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Abstract 
 
 Advancement in science and technology has profoundly depended on new types of 

glass innovation. The glasses that were studied in this project are binary barium silicate 

glasses, binary barium fluorozirconate glasses, 𝑍𝐵𝐿𝐴𝑁  glasses and 𝐸𝑢()  doped 𝑍𝐵𝐿𝐴𝑁 

glass (the 𝑍𝐵𝐿𝐴𝑁	glasses are based on binary barium fluorozirconate glass). The high 

atomic number of barium in the barium silicate glasses provides high mass and high electron 

density providing its applications for heat and X-ray shielding. The phenomena such as 

phase separation in the barium silicate glass will affect its properties of durability and elec-

trical conductivity. On the other hand, 𝑍𝐵𝐿𝐴𝑁 glasses have a broad infrared optical trans-

mission window due to the weaker bonding/interaction of 𝐹, ions. Due to the presence of 

lanthanum in the composition 𝑍𝐵𝐿𝐴𝑁 glass can be easily doped with rare-earth ions such as 

𝐸𝑢() giving it many optical applications such as optical amplifier and fibre lasers. 

 Hence, it’s essential to study the structure of these glasses to understand their prop-

erties for applications. This thesis used the classical molecular dynamics modelling tech-

nique to study the static atomic structure of glass. Generally, fluoride glasses can be formed 

by totally replacing oxygen atoms in oxide glasses by fluorine atoms. The oxide silicate 

glasses are common glasses that follow the Zachriasen rules of glass formation but the 

fluorozirconate glasses do not and lack fixed structural units. 

 The structure analysis was performed at short-range order (e.g. coordination number, 

bond length and bond angle), medium-range order (e.g. network connectivity) and long- 

range order (e.g. phase separation). The related crystals were also simulated in similar con-

ditions to the glasses to compare their atomic structure. Normally at short-range order glass 

structure is similar to its related crystal but the differences between them starts from the 

position and number of next nearest neighbours and increases thereafter. Additionally, the 
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new methods such as rotational invariants and grid analysis were used to scrutinise structural 

units and phase separation respectively. 

 The model of barium silicate glass shows good agreement with experimental diffrac-

tion data. The typical bond length and coordination number for 𝐵𝑎 were 2.97 Å and approx-

imately 7 respectively. The model did not show any phase separation at low 𝐵𝑎 content and 

hence for further investigation very large models of alkaline earth silicate glasses were stud-

ied to see how 𝐵𝑎, 𝐶𝑎 and 𝑀𝑔 are distributed in the glass. The grid analysis was used to see 

the distributions which show homogeneity for 𝐵𝑎 and 𝐶𝑎 and inhomogeneity for 𝑀𝑔 cat-

ion. 

 The structural units of fluorozirconate glasses were carefully studied as they do not 

follow the Zachriasen glass model. The coordination number for 𝑍𝑟 was mixture of 7 and 

8. The rotational invariant analysis shows that the structural units of 𝑍𝑟𝐹8 polyhedra for co-

ordination number 7 and 8 were similar to Augmented Triangular Prism and Biaugmented 

Triangular Prism respectively. However, rotational invariant values for 𝐵𝑎𝐹8 polyhedra tend 

more towards random. 

 The large complex model of 𝐸𝑢() doped 𝑍𝐵𝐿𝐴𝑁 glass was made as it is studied for 

optical applications. The initial analysis was to observe whether 𝑍𝑟 and 𝐵𝑎  has similar 

structural roles as in binary fluorozirconate glass system which they do. Considering the 

extra elements in 𝑍𝐵𝐿𝐴𝑁 glass, 𝐴𝑙 behaves like a network former and has octahedra struc-

tural units whereas 𝐿𝑎 and 𝑁𝑎 behave like modifiers. In the glass 𝐸𝑢 was uniformly distrib-

uted with predominantly coordination number of 8 and does not have well defined structural 

units. 
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Chapter 1  
Introduction 
 
1.1 Glasses 

 
 Glasses often go unnoticed, but they are an essential part of our everyday life. Glasses 

are all around us and their use and production are carried out on an industrial scale. Centuries 

ago, humans discovered these special materials that have formed naturally by certain ther-

modynamics conditions [1]. Since then humans have been producing glasses for thousands 

of years by melting and cooling (quenching) appropriate raw materials [2]. For centuries, no 

other man-made materials have shown these special qualities that are transparent, chemically 

inert, environmentally friendly (recycling) and strong [3]. 

 Science has profoundly depended on glass instruments. Developments of new types 

of glasses has helped to accelerate the remarkable acquisition of knowledge about the natural 

and physical worlds by enabling the development new scientific instruments [4]. Its’s also 

an indispensable and essential component in the field of optics, photonics and electronic 

technology [5]. Hence, it’s a fascinating material both scientifically and technologically. 

 In principle, many kinds of material, inorganic, organic, or metallic, can form a glass 

by many techniques such melt-quenching, vapor deposition, sol-gel processing of solutions, 

and neutron irradiation of crystalline materials [2]. Multicomponent materials can also form 

a glass resulting in huge variety of glass types, families, or groups, which properties depend 

on the varieties of materials compositions, thus making glasses very universal engineering 

materials [6]. 

 Therefore, to study the structure of such noble materials is essential. The materials 

under study are inorganic glasses that can be made traditionally by the method of melt-

quenching. 
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1.1.1 Crystalline and non-crystalline solids 
 
 Most inorganic elements and compounds melt to form liquids and when this liquid 

is cooled either crystallization may take place at the melting point temperature, 𝑇", or it will 

become a ‘supercooled liquid’, i.e. more viscous with decreasing temperatures and may 

eventually form a glass [7]. Thus, glasses have numerous properties common with crystal-

line solids, such as hardness and elasticity of shape [8]. Generally, glasses are defined as 

amorphous materials or non-crystalline materials that lack the long-range periodic atomic 

arrangements whereas crystal can be defined by both short-range and long-range order of 

periodic atomic arrangements. The inter-relationship between crystal and glass, i.e. non-

crystalline solid that has liquid-like structure, can be explained using the volume-tempera-

ture diagram shown in Figure 1.1 [9] for a glass-forming substance. 

 

 
 

Figure 1.1 Schematic illustration of the volume-temperature diagram for a glass forming 
liquid [9]. Crystallization is shown by the path 𝑨 and the glass formations are shown by 
path 𝑩 and 𝑪. 
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1.1.2 The glass transition 
 
 The path 𝑨 in Figure 1.1 shows the crystallization process as the volume of liquid 

decreases slowly until it reaches melting point i.e. 𝑇" and the volume changes abruptly as 

liquid is transformed into a crystalline solid. But if the change in the volume below 𝑇" is 

gradual, which is shown by the path 𝑩 and 𝑪 in Figure 1.1 then a ‘supercooled liquid’ is 

formed until it reaches the glass transition temperature, 𝑇(, and below this point it loses its 

liquid properties and form a solid glass. Hence, the glass transition is the phenomenon when 

many liquids are cooled below their melting temperatures, 𝑇", and solidify into an amor-

phous solid [10]. This region where such changes occur (the transformation region shown in 

Figure 1.1) can be defined by the glass transition temperature, 𝑇(. Similar characteristics 

shown by the volume-temperature relation can also be exhibited by other thermodynamic 

variables such as entropy and energy [11]. Faster cooling leads to a greater 𝑇(  and a less 

dense glass [12] illustrated by the path 𝑩 in Figure 1.1. Also, the 𝑇( depends upon the cooling 

rate and the typical cooling rate in laboratory experiments are between 0.1 − 100 Kelvin per 

minute [13]. 

 

1.1.3 Applications of glasses 
 
 Glasses are isotropic materials, i.e. if the glass is free from stress and strain, its mac-

roscopic properties like optical transmission and absorption, refraction of light, and thermal 

expansion, are observed equally in all directions [14]. Furthermore, if electrical neutrality is 

maintained over the whole structure glass has a flexibility of chemical composition [15]. 

Because of these unique structural and thermodynamic properties of glass the material has 

an advantage over the application of crystalline materials in certain applications. 
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 Almost all the commercially important glasses are based on silica, 𝑆𝑖𝑂., such as flat 

glasses, technical specialty glasses, and optical and fiber glasses. The flat glasses are manu-

factured mostly for glazing and containers which are still mainly based on sodium calcium 

silicates as they are cheap ingredients, and can easily be melted [16]. 

 Phosphate glasses that are not based on silica are used as hosts for lasers [17] and 

borate glasses for luminescence [18]. Other non-silica-based oxide glasses that are commer-

cially important are boro-aluminates that have high electrical resistivity exceeding that of 

silica, and alkaline earth aluminates used as a high-temperature sealant and IR-transmitting 

glass [19]. 

 

1.2 Barium silicate and barium fluorozirconate glasses 
 
 These glasses can be considering as barium containing inorganic binary glasses. The 

project is effectively based on studying the structure of these glasses by classical molecular 

dynamic technique. Since the silicate based glasses are the most common kind and heavily 

studied it can be an initial base to understand the structure of such glasses. One of the inter-

ests to study heavy metal fluoride glasses (HMG) mainly based on binary ‘𝑍𝐵’ system, i.e. 

barium zirconium fluoride glass, 𝑍𝑟𝐹3 − 𝐵𝑎𝐹., is that it does not follow the common Zach-

ariasen criteria of glass formation. 

