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Abstract — We propose a new variant of the Correlation-based 

Feature Selection (CFS) method for coping with longitudinal data 

– where variables are repeatedly measured across different time 

points. The proposed CFS variant is evaluated on ten datasets 

created using data from the English Longitudinal Study of Ageing 

(ELSA), with different age-related diseases used as the class 

variables to be predicted. The results show that, overall, the 

proposed CFS variant leads to better predictive performance than 

the standard CFS and the baseline approach of no feature 

selection, when using Naïve Bayes and J48 decision tree induction 

as classification algorithms (although the difference in 

performance is very small in the results for J4.8). We also report 

the most relevant features selected by J48 across the datasets. 

Keywords — classification, feature selection, longitudinal data, 

age-related diseases 

I.� INTRODUCTION�

In machine learning, a classification algorithm aims to find 

a predictive relationship between features and the class 

variable. This is done by building a classification model from 

pre-classified instances. Afterwards, this model is used to 

predict the class label of previously unseen instances.  

In classification datasets with a large number of features, 

feature selection methods are often applied in a data pre-

processing step [1]–[3] in order to remove irrelevant or 

redundant features. This can lead to higher predictive accuracy 

and reduce the training time of classification algorithms.  

The vast majority of works on the classification task focus 

on analysing the standard type of classification data, where each 

variable is measured at a single time point, so that there is no 

explicit temporal structure in the data. However, many 

important data sources – particularly in the biomedical domain 

– contain longitudinal data, where the values of a variable are 

repeatedly measured across several time points  (often called 

waves) [4]. For instance, many hospital databases contain 

records with blood test results measured for the same patient 

across many time points. 

In this work, we address the feature selection task, in the 

special context of longitudinal data. When analysing 

longitudinal data, a standard feature selection method would 

typically ignore the temporal nature of the features and treat 

each feature value at a given time point as a separate feature. 

That is, a standard algorithm would ignore the important 

difference between values of the same feature (measuring the 

same property of an instance) across different time points and 

values of fundamentally different features (measuring different 

properties of an instance) at the same time point.  

In order to mitigate the above limitation of standard feature 

selection methods, we propose an adaptation of the well-known 

Correlation-based Feature Selection (CFS) method [5] to the 

context of longitudinal classification. The proposed adaptation 

of CFS works in two phases. First, it explicitly treats different 

values of the same feature across all time points as the same 

group of temporally related features, performing feature 

selection separately within each group of such related features. 

Second, it merges the selected features across all the groups in 

order to produce a single set of selected features which is then 

used as input by classification algorithms.  

The proposed adaptation of CFS was evaluated on 10 

longitudinal classification datasets created in this work using 

data from the English Longitudinal Study of Ageing (ELSA) 

[6]. Each dataset was involved in a classification task where the 

goal was to predict whether or not an individual would have an 

age-related disease, based mainly on the values of biomedical 

features measured for that individual in previous time points. 

The experimental results showed that the proposed 

adaptation of CFS obtained, overall, higher predictive accuracy 

than the standard CFS (which ignores the temporal nature of the 

features) and the natural baseline approach of not performing 

feature selection in the created datasets. 

This paper is organised as follows. Section II presents 

background and related work. Section III describes how the 

longitudinal datasets were created. Section IV introduces the 

proposed extension to the correlation-based feature selection 

method. Section V reports the computational results. Section VI 

presents the conclusion. 

II.� BACKGROUND 

A.� Feature Selection 

In the classification task, feature selection is often 

performed in a data preprocessing step to select a subset of 

relevant features out of all original features. There are several 

motivations for feature selection [1], [2]. The main one is to 

remove irrelevant, noisy, or redundant features, which can 

reduce the predictive accuracy of the classification model [2]. 

In addition, identifying the most relevant features is a form of 

discovered knowledge by itself. Moreover, feature selection can 

improve the interpretability of the classification model due to 

the smaller number of features used to build the model. Finally, 
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reducing the number of features can substantially speed up the 

execution of the classification algorithm.  

