , )a b R and let S(a ,b) include all the vectors that 
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are smaller than it: 2
1 2 1 2( , ) { ( , ) : ( , ) ( , )}S a b Y y y R y y a b   p  , and it follows the 

definition 4.1  

2
1 2

1 2

( , ) { ( , ) : 2}
a b

S a b Y y y R
y y      

 This is an area surrounded by the hyperbolic line: 2 1 1 2( 2 )ay by y y   (with 

asymptotic lines 1 2( , )
2 2

a b
y y  ), and by axis 1 2( 0, 0,)y y  . Now let the input be 

the unity and outputs be (1,2) and (2,1), along with their convex combinations: 

{(2 ,1 ) :0 1}      . Then 2
1 2

1 2

2 1
{ ( , ) : 2,0 1}PS Y y y R

y y

  

 
        

shown as follows (shadowed area with doted boundary˅: 
 

 

Figure 4.1 Production Possibility Set for し-output preference 

    Here the boundary passing through points A and (1,2) is made of the hyperbolic 

line: 
2112 22 yyyy  that goes through points B, (1,2) and A; the boundary passing 

through (2,1) and point C is made of hyperbolic line:
2112 22 yyyy   that goes 

through the points B, (2,1), and C; the boundary passing through points (1,2), B and 



 14 

(2,1) is made of envelopment of the lines 
2112 2˅1˄˅-2˄ yyyy    that all go 

through points B, and }10:)1,2{(   , the convex combination of points 

(1,2) and (2,1). It is clear that PS is non-convex. Furthermore PS is also non 

free-disposable by noting this fact: let˄a, b˅  be a point on the boundary of PS, then 

usually the set S(a, b) will contain points outside PSa̍s often the boundary of S(a, b) 

differs from that of PS. The above discussion holds for the case CRS as well.  

 Thus the PS of Model (2.4) may be neither free-disposable nor convex, and what 

is more, the meaning of the comparison underpinning the DEA model seems 

confusing. Thus it should be avoided to use if possible. This conclusion is supported 

by the later empirical studies.  

 Note that if we change the definition into 0 1Y Yp  if ,1,,1 s   it is just 

Pareto preference. Then the model becomes a standard one (2.2).  

4.2 し-input preference 

 Now we can identify the preference underlying the outputs of the model (2.3) as 

follows:  

Definition 4.2: (し-input preference). For the inputs ,,, 1010 XXRXX m  if and 

only if there exists 0,,1 m   we will have ,
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 It is clear that Model 2.3 uses this preference for the inputs, and the Pareto 

preference for the outputs. Obviously, the preference defined above is not transitive, 

for example, 
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preferences is not linearly compatible either.   
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 However, we can prove that there are no contradictive loops for this preference as 

stated in the following Theorem 4.1. 

Theorem 4.1: There are no contradictive loops in し-input preference. That is to say, in 

し-input preference, there exists none of such DMUs with inputs 

)2;,,1,(  ppiX i   and 121 XXXX p  , where kj XX  , kj  , 

pkj  ,1  

Proof: We assume that there are p DMUs, whose inputs form a contradictive loop in 

し-input preference. Assume that each DMU has m inputs, that is;   

    
           

          

M M L M
11 12 1

1 2

1 2

, , ,

p

p

m m mp

x x x

X X X

x x x

  (4.1) 

Without losing generality, suppose ,121 XXXX p   thus we have  
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12 22 2

12 22 2
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1, 1 2, 1 , 1

1, 2, ,

1, 2, ,

11 21 1

m

m

m

m

p p m p

p p m p

p p m p

m

x x x
m

x x x

x x x
m

x x x

x x x
m

x x x

x x x
m

x x x

 (4.2) 

Then we have 

                 L L L L1, 1 2, 1 , 1 1, 2, ,11 21 1 12 22 2

12 22 2 13 23 3 1, 2, , 11 21 1

*
p p m p p p m pm m

m m p p m p m

x x x x x xx x x x x x
p m

x x x x x x x x x x x x
 

(4.3

) 