 

1.2.1 Barium silicate 𝐵𝑎𝑂 − 𝑆𝑖𝑂. glasses and alkaline earth 
silicate glasses 

 
 Barium silicate glasses, 𝐵𝑎𝑂 − 𝑆𝑖𝑂2, are members of the alkaline earth silicate glass 

family 𝑥𝑀𝑂 − (100 − 𝑥)𝑆𝑖𝑂2 (i.e. 𝑀 = 𝑀𝑔, 𝐶𝑎, 𝐵𝑎). Barium is less common than the 

lighter alkaline earths 𝑀𝑔 and 𝐶𝑎 in naturally occurring silicate systems. The higher atomic 

number of barium provides high mass for thermal resistance, and high electron density for 

radiation resistance. This makes barium silicate compounds of interest for applications of 
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heat shielding (e.g. in fuel cell seals [20]), and X-ray shielding (e.g. in nuclear engineering 

[21]). 

 The sequence of increasing alkaline earth size, i.e. 𝑀 = 𝑀𝑔, 𝐶𝑎 and 𝐵𝑎, can be ex-

pected to influence properties of alkaline earth silicates. The phase diagrams [22] show a 

shift in the regions of low melting temperature, 𝑇", indicative of glass forming, from 𝑥 =

50 − 55 for 𝑀𝑔 (𝑇"~1560	°𝐶), to 𝑥 = 40 − 60 for 𝐶𝑎 (𝑇"~1450	°𝐶), to 𝑥 = 25 − 40 for 

𝐵𝑎 (𝑇"~1650	°𝐶). There is liquid-liquid phase [23] at low 𝑀𝑂 content for 𝑀𝑔 (𝑥 < 33.4), 

𝐶𝑎 (𝑥 < 27.4) and 𝐵𝑎 (𝑥 < 19.5). For the 𝐵𝑎𝑂 − 𝑆𝑖𝑂. system there is sub-liquidus phase 

separation for 𝑥 < 30 [24] which borders on the glass forming region. Hence 𝐵𝑎𝑂 − 𝑆𝑖𝑂2 

glasses with 𝑥 < 30 have been studied for phase separation, nucleation, and crystallisation, 

particularly by Zanotto et al [25]. 

 In alkaline earth silicate systems, the tendency towards phase separation increases 

with a decrease in the basicity (capability to give electrons) of the modifier cation (i.e. 𝐵𝑎 <

𝐶𝑎 < 𝑀𝑔) [23]. The viscosity of a phase separated glasses is usually greater than that of a 

homogeneous glass of the same compositions. The phase separated glasses usually provide 

different chemical durability and the electrical conductivity properties [16]. 

 

1.2.2 Barium fluorozirconate 𝑍𝑟𝐹3 − 𝐵𝑎𝐹. glasses 
 
 Fluoride glasses based on the fluorozirconate system were first reported in 1975 

[26]. This is an uncommon glass as it does not follow the Zachariasen rules, which is a 

generally admitted as a criterion for glass formation [27]. However, researchers were at-

tracted to fluoride glasses based on 𝑍𝑟𝐹3 − 𝐵𝑎𝐹. because of their high potential ability for 

mid infrared optical application [28] and interesting electrical properties due to the 𝐹G ion 

mobility [29]. 
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 The binary glass system 𝑍𝑟𝐹3 − 𝐵𝑎𝐹. has the widest glass forming region and only 

this system gives glasses in comparatively large size compared to the other binary fluorozir-

conate glasses system [24] 𝑀𝐹. − 𝑍𝑟𝐹3 where 𝑀 = 𝐶𝑎, 𝑆𝑟, 𝐵𝑎, and 𝑃𝑏. Hence, the best of 

fluorozirconate glass-forming compositions are based on the binary glass system 𝑍𝑟𝐹3 −

𝐵𝑎𝐹. [30], such as well-known multicomponent fluorozirconate ‘𝑍𝐵𝐿𝐴𝑁’ glasses, contain-

ing	𝑍𝑟𝐹3, 𝐵𝑎𝐹., 𝐿𝑎𝐹M, 𝐴𝑙𝐹M and 𝑁𝑎𝐹 [31]. These multicomponent fluorozirconate glasses 

and other ternary glasses consist of more than 70% to 90% of 𝑍𝑟𝐹3  and 𝐵𝑎𝐹. [32]. There-

fore, the binary barium fluorozirconate can be considered as prototype for fluorozirconate 

glasses [33]. 

 Unlike the well-known classical tetrahedral network of silicate glasses system, the 

nature of the fluoride ion arrangement around zirconium is not known with certainty [34]. 

The major problem is due to the lack of fixed structural units and the average coordination 

number of fluorine about zirconium is not integer [35], making it a puzzling glass system.  

 

1.2.3 𝒁𝑩𝑳𝑨𝑵 glasses  
 
 Since the discovery of heavy metal fluoride glasses in 1975, these glasses specially 

based on 𝑍𝑟𝐹3 were heavily studied because of their broad infrared optical transmission 

window [36]. Among the fluoride glasses the 𝑍𝐵𝐿𝐴𝑁 glass composition is the most stable 

against devitrification [37] and it has better ability for fiber drawing [38]. 𝑍𝐵𝐿𝐴𝑁 fiber op-

tics are used in a number of applications, such as optical amplifiers and fiber laser [39]. It 

has a low optical dispersion, low refractive index, low phonon energy, lesser thermal de-

pendence of the optical properties, and ease of machining and polishing [40], and is a good 

host for doping rare-earth ions [41]. 

 Heavy rare-earth-doped 𝑍𝐵𝐿𝐴𝑁 glasses are good candidates for upconversion pro-

cess, which converts photons from the near infrared into the visible [42]. It has many prac-
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tical applications in solid-state lasers [43], photonics [44], white light generation by simul-

taneous red, blue and green emissions [45] and medical applications (e.g. surgical knife) 

[46]. 

 

1.3 Describing the structure of glasses 
 
 The knowledge of atomic-scale structure is essential to understand the physical and 

chemical properties of materials that form glasses.  Structural theories and kinetic theory are 

the two types of theories that generally try to explain the glass forming materials. Here we 

concentrate only on the structural theory proposed by Zachariasen, which was mainly devel-

oped in the oxide glass systems. Zachariasen rules for glass formation are the most com-

monly used for formulating models for glass structures. The glass forming cations can be 

classified into network formers, network modifiers and intermediates which may either re-

inforce the network (e.g. coordination number 4) or loosen the network (e.g. coordination 

number 6 − 8) [5]. The network former and network modifier cations will be sequentially 

described below. 

 

1.3.1 Zachariasen rules for glasses 
 
 The interatomic forces in crystal and non-crystalline materials can be considered to 

be similar, which indicates that they have a similar atomic structure in certain regards [7]. 

Zachariasen realized that the structural differences in oxide glass and crystal is due to the 

distorted network of glass at long-range, which is due to the variation in bond length, bond 

angles and torsion angle [2]. Figure 1.2 is the schematic illustration in two-dimensions for a 

pure glass-forming oxide to describe the structure of conventional oxide glasses by the ran-

dom network theory which was first introduced by Zachariasen [47]. The following set of 

criteria for glass formation were proposed by Zachariasen, which are widely used as a set of 

rules for formulating a model for glass structures. 
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I. Not more than two cations (network former) are linked by an oxygen 

II. The oxygen coordination number that surrounded the network forming cati-

ons should be small (three or four) 

III. The oxygen polyhedra share only corners and not edges or faces 

IV. To have a three-dimensional network then at least three corners of each oxy-

gen polyhedron must be shared. 

 

 
 

Figure 1.2 Schematic two-dimensional structural representation of hypothetical crystal 
𝐴.𝑂M (a) and Zachariasen model of glassy 𝐴.𝑂M (b) [47]. 

 

1.3.2 Modified random network model 
 
 In a multicomponent oxide glass system network modifier are the cations that do not 

form a glass themselves but modify the network structure created by the network forming 

cations. It forms negatively-charged non-bridging oxygen (𝑂TU) by breaking linkage of 

bridging oxygen (𝑂U) that connects network former cations. For example, if modifier 𝑁𝑎.𝑂 

is added to network former 𝑆𝑖𝑂. then 𝑆𝑖 − 𝑂 − 𝑆𝑖 linkage will break to form 𝑆𝑖 − 𝑂G ter-

mination. Also, it has been noticed that the modifier cations will adapt their local environ-

ment to have their own desired coordination polyhedron as found in associated crystalline 

materials, which is generally coordination number ≥ 6 [48]. 
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Figure 2.05: Structural representation of (a) A2O3 crystal and (b) A2O3 glass. 

building of comer shared structure becomes easy. The crystalline and the 
glassy structures are schematically represented for an oxide A2O3 in 
Figure 2.05. Therefore, Zachariasen's model defines a glass as an 
extended network of comer sharing oxygen polyhedra which lacks 
periodicity and whose energy is comparable to that of the corresponding 
ordered crystalline network. 

Glass forming range of oxides like B2O3, Si02 and P2O5 can be 
extended by the addition of alkali oxides. In a chemical sense this leads to 
a network "modification" which will be discussed later. When the glass is 
modified, polyhedra cannot share all comers. Therefore, it reveals that not 
all the comers of oxygen polyhedra are required to be shared. The third 
Zachariasen mle is strictly redundant in view of mle (1). In order to 
accommodate these observations, a modified version of Zachariasen mles 
have been formulated which can be stated as follows. 

(1) A high proportion of (network forming) cations are surrounded by 
oxygen tetrahedra or triangles. 

(2) The oxygen polyhedra only share comers with each other. 
(3) Some oxygen atoms are linked to only two cations, and do not 

form additional bonds with any other cations. 
Modification can be understood as follows. Si02 can be considered as 

forming three dimensional network of tetrahedral [Si04/2]^ units. All the 
four oxygens in Si04 tetrahedra are shared and therefore the unit as such is 
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Figure 1.3 Random network (a) and Random network with network modifying cations 
(b) [48]. 

