
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 

for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research

The version in the Kent Academic Repository may differ from the final published version. 

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: 

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Ponari, Marta and Norbury, Courtenay and Rotaru, Armand and Lenci, Alessandro and Vigliocco,
Gabriella  (2018) Learning Abstract Words and Concepts: Insights from Developmental Language
Disorder.   Philosophical Transactions of the Royal Society B: Biological Sciences, 373  (1752).
   ISSN 0962-8436.

DOI

https://doi.org/10.1098/rstb.2017.0140

Link to record in KAR

http://kar.kent.ac.uk/66902/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/189720251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


This is the peer-reviewed version of Ponari, M., Norbury, C.F., Rotaru, A., Lenci, A, & Vigliocco, 

G. (in press). Learning Abstract Words and Concepts: Insights from Developmental Language 

Disorder; which has been accepted for publication on Philosophical Transactions of the Royal 

Society B: Biological Sciences. doi: 10.1098/rstb.2017.0140 

!

!

!

!

!

!

 
Learning Abstract Words and Concepts:  

Insights from Developmental Language Disorder  

 

 

Marta Ponaria, Courtenay Frazier Norburyb, Armand Rotaruc, Alessandro Lencid, 

Gabriella Viglioccoc* 

 

 

a. School of Psychology, University of Kent, UK. 

b. Language and Cognition, Psychology and Language Sciences, University College 

London 

c. Institute for Multimodal Communication, Psychology and Language Sciences, 

University College London, 26 Bedford Way, London WC1H 0AP, UK. 

d. Computational Linguistics Laboratory, Department of Philology, Literature and 

Linguistics, University of Pisa, Italy. 

 

*Corresponding author 

 

 

 

  



Running head: Learning Abstract Words 

2 

!

 

 
Abstract 

 
Some explanations of abstract word learning suggest that these words are learnt 

primarily from linguistic input, using statistical co-occurrences of words in language 

whereas concrete words can also rely on non-linguistic, experiential information. 

According to this hypothesis, we expect that, if the learner is not able to fully exploit the 

information in the linguistic input, abstract words should be affected more than concrete 

ones. Embodied approaches, instead, argue that both abstract and concrete words can 

rely on experiential information and, therefore, there might not be any linguistic 

primacy. Here, we test the role of linguistic input in the development of abstract 

knowledge with children with Developmental Language Disorder (DLD) and Typically 

Developing (TD) children aged 8-13. We show that DLD children, who by definition 

have impoverished language, do not show a disproportionate impairment for abstract 

words in lexical decision and definition tasks. These results indicate that linguistic 

information does not have a primary role in the learning of abstract concepts and 

words, rather, it would play a significant role in semantic development across all 

domains of knowledge. 

  

 
Keywords: developmental language disorder; language acquisition; abstract concepts; 
distributional semantics; semantic representation; vocabulary development 
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Introduction 

 

 Learning the meaning of words is one of the most complex and remarkable of 

human achievements. Learning words is hard because even when the referent is 

present in the physical environment, rarely is it isolated in the visual scene (1). To 

make the situation worse, referents are not always present in the physical environment, 

either because they are spatially and/or temporally displaced (e.g., talk about past or 

future events), or because they are abstract and have no tangible referent.  

 A number of theories argue that abstract concepts are grounded (solely or 

primarily) in our linguistic experience (2–5) whereas concrete words could benefit also 

from non-linguistic information. For example, it has been shown that the richness of 

featural representations (used as a proxy of sensory-motor and affective content) 

predicts behavioural effects (e.g., lexical decision, semantic priming) better for concrete 

than abstract words; whereas, the richness of the linguistic contexts in which a word 

appears (semantic neighbourhood density, used as a proxy for language-based 

information) predicts behavioural effects better for abstract than concrete words (6).  

Embodied theories of semantic representation, instead, argue that learning and 

representing both concrete and abstract concepts are grounded in our experience with 

the world. There is now plenty of evidence that processing concrete concepts in adults 

engages to some extent the same cognitive and neural systems involved in perceiving 

and acting upon the physical world (7). There is also growing evidence that processing 

abstract concepts in adults involves motor representations (8,9), simulation of specific 

situations (10) and the emotion system (11,12). In development, Ponari et al. (13) 

showed that abstract words with emotional connotations are learnt earlier than neutral 

abstract words suggesting that emotion could serve as a bootstrapping mechanism for 

the learning of abstract words and concepts. Scholars who argue for a role of 
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embodied information in the learning and representation of abstract concepts also 

assume that linguistic information matters, but do not claim “language primacy” 

(8,14,15). 

Here, we present a test of the role of linguistic information in learning semantic 

representations for abstract words comparing the knowledge of abstract and concrete 

words by children with Developmental Language Disorder (DLD) and their typically 

developing peers (TD). 