In general feature selection methods have two components: 

a search method which decides how to generate new subsets of 

features to be evaluated, and an evaluation function which 

assigns a numerical quality value to each candidate feature 

subset. There are three types of feature selection approaches. 

The first one is the filter approach [3], which evaluates a feature 

subset without running the target classification algorithm – i.e. 

the algorithm that will use the selected features to build a 

classification model. Typically, the filter method uses simple 

statistical tests as an evaluation function. Clearly, the main 

advantage of this approach is that it is relatively fast.  

In contrast, the wrapper and embedded approaches require 

running the target classification algorithm. The former 

evaluates the quality of a candidate feature subset by measuring 

the predictive accuracy (on training data) of the classification 

model built with that feature subset. This approach is very time 

consuming, since it requires many runs of a classification 

algorithm. The embedded approach builds a classification 

model and carries out feature selection at the same time. For 

example, when building a decision tree, the relevant features 

are automatically selected by the algorithm. This approach can 

also be very time consuming, depending on the classification 

algorithm used. In this work we use the filter approach, which 

is faster and more scalable to a large number of features.  

B.� Correlation-based Feature Selection 

Correlation-based Feature Selection (CFS) is a filter 

method which evaluates candidate feature subsets based on the 

following principle: good feature subsets contain features 

highly correlated with the class variable, but uncorrelated with 

each other, i.e., with little or no redundancy among features. To 

implement this principle, the standard CFS method [5] tries to 

(a) maximize the average correlation between each feature in a 

candidate subset and the class variable and (b) minimize the 

average correlation between each pair of features in a candidate 

subset.  

C.� Longitudinal Classification 

Unlike standard (non-longitudinal) datasets, longitudinal 

datasets consist of features whose values are assigned at 

multiple time points for each instance in a dataset. For example, 

a health-survey dataset, where instances represent patients, 

could contain features representing the results of different blood 

sample tests across several successive years. From a machine 

learning perspective, this type of datasets has temporal 

information about the features: how each feature’s values 

change across time. In general, conventional classification 

algorithms do not explicitly exploit this temporal information, 

since they treat all occurrences of a feature in the same way 

regardless of how recent the feature values are.  

In addition, the different values of a feature across time can 

exhibit some temporal redundancy in the sense that the value of 

a feature at a given time point may be correlated with values of 

the same feature in other time points (particularly closer time 

points). This is generally known as autocorrelation in the area 

of time series. Again, this kind of temporal redundancy is not 

explicitly detected by non-longitudinal classification or feature 

selection algorithms, which would not distinguish between 

measuring the correlation between two values of the same 

feature in two different time points (temporal redundancy) and 

measuring correlation between the values of two very different 

features at the same time point (non-temporal redundancy). By 

identifying these two types of redundancy, one can develop a 

feature selection algorithm that exploits the difference between 

them in order to try to improve the effectiveness of the feature 

selection procedure as will be seen in the later section. 

In general, there are two approaches for longitudinal 

classification. The first one is the problem transformation 

approach, which transforms a longitudinal dataset into a non-

longitudinal dataset before applying a conventional 

classification algorithm. The second approach is the algorithm-

adaptation approach which adapts a non-longitudinal 

classification algorithm for longitudinal datasets. In this paper, 

we focus on the problem transformation approach, which is 

more generic (algorithm-independent), so that we can apply 

different classification algorithms and analyse different types of 

classification models. 

As mentioned earlier, CFS can eliminate redundant and 

irrelevant features, but standard CFS ignores the temporal 

relation among the features so that it does not explicitly address 

the above mentioned temporal redundancy as a specific issue in 

longitudinal datasets. In the next Section, we briefly review 

related work on longitudinal feature selection methods, which 

were explicitly designed for longitudinal classification data. 

D.� Related Work on Longitudinal Feature Selection 

Although there is a huge literature on conventional (non-

longitudinal) feature selection [1]–[3], there are relatively few 

published studies on longitudinal feature selection for 

classification tasks. Here we briefly discuss the longitudinal 

feature selection methods most related to our work. 