 

1.3.3 Random closed packed model 
 
 In metallic and ionic systems, there is not strong directional bonding so the structural 

description in terms of network former and network modifier may be less appropriate [7]. 

However, it can be described by random closed packed model (RCP) which was initiated by 

Bernal in 1959 [49]. The important concept in such structures are those of radius ratio, pack-

ing density and hole filing (holes large enough to admit another atom) [48]. First it was 

approached by an empirical method, building models with plasticine balls, ball-bearings, as 

well as ball-and-spoke [50]. 

 Consider polyhedron 𝐴𝑋T, where 𝐴 is a cation and 𝑋	is an anion (i.e. usually larger 

than a cation). The coordination polyhedra present can be determined by the relative sizes 

of their constituent ions by the radius ratio 𝑟X/𝑟Z.  For stability, the 𝐴 atom should fill the 

cavity defined by the	𝑋 atoms that give the critical radius (𝑟X/𝑟Z)[, at which this criterion is 

just fulfilled with the 𝐴	atom just in contact with all the 𝑋 atoms and below which the 𝐴𝑋T 

polyhedron is unstable [35]. However, above this value the 𝐴𝑋T polyhedron will remain 

stable until the point is reached where extra 𝑋 atoms can be added [48]. The common coor-

dination polyhedra critical radius (𝑟X/𝑟Z)[  are given in Table 1.1 [35, 51]. 

	

Bridging Oxygen 
Network former cation 
	

(a) (b) 
Modifying cation 

Non-bridging oxygen 
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 In general, small radius ratios (for e.g. 𝑛 = 3 or 4) tend to result in well-defined 

structural units whereas larger radius ratios i.e. large values of 𝑛 allow a greater latitude for 

distortion and often lead to the existence of more than one type of polyhedra [35]. The ran-

dom close packing model can also be characterized by the distribution of void polyhedra 

[49] and the types of hole in a random close packing can be classified into one of five types 

of polyhedra and these polyhedra holes are illustrated in Figure 1.4 [7, 35]. These Bernal 

holes represent convex deltahedra in which every face is an equilateral triangle [35]. 

 

Table 1.1 Critical radius for some of the common coordination polyhedra [35, 51]. 
 

Polyhedron 
(Geometrical structures) 𝑛 (𝑟X/𝑟Z)	[ 

Triangle 3 0.155 

Tetrahedron 4 0.225 

Octahedron 6 0.414 

Trigonal Prism 6 0.528 

Archimedean Antiprism 8 0.645 

Cube 8 0.732 

Icosahedron 12 0.902 
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Figure 1.4 The five canonical holes of a random closed packing [7, 35] (a) Tetrahedron; 
(b) Octahedron; (c) Trigonal Prism; (d) Archimedean Anti Prism and (e) Snub Di-
sphenoid. 

 

1.3.4 Modelling of glass structures 
 
 The experimental results from a non-crystalline system are usually smooth and rather 

featureless due to its isotropic nature and the most commonly measured quantities are aver-

aged over macroscopic number of atoms, each with a unique environment [51]. Because of 

this reason it can only provide limited information. Also, the optimum information that can 

be extracted from the conventional diffraction experiment is a one-dimensional correlation 

function i.e. distances between atoms [52]. Experimental investigations are best at providing 

structural information on short range order but provides sparse information at medium range 

and long range. 

 However, the structure of non-crystalline system such as pair distribution function 

and structure factor can be evaluated theoretically at a given temperature and pressure by 
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theories which are based on interactions between particles i.e. atoms [53]. Therefore, com-

puter simulations and modelling is a complement to experimental methods and it can dis-

close new insights into medium range order, surface structures, and dynamic changes in local 

structures  [54]. 

 Computer simulations are carried out to understand the properties of assemblies of 

atoms in term of the microscopic interactions between them and their structures [55]. Com-

puter simulations require a mathematical-physical model and its solutions are obtained ap-

proximately by numerical computing and this allows the study of significantly more com-

plex models realistically rather than by analytical means [56]. The specific input parameters, 

which are used in the simulations that characterize the model or the system, are derived from 

theoretical considerations or from experimental data [57]. These methods have become an 

indispensable tool for investigating and predicating physical and chemical properties of 

glassy materials. Hence one can also test a theory either by conducting a simulation using 

the same model or by performing the experiments. 

 The computer simulation modelling techniques applied in glassy materials are Mo-

lecular Dynamics (MD), Monte Carlo (MC), Reverse Monte Carol (RMC), and Empirical 

Potential Structure Refinement (EPSR). 

 MC modelling simulations explore the configuration space by trial moves of particles 

by method of metropolis algorithm and it uses the potential to describe the interaction be-

tween the particles [58]. Whereas RMC modelling technique does not require interatomic 

potentials but uses the available experimental data directly, and predominantly diffraction 

data [59]. EPSR technique is evolved from the RMC technique as it uses both a purely pair-

wise interaction potential and diffraction data [60]. 

 MD modelling techniques can be classified into ab initio MD method and classical 

MD method. The basic idea in ab initio MD is to consider the force acting on the nuclei from 

electronic structure and also selecting a particular approximation for solving the Schrödinger 
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equation [61]. In classical molecular dynamics, the state of the particles at any time is char-

acterized by their position and momentum and it changes in time according to the Newton 

equations of motion [62]. 

 MD is the study of how molecules or atoms move, deform and interact over time. It 

is also about developing quantitative predictions of molecular size and shape, flexibilities, 

interactions with other molecules, behavior under pressure, and the relative frequency of one 

state or conformation compared to another. The complex nature of the force field involved 

and the large size of typical molecular systems mean that MD is almost always chaotic [63]. 

 The MD simulation procedure can be performed in three steps: model the individual 

particles, simulate the movements of large number of the model particles and finally analyse 

the simulation data for the required collective phenomenon [64]. The analysis can be a static 

structure such as pair distribution function and rotational invariants (i.e. spherical harmonic). 

The latter is one way to explore the angular dependence of the correlations between atom 

positions. 
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Chapter 2  
Modelling method 
 

 Interatomic potential 
 
 The phases of matter are the consequences of competition between thermal energy 

and intermolecular/interatomic forces and the struggle between these defines whether a 

given substance under given conditions is a gas, a liquid or a solid [1]. When the atoms are 

a certain distance apart there may be an attractive interatomic force but weak and when they 

are too close together there is strong repulsive force. Interatomic force is overcome when 

the thermal energy is a very high amount and partially overcome when it is medium amount. 

When thermal energy is a small amount, the interatomic force is stronger and atoms are 

bound to form a solid. 

 Almost all physical phenomena except the world inside the atomic nucleus, may at-

tributed directly or indirectly to the forces between atoms and this inter atomic interaction 

can be expressed in term of their potential energy of interaction, or interatomic potentials 

[2]. Figure 2.1 illustrates the relationship between the potential energy and interatomic force 

as a function of distance [3]. 

 The nature of interatomic potentials determines the static and dynamical properties 

of all phases of matter and it also governs the properties of chemical complexes and reaction 

mechanisms and the stability of biological compounds [4]. Although the physical and chem-

ical properties are based on interatomic forces that bind the atoms together, these forces are 

not measured directly in any experiment. However, the features that are related to intera-

tomic forces such as viscosity coefficient, transport coefficient, phonon spectra, and elastic 

constants are measured to extract the information about interatomic forces from the experi-

ment [5]. 
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Figure 2.1 Interatomic (a) potential energy and (b) force diagram [3]. 

 

 Matter is a system that is described by the interacting atoms that consist of electrons 

and nuclei. Due to the quantum nature of the electronic and nuclear motion only the quan-

tum-mechanical principles can provide the detailed theory of interatomic forces [6]. There 

is also many-particle problem which does not have an exact quantum mechanical solution. 

However, it can be simplified by considering the electrons having a much higher kinetic 

energy than the nuclei, which allows us to separate electrons and nuclear motions and treat 

them independently [7]. This approach is valid at a given condition and known as Born-

Oppenheimer or adiabatic approximation [4-7]. 

 The Born-Oppenheimer approximation not only makes it easier to solve the Schrö-

dinger equation by simplifying the nuclear and electronic interaction but it also allows us to 

describe the atomic system by the classical force field method [8]. Generally, it is sufficient 
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to assume that the nuclei behave like classical particles and the Newtonian equations of mo-

tions can be used to describe them. In the case of electrons, which are responsible for the 

bonds between atoms, if these bonds are characterized by some classical or semi-empirical 

potential model then only studying the arrangement of the atomic nuclei is sufficient [9]. 

But the effects that are caused by the electrons, e.g. optical spectrum, cannot be studied by 

this method. 

 

2.1.1 Empirical force field 
 
 The force field (FF) of a molecular system describes the interaction between bonded 

parts and non-bonded parts of the system that are responsible for classical interatomic po-

tential shown in Table 2.1 [10]. The three components that form the bonded parts are bond 

stretching, bond bending and bond rotation. The non-bonded parts are formed by the elec-

trostatic interaction and van der-Waals interaction. 

 
Table 2.1 Schematic representation of the four key contributions to a molecular mechanics 
force field in a 𝑁-body system [10]. 
 

𝑁-body system 2-body system 3-body system 4-body system 

Bonded parts 

 
 
 

Bond stretch Bond bend Bond rotation 
(torsion) 

Non-bonded 
parts 

 

Electrostatic and van der Waals 

 
 

Not applicable 

 
 

Not applicable 

 

 In an organic system, the bonds are covalent and directed, i.e. the potential are the 

functions of bond length, bond angles and torsion angles, and the non-bonded interaction. 
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However, in an ionic system or an inorganic material the bonds between atoms are mainly 

due to electrostatic interaction and are not directed [9]. In a simple force field, the non-

bonded function can be defined by electrostatic force induced by the charges present on 

atoms and van der Waals interaction due to the electron-electron attraction and repulsion due 

to Pauli principle.  