Obviously, (4.3) is equivalent to  
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L L L L1, 1 1, 2, 1 2, , 1 ,11 12 21 22 1 2

12 13 1, 11 22 23 2, 21 2 3 , 1

*
p p p p m p m pm m

p p m m m p m

x x x x x xx x x x x x
p m

x x x x x x x x x x x x
 (4.4) 

Note that 

1 1
1, 1 1, 1, 1 1,11 12 11 12

12 13 1, 11 12 13 1, 11

( ) ( ) (1) ,p p p p p p

p p

x x x xx x x x
p p p

x x x x x x x x
           L L  

  

,)(
1

,

,

1,

3

2

2

1 p
x

x

x

x

x
x

x
x

m

pm

pm

pm

m

m

m

m                                      (4.5) 

Since the product of all the items inside each pair of brackets is the unity, we have:  

    
               

   
L L L1, 1 1, , 1 ,11 12 1 2

12 13 1, 11 2 3 , 1

, ,
p p m p m pm m

p m m m p m

x x x xx x x x
p p

x x x x x x x x
 

And further note the well-known fact that the above equalities are true if and only if 

all the items inside the brackets are the unity. 

    
               

   
L L L1, 1 1, , 1 ,11 12 1 2

12 13 1, 11 2 3 , 1

1 , , 1
p p m p m pm m

p m m m p m

x x x xx x x x

x x x x x x x x
, 

Thus we have  

        L L L L
11 12 1 21 22 2 1 2

, , ,
p p m m mp

x x x x x x x x x , 

So we have   L
1 2 p

X X X , which conflicts the assumption.  

 Thus PPS of Model (2.3) is free-disposable in the weak sense. Furthermore, we 

have the following theorem:  

Theorem 4.2: There will always be at least one DMU for the Model 2.3 with the 

unity being its efficiency score. 

 Before we prove this theorem, we first need the following two lemmas. Consider 

the following two linear programming problems,  
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0, 1,..., , 0, 1,...,
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s t Y Y

P

X X

i m j n

 (4.6) 

The dual model of (4.6) reads (see Zhu (1996)): 



 



 



 




   


  

    



 

0

1

1 1

0

max

. 0 , 1,...,
( )

1
, 1,...,

0, 0 , 1,..., ; 1,...,

s

r r

r

m s

i ij r rj

i r

i i

r i

y

s t x y j n
D

x i m
m

r s i m

 (4.7) 

Lemma 4.1: We assume that Ƿ ǷǷ Ƿ0, 0,( , ) 0
T T       is a solution of Model 4.7. If 

 
 

  
* *

1 1

Ƿ Ƿ 0
m s

i ij r rj

i r

x y holds for a certain 
* *
(1 )j j n  , then the efficiency score of 

*j
DMU is the unity.   

Proof. Because  
  

    0 0

1 1 1

1
1

s m m

r r i i

r i i

y x
m

, we have 


 0

1

1
s

r r

r

y . That is to say 

that the optimal objective value of Model 4.7 is no more than 1. Because 

 
  

    
* *

1 1 1

1ǷǷ 1
s m m

r rj i ij

r i i

y x
m

, Ƿ Ƿ( , )
T T   is the optimal solution of Model 4.7. So, the 

efficiency score of *j
DMU is the unity.  
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Lemma 4.2:  0  and (0, )   , the feasible solutions of Model 4.8 exist.  



 



   



 




   


  

    



 

0

1

1 1

0

max

. 0 , 1,...,
( *)

1
, 1,...,

, , 1,..., ; 1,...,

s

r r

r

m s

i ij r rj

i r

i i

i r

y

s t x y j n
D

x i m
m

i m r s

 (4.8) 

Proof. Let  

0

1Ƿ , 1,...,

Ƿ , 1,...,

(0, )

i

i

r

i m
mx

r s



 
 

 

 


 

where         


  

   







1

1 1

1

Ƿ
Ƿmin{min ,min ,1}

m

i ij

i

i s
i m j n

rj

r

x

y

 

Thus we have               

   
   

       
1 1 1 1

Ƿ ǷǷ 0, 1,...,
m s m s

i ij r rj i ij rj

i r i r

x y x y j n  

  
0

1Ƿ , 1,...,
i i
x i m

m
 

    Ƿ Ƿ,
i r

 

Thus we know ˆ ˆ,i r   is a feasible solution of Model 4.8.  