DLD is a neurodevelopmental disorder affecting approximately 7.5% of children 

at school entry (16). Children with DLD typically present with severe deficits in 

morphosyntax and other aspects of grammar (17) as well as vocabulary that is reduced 

in both breadth and depth relative to typically-developing peers (18). Vocabulary 

reduction in children with DLD has been linked to a number of different causes among 

which are working memory deficits (19), statistical learning (20) and attention (21). 

However, no previous study to our knowledge has focused on abstract words, despite 

the anecdotal report by Speech and Language Professionals that these children are 

especially impaired with these words. Here, we investigate knowledge of abstract and 

concrete word meanings in children with DLD and typically developing (TD) peers 

matched for chronological age (TDage) or receptive vocabulary scores (TDvoc). As DLD 

is assumed to affect vocabulary development (18), it follows that, if learning abstract 

words is based primarily on linguistic information, then abstract words should be 

disproportionately impaired relative to concrete words in children with DLD when 

compared to their TD peers. The inclusion of both age- and vocabulary-matched 

control groups allows us to assess both quantitative as well as qualitative differences in 

knowledge of words: the comparison with age-matched TD children can tell us whether 

DLD children show any quantitative difference with their peers. Thus, if DLD children 

show larger impairment for abstract than concrete words, this could be either because 

these words are learnt later by DLD children, or because there are qualitative 
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differences in the manner in which DLD and TD children learn vocabulary. The 

comparison with younger vocabulary-matched TD children will then allow us to make 

inferences about whether any difference we find in the DLD-TDage comparison depends 

on qualitative differences in the way DLD children use and organise their word 

knowledge, or whether DLD children are simply behind in their linguistic development.  

We chose to use both definitions and lexical decision tasks: defining words, 

provides a direct window into what children know about concepts; it is, however, a 

challenging task as it further requires expressive language, which is often 

compromised in children with DLD. Thus, the definition task may underestimate word 

knowledge in this group. Lexical decision does not require language production 

although it provides a more indirect window into children’s knowledge of word.  

 

 

Methods 

Participants 

Eighteen children with DLD (14 males; mean age = 10.03, SD = 1.76) were 

recruited from schools in Southeast England. All children had a clinical diagnosis from 

a speech-language therapist external to the research team. Children in the control 

groups were selected from a pool of 73 TD children who completed both tasks: 18 

children (14 males; mean age = 10.34, SD = 1.44) were matched to the DLD children 

on gender and age (TDage), and 18 (14 males; mean age = 8.16, SD = 2.12) were 

matched to the DLD children on gender and raw scores on the British Picture 

Vocabulary Scale (BPVS, (22); TDvoc). TD children were recruited from local schools 

and did not have any reported special educational needs, or history of language delay. 

Non-verbal cognitive abilities were assessed using the Matrix Reasoning test of the 

Wechsler Abbreviated Scale of Intelligence (WASI; (23)). DLD children were also 
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administered the Recalling Sentences subtest of the Clinical Evaluation of Language 

Fundamentals: Core Language Scales (CELF; (24)). Children characteristics are 

summarised in Table 1. The protocol was approved by the Research Ethics Committee 

at University College London; informed, written consent was obtained from all parents 

and verbal assent was obtained from all children prior to assessment. The same 

children participated in both tasks. 

 

Table 1 

 

Materials 

Thirty-six abstract and 36 concrete words were selected from a pool of 3,505 

words for which normative data on a range of lexical variables could be obtained. 

These variables included: age of acquisition (AoA; (25)), concreteness (26), valence 

(27), and log-frequency (28). AoA ratings were used to ensure the items selected were 

appropriate for our participants’ age: words were divided into age of acquisition bands 

(1: words acquired at 4-5 years; 2: 6-7 years; 3: 8-9 years; 4: 10-11 years). Within each 

AoA band, concrete and abstract words were matched for valence, length (number of 

letters) and log-frequency. Concrete and abstract words also did not differ on 

familiarity, and on a measure of frequency taken from subtitles from a UK TV channel 

targeted at children aged 6-12 (CBBC; (29)). Lexical and sublexical characteristics of 

the words are listed in Table 2, see Supplementary Materials for a list of all words and 

the non-words used in the lexical decision task.  

Among these 72 words, 24 (12 abstract and 12 concrete) were shared between 

the two tasks; 24 (12 abstract and 12 concrete) were used for the definitions task only, 

and the remaining 24 were used for the auditory lexical decision task only. Additionally, 

for the lexical decision task, forty-eight pronounceable non-words were created by 
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changing one phoneme from 48 words matched to the experimental words on length, 

AoA, valence and concreteness. All words and non-words were recorded by a native 

English speaker using Audacity v. 1.2.2 (30). 