In [7], a longitudinal feature selection method was 

proposed for temporal gene expression data. They used the 

Minimum Redundancy Maximum Relevance (mRMR) method, 

whose evaluation function is conceptually similar to the CFS’ 

one, based on maximising the candidate features’ relevance 

with respect to the class variable and minimising redundancy 

among candidate features. A feature’s degree of relevance is 

computed by the mean of the F-statistic over all the time points. 

A drawback is that the degree of relevance is averaged across 

all time points, ignoring that feature values at recent time points 

are intuitively more relevant for class prediction than older 

feature values. Also, the F-statistic makes the strong 

assumption that the data are normally distributed. The degree 

of redundancy among features is measured by using Dynamic 

Time Warping (DTW), also used in [8]. 

Another related work is [9], which proposed a margin-

based feature selection method which transforms a feature 

space into a weighted feature space. A temporal margin is 

defined based on a measure of distance between two-time 

points, and then it selects the features with large weights that 

maximise each temporal margin. This method only considers a 

feature’s relevance with respect to the class. In other words, the 

redundancy among features is ignored. 
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III.� DATA PREPARATION 

The classification datasets created in this work were 

derived from the English Longitudinal Study of Ageing (ELSA) 

[6] – https://www.elsa-project.ac.uk/. The ELSA study is a 

longitudinal survey of ageing and quality of life among older 

people that explores the dynamic relationships between health 

and functioning, social networks and participation, and 

economic position as people plan for, move into and progress 

beyond retirement. In this work, however, we focus only on the 

biomedical data in ELSA, such as the results of blood tests and 

other data collected by nurses, and the relationship between that 

data and the health status of patients, as will be described in 

more detail later. The ELSA subjects were recruited from a 

representative sample of the English population, who lived in 

private households, aged 50 and over [6]. The data was 

collected every two years: each data collection period was 

referred to as a ‘wave’, so that we can observe the variation of 

each feature’s values for each individual across those waves. In 

total, seven waves of data were collected and have well-

documented data. 

It should be noted that the data in the ELSA database was 

not collected specifically for machine learning purposes. 

Hence, we had to spend a large amount of time with data 

preparation for the classification task. The first step was to 

define the instances (objects to be classified), the classes and 

the predictive features used for classification. In essence, the 

instances represent individuals in the ELSA database, the class 

variables represent age-related diseases and the features 

represent biomedical information collected by nurses or other 

relevant characteristics of an individual (age and gender). We 

next describe data preparation in detail.  

A.� Creating class variables representing age-related diseases 

We aim at building classification models which help us 

understand what health factors play an important role in 

predicting whether or not a patient will have a certain age-

related disease in the future. Therefore, we looked into the 

ELSA core data, and then identified ten age-related diseases, 

each used as a class variable in this work. These diseases were 

angina, arthritis, cataract, dementia, diabetes, high blood 

pressure, heart attack, osteoporosis, Parkinson’s and stroke. 

Hence, we created ten datasets, each one with a different disease 

as the class variable to be predicted. More precisely, in each 

dataset, the binary class variable indicated the presence or 

absence of the corresponding disease in wave 7 (the most recent 

wave in ELSA). 

Note that, for each disease, there was no variable in the 

ELSA database that directly indicated whether or not an 

individual had that disease in a given wave. This kind of 

information was rather represented indirectly by several related 

variables whose values depend on both whether or not the 

individual (patient) had the target disease in the past and 

whether or not the patient still has the disease or whether the 

disease was first diagnosed in the current wave. Therefore, we 

needed to create a well-defined class variable for each disease 

separately, combining information from the several related 

variables associated with that disease. In order to create such 

class variables, in general, the following rule was used for each 

disease, combining information about that disease’s variables 

in wave 7: 

IF (“whether confirms the disease diagnosis” = “yes”)  

OR (“whether still has the disease” = “yes”)  

OR (“the disease diagnosis newly reported” = “yes”)  

THEN Disease = “yes” 

OTHERWISE Disease = “no”. 