 Here we begin to prove the Theorem 4.2. Firstly, consider the following Model. 
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1 1

0
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. 0 , 1,...,
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1
, 1,...,

, , 1,..., ; 1,...,
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i r

i i

i r

y
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i m r s

 (4.9) 

 From Lemma 4.2, we know 0   and there are feasible solutions in Model 

4.9. Because  
 

  0 0

1 1

1
s m

r r i i

r i

y x , we know that the optimal solution of Model 4.9 

exists. We let   0 0
, , 1,..., , 1,,...,

i r
i m r s .  

(i) If 
* *
(1 )j j n    satisfies  

 

  
* *

1 1

0
m s

i ij r rj

i r

x y , then we know that the 

efficiency score of *j
DMU  is the unity due to Lemma 4.1. 

(ii) If for 1,...,j n , we have  

 
 

  0 0

1 1

0
m s

i ij r rj

i r

x y . 

 Let
 


 

 

 

 

 
 

 

*

*

0 0

1 1

1
0 0

1 1

min( )

m m

i ij i ij

i i

s s
j n

r rj r rj

r r

x x

y y

, then we have 1   and 

 
 

   0 0

1 1

0, 1,...,
m s

i ij r rj

i r

x y j n , where 0 00, 0i r       . So,  0 0
,

i r
 are the 

feasible solutions of Model 4.9. But the inequality 0 0

1 1

s s

r rj r rj
r r

y y 
 

  conflicts 

with the fact that 0 0,i r   are optimal solutions. So, (ii) is impossible.  

 Here we know there are at least one DMU such that its efficiency score is the 

unity in the Model 4.9. Thus we have proved our conclusion.  
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Below we further show that PS may not be convex or free-disposable. Let 

2( , )a b R  and consider all the vectors bigger than it: 

2
1 2 1 2( , ) { ( , ) : ( , ) ( , )}S a b X x x R x x a b   f  

It follows from the definition 4.2  

2
1 2

1 2

( , ) { ( , ) : 2}
a b

S a b X x x R
x x      

 This is an area surrounded by the hyperbolic line: 2 1 1 2( 2 )ax bx x x   (with 

asymptotic lines 1 2( , )
2 2

a b
x x  . Now let the inputs be (1,2) and (2,1), consider their 

convex combinations {(2 ,1 ) :0 1}      . We can construct 

2
1 2

1 2

2 1
{ ( , ) : 2,0 1}AS X x x R

x x

  

 
        as follows:˄ non-shadowed area 

with doted boundary˅ : 

  
Figure 4.2 Production Possibility Set for し-output preference 

 Let us note that all the hyperbolic lines from the convex combination pass the 

point: (1.5,1.5), thus the set AS is non-convex (only) around that point. Furthermore 

AS is also non free-disposable by noting this fact: let˄a, b˅ be a point on the boundary 

of AS, then usually the set S(a, b) will contain points outside ASˈas usually the 

boundary of S(a, b) differs from that of AS. As there is no contradiction loop, it is 
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free-disposable in the weak sense defined in Section 3.1. Now let us include outputs. 

Firstly, in VRS case, let the output be the unity. Then it is clear that PS is a cylinder 

based on AS, between the planes y=0 and y=1. Thus it is non-convex and is non 

free-disposable. Thus we have given examples showing that the PS set of Model 2.3 

may not be convex or free disposable. However, it is clear that PS set of Model 2.3 is 

better than that of Model 2.4 in the sense that it is only locally non-convex and it is 

weakly free-disposable. The above discussions hold for the case of CRS where PS is a 

cone starting from zero and the section cut by y=t is an area whose boundary is 

formed by the hyperbolic lines 2112 2]1-2[ yyyyt  ˅˄˅˄  , which all pass 3/1t (1.5,1.5). 

In what follows we will examine the PS sets of Models 2.5-2.6.   