 

Table 2 

 

 

 

Procedure 

All children were assessed in their school and received stickers for participation. 

Stimuli were presented verbally using E-Prime v. 2.0 (31) running on a laptop with a 

touchscreen display. Participants were presented with short computer games in which 

they were asked to help a cartoon alien learn English. The Lexical Decision task was 

always presented before the Definition task, in a single session. Children received 

verbal instructions from the experimenter, and were asked to wear headphones prior to 

the beginning of each task.  

Lexical decision. In each trial, a cartoon alien was presented in the middle of the 

screen for 1000 ms, followed by the auditory presentation of either a real English word 

or a non-word. Immediately after the offset of the word (average stimulus duration = 

830 ms), two touch screen buttons appeared at the bottom left (a red thumbs-down 

icon) or the bottom right (a green thumbs-up icon) of the screen and children were 

asked to indicate whether what they heard was a word they knew (green button), or a 

“funny, made-up” word (red button). Six practice trials (three non-words and three 

words not used in the experiment) included visual feedback of either a smiling (correct 

trial) or frowning (incorrect) cartoon alien after each response. No feedback was 

provided for the remaining 96 trials (24 abstract and 24 concrete words, plus 48 non-
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words), which were presented in a randomised order. Presentation of each subsequent 

word was prompted by the experimenter to ensure the child was on-task. To minimise 

fatigue, children were given the choice to take a break every 24 trials. Accuracy and 

reaction times were recorded; however, to ensure child attention and compliance to 

task instructions, the experimenter controlled stimulus presentation and did not ask the 

children to respond quickly, but rather as accurately as possible. Therefore, only 

accuracy data is analysed below. Note that this does not limit our ability to observe 

semantic effects, as we have shown in a previous study using the same materials and 

procedure (13). 

Definition. Children were encouraged to provide an accurate and 

comprehensive definition, including as much information as they could on the meaning 

of each word. Each trial included the presentation of the alien in the center of the 

computer screen, along with the acoustic presentation of a word. Children’s responses 

were audio-recorded and then scored off-line but “don’t know” or definitely inaccurate 

responses were recorded online by the experimenter. The presentation of subsequent 

words was prompted by the experimenter. The 48 words were presented in four blocks 

of 12 items arranged in blocks corresponding to the AoA bands described previously. 

Words within each block were presented in random order. The task ended when the 

child was unable to define three words within a single block or responded to all 48 

words.  

Definitions were transcribed off-line and scored according to the following 

criteria: 

a) Definitions accuracy. Definitions were scored according to the Wechsler 

Intelligence Scale for Children (WISC) vocabulary sub-test scoring criteria 

(32).Scoring was performed by two independent researchers who were 

blind to the study hypotheses and diagnosis of the children. A third 
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independent researcher moderated instances in which only one scorer 

awarded a score of 0; all other scores were averaged.  

b) Definitions’ quality ratings. All definitions that were scored > 0 following the 

above criteria (N = 959) were arranged in lists of about 200 and presented 

to a minimum of N = 10 (range = 10-13) adult native English speakers, 

which were recruited on the crowdsourcing website Prolific 

(https://www.prolific.ac/). Participants were asked to rate how accurate each 

definition was in defining the concept. The procedure and the instructions 

given to raters are detailed in Supplementary Materials. These ratings allow 

us to assess at a more fine-grained level the extent to which definitions of 

abstract words by DLD children may be of lesser quality than those by TD 

children.  

c) Definitions’ conceptual features. Definitions were scored based on the 11 

conceptual categories used by Barca, Mazzuca and Borghi (33). This 

classification allows us to have some initial insight on the conceptual 

features of concepts known by DLD and TD children differ. The procedure 

and results of this analysis are reported in Supplementary Materials. 

 

Data analysis 

DLD children were contrasted to: 1) a group of TD children matched on age 

(TDage), to see whether DLD children had lower scores than they TD peers, especially 

for abstract words; 2) a group of (younger) TD children matched on vocabulary (TDvoc) 

to further assess qualitative differences in their knowledge of concrete and abstract 

words. Quantitative data was analysed using mixed-effect models running in R version 

3.2.1, running in R version 3.2.1 (34). Lexical decision accuracy was analysed using 

mixed effects logistic regression models (GLME; package ‘lmerTest’ (35)); definition 
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scores were treated as ordinal and analysed using cumulative link mixed models 

(CLMM; package ‘ordinal’ (36)); and average definition quality ratings were analysed 

using linear mixed models (LME; package ‘lmerTest’ (35)). In all analyses, the baseline 

models included as continuous predictor the children’s non-verbal reasoning scores, 

which significantly differ between our DLD and TD groups, and our categorical 

variables of interest: concreteness (abstract, concrete) and group (DLD vs TDage; DLD 

vs TDvoc), as well as the two-way interaction between the two. The categorical variables 

were contrast coded and the continuous predictor was centered on the mean. Log-

likelihood ratio tests were used to compare fitted models. Supplementing these 

analyses, we performed Bayesian mixed-effects model analysis using the ‘brms’ 

package (37) for R, which fits Bayesian multilevel models using the Stan programming 

language. Model fit was performed using default priors, running 4 chains of 10000 

iterations each. We compared models pairwise by computing the Bayes Factor (BF10). 

