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REVIEW

Ebolaviruses: New roles for old proteins

Diego Cantoni, Jeremy S. Rossman*

School of Biosciences, University of Kent, Canterbury, United Kingdom

* j.s.rossman@kent.ac.uk

Abstract

In 2014, the world witnessed the largest Ebolavirus outbreak in recorded history. The subse-

quent humanitarian effort spurred extensive research, significantly enhancing our under-

standing of ebolavirus replication and pathogenicity. The main functions of each ebolavirus

protein have been studied extensively since the discovery of the virus in 1976; however, the

recent expansion of ebolavirus research has led to the discovery of new protein functions.

These newly discovered roles are revealing newmechanisms of virus replication and patho-

genicity, whilst enhancing our understanding of the broad functions of each ebolavirus viral

protein (VP). Many of these new functions appear to be unrelated to the protein’s primary

function during virus replication. Such new functions range from bystander T-lymphocyte

death caused by VP40-secreted exosomes to new roles for VP24 in viral particle formation.

This review highlights the newly discovered roles of ebolavirus proteins in order to provide a

more encompassing view of ebolavirus replication and pathogenicity.

Author summary

Between 2014 and 2016, West Africa experienced the largest Ebolavirus outbreak in

recorded history. The international containment effort spurred extensive research that is

enhancing our understanding of ebolavirus replication and pathogenicity. Much has been

learned about the main function of each ebolavirus protein since the discovery of the virus

in 1976; however, recent ebolavirus research has led to the discovery of many new protein

functions. These newly discovered roles are revealing newmechanisms of virus replication

and pathogenesis and increasing our understanding of how each component of the virus

works. This review highlights the newly discovered roles of ebolavirus proteins in order to

provide a more encompassing view of ebolavirus replication and pathogenicity.

Introduction

Ebolaviruses are negative-sense single-stranded RNA (ssRNA) viruses capable of causing acute

haemorrhagic fever. The prototypical Ebola virus (EBOV; Zaire ebolavirus) was responsible for

the recent West Africa outbreak that resulted in 28,000 cases and 11,000 deaths between 2014

and 2016 [1]. The reservoir of this lethal pathogen has not been conclusively proven, though

there is good evidence suggesting fruit bats as a primary source of exposure [2]. Furthermore,

survivors of ebolavirus disease (EVD) can carry the virus in immunologically privileged sites

for over one year, post-recovery from the acute infection [3,4]. Resultantly, there is an
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increased awareness of the risk of alternate forms of transmission in EVD as survivors may

carry EBOV in semen for over 12 months, causing sexual transmission, or in breast milk,

which can lead to infection of newborns [4,5]. In 2004, funding from Project BioShield (United

States Department of Health and Human Services) spurred research that has led to the devel-

opment of novel therapeutics to prevent and treat EVD, resulting in a very promising vaccine

that was evaluated during the 2014 outbreak and showed 100% efficacy in disease prevention

[6,7]. Following Project BioShield and the 2014West Africa outbreak, there has been extensive

research into the ebolaviruses that has greatly expanded our understanding of viral replication

and pathogenesis.

Ebolavirus is a genus within the family Filoviridae, which also includes the genusMarburg-

virus (e.g., Marburg virus: MARV) and Cuevavirus (e.g., Lloviu virus) [8]. The Ebolavirus

genus contains five species: Zaire ebolavirus, Sudan ebolavirus, Taï Forest ebolavirus, Bundibu-

gyo ebolavirus, and lastly, Reston ebolavirus, the only member that is nonpathogenic in humans

for reasons that are still unclear [9]. The majority of research has focused on Zaire ebolavirus,

as this species has been associated with the greatest number of outbreaks and has the highest

case–fatality rates of all the ebolaviruses (30%–90%, depending on the specific outbreak),

though as a consequence, many novel or species-specific functions of ebolavirus proteins may

be undiscovered. The 19 kb viral genome encodes for seven main proteins: nucleoprotein

(NP), glycoprotein (GP), L-polymerase (L) protein, viral protein (VP) 24, VP30, VP35, and

VP40 (Fig 1) [10]. L is an RNA-dependent RNA polymerase (RdRp) and forms the RdRp com-

plex with VP30 that is responsible for viral genome transcription and replication. VP24 and

VP35 inhibit interferon (IFN) signalling and facilitate evasion of the host immune response.