In this rule, the terms between double quotes just before 

each “=” sign in the “IF” condition refer to original variables in 

ELSA’s wave 7 core data. Note that, although each dataset had 

a different class variable, all datasets contained instances 

representing the same individuals and the same set of predictive 

features (described next). 

B.� Creating predictive features based mainly on Nurse data 

In the created datasets, most features were created from 

raw variables available in the Nurse Visit data, part of the 

previously discussed ELSA database [6]. Those raw variables 

represent several types of biomedical information collected by 

a nurse, including for instance many types of blood sample 

tests. In addition, the nurse took several physical performance 

measurements that involved asking a patient to move his/her 

body in different ways. If a particular movement could not be 

done by the participant or he/she felt that it was unsafe, the 

attempt was marked as ‘Not attempted’ or ‘Test not completed’. 

The Nurse variables were only available at ELSA waves 2, 4, 

and 6, so our created datasets contained only features for these 

waves. These features were then used to predict age-related 

diseases (classes) at the later wave 7, whose data were collected 

about two years later than the data in wave 6. 

As mentioned earlier, the raw biomedical variables 

collected by the nurses were not collected specifically for 

machine learning and they also contained a large amount of 

obviously redundant or irrelevant information. Hence, we have 

created features for classification by extracting and combining 

information from the raw variables in the Nurse data files, as 

follows. First of all, we kept potentially predictive variables 

from the Nurse data, whilst many other variables which seemed 

intuitively useless for predicting age-related diseases were 

removed because such variables were collected mainly to 

record problems in data collection for other variables. For 

example, several variables capturing information such as the 

reasons why taking a blood sample test was refused by a patient, 

and information about several types of problems in some 

physical performance measurements were discarded. 

In addition, many variables in the Nurse data represented 

clearly redundant information in cases where the same variable 

(e.g. the result of a blood test) was measured three different 

time-points in the same wave in order to represent the 

variability in test results. This resulted in duplication of 

variables representing the same biomedical property in each 

wave, and none of those three measures can be considered 

‘better’ than the other two. Hence, instead of using any of the 

three underlying variables, we created a feature defined as the 

mean value over those three measures, for each individual 

(instance), for each wave. 

Another point to consider was the occurrence of different 

types of missing values in many raw variables in the Nurse data, 
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which were originally labelled as different negative values as 

follows (using as an example a blood test result variable): 

•� ���������	

��	����

•� �������������������������������
����������	�������	���

•� �������������� �

•� �!���"��#�	��

•� ������$������	�
��������	����

Considering all these types of missing values separately 

would considerably complicate the task of the classification 

algorithms. Hence, to simplify, all these different negative 

values were assumed to have the same meaning of “missing 

value”, so that we treated them in the same way by replacing all 

of them with the missing value symbol “?” (used in WEKA). 

In addition to features created from Nurse data, we also 

included in our datasets two features directly extracted from the 

Core files in ELSA which intuitively represent potentially very 

relevant information for predicting age-related diseases, namely 

the features “w7indager” (age) and “indsex” (gender). 

Finally, the most important point when creating the 

instances used in our datasets was that only the data from “core” 

members were used, that is, the ELSA records of their partners 

were ignored. The ELSA variable “idauniq”, which was a 

unique id for each individual, was added to our datasets to 

match up data about the same core member in different dataset 

files (across different waves). This variable was not used for 

classification purposes as it had no predictive power. Note that 

an instance was created for an individual only if that individual 

participated in wave 7, so the class variable values were 

available for all individuals in all datasets. However, some 

individuals in our datasets may not have participated in all 

waves used to create features (waves 2, 4 and 6). If an individual 

did not participate in a given wave, the corresponding features 

in that wave would have a missing value for that individual, and 

the feature selection and classification algorithms cope with 

those missing values in their own ways. 