A BF10 of 3 is considered sufficient evidence to favour a model over another (38,39), 

while a BF10 between 1/3 and 3 indicates that there is not enough evidence in the data 

to provide support for either model, and a BF10 < 1/3 indicates definite evidence 

against the model and in favour of the null hypotheses. Bayes Factors are reported in 

Table 3. 

 Qualitative data analysis of the Definitions’ conceptual features was carried out 

using Correspondence Analysis (CA; (40,41)) running in R version 3.2.1 (package 

‘CAinterprTools’; (42)), and it is reported in Supplementary Materials.  

Finally, for both lexical decision and definition tasks, case-series analyses was 

performed using the Revised Standardized Difference Test (RSDT; (43)), in which the 

difference in performance between concrete and abstract words per each DLD child is 

compared to the difference in performance exhibited by the TD groups (either TDage or 

TDvoc); this is reported in Supplementary Materials. 
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Results 

Below, we report the results of model selection in mixed-effects models. p-

values from the model comparisons and corresponding Bayes Factors are summarised 

in Table 3.  

Lexical decision  

 One DLD child did not complete the task. Data from the remaining 17 children 

and matched controls were inspected to check whether any children showed a bias 

toward either answering “word” or “non-word”. We computed the response bias (or 

criterion, c), by multiplying the sum of the normalised hit rate (correctly identifying a 

word) and the normalised false alarm rate (incorrectly claiming that a non-word was a 

word) by -0.5 (44–46). A criterion with a negative value would indicate that responses 

are biased toward answering “word” (both words and non-words are more likely to be 

indicated as words); a criterion of positive value would, conversely, indicate a response 

bias toward answering “non-word” (both words and non-words are more likely to be 

indicated as non-words). The average criterion bias was -0.002 (SD = 0.33) for TD 

children, and -0.02 (SD = 0.50) for DLD children. Children who showed a criterion bias 

higher than 1.5 standard deviations above their group mean (indicating a strong bias 

toward “non-word” responses) or lower than 1.5 standard deviations below their group 

mean (indicating a strong bias toward “word” responses) were excluded from further 

analyses. 3 children were therefore excluded from the DLD group (DLD9: c = -0.97; 

DLD12: c = -0.74; DLD17: c = -0.97); to maintain the matching between the DLD and 

TD groups, we also excluded the corresponding TD children. 

 

DLD vs TDage  
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Proportion of correct responses of the two groups for concrete and abstract 

words is shown in Figure 1 (left). We started by comparing the baseline model including 

the interaction between concreteness and group (see details above) against a model 

that included the main effects only. Including the two-way interaction did not 

significantly improve the fit of the model (log-likelihood ratio for interaction model = -

542.3; log-likelihood ratio for main effects model = -542.4; �2(1) = 0.071, p = .790).  

In the main effects model, non-verbal abilities (coefficient estimate = 0.008, SE 

= 0.002, p = .007) was a significant predictor of children’s performance and it was 

therefore kept in subsequent models. We then tested whether the main effects were 

significant by removing them from the model, one by one. Removing the main effect of 

group significantly reduced the fit (log-likelihood ratio for the model including the main 

effect of group = -542.4; log-likelihood ratio for the model not including it = -544.5;	�2(1) 

= 4.335, p = .037), with TDage children recognising more words overall compared to 

DLD children (coefficient estimate = -0.69, SE = 0.32). Removing the main effect of 

concreteness did not affect the fit (log-likelihood ratio for the model including the main 

effect of concreteness = -542.4; log-likelihood ratio for the model not including it = -

542.5;	�2(1) = 0.243, p = .622).  

 

DLD vs TDvoc 

Two TD children did not complete the task due to time constraints; therefore, 

they were excluded along with their matched DLD peer; this left 12 children per group. 