NP encapsidates the viral genome into the nucleocapsid, whilst VP40 drives viral assembly and

budding. GP is the only protein on the surface of the virion and is essential for binding to tar-

get cells and subsequently mediating membrane fusion and the release of the viral genome.

However, recent research has uncovered a multitude of new, often overlapping roles for ebola-

virus proteins, and it is not possible to view viral replication as a one-protein–one-function

process (Table 1). In this review, we examine the collection of recently identified secondary

functions of ebolavirus proteins in order to provide a more comprehensive understanding of

roles of each protein in viral replication and pathogenicity.

VP24

VP24 is one of the most studied filovirus proteins, with the majority of studies focusing on its

primary role in inhibiting the host IFN response. VP24 is known to inhibit IFN-ċ/Č and IFN-č
activation by binding to key host proteins from the karyopherin ċ family (karyopherin ċ1, ċ5,
and ċ6) preventing their binding to and the subsequent nuclear import of signal transducer

and activator of transcription 1 (STAT1) [11]. In addition, VP24 blocks IFN signalling by

directly binding to STAT1, preventing its phosphorylation, nuclear import, and transcription

of IFN-stimulated genes (ISG) [11–13]. Recent data suggest VP24 is also able to block IFN

induction by supressing nuclear factor-kappa B (NF-kB) activation following tumour necrosis

factor alpha (TNF-ċ) stimulation [14] and by supressing retinoic acid-inducible gene I

(RIG-I)–dependent activation of IFN-č1 gene expression [15]. Furthermore, the innate

response antagonist domains (IRAD) in EBOV VP24 and VP35 have been implicated in pre-

venting the maturation of EBOV-infected dendritic cells by modulating global gene expression

[16,17]. This effect required both VP24 and VP35 IRAD domains, though the VP24 IRAD

domain alone was sufficient to down-regulate cytokine signalling pathways [17]. These results

highlight the importance of cooperative action of multiple viral proteins for evasion of the host

immune response.
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VP24 has also recently been seen to function in capsid assembly [18]. NP and VP35 are

known to be the major components of the viral nucleocapsid, though VP24 is weakly associ-

ated and may act as a catalyst for particle formation [18]. Further evidence for a structural role

of VP24 comes from the observation that N- or C-terminal deletions in VP24 inhibited the for-

mation of nucleocapsid-like structures mediated by VP24, VP35, and NP coexpression [19]. It

was suggested that the N-terminal domain of VP24 facilitates capsid formation by mediating

protein–protein interactions. This is supported by the observation that mutation of the VP24

N-terminal domain results in protein aggregation [19]. A recent study confirmed the interac-

tion between VP24 and NP, showing that VP24 residues V170 and N171 are located on a

highly conserved exposed loop that interacts with NP during nucleocapsid assembly [20].

Coexpression of VP24 and VP40 results in a greater production of virus-like particles (VLPs)

than when VP40 is expressed alone [21]. Similarly, in live EBOV infection, VP24 small inter-

fering RNA (siRNA) knockdown decreases viral budding and increases the retention of viral

proteins within the cell [22]. Further evidence suggests that VP24 binds to VP35 on the outer

surface of the nucleocapsid where it organises the adjacent NP layer, promoting nucleocapsid

stability and explaining the observed interactions between NP, VP24, and VP35 during nucle-

ocapsid formation [23].

Fig 1. Genome organisation of Filoviridae family members: MARV, EBOV, and RESTV. Each box represents the open-reading frames that produce the VPs.
RNA editing by addition of Us occurs on the GP transcript in order to produce GP and the ssGP. Post-translational modification of the GP protein results in two
GP subunits after cleavage by host furin. Slight differences in gene overlaps and the presence of intergenic regions are evident between the different ebolavirus
species, though the functional consequence of these differences is not clear at present. EBOV, Ebola virus; GP, glycoprotein; L, L-polymerase; MARV, Marburg
virus; NP, nucleoprotein; RESTV, Reston virus; sGP; soluble glycoprotein; ssGP, small soluble glycoprotein; U, uridine; VP, viral protein.