4.3 Total slack preferences 

 Firstly, let us define the following preference: Total output slack preference: 

.0,,0

,..,,),(),(

1

21212211












s

r
rsfreeSS

YSYXSXtsSSYXYX 
 

 Obviously this preference is transitive and linearly compatible. The PPS with the 

total output slack preference reads: 

1

1

1
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S, 0; }
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j ij i
j

n

j rj r r
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which is convex and free-disposable. With assumed technology set PS to be CRS, we 
can write the DEA model 2.6 as: 

                   }.),{(:)(
1

1 max
1 0

PSYX
y
s

s

s

r r

r  




 

Similarly, we can define total input slack preference: 
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And the PPS with the total input slack preference reads: 
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Then assuming technology set S to be CRS, we can write the DEA model 2.5 as:  

}.),{(:)(
1

1 min
1 0

PSYX
x
s

m

m

i i

i  




 

For Model 2.5 we have the following theorem as well: 

Theorem 4.3: There will always be at least one DMU for the Model 2.5 such that its 

efficiency score is the unity. 

Proof: Let mi
x

sx

i

ii
i ,,1,

0

0 





 , we have mixxs iiii ,,1,00   . Note that 

the conditions: mii ,,1,0   are implied in the first set of constraints of Model 

2.5. Thus, Model 2.5 is equivalent to  
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where the constraint: 
1

1
1

m

i
im




  is implicitly enforced in the objective function. It is 

easy to find that the feasible set of Model 4.10 is no larger than that of Model 2.3. 

Thus, the optimal value of the above model is no less than that of Model 2.3. Note 

that there will always be at least one efficient DMU for Model 2.3. Thus, according to 

Theorem 4.2 at least one DMU’s efficiency score calculated by Model 2.5 is the unity.  

 However, we cannot prove the same conclusion for Model 2.6 although 

computational results from random samples indicate it seems to hold as well.  

 Therefore, from the view point of preference these two models are more reliable 

to use. It follows from the above discussions that Model 2.3-2.6 are different from the 

standard ones in that they use different preferences either for input or output 

comparisons in their PPS. These preferences compare the performance of DMUs not 

in individual components of inputs or outputs (like Pareto) but in a sense of total 

performance. We will compare those models in the next section.  

5. Example and Case Study 

 In this section, we intend to carry out some case studies to evaluate the 

efficiencies of 18 Chinese coastal cities and 15 basic research institutes in Chinese 

Academy of Sciences (CAS) in 2006, to compare the DEA models with the Russell 

measures. The first example comes from Zhu (1996), with the data given below:  

 

Table 5.1 Data of 18 Chinese coastal cities 

DMU Cities Input1 Input2 Output1 Output2 Output3 

1 Dalian 2874.8 16738 160.89 80800 5092 

2 QingHuangDao 946.3 691 21.14 18172 6563 

3 TianJin 6854 43024 375.25 144530 2437 

4 Qingdao 2305.1 10815 176.68 70318 3145 

5 YanTai 1010.3 2099 102.12 55419 1225 

6 WeiHai 282.3 757 59.17 27422 246 

7 ShangHai 17478.6 116900 1029.09 351390 14604 

8 LianYunGang 661.8 2024 30.07 23550 1126 
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9 NingBo 1544.2 3218 160.58 59406 2230 

10 WenZhou 428.4 574 53.69 47504 430 

11 GuangZhou 6228.1 29842 258.09 151356 4649 

12 ZhangJiang 697.7 3394 38.02 45336 1555 

13 BeiHai 106.4 367 7.07 8236 121 

14 ShenZHen 4593.3 45809 116.46 56135 956 

15 ZhuHai 957.8 16947 29.2 17554 231 

16 ShaTou 1209.2 15741 65.36 62341 618 

17 XiaMen 972.4 23822 54.52 25203 513 

18 HaiNan 2192 10943 25.24 40267 895 

 

We apply Models 2.3-2.6 to the above data and the results are as follows:  

 

 

 

 

 