The proportion of correct responses is shown on Figure 1 (right). The interaction 

between concreteness and group was not warranted (log-likelihood ratio for interaction 

model = -330.43; log-likelihood ratio for model not including it = -330.44; �2(1) = 0.028, 

p = .866). There was no significant main effect of concreteness (log-likelihood ratio for 

model including the main effect of concreteness = -330.44; log-likelihood ratio for 



Running head: Learning Abstract Words 

13 

!

model not including it = -330.69; �2(1) = 0.497, p = .481), and no main effect of group 

(log-likelihood ratio for model including the main effect of group = -330.69; log-

likelihood ratio for model not including it = -330.85; �2(1) = 0.323, p = .570). 

 

Figure 1 

 

Definition 

Only 13.4% of our TD children could provide any definition for words of AoA 

block 4 (words acquired at 10-11); therefore, we excluded block 4 from further analysis, 

reducing the total number of items to 36 words (18 abstract and 18 concrete). Overall, 

definitions provided by DLD children were significantly shorter (M = 7.21 words, SD = 

4.03) than both definitions provided by TDage (M = 9.04 words, SD = 7.19; p < .001) and 

TDvoc children (M = 10.02 words, SD = 8.76; p < .001), plausibly reflecting the 

expressive difficulties of DLD children. 

 

a) Definition score.  

DLD vs TDage 

Definition accuracy (raw total score) for concrete and abstract words is depicted 

in Figure 2 (left).  

Including the two-way interaction did significantly improve the fit of the model 

(log-likelihood ratio for interaction model = -1191.4; log-likelihood ratio for main effects 

model = -1194.6; LRtest	= 6.455, p = .011). In this model, non-verbal abilities 

(coefficient estimate = 0.15, SE = 0.02, p < .001) was a significant predictor of 

children’s performance, so it was kept in subsequent models.  

To interpret the significant interaction, we first looked at the main effect of 

concreteness separately in the two groups. We found no difference between definition 
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scores for abstract and concrete words in both TDage children (coefficient estimate = -

0.45, SE = 0.64, p = .485) and DLD children (coefficient estimate = -1.02, SE = 0.67, p 

= .132). Looking separately at concrete and abstract words, TDage children’s 

performance was significantly better than DLD children for both concrete words 

(coefficient estimate = -1.04, SE = 0.33, p = .002) and abstract words (coefficient 

estimate = -1.57, SE = 0.36, p < .001).  

 

DLD vs TDvoc 

One TD child did not complete the task and his definitions were excluded along 

with data from the matched DLD child. Definition accuracy (raw total score) is illustrated 

in Figure 2 (right). The interaction between concreteness and group was not warranted 

(log-likelihood ratio for interaction model = -1064.4; log-likelihood ratio for model not 

including it = -1064.5; LRtest = 0.346, p = .556). The main effect of group was 

significant (log-likelihood ratio for model including the main effect = -1065.5; log-

likelihood ratio for model not including it = -1068.9; LRtest = 6705, p = .010). There was 

no main effect of concreteness (log-likelihood ratio for model including the main effect = 

-1064.5; log-likelihood ratio for model not including it = -1065.5; LRtest = 1.993, p = 

.158). 

 

Figure 2 

 

b. Definitions’ quality ratings.  

DLD vs TDage.  

In the online study, we obtained ratings for 247 definitions provided by DLD 

children, and 439 definitions provided by their TDage peers.  
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The concreteness × group interaction was not warranted (log-likelihood ratio for 

interaction model = -1002.3; log-likelihood ratio for main effects model = -1003.1; �2(1) 

= 1.583, p = .208). The main effect of group was significant (log-likelihood ratio for the 

model including the main effect of group = -1003.1; log-likelihood ratio for the model not 

including it = -1006.8; �2(1) = 7.399, p = .007), with definitions of TDage children rated 

as more accurate overall than those provided by their DLD peers. The main effect of 

concreteness was also significant (log-likelihood ratio for the model including the main 

effect of concreteness = -1003.1; log-likelihood ratio for the model not including it = -

1001.1; �2(1) = 3.963, p = .047). Crucially, definitions of abstract words were rated as 

more accurate than definitions of concrete words, for both DLD and TDage children (see 

Figure 3, left). 

DLD vs TDvoc. 

We analysed ratings for 244 definitions provided by DLD children, and 314 

definitions provided by their TDvoc peers.  

The concreteness × group interaction was not warranted (log-likelihood ratio for 

interaction model = -810.4; log-likelihood ratio for main effects model = -811.0; �2(1) = 

1.123, p = .268). The main effect of group was significant (log-likelihood ratio for the 

model including the main effect of group = -810.4; log-likelihood ratio for the model not 

including it = -814.3; �2(1) = 6.667, p = .010), with definitions of TDvoc children rated as 

more accurate than those provided by their DLD peers. The main effect of 

concreteness was marginally significant (log-likelihood ratio for the model including the 

main effect of concreteness = -810.4; log-likelihood ratio for the model not including it = 

-812.9; �2(1) = 3.817, p = .051), with definitions of abstract words rated as more 

accurate than definitions of concrete words (see Figure 3, right). 