https://doi.org/10.1371/journal.pntd.0006349.g001
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In addition to its role in nucleocapsid stability, VP24 may be necessary for incorporation of

the viral RNA (vRNA) genome into the nucleocapsid. Several studies have shown that VP24,

together with VP35, induce conformational changes in NP that are necessary for RNA encapsi-

dation [18,24,25]. It was shown that VP24 may be directly involved in length-dependent

vRNA interactions and packaging [26]. In the study, transcription- and replication-competent

virus-like particles (trVLPs) were analysed for RNA content, and a significant reduction of

packaged RNA was observed when VP24 was knocked down with an interfering micro-RNA

(miRNA). The trVLPs that were produced showed a 2-fold reduction in RNA content and a

10-fold reduction of infectivity, suggesting that VP24 may play an essential role in RNA pack-

aging. Furthermore, disruption of the VP24–NP interaction reduced RNA packaging and

resulted in a significant reduction in reporter activity, highlighting the importance of VP24 in

RNA packaging [20]. In addition, trVLP reporter gene activity was significantly affected by the

presence of VP24 in a genome-length-dependent manner. Using the trVLP tetracistronic

genome system, the presence of VP24 during VLP production resulted in a 25-fold increase in

reporter gene activity upon subsequent infection, whereas the presence of VP24 had no effect

when monocistronic minigenome systems were used in the trVLP, suggesting a genome-

length-dependent role for VP24 in RNA packaging and VLP infectivity. Surprisingly, VP24

may also have a length-dependent role in transcriptional regulation. It was observed that VP24

moderately inhibited the expression of reported genes from monocistronic minigenome plas-

mids [27]. However, VP24 expression had no effect on protein expression from the trVLP tet-

racistronic genomes [26]. Whilst the impact of VP24 on protein expression is not clear, VP24

itself may be subject to length-dependent transcriptional regulation. Recent work has impli-

cated the length of the intergenic region (IR) between VP30 and VP24 as having a significant

Table 1. Summary of ebolavirus protein roles.

Protein Main Role Secondary Role

VP24 Inhibits IFN-ċ/Č and IFN-č signalling through
interactions with importins, STAT signalling pathways,
and NF-ĔB signalling pathways

Nucleocapsid assembly and stability
RNA incorporation into VLPs
Regulates transcription and translation

VP30 Initiates ebolavirus transcription Counters RNA interference

VP35 Inhibits type-I IFN signalling by inhibiting activation of
IRF-3 via dsRNA binding
Inhibits type-I IFN production by upregulating
SUMOylation of IRF-7
Impairs dendritic cell maturation
Counters RNA interference
Inhibits antiviral effects by blocking protein kinase R

Assembly of viral complex with NP and VP30
Regulates RNA synthesis by modulating NP–
RNA interactions and by interacting with
dynein LC8

VP40 Viral assembly and budding Counters RNA interference
Induces apoptosis in bystander lymphocytes

GP Virus attachment and entry Late-stage cytotoxicity in cells
Decreases endothelial barrier function
Directly triggers T-lymphocyte death and
augments monocyte maturation

NP Key component of ribonucleoprotein complex,
encapsidates viral genome and protects viral mRNA
from degradation

L Involved in transcription and regulation of viral genome
and mRNA editing

Abbreviations: dsRNA, double-stranded RNA; GP, glycoprotein; IFN, interferon; IRF, interferon regulatory factor;

L, L-polymerase; LC8, light chain 8; NF-ĔB, nuclear factor kappa B; NP, nucleoprotein; STAT, signal transducer and

activator of transcription; SUMO, small ubiquitin-like modifier; VLPs, virus-like particles; VP, viral protein

https://doi.org/10.1371/journal.pntd.0006349.t001
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impact on VP24 expression by regulating transcription initiation frequency (Fig 1) [28,29].

The importance of the broad range of VP24 functions during virus replication is highlighted

by the fact that it has not been possible to create a VP24-deficient recombinant EBOV, even

when VP24 is supplied in trans [22].

VP35

As with VP24, VP35 is primarily known for its multifaceted ability to suppress the host cell

immune response. VP35 is a type-I IFN antagonist, inhibiting the activation of interferon reg-

ulatory factor (IRF)-3 via double-stranded RNA (dsRNA) binding and reducing IFN-ċ/Č pro-

duction by inhibiting RIG-I signalling [30–32]. VP35 also blocks IFN production by

increasing protein inhibitor of activated STAT1 (PIAS1)-mediated SUMOylation of IRF-7,

thus inhibiting IFN production following toll-like receptor (TLR) and RIG-I activation [33].