C.� Constructing Longitudinal Features 

Recall that the features created from variables in the Nurse 

data (the vast majority of features in the created datasets) were 

measured across three different time-points (waves), namely 

waves 2, 4 and 6 of the ELSA database. We used the term 

“conceptual feature” to refer to the abstract concept of such a 

feature regardless of its observed value in any given wave. For 

instance, “chol” (Blood total cholesterol level) was a conceptual 

(abstract) feature which was associated with three actual 

features, w2chol, w4chol and w6chol, which represented the 

observed value of that variable in waves 2, 4, and 6. For each 

conceptual feature, we created new features trying to capture 

temporal trends in the variation of that feature’s values across 

the three waves, as follows. 

First of all, we created m groups of temporally related 

features, thus one group for each of the m conceptual features. 

Each group considered all temporal variations of a conceptual 

feature across waves 2, 4 and 6, which were the waves before 

the wave with the class to be predicted (wave 7). Thus, each 

group contained observed features that were the variations of a 

conceptual feature across different waves. In the next step, these 

observed features were used to create six different types of 

Constructed Longitudinal Features (CLFs). Note that these 

CLFs only work for continuous (real-valued) observed features. 

The first CLF was mono_w246, indicating whether the 

value of a base feature monotonically increased or decreased 

across waves 2, 4 and 6; as follows. Let f(2), f(4), f(6) be numeric 

values of feature f in waves 2, 4, 6. Then, f_mono_w246 

(mono_w246 for feature f) has the value 1 (monotonic increase) 

if f(2) < f(4) < f(6), value -1�(monotonic decrease) if f(2) > f(4) > f(6), 

or value 0 (no monotonic property) otherwise. However, a few 

features had their values observed in only two waves, so that a 

mono_w246 variable for such features cannot be created using 

the rule mentioned above. For such features, we created instead 

the CLF up_wt1t2, indicating whether the values of f in the two 

time-indices (wave numbers) t1 and t2 go up or not. For instance, 

f_up_w24 has the value 1 if f(2) < f(4), or value 0 otherwise. Note 

that if the value of the feature is missing in any of the waves, 

either of these CLFs has a missing value (denoted by “?”). 

Each of the other CLFs represents the difference between 

the values of a pair of features referring to the same conceptual 

feature in two different waves. Let f_diff_wt1t2 denote the 

difference between the values of feature f in the two time-

indices (wave numbers) t1 and t2, for each of the three pairs of 

waves where t2 > t1. Then, these CLFs are defined as follows: 

•� ����������	
	����		����	

•� ����������	
	����		����	

•� ����������	
	����		����	

Hence, positive (negative) values of these constructed features 

denote an increase (decrease) in the value of feature f with time.  
Table 1 shows the full set of 44 conceptual features used in 

all the datasets created in this work. This table shows, for each 

conceptual feature, its name and its description or definition in 

the ELSA database [6], the data source used to create the 

features. Note that the first 2 features, name age and gender, had 

one value for each individual, whereas the other 42 rows 

represent features from the Nurse data in ELSA which, in 

general, were longitudinal features with different values across 

waves (time points) for each individual. 36 of these 42 

longitudinal features had values in three waves, whereas the 

other 6 were only available in some waves. This could be 

explained as follows: one feature (apoe) occurred only in wave 

2, three features (hipval, whval, htpf) occurred only in waves 2 

and 4, and two features (wbc, mch) occurred only in waves 4 

and 6. Since 5 conceptual features had values in only two 

waves, each of these generated 3 features in our datasets (one 

feature for each of the two waves plus two CLFs). Furthermore, 

out of the 36 conceptual features having values in 3 waves, there 

were 22 conceptual features whose values were continuous 

(real-valued). Therefore, each of those 22 conceptual features 

generated 7 features in our datasets (one feature for each wave 

plus four CLFs). Table 2 shows the six types of CLFs, as 

explained earlier. The total number of features is 219. 

Regarding missing values, a common approach in standard 

non-longitudinal classification is to replace a missing value by 

a default value, typically the mean of the known values of the 

feature across the dataset, in the case of numerical features; or 

the mode, in the case of nominal features. 
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Table 1: All conceptual features used in the created data sets 
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However, in our context of the constructed temporal 

difference features for longitudinal classification, we can 

exploit additional temporal information about feature values 

when calculating the value that will replace the missing value 

(instead of using a pre-defined default value), as follows.  