 Inorganic matter is often modelled by so called rigid ion model where the Coulomb 

potential function describes the electrostatic interaction and Lennard-Jones type or Bucking-

ham type potential function describes the van der Waals interactions. In some cases, the 

shell-model is used to describe the ion polarizability. In this model, each ion is treated as a 

core and shell, coupled by harmonic spring and the strength of harmonic spring corresponds 

to the polarizability of the ions [9, 10]. 

 

2.1.2 Two body potential 
 
 Based on the Born-Oppenheimer approximation, the interatomic potential energy of 

a classical system only depends on the coordinates of atoms [11]. The force field approach 

subsumed the knowledge of electronic structure into effective interatomic potential, 𝑈 , 

which describes in analytical or numerical form the variation in the energy of the molecule 

or solid as a function of the nuclear coordinates, 𝑟) … 𝑟+, of the 𝑁 atoms present in the mol-

ecule or solid [12]. The potential energy is given by the series of pair 𝑈,, three-body 𝑈-, 

four-body 𝑈., and higher terms which is shown in Equation 2.1, where 𝑟/0 = 	 3𝑟/ − 𝑟03. 

 

𝑈(𝑟) … 𝑟+) = 7 𝑈,
+

/,09)

:𝑟/0; + 7 𝑈-
+

/,0,=9)

:𝑟/, 𝑟0,𝑟=;

+ 7 𝑈.
+

/,0,=9)

:𝑟/, 𝑟0,𝑟=, 𝑟>; +⋯ 

Equation 2.1 

  



Chapter 2: Modelling Method  22 
 
 The potential energy, 𝑈, is mainly approximated by the pair potential term, 𝑈,, that 

depends only on the distance, 𝑟/0, of the pair separation of nuclei 𝑖 and 𝑗. This is generally a 

good approximation for the ionic system but not for the covalent solids as illustrated in Table 

2.1. Also, if the series on the right-hand side of the equation has a quick convergence, the 

higher terms in the expression can be neglected [12]. Practically it is demanding to calculate 

multi-body atomic interactions and it is equally difficult to define it theoretically. Therefore, 

these many body potentials are usually truncated after three-body term and the contribution 

of the truncated terms are included by inserting various parameters (linear and/or non-linear 

parameters) to the remaining terms [13]. 

 Although the quantum mechanical approach is known to be theoretically rigorous, 

the empirical interatomic potential function is still essential due to their simpler execution 

and practicality in dealing with many-body dynamical systems in large models [14]. There-

fore, the pair potential function simplifies the statistical mechanical formalism used in cal-

culating various thermodynamical properties [13]. The classical system can be approximated 

by many different potential models such as the hard-sphere, square-well and soft-sphere and 

the interaction of atoms in these models can be evaluated by the typical pair potential func-

tions like Lenard-Jones, Morse, Rydberg and Buckingham potential functions [15]. 

 

2.1.3 Coulomb interaction and short-range interaction 
 
 The materials under studies are of ionic character. The percentages of ionic charac-

ters of the bond are related to the electronegativity of the individual atoms [3]. In ionic pair 

potential model, the material is described as composed of spherically symmetric positive and 

negative ions that interact according to their interatomic separations and Coulomb’s Law 

gives the value of their energetic interactions [9]. The columbic interactions between these 

ions are also the long-range potential function in an ionic material. The Columbic potential 

is given by Equation 2.2, 



Chapter 2: Modelling Method  23 
 

 𝜙(𝑟/0) =
𝑞/𝑞0

4𝜋𝑟/0𝜀F
 Equation 2.2 

where 𝑟/0  is the relative distance between the effective charges of ions 𝑞/  and 𝑞0, and 𝜀F is 

the permittivity of free space (dielectric constant). 

 The non-bonded interactions of the two-body potential not only consist of Coulomb 

energy, i.e. long-range interaction, but also embedded with short-range repulsive and the 

weakly attractive energy components. So, for the binary ionic glasses system, the Bucking-

ham potential function can be used to describe the short-range interactions, which has an 

exponential repulsion term and an inverse power attractive term to account for the van der 

Waals dispersion interactions [16]. Theoretical description of the Buckingham potential, 

which is the function of an interatomic distance only, can be found elsewhere [9, 10], which 

is expressed in Equation 2.3, 

 𝑉/0:𝑟/0; = 𝐴/0 exp L
−𝑟/0
𝜌/0

N −
𝐶/0
𝑟/0P

 Equation 2.3 

where 𝑖 and 𝑗 are the ions with separations 𝑟, and 𝐴/0, 𝐶/0 and 𝜌/0  are the adjustable param-

eters of the model. 𝐴/0	and 𝜌/0  determine the degree of the repulsion due to the electron cloud 

density (i.e. Pauli exclusion principle) and 𝐶/0 is the attraction term related to Van der Waals 

interaction. The parameters can be calculated directly by quantum mechanical methods or 

by empirical fitting [17]. All the ionic systems studied here, are treated as the soft-sphere 

model and the total interatomic potential energy, 𝑈/0(𝑟), for rigid ion is given by Equation 

2.4. 

 𝑈/0:𝑟/0; = 𝐴/0 exp L
−𝑟/0
𝜌/0

N −
𝐶/0
𝑟/0P

+	𝜙/0  Equation 2.4 

 

 The pair potential most commonly used in molecular modelling is thus ‘effective’ 

pairwise potentials as they do not represent the true interaction energy between two isolated 

atoms but are parameterised to include many-body effects in the pairwise energy [10]. In 
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this project, generally the interactions between the atoms are described as shown in Table 

2.2. 

 
Table 2.2 The long-range and the short-range interaction of an ionic system in two body 
potential. 
 

Interactions 
Electrostatic  
(Coulomb) 
and ∝ 𝑁, 

Pauli Principle 
(Repulsive) 

and ∝ 𝑁 

Van der Walls 
(weakly attractive) 

and ∝ 𝑁 
Cation – Anion 

e.g. 𝑍𝑟 − 𝐹 
(close together) 

 

(−) Strong  
attraction (+) Repulsive (−)weakly attractive 

Anion – Anion 
e.g. 𝐹	– 	𝐹 

(close together) 
 

(+) Repulsion (+) Repulsive (−) Weakly attractive 

Cation – Cation 
e.g. 𝑍𝑟 − 𝑍𝑟 

(further apart) 
(+) Repulsion Not applied 

(very weak) 
Not applied 
(very weak) 

Term 
(±)

𝑞/𝑞0
4𝜋𝑟/0𝜀F

 

 

(+)𝐴/0 expL
−𝑟/0
𝜌/0

N 

 
−
𝐶/0
𝑟/0P

 

 

2.1.4 Principle of energy minimization 
 
 The geometrical arrangement of atoms in space manifest the structure of a molecule 

and for a given structure and electronic state, the molecule has a specific energy. The energy 

of molecule varies with the coordinates or geometry and this can be described by the poten-

tial-energy surface (PES). The geometry corresponds to bond-length, bond-angles, torsions 

and other internal coordinates. The PES is a natural consequence from the Born-Oppenhei-

mer approximation, which can be obtained by solving for the electronic energy at series of 

fixed nuclear positions [18]. 

 A simple representation of PES is shown in Figure 2.2 for a diatomic molecule, 

which is the basis of the force field method [19]. The saddle point in the PES is the minimum 

point, which indicates the minimum energy arrangements of the atoms, i.e. zero net force on 

atoms. This corresponds to the stable state of the system and the process of finding this 
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saddle point in PES is referred as an energy minimization or commonly known as geometry 

optimization. 

 This saddle point can be a local minimum, the lowest point in some limited region, 

or it can be a global minimum, the lowest point anywhere on the PES. In a system with	𝑁 

atoms the energy is the function of 3𝑁 − 6 internal (the rotational and translation internal 

coordinates are excluded as it does not vary the energy of the system) or 3𝑁 Cartesian coor-

dinates. Therefore, it is impossible to visualise the entire energy surface except for simple 

cases where the energy is a function of one or two coordinates [10]. Clearly, it is difficult 

task to find a global energy minimum compared to a local minimum as multidimensional 

PSE produces a complex curvature. 

 

 
 

Figure 2.2 One-dimensional PES for a diatomic molecule. The PES increases if the bond 
length is stretched or compressed away from the equilibrium value 𝑏X  [19]. 

 

 There are several methods that perform the geometry optimization to find the mini-

mum energy. Generally, these methods are based on simple iterative formula given by the 

formula, 𝑥ZX[ = 𝑥\>] + 	𝛾, where, 𝑥ZX[ is the next new position, 𝑥\>] is the current positon 

and 𝛾 is adjustment parameter made to the positon. Simply analysing from Figure 2.2 nu-

merical test (derivatives) is applied to new positon to reach the minimum value 𝑏X . 

 Methods such as steepest descent, conjugate gradient and Newton-Raphson can be 

implemented. Their algorithms are based on the order of the derivatives of the total energy 
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function [20]. So, at any given point of PES, the internal energy can be expanded by a Taylor 

series [21], which is shown in Equation 2.5. 

 𝑈(𝑥 + 𝛿𝑥) = 𝑈(𝑥) +
𝜕𝑈
𝜕𝑥 𝛿𝑥 +

1
2!
𝜕,𝑥
𝜕𝑥, (𝜕𝑥)

,	 + ⋯, Equation 2.5 

 Steepest descent method works by estimating the first derivative of the strain energy 

with respect to each coordinate of each atom and the second derivative is assumed zero. The 

initial direction in which it chooses to be minimized is in the direction that has largest gra-

dient, hence named steepest descent method. The gradient at each point has to be calculated 

until it reaches the minimum. The main problem with the steepest descent method is that of 

determining the appropriate step size for atom movement during the derivative estimation 

steps and the atom movement steps. 