Lastly, VP35 is a suppressor of RNA silencing, functionally equivalent to the human immuno-

deficiency virus (HIV-1) Trans-activator of transcription (Tat) protein and important for viral

evasion of the innate immune response [34]. Together, there is significant evidence demon-

strating VP35’s intricate ability to inhibit innate immune signalling and the host antiviral

response (Fig 2).

Recent work suggests that VP35 may have more diverse functions during virus replication,

as VP35 was shown to interact with L and facilitate genome transcription through the forma-

tion of the RdRp complex and genome packaging through association with NP [35–37]. The

first 450 residues of VP35 appear to be essential for binding to L and thus RdRp function,

whereas the C-terminus associates with NP, thus linking NP and L during nucleocapsid assem-

bly [36,38]. N-terminal deletions in VP35 block these interactions and were sufficient to

inhibit the replication and transcription of an EBOVminigenome system [38]. The role of the

VP35 C-terminus in capsid assembly is perhaps surprising, as this region contains the IFN

inhibitory domain responsible for its main role in immune evasion. However, this domain

contains several conserved stretches of basic residues involved in dsRNA binding and IFN

inhibition, whereas a preceding stretch mediates interaction with NP [36]. Further research

found the VP35–NP interaction controls the switch between RNA-bound NP and free NP,

thus switching between genome replication and genome packaging in the nucleocapsid [39].

An N-terminal peptide derived from the VP35 NP-binding protein region (NPBP) binds NP

with high affinity, causing the release of RNA from NP and resulting in the activation of

genome transcription and the inhibition of NP oligomerisation (Fig 2) [39]. Additional inves-

tigation of VP35–NP binding showed two further interaction sites. Hydrophobic VP35–NP

binding at these sites inhibited NP oligomerisation and prevented NP–RNA binding by block-

ing access to the RNA binding domain [40]. Work by Leung and colleagues suggests that dur-

ing nucleocapsid formation, the NPBP peptide first disassociates from NP, then RNA binds to

NP, followed by NP oligomerisation. In contrast, Kirchdoerfer and colleagues show that

monomeric NP has no significant affinity for RNA, suggesting that the NPBP peptide would

be displaced by an additional NP molecule, causing NP oligomerisation that would then allow

for RNA binding. However, in either process, VP35–NP interactions are crucial for virus repli-

cation and are being explored as targets for future therapeutics [41,42].

VP35 also undergoes further protein–protein interactions that may affect viral genome

transcription through the interaction with the cytoplasmic dynein light chain (LC8) [43]. LC8

is a highly conserved 8 kDa subunit of the cytoplasmic dynein motor complex but can also

exist as a dimer in soluble form, which can affect viral transcription and assembly [44,45]. LC8

was seen to stabilise VP35 N-terminal oligomerisation in a dose-dependent manner and

enhance viral genome synthesis [46]. It was noted that LC8 functions mostly in the early stages
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of infection, enhancing early viral gene expression before the host cells are able to establish the

antiviral state. Thus, VP35 modulation of vRNA transcription can facilitate virus replication

while simultaneously enhancing immune evasion.

VP30

The minor nucleoprotein VP30 has the primary role of initiating EBOV transcription [47]. It

is dynamically phosphorylated, whereby upon phosphorylation, transcription is negatively reg-

ulated, enabling binding to NP [48,49]. In turn, this permits interactions that regulate vRNA

synthesis [37]. VP30 binds zinc ions due to the presence of an unconventional zinc-binding

motif, facilitating RNA binding and increasing viral genome transcription [50–53].

Fig 2. Multiple roles of VP35 during virus replication.VP35 inhibits the type-I IFN response through several different mechanisms. VP35 can bind to dsRNA,
preventing the activation of RIG-I signalling. In addition, VP35 blockade of IRF3 and IRF7 phosphorylation inhibits the production of IFN-Č. Recent studies have
also highlighted the importance of VP35 in regulating NP–RNA association. During viral genome replication, the VP35 N-terminal peptide binds to NP, enabling
the vRNA to associate with the RdRp complex for replication. During virus assembly, VP35 disassociates, enabling NP to oligomerise, bind RNA, and form the
nucleocapsid. 5’PPP, 5’ triphosphate; dsRNA, double-stranded RNA; IFN, interferon; IKK, inhibitor of nuclear factor kappa B kinase subunit epsilon; IRF,
interferon regulatory factor; MAVS, mitochondrial antiviral-signalling protein; MDA5, melanoma differentiation-associated protein 5; NP, nucleoprotein; PACT,
protein activator of the interferon-induced protein kinase; RdRp, RNA-dependent RNA polymerase; RIG-I, retinoic acid-inducible gene I; TANK, tumour
necrosis factor–receptor-associated factor family member–associated nuclear factor kappa B activator; TBK1, tumour necrosis factor–receptor-associated factor
family member–associated nuclear factor kappa B activator binding kinase 1; TRAF3, tumour necrosis factor–receptor-associated factor 3; VP, viral protein;
vRNA, viral RNA.