Let i and j be the indices of two waves associated with a 

temporal difference feature based on a given feature f, denoted 

by (f_diff_wij). If the value of the base feature f is missing for a 

given individual (instance) x in one of those two waves (say 

wave i), and the value of f is known in the other two waves (j 

and k), then the missing value of the constructed f_diff_wij 

feature for x will be replaced by a value calculated by equation 

(1), where wave index k denotes the “third” wave (i.e. nor wave 

i nor wave j) available in the dataset, so that data from all three 

waves are used to estimate the missing value. 

 

����������� 	
��������
�������������������

������������
�
 (1) 

 

In equation (1), mean_f_diff_wij and mean_f_diff_wkj are 

the mean values of all known values of the constructed f_diff 

features for the corresponding waves. For example, if the value 

of f is missing in wave 4 for a given individual x, the value of 

the constructed feature f_diff_w24 for x is computed as:  

f_diff_w26x × (mean_f_diff_w24x / mean_f_diff_w26x). 

The motivation for this approach is that it considers not 

only the known values of f for other individuals in wave i, but 

also the known values of f for both the same individual and 

other individuals in waves j and k. In other words, the ratio 

mean_f_diff_wij to mean_f_diff_wkj acts as a normalization 

factor, correcting for the different scales of f_diff values in 

different time periods. Note that this method only copes with 

the missing values for the constructed features,  i.e., it does not 

attempt to fill in the missing values for the base feature. This 

latter possibility is left for future research. 

IV.� THE PROPOSED VARIANT OF CORRELATION-BASED 

FEATURE SELECTION FOR LONGITUDINAL DATA 

The proposed variant of the CFS method is based on the 

idea of first dividing the set of features into groups of 

temporally related features, with one group for each conceptual 

feature (see Section III-C). Each group contains two types of 

features: (a) all features representing different values of a 

conceptual feature across the different waves (time points); and 

(b) Constructed Longitudinal Features (CLFs) for the 

corresponding conceptual feature. For instance, the group of 

features for the conceptual feature “chol” (cholesterol level) 

contains seven features: w2chol, w4chol, w6chol, 

chol_mono_w246, chol_diff_w24, chol_diff_w46 and 

chol_diff_w26; where the first 3 features are the chol values at 

waves 2, 4 and 6, and the last four features are CLFs. 

In general, exhaustive search evaluates all possible feature 

subsets and selects the best candidate feature subset based on 

the CFS Merit function. For a given set of n candidate features, 

the time complexity of this method is ��. The exhaustive search 

method is computationally feasible only if the number of 

candidate features is relatively small. This is the case for each 

feature group in this work, where the number of features in each 

group is at most 7 (three observed features and four CLFs). 

Therefore, in order to address the temporal redundancy problem 

mentioned in Section III, the exhaustive search is applied to 

each feature group separately. We call this the Exhaustive CFS 

per Group (Exh-CFS-Gr) method. Afterwards, we merge all 

groups of selected features, so a single feature subset is obtained 

and output as the result of the feature selection process. The 

basic idea of the proposed Exh-CFS-Gr method is summarized 

in graphical form in Figure 1.  
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Table 2: The six types of proposed Constructed Longitudinal Features (CLFs) 

Figure 1: The basic idea of the proposed Exh-CFS-Gr method 
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V.� COMPUTATIONAL RESULTS 

A.� Experimental Methodology 

We report results for 10 datasets created from the ELSA 

data, as described earlier. Recall that each dataset had a 

different age-related disease in wave 7 as the class variable to 

be predicted, whilst all datasets had the same predictive features 

(derived in general from waves 2, 4, and 6). Predictive accuracy 

was measured by the F-measure, the harmonic mean between 

Precision and Recall [10], given by equation (2), 

 

�-������ 	 ��
����������×�������

����������+�������
 (2) 

 

where Precision is the proportion of instances predicted as 

positive which are really positive and Recall is the proportion 

of positive instances that were correctly predicted as positive. 