 

Figure 3 
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Table 3 

 

Discussion 

 

This study aimed to assess whether linguistic development has a greater role – 

a primacy – in the learning of abstract compared to concrete concepts as predicted by 

theories such as Dual Coding (3) and Context Availability (4). We tested knowledge of 

abstract and concrete words in children with DLD and age-matched as well as 

(younger) vocabulary-matched peers, using both a lexical decision and a definition 

task.  

In the lexical decision task, we found that children with DLD recognised 

significantly less words overall compared to their age-matched TD peers, however this 

was a small effect and not confirmed by the Bayes Factor analysis. What is of most 

interest here, however, is that while DLD children’s performance was impaired with all 

words, they did not show a disproportionate impairment with abstract words compared 

to concrete, as confirmed by the lack of a concreteness by group interaction, supported 

by a Bayes Factor in favour of the null hypothesis. Interestingly, when looking at the 

comparison between DLD children and their vocabulary-matched peers, we found no 

significant differences at all. The lexical decision task however only gives us an 

indication of how many words children could recognise, and it cannot tell us anything 

about children’s appreciation of word meaning.  

In the definition task, when looking at definition accuracy, we do find a 

significant interaction between concreteness and group. What the results of the 

definition task suggest is that TDage children give more accurate definitions compared 

to DLD children for both abstract and concrete words, and they define abstract words 

with similar accuracy compared to concrete words (although Bayes factor analysis 



Running head: Learning Abstract Words 

17 

!

suggests there is no enough evidence to accept the null hypothesis), while children 

with DLD show a larger difference between accuracy for abstract and concrete 

definitions. When compared to younger TDvoc children, children with DLD are worse at 

defining all words, not only abstract words. The additional analyses reported in 

Supplementary Materials, which contrast the difference in performance between 

abstract and concrete words for each individual DLD children against the average 

difference shown by TDage and TDvoc children, confirm that any difference in definition 

scores for abstract and concrete words is equivalent to that exhibited by the TD groups. 

When we look at the quality ratings that adults provided of how accurate each 

definition is in defining the concept, we find again strong support for a difference 

between the quality of definitions provided by TD children (both TDage and TDvoc) and 

children with DLD, but the lack of an interaction between group and concreteness 

suggests that the difference, if any, between DLD children’s definitions of abstract and 

concrete concepts is not significantly larger than the difference, if any, exhibited by TD 

children. Interestingly, although the Bayes Factor suggests the evidence to argue for or 

against a main effect of concreteness is inconclusive, the marginally significant p-

values suggest that adults rate definitions of abstract words (overall) as slightly more 

accurate than definitions of concrete words. This is an unexpected but interesting result 

which might be linked to task expectations. Adult raters were recruited over the internet 

and they knew that the definitions were provided by children. It may be that in general 

they were less strict for the abstract words as these are typically considered to be 

harder for children.  

To summarise, DLD children show impaired performance at recognising both 

abstract and concrete words compared to their age-matched peers, but they can 

correctly recognise an equivalent number of words (both abstract and concrete) 

compared to their vocabulary-matched peers (as showed by the lexical decision task). 

However, they cannot provide the same level of quality of definitions. It is worth noting 
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here that TDvoc children were matched to our DLD children on receptive vocabulary 

scores, but the definitions task requires expressive language skills, which are impaired 

in children with DLD (as also supported by the fact that their definitions were shorter 

than those of TD children).  

Taken together, our lexical decision results as well as the results from analysis 

of definition accuracy, definition quality ratings and the comparisons of individual DLD 

with the TD groups, do not provide clear support for linguistic primacy in the learning of 

abstract words and concepts. When language development is impaired, as is the case 

for DLD children, both knowledge of abstract and concrete words is impaired. When 

expressive vocabulary is not required, children with DLD perform like younger TD 

children with equivalent receptive vocabulary. This suggests that the same factors 

might support learning of new words in young children and children with DLD.  