https://doi.org/10.1371/journal.pntd.0006349.g002
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In addition to its RNA-binding role in transcription, VP30 also interferes with cellular

RNA silencing [54]. In the presence of siRNA, VP30 was seen to interact with the essential

RNA interference (RNAi) protein Dicer, though the VP35 N-terminus RNA binding domain

was not required for the interaction or for the suppression of RNAi (Fig 3). As with the RNA

silencing suppressor activity of VP35, the exact role of RNAi in antiviral immunity is not clear,

nor is the consequence on EBOV replication of blocking miRNA/siRNA processing as medi-

ated by VP30 [55]. However, despite the fact that RNA binding is not required for RNA silenc-

ing suppression, VP30 was seen to bind to a variety of nonviral RNAs. VP30–RNA binding

required specific base composition and structure of the target RNAmolecule [53], though it is

not clear if there is a function of VP30 binding to nonviral RNA or if this is a consequence of

its necessary binding to vRNA during transcription.

VP40

The matrix protein VP40 has roles predominantly in virus assembly and budding [56,57].

VP40 can assemble either as a hexamer, which appears to be involved in budding, or as an

octamer that functions in genome replication and RNA binding [58,59]. Most research has

focused on the role of VP40 in assembly and budding; however, recent studies have begun to

elucidate novel roles.

VP40 is known to be sufficient to mediate the formation and budding of VLPs; however,

recent results have demonstrated that VP40 induces the formation for exosomes that are capa-

ble of inducing bystander cell death [60,61]. Exosome release has been seen in virally infected

cells, and VP40 expression was seen to increase the expression of several endosomal sorting

complex required for trafficking (ESCRT) proteins involved in exosome biogenesis, including

tumour susceptibility gene 101 (TSG101), vacuolar protein-sorting-associated protein 25

(VPS25), and VPS36 [61,62]. This is consistent with previous reports showing VP40 utilising

ESCRT proteins to aid viral budding, though how VP40 switches between budding and exo-

some release is not clear [63–65].

Transfer of VP40-induced exosomes to naïve T lymphocytes and monocytes induced apo-

ptosis and significantly reduced cell viability similarly to that seen when exosomes from virally

infected cells were used [61,62]. However, Pleet and colleagues noted that the presence of

VP40 in the exosomes caused a down-regulation of miRNA machinery in both the donor and

recipient cells, including a reduction in the expression of Dicer, argonaute-1, and Drosha (Fig

3). It was previously noted that VP35, VP30, and VP40 are capable of interacting with the

Fig 3. Ebolavirus proteins VP30, VP35, and VP40 are suppressors of RNA silencing. Cellular RNA interference requires the assembly of the Dicer:TRBP:PACT
complex. VP30 inhibits RNAi by interacting with Dicer, preventing TRBP binding and complex activity. VP35 also inhibits complex assembly by binding TRBP and
PACT, preventing their association with Dicer. VP40 suppresses RNAi during infection or when transferred to bystander immune cells through exosomes, though the
mechanism by which VP40 inhibits the Dicer machinery is currently unknown. PACT, protein activator of the interferon-induced protein kinase; RNAi, RNA
interference; TRBP, Trans-activation response RNA binding protein; VP, viral protein.

https://doi.org/10.1371/journal.pntd.0006349.g003
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miRNA/RNAi pathway [54]; however, this was the first demonstration that the suppression of

RNA silencing can be transferred to naïve cells in the absence of virus. Currently, the precise

mechanism in which VP40 interacts with miRNAmachinery has yet to be characterised, and it

is not yet known if the action of VP40 on the miRNA machinery directly causes apoptosis or if

the exosomes contain other proteins or RNAs that may be responsible for causing the induc-

tion of apoptosis. However, the repression of key proteins in the miRNA pathway has been

previously linked to the induction of apoptosis; thus, the suppression of RNA silencing may

serve both to directly counteract the innate cellular immune response and to induce apoptosis

of bystander immune cells, blocking the activation of adaptive immunity [57,61,66].