Table 5.2 Comparison of efficiency scores in different DEA models 

DMU 
Model 2.3 Model 2.4 Model 2.5 Model 2.6 

Score Rank Score Rank Score Rank Score Rank 

1 0.3045  10 0.3900  8 0.3045  10 0.3900  9 

2 1 1 0.4775  3 1 1 0.4775  7 

3 0.1954  14 0.1441  15 0.1954  14 0.1441  15 

4 0.3628  8 0.4575  5 0.3628  8 0.4575  8 

5 0.6296  5 0.4769  4 0.6296  5 0.5385  4 

6 1 1 0.3631  10 1 1 0.7990  2 

7 0.2382  12 0.3114  11 0.2382  12 0.3114  11 

8 0.3475  9 0.3819  9 0.3475  9 0.3819  10 

9 0.6491  4 0.5438  1 0.6491  4 0.5510  3 

10 1 1 0.4132  7 1 1 1 1 

11 0.2071  13 0.2825  12 0.2071  13 0.2825  12 

12 0.4864  7 0.5234  2 0.4864  7 0.5234  6 

13 0.5160  6 0.4489  6 0.5160  6 0.5371  5 

14 0.0848  18 0.0839  18 0.0848  18 0.0839  18 

15 0.1039  17 0.0982  17 0.1039  17 0.0982  17 
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16 0.2592  11 0.2090  14 0.2592  11 0.2508  13 

17 0.1680  15 0.2100  13 0.1680  15 0.2103  14 

18 0.1216  16 0.1171  16 0.1216  16 0.1171  16 

 
 The correlations among the results are as follows:  

 
Table 5.3 Pearson’s Correlation Coefficients of scores 

Models    Model2.5&2.6 Model 2.3&2.5 Model 2.4&2.6  Model 2.3&2.4 

   Correlation    0.9010 1 0.7487        0.6939 

 It follows from the correlation table that all the Models except Model 2.4 have 

produced highly correlated results, which is consistent with our theoretical analysis.  

 The other case study comes from a real evaluation of Chinese Academy of 

Sciences. Since the Pilot Project of Knowledge Innovation (KIPP) in 1998 in CAS, 

institutes’ evaluation has become increasingly important and the requirements for the 

evaluation process have been diversified. The main feature of the institutes’ 

evaluation at the present is the establishment of the Comprehensive Quality 

Evaluation (CQE) system, which is a comprehensive quality evaluation method. It 

uses fundamentally policy-oriented evaluation as the pivot, supported by quantitative 

monitoring. The CAS began to introduce the CQE in 2005. Under the framework of 

CQE, inputs and outputs of basic research institutes in CAS are monitored using 

several quantitative indicators. In Liu, et al. (2011), DEA based evaluation method 

was tested to explore the possibility of replacing the existing weighted sum methods 

used in CQE with a DEA based method to avoid the controversy of weights selection 

in the assessment. The results were compared with those obtained in CQE. The 

conclusion is that with suitable DEA models, they are consistent. 

 Here, we use the same inputs and outputs data set as in Liu et al. (2011) for DEA 

evaluation of the basic research institutes in CAS. The data are as follows, which 

come from quantitative monitoring report in 2006 in CAS, see Table 5.4 for details. 

Table 5.4 Inputs and outputs of basic research institutes of CAS in 2006 

DMU 
Inputs Outputs 

Staff Res. Expen. SCI Pub. High Pub. Grad. Enroll. Exter. 
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Fund. 

Unit1 380 59,880 201 28 386 35,368 

Unit2 418 79,910 480 196 354 69,763 

Unit3 68 13,150 78 72 57 5747 

Unit4 1105 92,710 153 45 642 49,074 

Unit5 248 18,920 68 18 165 13,801 

Unit6 828 134,240 167 64 229 73,748 

Unit7 481 52,460 38 13 136 32,797 

Unit8 493 40,840 94 6 115 12,743 

Unit9 198 23,110 43 16 79 15,964 

Unit10 243 32,580 42 11 48 20,731 

Unit11 553 62,100 156 34 105 67,927 

Unit12 347 49,510 64 8 190 31,616 

Unit13 445 78,280 440 162 529 62,448 

Unit14 260 27,530 113 23 137 33,952 

Unit15 304 59,450 94 19 263 70,015 

*Value of Res. Expen. and Exter. Fund. are in RMB thousand. 