A number of theoretical accounts assume that embodied information contributes 

to the semantic representation of words. For example, Kousta et al. (11) suggested that 

while words referring to concrete objects and actions would be learnt by associating 

sensory-motor experience with the word, abstract words would be learnt by associating 

emotional states with the word. Ponari et al. (13) showed that TD children up to the age 

of 8-9 (about the age range of our TDvoc children) have better knowledge of emotionally 

valenced abstract words. They suggest that emotion might be particularly important for 

the acquisition of abstract words early in childhood, when vocabulary is mainly 

acquired through social interactions, providing a bootstrapping mechanism. Emotional 

valence could support children in discovering that some words – those that trigger 

emotional reactions – refer to internal states, rather than to objects and actions in the 

environment, thus, providing the building blocks for establishing the general category of 

abstract concepts. Later on, after the age of 9, the effect of valence declines. They 

suggests that as vocabulary and linguistic competence increases, children make 

greater use of linguistic information (e.g., from text), and are more able to make use of 
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correlational patterns in discourse in order to extrapolate abstract meaning from the 

linguistic context (13). Children with DLD have reduced vocabulary and deficits in 

syntactic competence, and it has been shown that they are not as attuned as TD peers 

to statistical co-occurrences in language input (48). However, they do not have 

sensory-motor, or emotional/social impairments. Thus, they can benefit of the same 

embodied mechanisms for learning both concrete and abstract words as their TD 

peers.  

The qualitative analysis of the content of the definitions provided by DLD as well 

as TD children (both TDage and TDvoc) reported in Supplementary Materials supports 

the idea that sensory-motor associations are crucial for concrete words while affective 

associations are crucial for abstract words (11). Here, we found that definitions of 

concrete concepts include more perceptual features of the referent, their spatial 

location or function, as well as superordinate levels of the taxonomy, while abstract 

concepts’ definitions include more situational and emotional features. These different 

features provide a clear distinction between abstract and concrete categories, at least 

in TD children. According to the same analysis however, definitions of abstract and 

concrete words in DLD children are less clearly distinct, and it seems less clear 

whether children with DLD make use of embodied emotional and situational features 

when defining abstract concepts. In summary, while children with DLD do not seem to 

be more impaired with abstract vs concrete words compared to their TD peers in terms 

of how accurate their definitions are, DLD children might not use embodied (sensory-

motor, emotional and situational) information to the same extent as their TD peers. 

However, we can only speculate on the basis of the current data as the differences 

might just reflect expressive deficits of the DLD children.  

In conclusion, the study presented the first investigation of abstract word 

knowledge by children with DLD. Our results confirm the role of linguistic information on 

the representation of concepts across domains of knowledge. Children with DLD show 
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poorer vocabulary when compared to age-matched TD children. We do not support, 

however, a special role for linguistic information in the learning of abstract concepts. It 

is for future studies to further investigate to what extent children with DLD can take 

advantage of sensory-motor and emotional information in learning the semantics of 

both concrete and abstract words.  
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Table 1. Demographic characteristics of DLD and TD children and performance at the 

background tests, means (SD). 

  Age-matched  Vocabulary-matched 

 DLD TDage t-test p  TDvoc t-test p 

Age 10.40 
(1.83) 

 10.33 
(1.44) 

0.127 .899  8.16 
(2.12) 

3.383 .002 

Matrix 
reasoning 

40.33 
(10.67) 

49.22 
(9.37) 

2.656 .012  51.41 
(8.31) 

3.413 .002 

BPVS 108.72 
(25.03) 

129.66 
(14.74) 

3.059 .004  109 
(24.25) 

0.034 .973 

CELF recall 
sentence 

4.83 
(4.23) 

NA - -  NA - 

 
- 
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Table 2. Lexical and sublexical characteristics of the words used, means (SD).  
  

 

 

Variable 

Concreteness category     

Abstract Concrete t-test p 

A
o

A
 b

a
n
d

 1
 

Concretenessa  337.22           
(45.7) 

576.44             
(35.8) 

12.338 < 0.001 

Length (no. of 
letters) 

5.44 
(1.0) 

5.44 
(1.0) 

0.000 1.000 

Valenceb 5.10 
(1.9) 

5.10 
(1.9) 

0.006 0.995 

Age of acquisitionc 5.22 
(0.94) 

4.80 
(0.80) 

1.401 0.180 

CBBC frequencyd 4.7 
(0.43) 

4.64 
(0.31) 

0.505 0.621 

Familiaritya 566.33 
(30.74) 

565.33 
(27.47) 

0.049 0.962 

 A
o
A

 b
a

n
d

 2
 

Concretenessa  319.56           
(50.55) 

509.22             
(70.78) 

6.542 < 0.001 

Length (no. of 
letters) 

 4.67 
(0.5) 

4.67 
(0.5) 

0.000 1.000 

Valenceb 4.93 
(1.69) 

4.90  
(1.66) 

0.025 0.980 

Age of acquisitionc 7.16 
(1.23) 

6.67 
(1.53) 

0.756 0.460 

CBBC frequencyd 4.45 
(0.45) 

4.39 
(0.40) 

0.280 0.783 

Familiaritya 543.0 
(16.18) 

533.67 
(23.02) 