Due to the essential role of VP40 in viral assembly and budding, several studies have looked

at inhibiting VP40 for the creation of new antiviral therapeutics [67,68]. As VP40 also plays a

role in immune evasion (via RNAi suppression and exosome-bystander cell death), there is

increased motivation for developing therapeutics that target one or multiple functions of

VP40. It is known that viral replication requires VP40 phosphorylation at tyrosine 13 by the

cellular tyrosine kinase Abelson murine leukaemia viral oncogene homologue 1 (c-Abl1) [69].

In addition, recent results showed that cyclin-dependent kinase 2 (Cdk2) in complex with

Cyclin A or Cyclin E phosphorylated exosomal VP40 at serine-233 [61]. Thus, the inhibition

or modulation of VP40 phosphorylation may be a target for new therapeutics. Lastly, Pleet and

colleagues showed that treatment with the FDA-approved drug Oxytetracycline reduced VP40

exosome release and significantly increased donor cell viability upon treatment with VP40

exosomes, further suggesting that targeting the secondary functions of VP40 may be a new

approach for developing antivirals for EVD.

GP

The GP gene has been shown to encode for three different products due to transcriptional edit-

ing by L: full length GP, which consist of GP1 (receptor binding) and GP2 (viral fusion) sub-

units; soluble GP (sGP), which lacks the transmembrane domain; and small soluble GP (ssGP)

[70,71]. Due to furin cleavage of sGP, a smaller cleaved fragment is also produced, called Δ-
peptide [72]. GP is the only viral protein located on the surface of the virion and has a critical

role in attachment and fusion [73–75]. Ebolaviruses are thought to predominantly enter cells

via GP-dependent macropinocytosis, though other mechanisms have been reported, depend-

ing on factors such as host cell type [76,77]. After entry, GP directs fusion between the viral

membrane and endolysosomes that contain the viral receptor Niemann-Pick C1 (NPC1) and

two-pore segment channel 2 (TPC2), enabling release of the viral genome [78,79]. During the

2014–2016 outbreak, a mutation in GP at A82V was detected with high frequency [80–82].

This mutation increased GP membrane fusion activity and increased infectivity in a variety of

cell types, including chimpanzee fibroblasts (S008842), rhesus epithelial (FRhK4), African

green monkey epithelial (Vero), and human dendritic cells. The authors propose that this

mutation is likely a result of EBOV adaptation to the human host, as several viral variants have

been seen to increase human cell infectivity while decreasing virus entry in nonhuman pri-

mates [83–85]. Thus, the specific nature of protein function needs to be considered in the con-

text of the given host.

GP has been shown to have a multitude of secondary roles beyond attachment and fusion

that affect both virus replication and pathogenicity. Several studies have shown that GP con-

tributes to EBOV virulence; however, it is not sufficient on its own to be defined as a virulence

marker, despite having marked effects beyond entry and fusion [86]. EBOV GP expression has

been well established as having a cytotoxic effect on host cells [87–89]. GP cytotoxicity is medi-

ated through the mucin-like domain and its effect on the extracellular signal–regulated kinase
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(ERK) mitogen-activated protein kinase (MAPK) pathway [90]. EBOV GP reduces the phos-

phorylation and catalytic activity of ERK2, resulting in the loss of cell adherence, cell rounding,

and the induction of non-apoptotic cell death. The decrease in ERK2 activity was also neces-

sary for GP-induced down-regulation of ċV integrin expression, further impairing cell adher-

ence and tight junction formation. In addition, the sGP cleavage product, Δ-peptide, may play

a role in EBOV pathogenicity by acting as a viroporin [91]. Δ-peptide is able to form pores in

the plasma membrane of mammalian cells, increasing ion permeability and causing cytotoxic-

ity [92]. However, it is not known if the Δ-peptide can be released from cells or if its induction

of cytotoxicity is limited to within the infected cell. In order to regulate the toxicity caused by

GP and its cleavage products at early stages of infection, GP expression is dynamically regu-

lated [93]. The balance and timing of EBOV GP/sGP/ssGP/shed-GP/Δ-peptide expression has

been found to be pivotal in virus replication, affecting not only cell death but viral assembly

and budding [94].