Next, we will provide details of computational results of the evaluation of efficiency 

of basic research institutes in CAS in 2006 using Model 2.3 and Model 2.4. The 

results are presented in the following table. 

Table 5.5 The efficiency scores of basic research institutes using Model 2.3&2.4 

DMU 

Model 2.3 Model 2.4 

1  
2  Score Rank 1  

2  3  
4  Score Rank 

Unit1 0.8545 0.9539 0.9042 7 1.7671 11.7093 0.6724 0.7399 0.2687 7 

Unit2 1 1 1 1 0.9875 2.2323 0.9785 0.5006 0.8513 2 

Unit3 1 1 1 1 1.0011 0.4428 1.0103 1.9748 0.9031 1 

Unit4 0.4887 1.0247 0.7567 9 3.5942 11.280 0.6260 0.8256 0.245 9 

Unit5 0.5597 1.2905 0.9251 5 1.6504 5.7551 0.4970 0.5991 0.4705 4 

Unit6 0.4201 0.5048 0.4625 13 4.7680 11.484 2.5409 0.7955 0.2042 10 

Unit7 0.3118 0.5518 0.4318 14 8.1887 22.094 1.6720 0.6991 0.1225 13 

Unit8 0.1962 0.4167 0.3065 15 2.5771 37.268 1.5393 1.4007 0.0935 15 

Unit9 0.4117 0.6670 0.5393 11 3.1879 7.9084 1.2680 0.6327 0.3078 6 

Unit10 0.3878 0.5636 0.4757 12 4.6012 16.216 2.9421 0.6868 0.1636 12 

Unit11 0.5682 0.9845 0.7764 8 2.3612 10.000 2.5636 0.3995 0.261 8 

Unit12 0.5168 0.6656 0.5912 10 4.5886 33.885 1.1295 0.6844 0.0993 14 

Unit13 1 1 1 1 1.0553 2.6457 0.6414 0.5478 0.8179 3 

Unit14 0.6442 1.1782 0.9112 6 1.4451 6.5537 0.8710 0.3544 0.4337 5 

Unit15 1 1 1 1 3.7096 16.941 0.9689 0.3670 0.1819 11 
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 It is clear that the scores of the two models are very different. The differences in 

rankings are smaller but still significant. These will be discussed further below. The 

table shows one of the advantages to use the above models is that the performance 

differences in each component of the inputs or outputs can be clearly seen.   

 We now compare Models 2.1-2.6 with a DEA model in Liu et al. (2011). When 

the standard DEA models are used in this data set, it was found that too many efficient 

DMUs were produced for an effective evaluation. Thus in the work of Liu et al. 

(2011), a DEA Model 15 was specially designed for the evaluation, where some of the 

data are allowed to have direct substitutions, and was recommended to be used in 

future CAS research evaluation.   
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Table 5.6 Comparisons of efficiency scores in different DEA models 

