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Abstract

Fibroblast growth factors receptors (FGFR) are transmembrane protein tyrosine kinases involved in many cellular process, 

including growth, diferentiation and angiogenesis. Dysregulation of FGFR enzymatic activity is associated with develop-

mental disorders and cancers; therefore FGFRs have become attractive targets for drug discovery, with a number of agents 

in late-stage clinical trials. Here, we present the backbone resonance assignments of FGFR3 tyrosine kinase domain in the 

ligand-free form and in complex with the canonical FGFR kinase inhibitor PD173074. Analysis of chemical shift changes 

upon inhibitor binding highlights a characteristic pattern of allosteric network perturbations that is of relevance for future 

drug discovery activities aimed at development of conformationally-selective FGFR inhibitors.
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Angiogenesis

Biological context

Four ibroblast growth factors receptors (FGFR1–4) are 

known to interact with several FGFs (22) to regulate criti-

cal cellular processes (Beenken and Mohammadi 2009; 

Brooks et al. 2012). Binding of FGFs leads to dimeriza-

tion of FGFRs and phosphorylation of speciic intracellu-

lar domain tyrosine residues; this is the irst event of many 

signalling cascades regulating cell proliferation, diferen-

tiation and migration (Eswarakumar et al. 2005; Klint and 

Claesson-Welsh 1999). Dysregulation of these signalling 

cascades leads to several developmental syndromes and 

a broad range of human malignancies (Dieci et al. 2013; 

Katoh 2016). Structural and molecular dynamic properties 

of FGFRs are the subject of extensive study, as part of a 

mission to understand physiological and aberrant activation 

mechanisms as well as drug action (Chen et al. 2017; Huang 

et al. 2013; Klein et al. 2015; Kobashigawa et al. 2016; 

Patani et al. 2016; Perdios et al. 2017). To date, many kinase 

inhibitors have been developed and some have reached clini-

cal trials (Zhang et al. 2009). PD173074 (PD) was developed 

as an ATP-competitive inhibitor for FGFR1 (Mohammadi 

et al. 1998) and it also binds tightly to FGFR3 (Grand et al. 

2004). Here, we present the backbone amide NMR reso-

nance assignments for FGFR3 kinase domain in ligand-free 

and PD-bound states. Comparison of free and bound states 

provides useful information regarding the binding site and 

will prove helpful in the design of next-generation kinase 

inhibitors.

 * Domenico Sanfelice 

 d.sanfelice@ucl.ac.uk

 * Alexander L. Breeze 

 a.l.breeze@leeds.ac.uk

1 Institute of Structural and Molecular Biology, Division 

of Biosciences, University College London, Gower St, 

London WC1E 6BT, UK

2 Astbury Centre for Structural Molecular Biology, Faculty 

of Biological Sciences, University of Leeds, Leeds LS2 9JT, 

UK

3 Present Address: Wellcome Trust Biomolecular NMR 

Facility, School of Biosciences, University of Kent, 

Canterbury CT2 7NZ, UK

http://orcid.org/0000-0002-8908-0347
http://crossmark.crossref.org/dialog/?doi=10.1007/s12104-018-9814-7&domain=pdf


 D. Sanfelice et al.

1 3

Methods and experiments

Protein expression

The wild-type FGFR3 kinase domain (amino acids 

455–768) was cloned into either pOPINS (OPPF, Oxford, 

UK) or pJ821 (DNA2.0, Menlo Park, USA) using In-

Fusion cloning (Clontech, Mountain View, USA). Plas-

mids were transformed into C41 (DE3) cells harbouring 

a co-expression plasmid, pCDF-Duet, expressing lambda 

phosphatase under an IPTG-inducible promoter. The 

recombinant kinase domain was expressed as a His-tag 

fusion protein after induction with 0.1 mM IPTG (for pOP-

INS) or 1 mM rhamnose and 0.1 mM IPTG (for pJ821) for 

around 66 h at 16 °C.