 The conjugate gradient method is a first-order minimization technique. It uses both 

the current gradient and the previous search direction to drive the minimization. Because the 

conjugated gradient method uses the minimization history to calculate the search direction 

and contains a scaling factor for determining step size, the method converges faster and 

makes the step sizes optimal as compared to the steepest descent technique. However, the 

number of computing cycles required for a conjugated gradient calculation is approximately 

proportional to the number of atoms 𝑁, and the time per cycle is proportional to 𝑁, [10, 20]. 

 

 Use of GULP to test potential 
 

 The General Utility Lattice Program (GULP) software was used to test the intera-

tomic potential parameters. The GULP uses the Newton-Rapson energy minimisation 

method, which uses both first and second derivatives, i.e. gradient and the curvatures of PES 

for	𝛾 correction parameters. In Equation 2.5, if the first derivative is given by a gradient 

vector, 𝑔, then second derivative matrix is referred as the Hessian Matrix,	𝐻 [22]. Expanding 
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energy to second order, then the displacement vector, 𝛥𝑥, from the current position to the 

minimum is given by Equation 2.6. 

 ∆𝑥 = −𝐻g)	𝑔 Equation 2.6 

 The most expensive step of the Newton-Raphson method, particularly once the size 

of the system increases, is the inversion of the Hessian. Also, the Hessian may only vary 

slowly from one step to the next. It is therefore wasteful and undesirable to invert this matrix 

at every step of the optimization and it can be avoided through the use of updating formulae 

[21,22] that use the change in the gradient and variables between cycles to modify the inverse 

Hessian such that it approaches the exact matrix. 

 Furthermore, there is the danger that if the energy surface is close to some other 

stationary point, such as a transition state, then simply applying this formula iteratively may 

lead to a maximum, rather than the minimum. Therefore, the expression is modified in Equa-

tion 2.7, 

 ∆𝑥 = −α𝐻g)	𝑔 Equation 2.7 

where α is a scalar quantity, which is determined by performing a line search along the search 

direction to find the one-dimensional minimum, and the procedure becomes iterative again 

[21]. 

 

2.2.1 Input files for GULP 
 
 The details of software user manual are in [23]. Here, some of the important details 

to test potentials are highlighted. The GULP Input consists of control parameters, struc-

tural parameters and potential parameters and there are several types of standard mini-

mization that are available in GULP. The most commonly used being to optimise at constant 

pressure, in which all internal and cell variables are included, or at constant volume, where 

the unit cell remains frozen [21]. 
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2.2.2 Control parameters for GULP 
 
 This section provides GULP control parameters on how and what properties to de-

duce, i.e. structural control and calculation type, method and algorithm, and output control. 

Some of the keywords required are: 

optimize = minimize the energy with respect to geometrical variables 

angle = calculate valid three body angles 

bond = calculate valid bond lengths based on covalent radii 

distance = calculate interatomic distances 

property = calculate the bulk lattice properties 

conp = perform constant pressure calculation – cell to vary 

nosymmetry = turn off after symmetry once unit cell has been generated 

cutd = cutoff distance for calculating the average bond length 

average = output average bond lengths 

compare = produce a table comparing the initial and final geometries 

 

2.2.3  Initial structural parameters 
 
 The structure parameters of three-dimensional crystal are the unit cell, the fractional 

Cartesian coordinates, types of atoms, and the space group symmetry. These were obtained 

from CDS National Chemical database [24]. 

 

2.2.4 Potential parameters 
 
 The type of the interatomic potential should be defined as GULP has various other 

types of potential. Also, one has to mention whether the interaction is between core-core or 

core-shell. Throughout this project core-core Buckingham potential is used which is ob-
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tained from Teter [25]. Teter potential has not been published however it is a well-estab-

lished potential as there are considerable published literatures that have used it for both rigid 

ion model (e.g. [26]) and shell model (e.g. [27]. It has been also used to model the structure 

of other materials that is not glass (e.g. [28]). 

 

2.2.5 Output files from GULP 
 
 In a constant pressure calculation where the initial coordinate parameters of a crystal 

are obtained experimentally, the energy minimization algorithm stipulates the comparison 

result between the input (initial) and output or final energy minimized structural parameters. 

The result largely depends on the interatomic potential parameters. The output file provides 

bond length, and coordination number. 

 

 Theory and algorithms of molecular dynamics 
 
 The Molecular dynamics (MD) method allows one to accurately predict properties 

of materials provided that the interatomic interactions are known and classically the essence 

of MD is simply to numerically solve an 𝑁-body problem. This is an excellent technique to 

approximate for wide range of materials and only when the translational or rotational motion 

of light atoms or molecules (e.g. 𝐻𝑒, 𝐻,, 𝐷,) or vibrational motion with the frequency, 𝜈, 

such that ℎ𝜈 > 𝐾p𝑇 are considered one does has to worry about quantum effects [29]. 

 Numerical integration of the Newton’s equations of motion generates the configura-

tion of the system which allows one to investigate both equilibrium (time-independent) and 

non-equilibrium (time-dependent) properties. Hence, the phase-space trajectory computed 

allows us to evaluate thermodynamic (temperature, energy), static structures (radial distri-

bution function) and dynamic properties (time correlation coefficient, transport coefficient, 

space- time correlation function (𝐺	(𝑟, 𝑡)) of a system [30]. 
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2.3.1 Equations of motion 
 
 Initially, the starting point of a MD simulation is a well-defined microscopic descrip-

tion of the physical system in terms of a Hamiltonian or Lagrangian from which the New-

ton’s equations of motion are derived [31]. In a classical system to know how the system 

evolves in time, or the trajectory of motion one has to know the coordinates, 𝒓𝒊 = 𝑥/, 𝑦/, 𝑧/, 

and all the velocities,	𝒗𝒊 = [𝑣{, 𝑣|, 𝑣}]/	,of all the particles 𝑖 in the system at any moment of 

time and this information can be obtained by solving the Newton’s equation of motion given 

in Equation 2.8, 

 𝐹/ = 𝑚/𝑎/																				𝑖 = 1, 2.… , 𝑁 Equation 2.8 

where 𝑭𝒊 = [𝐹{	, 𝐹|, 𝐹}]/	is total force acting on particle 𝑖 by all the other particles (classical 

mechanical system free from the external force), 	𝑚/  is the mass of particle 𝑖  and 𝒂𝒊 =

[𝑎{, 𝑎|, 𝑎}]/ is the acceleration of the particle	𝑖 in the direction of net forces. The forces can 

be derived from the potential energy, 𝑈, which corresponds to the pair potential in this mod-

elling system given by Equation 2.9. 

 𝐹/ = −	
𝜕
𝜕��

𝑈(𝑟/, … , 𝑟+) Equation 2.9 

 From the force, we can determine the acceleration of the particles, which are the 

combined with the positions and velocities at time, 𝑡, to calculate the positions and velocities 

at a new time, 𝑡 + ∆𝑡. The experience of force on any particle is assumed constant for a short 

period of time, time-step, ∆𝑡, then the position of a particle at new time, 𝑡	 + ∆𝑡, can be 

obtain from a Taylor series expansion. Therefore, the change in coordinates of a particle, 

around time, 𝑡, is given at time forward, 𝑡	 + ∆𝑡, and time backward, 𝑡 − ∆𝑡, by Equation 

2.10 and	2.11, 

 𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) + 𝑉(𝑡)∆𝑡 +
𝐹(𝑡)
2𝑚 ∆𝑡, +

∆𝑡-

3! 𝑟 + 𝒪
(∆𝑡.) Equation 2.10 
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 𝑟(𝑡 − ∆𝑡) = 𝑟(𝑡) − 𝑉(𝑡)∆𝑡 +
𝐹(𝑡)
2𝑚 ∆𝑡, −

∆𝑡-

3! 𝑟 + 𝒪(∆𝑡
.) Equation 2.11 

 

Summing this two Equations 2.10 and 2.11 gives the Equation 2.12 or 2.13. 

 𝑟(𝑡 + ∆𝑡) + 𝑟(𝑡 − ∆𝑡) = 2𝑟(𝑡) +
𝐹(𝑡)
𝑚 ∆𝑡, + 𝒪(∆𝑡.) Equation 2.12 

or 

 𝑟(𝑡 + ∆𝑡) ≈ 2𝑟(𝑡) − 𝑟(𝑡 − ∆𝑡) +
𝐹(𝑡)
𝑚 ∆𝑡, Equation 2.13 

 

 A simple Verlet algorithm can integrate the equations of motion. The approximation 

of the new position contains an error that is order ∆t.. Newton’s equations are time reversi-

ble and reversing the velocities should result in a trajectory that re-traces itself. The Verlet 

and Verlet-derived integrators all satisfy this property [29]. But the Verlet algorithm has 

disadvantages as it the lacks explicit velocity terms in the equation and it is only possible to 

calculate the velocity after the positions have computed in the next step. 

 For the Verlet “leapfrog’, it requires values of position, 𝑟, and force, 𝐹, at time, 𝑡, 

while the velocities, 𝑣, are half a time-step behind. Therefore, at first the velocities are de-

fined from the Verlet scheme at half-integer time-steps to compute the new positions as 

given by Equation 2.14 and 2.15. 