Whilst VP40 expression is sufficient to produce VLPs, GP expression enhances VLP gener-

ation, suggesting a possible secondary role for GP in viral egress [21]. Recent work suggests

that GP does not directly affect viral assembly or budding, but rather counteracts the cellular

budding restriction factor tetherin [95]. In the absence of GP, VLPs assemble and bud but are

retained on the cell surface through the antiviral tethering actions of the tetherin protein. GP

expression enabled VLP release but did not affect tetherin cell-surface localisation, nor was a

specific GP–tetherin interaction found [96]. It was shown that the GP glycosylation and its

receptor-binding domain (RBD) were critical for anti-tetherin activity, though mutation of the

RBD did not affect interactions with tetherin, and inhibition of GP–NPC1 binding did not

affect the anti-tetherin activity [97]. Instead, it is thought that GP is specifically able to block

the association between VP40 and tetherin, though the nature of tetherin–VP40 interaction

and the mechanism of GP inhibition is not known [98].

EBOV infection causes significant impairment of the endothelial barrier function. GP

repression of ERK2 activity reduces integrin expression and cell adherence; however, GP also

induces endothelial cell activation, further decreasing endothelial barrier functions [99]. Dur-

ing EBOV infection of endothelial cells, cell adhesion molecules (CAM) ICAM-1 and VCAM-

1 were found to be transcriptionally upregulated, with increased cell surface expression of

CAMs. The activity occurs with cellular GP expression as well as following the transfer of GP-

containing VLPs; viral replication does not appear to be required. Endothelial activation was

not observed in the absence of GP, nor with the GP transcriptional variant sGP or the GP

cleavage product Δ-peptide [99]. GP-induced endothelial cell activation may facilitate

decreased barrier function, whilst the up-regulation of CAMs may facilitate adhesion and sub-

sequent infection of immune cells, such as macrophages. A model was proposed whereby acti-

vated endothelial cells result in increased leukocyte recruitment, resulting in thrombomodulin

release, resulting in an activated, leukocyte-rich endothelium in a procoagulant state [100].

Whether this is an unintended consequence of GP or has a role in increased viral spread and

infectivity is yet to be investigated.

EBOV GP has also been implicated in modulation of the host immune system. GP on the

cell plasma membrane has been shown to be cleaved by TNF-ċ-converting enzyme (TACE),

resulting in the release of a soluble cleaved product called shed GP that is missing the trans-

membrane domain [101]. Shed GP was seen to activate uninfected macrophages and dendritic

cells, resulting in the production of multiple pro- and anti-inflammatory cytokines, including

TNF-ċ, with subsequent effects on vascular permeability [102]. It is thought that shed GP acti-

vates macrophages by binding to and activating toll-like receptor 4 (TLR4) in a manner requir-

ing GP glycosylation. Recently it was also shown that full-length GP on VLPs can also trigger

the activation of TLR4 in macrophages, resulting in a similar activation phenotype [103]. In
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contrast, GP binding to TLR4 on T lymphocytes directly triggers cell death through an up-reg-

ulation of caspase 9, even in the absence of infection [104]. In dendritic cells, GP was found to

interact with the liver and lymph node sinusoidal endothelial cell C-type lectin (LSECtin), a C-

type lectin that contains two amino acids, residues N256 and N274, that bind GP in a Ca2

+-dependant manner, triggering the activation of spleen tyrosine kinase (Syk) signalling and

the production of inflammatory cytokines TNF-ċ and interleukin-6 (IL-6) [105]. As shed GP

retains most of the structure of full-length GP, this soluble molecule is capable of binding to

and neutralising circulating anti-GP antibodies, facilitating viral immune evasion [101].