Uniform stable isotope labelling was achieved by 

growing cells in  D2O-based M9 minimal medium supple-

mented with 15N-ammonium sulfate (15NH4Cl) together 

with U-[1H,13C]-glucose (Cambridge Isotope Laboratories 

or Sigma-Aldrich) as sole nitrogen and carbon sources, 

respectively. Deuterium adaptation was achieved using 

minimal medium agar plates: each plate was allowed to 

grow for 48 h at 37 °C. Cultures were grown in baled 2 L 

lasks for 2 h at 37 °C and then 4 h at 15 °C. Amino-acid-

selectively labelled samples were prepared by growth in 

media containing all amino acids at a concentration of 

1000 mg/L, but depleted in the target unlabelled amino 

acid, which was supplemented in the required labelled 

form (Sigma-Aldrich) at 100 mg/L immediately prior to 

induction. Amino-acid-selectively unlabelled samples 

were prepared by growth in M9 minimal media containing 
15NH4Cl and an excess of unlabelled speciic amino acid.

Protein puriication

Frozen pellets were resuspended in 20  mL of chilled 

Lysis Bufer (25 mM Tris–HCl, 250 mM NaCl, 40 mM 

imidazole, 10 mM benzamidine, 1 mM  MgCl2, 100 µM 

 CaCl2 and 100 µg/mL lysozyme, pH 8.0). Lysis was con-

tinued by the addition of 5 mL of a solution of 10% (v/v) 

Triton-X-100 and 1 K unit of bovine pancreatic DNAse 

I at 4 °C. Harvested clear cell lysates were loaded onto 

a 5  mL HisTrap column (GE Healthcare, Amersham, 

UK). Unbound proteins were washed out with His Bufer 

A (25 mM Tris–HCl, 500 mM NaCl, 40 mM imidazole, 

1 mM TCEP, pH 8.0) and eluted with a 20-column volume 

gradient containing 500 mM imidazole. Eluted fractions 

were pooled together and the His-tag was cleaved using 

Ulp1 protease while dialyzing overnight against Dialy-

sis Bufer (25 mM Tris–HCl, 1 mM TCEP, pH 8.0) and 

separated by a second HisTrap puriication step. Unbound 

FGFR3 was injected on a 5 mL HiTrap Q (GE Health-

care, Amersham, UK) equilibrated in Q Bufer A (25 mM 

Tris–HCl, 20 mM NaCl, 1 mM TCEP, pH 8.0). Elution 

was achieved with 20 column volumes to 50% of Q Bufer 

B (25 mM Tris–HCl, 1 M NaCl, 1 mM TCEP, pH 8.0). 

Finally, fractions containing FGFR kinase domain were 

pooled and injected onto a Superdex 200 26/60 column 

(GE Healthcare, Amersham, UK) equilibrated with NMR 

bufer (50 mM PIPES-NaOH, 50 mM NaCl, 2 mM TCEP, 

1 mM EDTA, pH 7.0). Monomeric FGFR3 kinase domain 

was concentrated in Vivaspin 10 kDa m.w.c.o. (Vivaprod-

ucts, Littleton, USA) concentrating units and quantiied 

using a Nanodrop (Thermo Scientiic, UK), using calcu-

lated molecular weight and extinction coeicients. Pro-

teins were stored at between 5 and 20 mg/mL, after snap-

freezing in liquid  N2, at − 80 °C.

NMR spectroscopy and data processing

Uniformly 15N,13C,2H-labelled, uniformly 15N-labelled, 

selectively-labelled and selectively-unlabelled samples of 

WT FGFR3, were prepared in 50 mM PIPES-NaOH, 50 mM 

NaCl, 5 mM TCEP and 1 mM EDTA (pH 7.0) containing 5% 

 D2O. PD173074 was added from concentrated stock solutions 

prepared in DMSO where required. All samples were approxi-

mately 300 µL and between 77 and 230 µM concentration in 

5 mm Shigemi tubes. NMR spectra were recorded at 298 K for 

ligand-free FGFR3 and 303 K for the PD complex, on Bruker 

Avance III or Avance III HD 800 or 950 MHz spectrometers 

equipped with TCI z-axis gradient Cryoprobes. Standard 

TROSY-detected triple-resonance experiments (Salzmann 

et al. 1998) and TROSY-detected HSQC experiments with 

water lip-back and WATERGATE pulses (Pervushin et al. 

1998) were recorded as detailed previously (Bunney et al. 

2015). 1H–15N HSQCs were recorded for samples selectively 

labelled with Leu, Phe and Ala/Lys, in the free and complex 

form. 1H–15N HSQCs were recorded for samples selectively 

unlabelled with Trp, Asn/Arg, Gln/Ile, Phe/Val and Lys/Leu. 