 𝑣 �𝑡 −
∆𝑡
2 � =

𝑟(𝑡) − 𝑟(𝑡 − ∆𝑡)
∆𝑡  Equation 2.14 

and 

 𝑣 �𝑡 +
∆𝑡
2 � =

𝑟(𝑡 + ∆𝑡) − 𝑟(𝑡)
∆𝑡  Equation 2.15 

  

 The new position based on the old positions and velocities, and also the new update 

expressions of the velocities from the Verlet algorithm are given by Equation 2.16 and 2.17. 

 𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) + 𝑉 �𝑡 +
∆𝑡
2 �∆𝑡			 

Equation 2.16 
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 𝑣 �𝑡 +
∆𝑡
2 � = 𝑣 �𝑡 −

∆𝑡
2 � + ∆𝑡

𝐹(𝑡)
𝑚  Equation 2.17 

 The current velocity at time, 𝑡, is obtained as the mean from the mid step values as 

given by Equation 2.18. Therefore, the velocities ‘leapfrog’ over the positions to give their 

values at 𝑡 + )
,
∆𝑡 and positions also leap over the velocities to give their new values at 𝑡 +

∆𝑡 to produce the velocities at 𝑡 +	-
,
∆𝑡 and so on [10, 29, 30]. 

 𝑣(𝑡) =
1
2 �𝑣 �𝑡 +

1
2∆𝑡� + 𝑣 �𝑡 −

1
2 ∆𝑡�� 

Equation 2.18 

 
 However, “leapfrog” algorithm doesn’t compute velocities and positions at the same 

time as a result kinetic energy and potential energy are not defined at the same time. There-

fore, the updating of positions and velocities is synchronized in the velocity Verlet algorithm 

given by Equation 2.19 and 2.20, that gives positions, velocities and accelerations at the 

same time and also does not compromise precision [32]. Hence, one does not need to apply 

a more complex Verlet algorithm than velocity Verlet algorithm [33]. 

 𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) + 𝑣(𝑡)∆𝑡 +
𝐹(𝑡)
2𝑚 	∆𝑡,	 Equation 2.19 

 

 𝑣(𝑡 + ∆𝑡) = 𝑣(𝑡) +
1
2∆𝑡

�
𝐹(𝑡)
𝑚 +

𝐹(𝑡 + ∆𝑡)
𝑚

� Equation 2.20 

 

2.3.2 Thermal equilibrium 
 
 MD is typically applied to an isolated system, containing a fixed number of 𝑁 parti-

cles in a fixed volume, 𝑉, and the total energy, 𝐸, of the system is constant. The equations 

of motion are solved until the properties of the system no longer change with time and only 

after achieving the equilibration are the actual measurements are taken [34]. Equilibrium 

thermodynamical properties of the simulated system can be obtained by averaging certain 

dynamical variables, which are the functions of the computed coordinates and velocities both 
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over time and over all particles [35]. The calculation of time averages in MD is not possible 

due to the macroscopic number of atoms, i.e. in order of 10,-, which is not even realistic to 

determine an initial configuration of the system. Hence to overcome these problems the time 

average is replaced by the ensemble average [29, 33]. Equation 2.21 below describes the 

thermodynamic averages that can be obtained from the MD ensemble averages [10], 

 〈𝐴〉 =
1
𝑀7𝐴(𝑝+, 𝑟+)

�

/9)

 Equation 2.21 

where, 〈𝐴〉 is an ensemble average of the property, 𝐴 over all replication of the ensemble 

generated by the simulation, 𝑀 is the number of MD time-step, ∆𝑡, and, 𝑝 and 𝑟 are the mo-

menta and positions of 𝑁 particles. This statistical ensemble can also control thermodynam-

ics quantities like pressure, temperature or the number of particles [30]. 

 Characteristically, in MD simulation the total energy, 𝐸, and the total linear momen-

tum, 𝑝, are constants of motion hence the ensemble average measured is a microcanonical 

(constant 𝑁𝑉𝐸) ensemble [30]. The microcanonical ensemble is the simplest and most fun-

damental of the equilibrium ensembles of an isolated system of fixed 𝑁 particles in a con-

stant volume, 𝑉, and total energy,	𝐸, from which other equilibrium ensembles are also de-

rived [36]. However, to compare result directly between MD simulations and the experi-

ments canonical ensemble is preferred where the number of particles 𝑁, the volume, 𝑉, and 

the temperature, 𝑇, are fixed (i.e. constant 𝑁𝑉𝑇) [37]. 

 The other types of equilibrium ensembles are grand canonical and isothermal iso-

baric. In isothermal isobaric	𝑁𝑃𝑇	the number of particles, pressure and temperature are 

fixed. Also in general laboratory experiments are typically carried out at constant tempera-

ture and pressure. The microcanonical, canonical and isothermal isobaric ensembles describe 

closed systems for which there is no change in the number of particles whereas the grand 

canonical ensembles can describe the open system in which the number of particles can 

change [38]. 
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 Thus, thermodynamics quantities provide the link between the microscopic and mac-

roscopic world of a molecular system. In a classical mechanical system, the total energy is 

conserved and the temperature is rather considered the average temperature, < 𝑇 >, derived 

from the average velocities of all the particles in the system. The average kinetic energy, 

〈)
,
𝑚𝑣/,〉, and instantaneous temperature, 𝑇, of system can be obtained from the velocity, 

𝑣(𝑡), assuming that the system atomic velocities have no net momentum as given by Equa-

tion 2.22 and 2.23, 

 〈
1
2𝑚𝑣/

,〉 =
1
2𝑘p𝑇 Equation 2.22 

 

 𝑇 =
∑ 𝑚/𝑣/,(𝑡)+
/9)

𝐾p	𝑓
 Equation 2.23 

 
where 𝑘pis the Boltzmann constant and 𝑓 is the number of degrees of freedom in the system. 

Since the system is equilibrated at microcanonical (𝑁𝑉𝐸) ensembles where thermodynamic 

properties 𝑁 and 𝑉 is fixed and the total energy is conserved by calculating the instantane-

ous temperature, 𝑇, the total energy,	𝐻+�� , given by Equation 2.24, of the system is con-

served where 𝑈 is the potential energy of the system and 𝐾𝐸 the kinetic energy at time,	𝑡. 

 𝐻+�� = 𝑈 + 𝐾𝐸 Equation 2.24 

 

2.3.3 Berendsen thermostat 
 
 In canonical (𝑁𝑉𝑇) ensembles the system average temperatures should be kept close 

to the target Temperature, 𝑇X{�. Therefore, to modulate the temperature varieties of thermo-

stat are introduced. The DL_POLY_2 uses Berendsen thermostat algorithm to modulate the 

temperature which is obtained by modifying the equations of motion where the instantane-

ous temperature, 𝑇, is pushed towards the target temperature,	𝑇X{�, by scaling the velocities, 

𝑣, at each step [39] as given by Equation 2.25 and 2.26, 
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 𝜒 ←	 ¢1 +
∆𝑡
𝑡�X>£{

�
𝑇X{�
𝑇 − 1�¤

)/,

 Equation 2.25 

 

 𝑣 �𝑡 +
∆𝑡
2 � ← 𝑣 ��𝑡 −

∆𝑡
2 � + ∆𝑡

𝐹(𝑡)
𝑚 �𝜒 Equation 2.26 

where 𝜒 is the scaling factor for velocity, 𝑣, and 𝑡�X>£{  is a relaxation time (i.e. in range of 

0.5 − 2 pico seconds). If 𝑇 > 𝑇X{�	and 𝜒 < 1 then, 𝑣𝜒 < 𝑣 therefore 𝑣	is reduced. 

 

2.3.4 Boundary conditions 
 
 In MD studies the surface effects have a huge impact while trying to study the bulk 

phenomena of any material [10]. Practically, material structures are built with at least 10,- 

atoms therefore, the boundary condition defines the thermodynamic environment in the MD 

models. Hence the problem of surface effects can be overcome by implementing periodic 

boundary conditions. The model box, for example cubic box, is replicated throughout space 

to form an infinite lattice so that during the course of the simulation as a molecule moves in 

the original box, its periodic image in each of the neighboring boxes moves in exactly the 

same way. The central box (original box) has to be surrounded by 26 virtual copies in 3D 

space so that a particle that exits the box from one face re-enters the box from its opposite 

face (see Figure 2.3) without changing the velocity vector. 

 

 
 

Figure 2.3 Periodic boundary condition where a particle is going to leave the simulation 
box and its position is set immediately to the opposite face and velocity vector remains 
unchanged [7]. 

 

 The interatomic forces are computed not only for the atoms within the central box 

but by including all the particles of its virtual images. Adding or subtracting according the 
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box length from the coordinate of the particle position vectors can easily create these images. 

If the range of the potential is longer than the box length, a particle would interact with itself. 

Therefore, to avoid this problem a cutoff radius i.e., maximum interaction distance is intro-

duced to limit the range of the potentials. These particles positions ensure the constancy of 

energy, particle number and volume [33]. The cutoff radius for the cubic simulation box is 

no greater than half of the box length. 

 

2.3.5 Force calculation 
 

 In a model system where the pairwise additive interactions are considered then the 

force on a particle is contributed by all the neighbouring particles. That is for a system of 𝑁 

particles, one has to evaluate 𝑁(𝑁 − 1)/2 pair interactions and compute all 𝑁(𝑁 − 1)/2 

pair distances to describe which pairs can interact. Hence the time to calculate the energy of 

the system scales as 𝑁,. Therefore, one has to adopt an efficient technique to calculate the 

short-range interaction and long-range interaction. 

 

2.3.5.1 Short-range force calculation 
 
 The two-body pair potential, nonbonding interactions are contributed by dispersion, 

repulsion and electrostatic potential. The Buckingham potential represents the dispersion 

and repulsion parts, and is the function of interatomic distances as given by Equation 2.3. 