DMU 
Model 2.1 Model 2.2 Model 2.3 Model 2.4 Model 15 Model2.5 Model2.6 

Score Rank Score Rank Score Rank Score Rank Score Rank Score Rank Score Rank 

Unit1 0.9042 7 0.4181 8 0.9042 7 0.2687 7 0.561 7 0.9042  7 0.3031  9 

Unit2 1 1 1 1 1 1 0.8513 2 1 1 1  1 1  1 

Unit3 1 1 1 1 1 1 0.9031 1 1 1 1  1 0.9031  5 

Unit4 0.765 9 0.3743 9 0.7567 9 0.245 9 0.2751 14 0.7631  9 0.2607  10 

Unit5 1 1 1 1 0.9251 5 0.4705 4 0.4088 10 1  1 0.5752  6 

Unit6 0.4625 13 0.219 11 0.4625 13 0.2042 10 0.4145 9 0.4625  13 0.2174  11 

Unit7 0.4318 14 0.1429 13 0.4318 14 0.1225 13 0.3056 13 0.4318  14 0.1415  13 

Unit8 0.3065 15 0.0935 15 0.3065 15 0.0935 15 0.1937 15 0.3065  15 0.0935  15 

Unit9 0.5393 11 0.3644 10 0.5393 11 0.3078 6 0.4087 11 0.5393  11 0.3624  8 

Unit10 0.4757 12 0.1898 12 0.4757 12 0.1636 12 0.3868 12 0.4757  12 0.1881  12 

Unit11 0.7764 8 0.4625 7 0.7764 8 0.261 8 0.5627 6 0.7764  8 0.4592  7 

Unit12 0.5912 10 0.1211 14 0.5912 10 0.0993 14 0.4318 8 0.5912  10 0.1200  14 

Unit13 1 1 1 1 1 1 0.8179 3 0.925 4 1  1 0.9591  4 

Unit14 1 1 1 1 0.9112 6 0.4337 5 0.6685 5 1  1 1  1 

Unit15 1 1 1 1 1 1 0.1819 11 1 1 1  1 1  1 
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 It is clear that Russell input and output models have produced very similar results. 

It is also clear that Models 2.3-2.6 have more discrimination power than the standard 

Russell DEA models as expected.  

 The Pearson’s correlation coefficients of efficiency scores among Models 2.1-2.6 

are shown in Table 5.7. 

Table 5.7 Pearson’s Correlation Coefficients 

Models Model 

2.1&2.3 

Model 

2.2&2.4  

Model  

2.3&2.5 

Model 

2.4&2.6 

Model  

2.1&2.5 

Model 

2.2&2.6 

Correlation 0.9943 0.7786 0.9579 0.7526 1 0.9464 

 It is clear that all models except Model 2.4 have produced highly correlated 

results. In the following, the Pearson’s correlation coefficients of efficiency scores 

among Model 2.3-2.6 and Model 15 are shown in Table 5.8. 

Table 5.8 Pearson’s Correlation Coefficients  

Models Model 

 2.3&15 

Model 

2.4&15  

Model 

2.5&15  

 Model 

2.6&15 

 

Correlation 0.8155 0.7468 0.8092  0.8135  

 From Table 5.8, we find that the Pearson’s Correlation Coefficients between 

Models 2.3 and Models 2.5-2.6 and Model 15 are much higher than those between 

Models 2.4 and Model 15 respectively. Overall we conclude that Model 2.3 and 

Model 2.5-2.6 all seem to be able to produce consistent results in these empirical tests. 

As discussed above, Model 2.4 is quite different from all others in terms of convexity 

and free-disposability, and should be avoided in real applications.  

6. Conclusion and Discussion 

 In this paper we have studied and compared several DEA models in the Russell 

measures from the viewpoint of convexity and free-disposability of their PPS, resulted 

from the preferences used in the PPS. It is found that the standard Russell DEA 

models (Model 2.1-2.2) and the classic DEA models with the radial measure both uses 

the same preference (Pareto) in the PPS so that they are essentially the same models, 
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although the classic Russell DEA models are able to measure the non-radial part of 

efficiency. However it is found in our studies that the し-input, し-output preference 

models (Model 2.3-2.4), and the total input slack, output slack preference models 

(Model 2.5-2.6) use the preferences very different from the Pareto either for input or 

output comparisons in their PPS. In the Pareto preference input/output A is better than 

input/output B if the components of A are all better than those of B, while in those 

preferences, this only needs a weaker condition that some total sums of the componets 

A is better than those of B. Thus the emphasis of these models is not to measure the 

non-radial part of efficiency, but some compensable sums of the relative measures of 

input/output components. Thus one uses them whenever one wishes to compare some 

total outcomes of input/output components, rather than their individual components. 

We further show that the preference used in the PPS of Model 2.4 has contradiction 

circles, which cause theoretical difficulties in interoperating the results. We have also 

carried out empirical studies to compare these models and found that except the 

し-output preference model (Model 2.4), they all produce consistent results. Thus we 

do not recommend using the し-output preference model (Model 2.4). It is clear that 

the total input slack, output slack preference models are more reliable in the sense that 

their PPS are both convex and strongly free disposable. 
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