All data were processed using NMRPipe and NMRDraw 

(Delaglio et al. 1995) and analysed with CCPNMR Analysis 

(Vranken et al. 2005).

Titration experiments with 2H–15N labelled FGFR3 were 

carried out under the same conditions. Averaged chemical 

shift perturbations (CSPs) were calculated from the changes 

observed in chemical shifts between the apo FGFR3 spectrum 

and the FGFR3:PD 2:1 spectrum using the formula (Schu-

mann et al. 2007):

Δδ
AV

=
[

0.5 ×
(

Δδ1
H + 0.2 × Δδ15

N
)]1∕2
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Assignment and data deposition

The FGFR3 kinase domain is very challenging for NMR 

due to the low solubility, marginal stability and intrinsically 

dynamic nature of the protein, combined with its relatively 

large size (~ 35.4 kDa). The 1H–15N TROSY–HSQC spec-

tra of free and PD-bound FGFR3 are shown in Fig. 1. Pre-

liminary data indicated that FGFR3 in complex with PD 

was more stable than the inhibitor-free form; consequently, 

assignment of the complex was tackled irst. 78% assign-

ment of the backbone resonances (78% of HN and CB, 74% 

of N, CA and CO), of the PD-bound FGFR3 was achieved 

using a complete set of TROSY-based triple-resonance 

experiments (HNCA, HNCOCA, HNCACB, CBCACONH, 

HNCO, HNCACO) (Salzmann et al. 1998). Assignment of 

inhibitor-free FGFR3 backbone amide and carbon reso-

nances was then accomplished by the use of a limited set of 

TROSY triple-resonance experiments (HNCA, HNCACB 

and HNCO) and by comparison to backbone assignments 

of free FGFR1 (Vajpai et al. 2014) and FGFR2 kinases (D. 

Cowburn, personal communication): both isoforms share 

more than 83% sequence identity with FGFR3 [calculated 

using Clustal Omega (Sievers et al. 2011)]. In addition, sam-

ples of free FGFR3 selectively labelled with Phe and Leu 

(U-15N-Phe, U-15N,13C-Leu) were used to solve ambiguities 

together with the assignment of PD-bound FGFR3. Ulti-

mately, assignment of 75% of the backbone in the inhibi-

tor-free form was achieved (comprising 75% HN and CA, 

70% N, 69% CB and 68% CO); the kinase N-lobe is com-

pletely assigned apart from Ala 482, and the C-lobe partly 

assigned. Although extremely dynamic regions, such as the 

activation loop, have not been fully assigned (free FGFR3 

residues 640–659 are completely missing, presumably due 

to conformational exchange broadening, while for the PD 

complex assignments for residues 645–648 are available), 

important residues such as the “DFG latch” [a hydrophobic 

cluster centred on the Phe of the DFG motif (Chen et al. 

2017)] are assigned and present a large perturbation upon 

inhibitor binding (see Fig. 2). In general, numerous chemi-

cal shift changes were observed upon complex formation, 

most of which are located in the N-terminal region and at 

the interface between the two lobes. In particular, the P-loop 

Fig. 1  1H–15N TROSY–HSQC spectra of FGFR3. a Inhibitor-free 

protein in 50  mM PIPES-NaOH, 50  mM NaCl, 5  mM TCEP and 

1  mM EDTA (pH 7.0) at 298  K; b PD-bound protein in the same 

bufer at 303  K. Resonances are labelled with the corresponding 

amino acid. On the right, magniied, central regions with crowded 

NMR resonances



 D. Sanfelice et al.

1 3

and hinge region experience large CSPs, relecting the direct 

contacts involving these parts of the kinase and the bound 

inhibitor. Although PD173074 itself is no longer in clinical 

development as an FGFR kinase inhibitor, it is representa-

tive of other so-called type I FGFR inhibitors that bind to 

the kinase in the ‘DFG-in’ conformational state of the acti-

vation loop, some of which are in late-stage clinical trials. 

Knowledge of the residues involved both in direct recogni-

tion of the inhibitor, as well as those within the allosteric 

network that experience perturbations on inhibitor binding, 

is paramount for future eforts to develop new-generation 

tyrosine kinase inhibitors that can exploit diferent confor-

mational states of the enzyme. Backbone assignments have 

been deposited in the BioMagResBank database, with acces-

sion numbers 27082 for the inhibitor-free form and 27083 

for the PD complex.
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