This is also known as short-range interaction as the potential energy decays rapidly with 

increasing interatomic separations. The total potential energy of the whole system is given 

by Equation 2.27, which is the sum of pairwise interactions over all atoms pairs form Equa-

tion 2.4. 

 𝑈�\� =
1
277𝑈/0

+

09)
0¦/

+

/9)

 Equation 2.27 

 



Chapter 2: Modelling Method  37 
 
 The time required calculating the forces in each particle scales to 𝑂(𝑁,). One of the 

ways to reduce the calculations of inter-atomic potentials is by introducing the cutoff dis-

tance, 𝑟 ©�, in potential functions and by assuming that both potential functions and forces 

beyond the cutoff distance are zero [40]. However, truncating the potential one still has to 

compute all 𝑁(𝑁 − 1)/2 pair distances to describe which pairs can interact. Thus, to effec-

tively reduce unnecessary interatomic distance evaluation can be achieved by constructing 

the Verlet neighbouring list method, the cell-linked method, and the multiple time-step 

method. 

 

2.3.5.1.1 Verlet neighbouring list 
 
 Theory behind the Verlet neighbouring list is to construct and maintain a list of 

neighbouring atoms for each atom in the system by defining the skin radius, 𝑟ª, which serves 

as a reservoir of particles [41]. Interactions between particles are always calculated for each 

particle within the interaction sphere (see Figure 2.4) [42]. This significantly reduces the 

time to calculate the forces on each particle because between the update of neighbouring list 

it has to only check the particle pair which appear in the list. The frequency at which the 

table must be updated depends on the thermodynamic state point, the time step, the cutoff 

distance and thickness of skin radius [41]. The overall procedure scales as 𝑂(𝑁 × 𝑁+¬), 

where 𝑁+¬  is the average number of neighbours of an atom in the material and is independ-

ent to the system size 𝑁. 

 

 
 

Figure 2.4 Illustration of the basic idea of Verlet table algorithm [42]. 
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2.3.5.1.2 Cell-linked method 
 
 For the large numbers of particles, the conventional neighbouring list becomes inef-

ficient and the alternative method of keeping track of neighbours for large systems is the cell 

index method [33]. The idea behind this method is that the computational domain is subdi-

vided into cells of length at least equal to the 𝑟 ©� and every time steps, atoms are assigned 

to one of these cells according to their spatial coordinates [40]. If the particle distribution is 

assumed to be homogeneous then each cell contains 𝑁/𝑐  particles, where 𝑐  denotes the 

number of cells and thus, construction of assigning each atom to appropriate cells, scales 

time require by 𝑂(𝑁) as long as the particle density is kept constant [43]. 

 Though, this method is fast and efficient for constructing of the “neighbouring list’ 

but inefficient in calculating the force as there are too many particles to be checked. The 

total number of pairs that can be constructed for an atom by using all neighbouring atoms is 

equal to 27𝜌𝑟 ©�-  where 𝜌 is the atom density, but only .®
-
𝜌𝑟 ©�-  of them have atoms within 

the cutoff distance, hence this method generates a number of pairs about ¯)
.®
= 6.45 times 

greater than necessary calculation of interatomic distance. Therefore, the software 

DL_POLY_2 usually uses cell-linked method only for the complicated intermolecular inter-

action[44]. Several improvements and optimizations made in both methods [40, 42] are 

found in elsewhere [45]. 

 

2.3.5.1.3 Multiple time-step method 
 
 The book-keeping methods discussed above considerably reduce the time for exam-

ining the complete set of )
,
𝑁(𝑁 − 1) pairs, identifying those pairs separated by less than 

cutoff distance, 𝑟 ©�, and computing the forces for this subset [33]. It is assumed the remain-

ing pair interaction do not influence the dynamics of the system. Only by cutting down the 
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time spent in calculating the forces between pairs within cutoff range can further increase in 

the speed be obtained. 

 As shown in Figure 2.5 the multiple time-step method is designed to have two cut-

offs for the pair interactions. They are the primary cutoff, 𝑟°�/±, for the primary neighbour’s 

atoms and the secondary cutoff for the secondary particles that lies in distances between 

𝑟°�/± and 𝑟 ©�. The motions of primary regions’ particles largely influence force in a particle 

whereas the secondary forces are smaller and change slowly with the time and hence the 

multiple time step evaluates the interactions arising from the primary particles at every time-

step. However, the interactions arising from the secondary particles are calculated much less 

frequently, and merely extrapolated over the interval [39]. 

 

 
 

Figure 2.5 Illustration of multiple time-step algorithm [39]. 

 

2.3.5.2 Ewald summation 
 
 The long-range electrostatic interaction between the particles considers how charge 

may be distributed in space and is given by the Coulomb’s law as expressed in Equation 2.2. 

One of the problems with electrostatic interaction is the charge-charge interaction that de-

pends on 1/𝑟 and it decays very slowly with 𝑟, the interatomic distance. Also, another prob-

lem is in the system of periodic boundary conditions where the long-range force influence 

is much greater than half the length of the simulation box. If we consider a periodic boundary 

c�STFC Section 2.6

r
prim

rcut

Figure 2.7: The multiple timestep algorithm

The atoms surrounding the central atom (open circle) are classified as primary if they occur within
a radius rprim and secondary if outside this radius but within rcut. Interactions arising from primary
atoms are evaluated every timestep. Interactions from secondary atoms are calculated exactly for
the first two steps of a multi-step and by extrapolation afterwards.

2.6.1 The Replicated Data Strategy

The Replicated Data (RD) strategy [56] is one of several ways to achieve parallelisation in MD. Its
name derives from the replication of the configuration data on each node of a parallel computer
(i.e. the arrays defining the atomic coordinates ri, velocities vi and forces f

i
, for all N atoms {i :

i = 1, . . . , N} in the simulated system, are reproduced on every processing node). In this strategy
most of the forces computation and integration of the equations of motion can be shared easily
and equally between nodes and to a large extent be processed independently on each node. The
method is relatively simple to program and is reasonably efficient. Moreover, it can be “collapsed”
to run on a single processor very easily. However the strategy can be expensive in memory and
have high communication overheads, but overall it has proven to be successful over a wide range
of applications. These issues are explored in more detail in [56, 57].

Systems containing complex molecules present several difficulties. They often contain ionic
species, which usually require Ewald summation methods [12, 58], and intra-molecular interactions
in addition to inter-molecular forces. These are handled easily in the RD strategy, though the
SHAKE algorithm [13] requires significant modification [44].

The RD strategy is applied to complex molecular systems as follows:

1. Using the known atomic coordinates ri, each node calculates a subset of the forces acting
between the atoms. These are usually comprised of:

(a) atom-atom pair forces (e.g. Lennard Jones, Coulombic etc.);
(b) non-rigid atom-atom bonds;
(c) valence angle forces;
(d) dihedral angle forces;
(e) improper dihedral angle forces.

74
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condition system of 𝑁 particles with charges, 𝑞/, at positions, 𝑟/, in an overall neutral and 

cubic simulation box of length, 𝐿, and volume, 𝐿-, then the total electrostatic energy of the 

system [43], is given by Equation 2.28, 

 𝐸 =
1
2 7 77

𝑞/𝑞0
4𝜋𝜀F3𝒓𝒊𝒋 + 𝒏𝐿3

+

09)

+

/9)

µ

|Z|9F

 Equation 2.28 

 
where 𝒏 is the lattice vector/cell-coordinate vector. The first sum over	𝑛 takes into the ac-

count the periodic images of the charges and the prime indicates the terms with 𝑖 = 𝑗 are 

excluded when 𝑛 = 0. The distance between a particle in the origin cell and another at an 

image cell is given by 𝒓𝒊𝒋 + 𝒏𝐿 where 𝒓𝒊𝒋 = 	 𝒓𝒊 − 𝒓𝒋. The above sum is conditionally con-

vergent which means the result depends on the order of summation and conceptually the 

infinitely periodic system is built approximately in spherical layers that will converge how-

ever other shapes are also possible [47]. 

 Therefore, the technique is to sum the long-range interactions between particles and 

all their infinite periodic images and expresses the long-range potentials by splitting slowly 

converging sums into two rapidly converging sums in both real and reciprocal space. In 

Equation 2.28 the Coulomb part of the equation is effectively separated into two parts using 

a Gaussian error function, 𝑒𝑟𝑓(𝛼𝑟), and 𝑒𝑟𝑓𝑐(𝛼𝑟) = 1 − 𝑒𝑟𝑓(𝛼𝑟) [48]. The fundamental 

mathematical trick is to split the term )
�
 as given by Equation 2.29, 

 1
𝑟 =

𝑒𝑟𝑓(𝛼𝑟)	
𝑟 +

𝑒𝑟𝑓𝑐(𝛼𝑟)
𝑟 	 Equation 2.29 

 
where 𝛼 is a parameter that is chosen so that an optimal split between the real-space sum 

and the reciprocal-space is obtained [49]. The first term on the right-hand side will corre-

spond to a summation in real space and converges rapidly. The second term will be summa-

tion in reciprocal space and is a smooth function, hence its Fourier transforms decays rapidly 

[47]. The complete derivation of the Ewald summation can be found elsewhere [10, 33]. 
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 Use of DL_POLY for molecular dynamics modelling 
 
 Modelling and simulation of the material under study in this project is performed by 

a parallel molecular dynamics simulation package DL_POLY_2 developed at Daresbury 

Laboratory by W. Smith and T.R Forester [39]. For simulating a glass model in the 

DL_POL_2 requires following input files: 

(a) Config file - (see section 2.5.1)  

(b) Control file 

(c) Field file 

 

2.4.1 Control parameters for DL_POLY_2 
 
 This file contains the commands to control the condition under which the simulation 

is performed. They are the parameters of temperature, pressure, type of thermodynamic en-

semble (e.g. 𝑁𝑉𝑇), number of simulation steps and equilibration steps. 