To compute these measures, each class label (presence or 

absence of the disease) was considered in turn as the positive 

class and the reported F-measure is the arithmetic (unweighted) 

mean of the F-measures for the two class labels. We report 

results for three feature selection approaches: the proposed 

Exh-CFS-Gr method, standard CFS, and no feature selection. 

Each of these approaches was evaluated using two 

classification algorithms, namely Naïve Bayes and the decision 

tree algorithm J48. All experiments were performed using the 

WEKA tool [11] using 10-fold  cross-validation. 

B.� Predictive Accuracy Results 

Table 3 compares the F-measure values obtained by Naïve 

Bayes (NB), NB using features selected by standard CFS 

(ignoring temporal information), and NB using the proposed 

Exh-CFS-Gr method (exploiting temporal information).  

As shown in Table 3, NB using the proposed Exh-CFS-Gr 

obtained the best result in 6 out of the 10 datasets, whilst NB 

using standard CFS obtained the best result in 4 datasets. In all 

10 datasets, NB without feature selection obtained the worst 

result (joint with standard CFS in the Dementia dataset). Also, 

NB with Exh-CFS-Gr obtained the best (lowest) average rank.  

The Wilcoxon signed-ranks test [12] was used to compare 

the performances of two different methods. The main 

advantages of this test are its robustness against outliers and its 

non-parametric nature, making no assumption of normal 

distribution [10]. We are trying to reject the null hypothesis that 

Naïve Bayes (NB) with a given feature selection method 

obtains an F-measure value that is not significantly different 

from NB with another feature selection method (or just NB, 

without feature selection). We used the test with a significance 

level of α = 0.05, and N = 10 (10 datasets) in our experiments. 

First, comparing NB with Exh-CFS-Gr against NB without 

feature selection, the null hypothesis is rejected with a p-value 

of 0.005. Next, comparing NB with standard CFS against NB 

with no feature selection, the null hypothesis is rejected with a 

p-value of 0.008. Lastly, comparing NB with Exh-CFS-Gr 

against NB with standard CFS, the p-value is 0.959, so the null 

hypothesis cannot be rejected. To summarize, although there 

was no statistical evidence supporting that NB with Exh-CFS-

Gr performed better than NB with the standard CFS. Both Exh-

CFS-Gr+NB and CFS+NB performed significantly better than 

Naïve Bayes with no feature selection.  

Table 4 compares the F-measure values obtained by the 

decision tree algorithm J48 using all features (no feature 

selection in a pre-processing phase), by J48 using as input the 

features selected by standard CFS, and by J48 using as input the 

features selected by the proposed Exh-CFS-Gr. J48 using Exh-

CFS-Gr obtained the best result in 5 out of the 10 datasets. J48 

using standard CFS obtained the best result in three datasets, 

and J48 with no feature selection in a pre-processing phase was 

the winner in just two datasets. 

Unlike the Naïve Bayes algorithm, the J48 algorithm 

obtained very similar average ranks for all three approaches 

(with two CFS versions and no CFS). Hence, J48 benefited less 

from feature selection in a pre-processing phase than NB. This 

Table 3: F-measure values obtained by Naïve Bayes, after 

applying different CFS methods. The best F-measure value for 

each dataset (across all feature selection methods) is shown in 
boldface. The last row shows the average ranks. 

Dataset
NB (No Feature 

Selection)

standard CFS + 

NB

Exh-CFS-Gr + 

NB

Angina 0.559 0.562 0.576

Arthritis 0.614 0.625 0.629

Cataract 0.641 0.677 0.658

Dementia 0.589 0.589 0.603

Diabetes 0.732 0.760 0.733

HBP 0.672 0.693 0.676

HeartAtt 0.606 0.620 0.619

Osteoporosis 0.610 0.613 0.618

Parkinsons 0.553 0.560 0.570

Stroke 0.590 0.602 0.610

Average Rank 2.95 1.65 1.40

Table 4: F-measure values obtained by J48 after applying 

different CFS methods. The best F-measure value for each dataset 

(across all feature selection methods) is shown in boldface. The 
last row shows the average ranks. 