0.995 0.335 

A
o

A
 b

a
n
d

 3
 Concretenessa  334.11           

(26.7) 
517.78             
(71.0) 

7.265 < 0.001 

Length (no. of 
letters) 

5.67 
(1.32) 

5.78 
(1.20) 

0.000 1.000 

Valenceb 4.94 
(1.27) 

4.75 
(1.81) 

0.28 0.807 
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Age of acquisitionc 9.04 
(1.44) 

9.14 
(1.53) 

0.157 0.877 

CBBC frequencyd 3.56 
(1.32) 

3.56 
(120) 

0.005 0.996 

Familiaritya 464.67 
(61.01) 

463.56 
(74.72) 

0.035 0.973 

A
o

A
 b

a
n
d

 4
 

Concretenessa  322.78           
(41.37) 

495.13             
(67.38) 

6.442 < 0.001 

Length (no. of 
letters) 

6.33 
(1.32) 

6.22 
(1.09) 

0.194 0.848 

Valenceb 4.90 
(1.47) 

5.08 
(1.42) 

0.272 0.789 

Age of acquisitionc 10.71 
(0.78) 

10.74 
(0.47) 

0.079 0.938 

CBBC frequencyd 3.26 
(0.74) 

3.05 
(0.52) 

0.680 0.506 

Familiaritya 430.56 
(60.0) 

448.38 
(56.19) 

0.630 0.538 

Note: a. (31); b. (56, 57); c. (30); d. (34).  
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Table 3. Summary of p-values from the mixed-effects model comparisons, Bayes 

Factors (BF10), and their interpretation. Asterisks indicate significant p-values (at 

p < .05) or BF10 indicating either support for H0 (BF10 < 1/3) or support for H1 

(BF10 > 3). 

 

  Effect p-value BF10 BF notes 

L
e

x
ic

a
l 
D

e
c
is

io
n
 

DLD vs TDage group:concreteness .790 0.099* H0 favoured 

 group .037* 0.85 inconclusive 

 concreteness .622 0.172* H0 favoured 

DLD vs TDvoc group:concreteness .866 0.144* H0 favoured 

 group .570 0.12* H0 favoured 

 concreteness .481 0.25* H0 favoured 

D
e

fi
n

it
io

n
 s

c
o

re
 

DLD vs TDage group:concreteness .011* 17.2* H1 favoured 

      (TDage)concreteness .485 2.22 inconclusive 

      (DLD)concreteness .132 5.06* H1 favoured 

      (abstract)group .002* 54.6* H1 favoured 

      (concrete)group < .001 1524.9* H1 favoured 

DLD vs TDvoc group:concreteness .556 0.89 inconclusive 

 group .010* 31.2* H1 favoured 

 concreteness .158 4.86* H1 favoured 

D
e

fi
n

it
io

n
 q

u
a

lit
y
 r

a
ti
n

g
s
 

DLD vs TDage group:concreteness .208 0.892 inconclusive 

 group .007* 11.68* H1 favoured 

 concreteness .049* 2.13 inconclusive 

DLD vs TDvoc group:concreteness .268 0.79 inconclusive 

 group .010* 7.78* H1 favoured 

 concreteness .051 0.78 inconclusive 

 



Running head: Learning Abstract Words 

32 

!

  



Running head: Learning Abstract Words 

33 

!

List of figure legends 

 

Figure 1 - Proportion of correct responses to abstract and concrete words, comparing 

performance of DLD with TDage (N = 14; left), and and DLD with TDvoc (N = 12; 

right) children. Error bars indicate standard error of the mean.  

Figure 2 – Average total score of definitions to abstract and concrete words, comparing 

performance of DLD with TDage (N = 18; left), and with TDvoc (N = 17; right) 

children. Error bars indicate standard error of the mean. 

Figure 3. Average ratings (from adult native English speakers) for abstract and 

concrete words’ definitions provided by DLD children and their matched TDage 

peers (left), and by DLD children and their matched TDvoc peers (right). Error bars 

indicate standard deviations. 

Figure 4 – Representational Similarity Analysis for Concrete and Abstract words. Error 

bars indicate 95% confidence intervals. The dashed line corresponds to the RM 

value for each parameter. Left: correlations for the set of simulations involving all 

the valid combinations of values for the three parameters. For example, in the case 

of window size (and similarly for the other parameters, in turn), we first consider 

the correlations obtained from all the models for which winSize has the reference 

value of 5 (regardless of the values for learnRate and novel Bias), and compare 

them to correlations from all the models that have “lesioned” values for winSize, 

namely 3 and 1 (regardless of the values for learnRate and novelBias). Right: 

correlations for the set of simulations where only one parameter was allowed to 

vary, while the other two were kept to their reference values. 

 

 

 

 