Similarly, sGP has been implicated in evading the immune system via antigenic subversion

[106]. It was found that boosting GP-immunised mice with sGP biased B-cell response

towards epitopes that were shared between sGP and GP, reducing GP-specific antibody pro-

duction and possibly impeding the immune-mediated clearance of EBOV infection. The struc-

ture of sGP in complex with antibodies was recently solved and highlights differences in

antibody reactivity between GP and sGP [107]. Whilst GP is trimeric, sGP oligomerises into a

parallel homodimer. Cross-reactive c13C6 antibody epitopes are presented similarly on GP

and sGP, though the authors report that one c13C6 antibody binds to one GP trimer, whereas

multiple different immune-complexes were formed with sGP, ranging from rectangular com-

plexes with a 2:2 ratio of c13C6 antibody to sGP dimer up to pentagonal 5:5 antibody:sGP

complexes [107]. This further supports the hypothesis that sGP enhances viral immune eva-

sion by biasing the antibody response towards sGP binding.

Whilst the multitude of GP secondary effects have a significant impact on EBOV infection,

pathogenesis, and immune evasion, GP remains the immunodominant protein on the EBOV

virion, and vaccination with the GP protein on pseudotyped viruses, recombinant vesicular

stomatitis virus with Zaire ebolavirus GP (rVSV-ZEBOV), has been highly effective in prevent-

ing EVD [7].

NP and L

NP has a distinct function in the replication cycle as it is a key component of the viral ribonu-

cleoprotein complex and has critical roles in protecting vRNA from degradation and in medi-

ating genome encapsidation during virus assembly [10]. At present, all research has focused

on these primary activities of NP, and any secondary roles remain to be determined [18,25,40].

Similarly, the RNA-dependent L-polymerase is an essential component of the RdRp complex

and required for viral genome transcription and replication [10]. It has been observed that L

can also edit mRNA, as seen with the GP gene, where L-editing results in the production of the

GP transcript instead of sGP [108]. L-editing may also regulate the different expression levels

of GP, sGP and ssGP. During serial passage in tissue culture cells, L was found to add a single

uridine (U) residue to a site consisting of 7 Us in the GP gene, changing the expression ratio of

GP:sGP to 80:20. A single passage in guinea pigs caused reversion of the genome back to 7 Us

and changed the GP:sGP expression ratio back to 20:80, which may facilitate immune evasion

during in vivo replication [109]. In contrast, during viral replication in the human hepatocar-

cinoma cell line (Huh7), a 9U variant was seen that retained the high level expression of sGP

but had enhanced expression of ssGP [71]. It is speculated that these rapid alterations in the

GP gene may act as a regulatory mechanism, enabling efficient virus replication in different

host environments. At present, no other roles for the L protein have been postulated.

Conclusion

For many years now, the fundamental principles of ebolavirus replication have been known,

with each viral protein playing a specific role: L and VP30 form the RdRp and mediate viral
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genome transcription and replication, NP packages the vRNA genome and forms the nucleo-

capsid, VP40 mediates virion assembly and budding, GP mediates virion attachment to and

fusion with the host cell, and VP24 and VP35 enable evasion of the host immune system. How-

ever, in recent years, our understanding of ebolavirus replication and pathogenesis has signifi-

cantly increased, and we now know that each viral protein plays a multitude of overlapping

roles during virus replication.

VP24 and VP35 were thought to primarily mediate immune evasion but have now been

seen to function in viral replication and in the formation of the nucleocapsid. Similarly, many

of the viral proteins that were thought to play functional roles in replication (i.e., VP30, VP40,

GP) have now been discovered to have significant roles in immune evasion. This broadens our

understanding of the ways in which ebolaviruses can evade and subvert the host immune sys-

tem. Of particular interest is the observation that VP30, VP35, and VP40 all appear to supress

the host RNA silencing system, though the relevance of this to viral replication is not yet clear

(Fig 3). In addition, many ebolavirus proteins are seen to interact with immune cells, causing

cell activation and/or cell death and facilitating both viral replication and spread (e.g., by

recruiting monocytes to infected cells or by increasing vascular leakage) as well as enabling

immune evasion (e.g., antibody neutralisation by sGP and by cleaved GP), roles that were pre-

viously solely attributed to VP24 and VP35.

Since Project BioShield was initiated in 2004, there has been a substantial increase in our

understanding of ebolavirus replication and pathogenesis. Several vaccines and antiviral thera-

peutics have been developed and were used during the 2014–2016West Africa Ebola virus out-

break. However, the outbreak was difficult to contain and highlighted the fact that there are

many significant aspects of EBOV that we do not yet understand (e.g., EBOV persistence in

immunologically privileged tissue) and that there is a pressing need for continued research to

better understand and combat this deadly pathogen.
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