Dataset
J48 (No Feature 

Selection)

standard CFS + 

J48

Exh-CFS-Gr + 

J48

Angina 0.550 0.540 0.550

Arthritis 0.610 0.620 0.610

Cataract 0.670 0.670 0.670

Dementia 0.580 0.590 0.580

Diabetes 0.770 0.760 0.750

HBP 0.660 0.660 0.670

HeartAtt 0.610 0.610 0.600

Osteoporosis 0.610 0.610 0.620

Parkinsons 0.590 0.580 0.580

Stroke 0.600 0.590 0.600

Average Rank 2.05 2.00 1.95
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can be explained by the fact that, unlike NB, J48 performs 

embedded feature selection [13]. 

Again, we used the Wilcoxon signed-ranks test with 

significance level α = 0.05 and N = 10 to evaluate if there was 

a significant difference in predictive performance between two 

methods for each of the three pairs of methods: J48 with Exh-

CFS-Gr against J48 only, J48 with CFS against J48 only, and 

J48 with Exh-CFS-Gr against J48 with CFS. None of the three 

null hypotheses could be rejected, with p-values 0.953, 0.443 

and, 0.959 respectively. In other words, there was no statistical 

evidence supporting that Exh-CFS-Gr+J48 performed better 

than CFS+J48 or J48 without feature selection in a 

preprocessing phase. 

C.� Discussion on the most relevant features selected by J48, 

using as input the features selected by Exh-CFS-Gr  

For each dataset (each with a different age-related class 

variable), we looked at the decision tree built by J48 from the 

full dataset using as input the features selected by Exh-CFS-Gr. 

In each decision tree, we observed which feature was selected 

at the root node – and so it was used to classify all instances.  

First, “age” was selected as the root node in four datasets: 

Stroke, Dementia, Cataract, Parkinson’s. This was not 

surprising, since in our datasets the classes were age-related 

diseases. In the Parkinson’s dataset, “age” was the only feature 

selected by J48. 

For other datasets, in the following list of root features, the 

prefixes “w6” and “w2” at the start of a feature name denote 

that they were features observed in waves 6 and 2, respectively. 

The six other root features were: “w6LDL” in the Heart 

Attack dataset, “w2mmstre” for Angina, “w6hba1c” for 

Diabetes, “w2sysval” for High Blood Pressure, “w6mmgsd_me” 

for Arthritis, and “gender” for Osteoporosis.  

A brief description of these features can be found in Table 

1, whilst a more detailed explanation can be found in the ELSA 

documentation. In essence, LDL (Low Density Lipoprotein) is 

known as the “bad” cholesterol (having a large amount of it is 

unhealthy), Mmstre refers to the patient’s ability to keep their 

balance whilst standing for 10 seconds in a semi-tandem 

position, Hba1c is a measure of average plasma glucose 

concentration often used for testing if a patient has diabetes, 

Sysval means systolic blood pressure, and Mmgsd_me is a 

measure of grip strength. The choice of “gender” as the root 

node in the Osteoporosis dataset was natural, given that 

osteoporosis is more common in women than in men.  

VI.� CONCLUSION  

In conclusion, the results of our experiments showed that 

there was a statistically significant improvement in the 

predictive accuracy when the proposed Exh-CFS-Gr was used 

as a feature selection method before running Naïve Bayes (NB) 

by comparison with the baseline approach of running Naïve 

Bayes with no feature selection. Moreover, overall this CFS 

variant obtained somewhat higher predictive accuracy than NB 

with standard CFS, which suggests some progress. In contrast 

with the results for NB, even though J48 with Exh-CFS-Gr 

achieved the best average rank, it showed no statistically 

significant difference in predictive accuracy when compared 

against J48 only. In fact, standard CFS did not improve the 

predictive accuracy of J48 either. The J48 algorithm constructs 

decision trees as classification models, following an embedded 

feature selection approach. Hence, irrelevant and/or redundant 

features have a smaller effect on J48 models compared with NB 

models. 
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