 Here we also illustrate the time-step of MD simulation which is typically 1  𝑓𝑠 

(10g)º 𝑠) for a stable simulation with rigid ions. For the canonical 𝑁𝑉𝑇	ensemble to modu-

late the temperature a Berendsen thermostat algorithm with a relaxation time 2  𝑝𝑠 

(2 × 10g), 𝑠) is defined so as to obtain final densities compatible with the measured densi-

ties. The other specified parameters are “skin” width for Verlet neighbour list, cutoff for 

short-range potential, primary cutoff for multiple time step algorithm, Coulomb potential 

cutoff, and Ewald precession (which is specified for the electrostatic force calculation by the 

Ewald summation method). 

 

2.4.2 Field files for DL_POLY_2 
 
 In this file, the total number of atoms species are given with their partial charges and 

atomic mass numbers. The Teter potential parameters are based on 60% partial charges of 

ion species to account valence electron density formed due to partial covalence in the system. 
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The parameters of the Buckingham potential taken from Teter are also specified for each 

pairwise interaction between the atom species to calculate the short-range forces. 

 

2.4.3 Output from DL_POLY_2 
 
 After the successful run the DL_POLY_2 generates output data files and the details 

of these files are given in [39]. However, some of the key output files such as OUTPUT, 

REVCON, CONFIG and HISTORY that are important to this modelling project is discussed 

in short here. OUTPUT consists of the job summary of the simulation such as the sample of 

initial and final configuration. According to number of time-step used instantaneous and 

rolling-average thermodynamic data and the radial distribution function are generated as 

well. REVCON consists of the final configuration of atom species positions. It has to be 

renamed as the CONFIG if it is to be used as the initial configuration in the next stage of 

simulation. The HISTORY file is one of the key output data for analysis as it consists of 

atomic coordinates, velocities and forces during the simulation. It can be generated format-

ted or unformatted but usually the formatted HISTORY file is very large. 

 The pair distribution function, the average coordination numbers and the bond angle 

distribution functions are obtained from the OUTPUT and HISTORY files using the 

“xanal_02” and “xhst-hsc” programs from Jincheng Du of Alfred State University [50]. 

From the REVCON file we can obtain the final image of the model and the diffraction results 

from Material Studio [51] and I.S.A.A.C.S. [52] software package respectively. 

 

 Molecular dynamics modelling of glasses 
 
 The modelling of glasses is performed in aid of understanding the relation between 

the glass properties and the underlying atomic structure. It can be done in two ways by en-

ergy minimisation or geometry optimization method and by molecular dynamics methods. 
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However, if interest is in the behaviour of a material at finite temperatures then the molecular 

dynamics modelling is favoured technique to study [9]. This can be achieved through simu-

lating the properties of materials by determining the position of each atom in space and their 

motion as function of time. Molecular dynamics methods are extensively used to model the 

structure of network glass-forming materials. Here we examine some of the steps involved 

in performing a molecular dynamic modelling in canonical ensemble. 

 

2.5.1 Initial configuration 
 
 In the model cubic box, the correct number of atoms species in the system is given 

by the chemical composition of the glass. The length of the box can be determined by the 

experimental density values of the glass. The initial positions of atom species are randomly 

generated but do not overlap each other by choosing a minimum value for the inter-atomic 

distance. Initial velocities of atoms can be randomly assigned from the Maxwell-Boltzmann 

distribution at the temperature of interest. 

 

2.5.2 Temperature stage 
 
 The most commonly used procedure to generate glass structures is a simulated melt 

and quenching process. This is performed in the six stages of progressively lower tempera-

tures. During the first three stages before the melt temperature, 𝑇±X>�, the system is heated 

in very high temperature and equilibrated to completely have the random configuration. 

Also, trajectory of 40,000	time-steps at 6000	𝐾 is sufficient to allow diffusion over the box 

length for models of few thousand atoms. The six stages barium silicate and barium 

fluorozirconate based glasses are given in Table 2.3. In the simulation, melt temperature, 

𝑇±X>�, is higher than experiment glass melting temperature because it represents a liquid 

before quenching. 
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Table 2.3 The typical MD stages for melt-quenched glass. 
 

Stages Temperature (𝑲) Time-steps Process 

1 6000 40000 Equilibrate 

2 3000 40000 Equilibrate 

3 𝑇±X>�  (e.g. 2000) 40000 Equilibrate 

4 𝑇±X>�  (e.g.	2000) 
(𝑇±X>� − 300)𝐾

0.02	𝐾
 

e.g. 85000 
Quench (10)- 𝐾𝑠g)) 

5 300 40000 Equilibrate 

6 300 40000 Collect or Sampling 

 

2.5.3 Quenching 
 
 The typical quench rate of glasses in the molecular dynamics modelling used here is 

between 10),	– 	10)- 𝐾𝑠g). The MD study of all the glasses uses quench rates several or-

ders of magnitude higher than the experimental due to constraints on computing time. For 

quench rate 10), 𝐾𝑠g), the number of time-step is (½¾¿ÀÁg-FF)Â
F.FF,	Â

, as temperature drops 0.002 

𝐾 every time-step. 

 

2.5.4 Sampling 
 
 The calculation of the thermodynamic properties such as static structure from the 

time average of MD is not feasible due the complexity of the time evolution of large number 

of molecules. However, the successive snapshots of dynamic trajectory of the system are 

calculated in specified time-steps which will be used in sampling a probability distribution. 

Thus, in many molecular simulations, the dynamics trajectory is used as a method of sam-

pling a desired ensemble, for example to compute the average of some function of the phase 

space variables. In such cases, it is important that the trajectory produces a representative 
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collection of phase points for all variables of the model. A common ensemble used in bio-

molecular simulation is the 𝑁𝑉𝑇 ensemble, which weights points of phase space according 

to the Gibbs density [29]. 

 

 Analysing structures of MD models of glasses 
 
 The final phase space particle trajectories of the model glass obtained from the MD 

simulation can be analyzed to obtain static structure, thermodynamic and dynamic properties 

[53]. Here we investigate their time independent structural properties such as pair distribu-

tion functions, bond lengths, bond angle distribution functions and the coordination num-

bers, which are compared with the experimental results. The diffraction data produced from 

the models were also compared with the experiments to scrutinise the validity of a model. 

 

2.6.1 Pair distribution function 
 
 Glasses are isotropic in nature and their structures can be described in term of 1-

dimensional, spatially averaged, radial distribution function (RDF), 𝑅(𝑟). It’s defined as the 

number of atoms lying at distances between 𝑟 and 𝑟 + 𝑑𝑟 from the centre of an arbitrary 

origin atom. The 𝑅(𝑟) is defined in term of the function 𝜌(𝑟), by Equation 2.30, 

 𝑅(𝑟)𝑑𝑟 = 4𝜋𝑟,	𝜌(𝑟)𝑑𝑟 Equation 2.30 

where 𝜌(𝑟) is an atomic pair density correlation function. The normalized function is also 

known as pair distribution function (PDF), 𝑔(𝑟). When 𝑟 → ∞, 𝑔(𝑟) 	→ 1 and if 𝑟 is shorter 

than the distance of closet approach of pairs of atoms (i.e. 𝑟 → 0) 𝑔(𝑟) → 0. The 𝜌(𝑟) and 

𝑔(𝑟) are closely related functions, which is given in Equation 2.31, 

 𝑔(𝑟) = 	
𝜌(𝑟)	
𝜌F	 =

𝑅(𝑟)
4𝜋𝑟,𝜌F Equation 2.31 

where 𝜌F is the average number density of the material. The 𝜌(𝑟) oscillates about and then 

asymptotes to 𝜌F at high 𝑟 and becomes zero as 𝑟 → 0 as illustrated in Figure 2.6 [54].  
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Figure 2.6 Real space correlation functions for a monatomic amorphous material [54]. 
(Top-left) Radial density, 𝜌(𝑟), (top-right) radial distribution function, 𝑅(𝑟), (bottom-left) 
reduced pair distribution function, 𝐺(𝑟), and (bottom-right) total correlation function, 
𝑇(𝑟). 

 

 The other correlation function generally used to represent data that are useful for 

analysing the diffraction data are the total correlation function, 𝑇(𝑟), which is related to 

𝑅(𝑟), given by Equation 2.32. 

 𝑇(𝑟) =
𝑅(𝑟)
𝑟 = 4𝜋𝑟𝜌(𝑟) = 4𝜋𝑟𝜌F𝑔(𝑟) Equation 2.32 

 The differential correlation function or the reduced pair distribution function, 𝐺(𝑟), 

which is obtained on subtracting the average density contribution, 𝑡F(𝑟) = 4𝜋𝑟𝜌F, from the 

total correlation function (i.e. 𝑇(𝑟) − 𝑡F(𝑟)) [52] is given by Equation 2.33. 

 𝐺(𝑟) = 4𝜋𝑟[𝜌(𝑟) − 𝜌F] = 4𝜋𝑟𝜌F(𝑔(𝑟) − 1) Equation 2.33 
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density increases. This is because from the chosen arbitrarily center these 
are the distances at which other atoms are located. Before we proceed 
further, we take note of two other correlation functions generally used to 
represent data. They are the differential correlation function D{r), given by 
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and the total correlation function T{r), given by 
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and they are shown in Figure 4.01(d) and 4.01(e) respectively. We will 
discuss how the RDFs are obtained from experiments little later. The 
structural investigations of a glass consists in understanding the origin of 
the few peaks seen in RDF. 
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 Aforementioned are the real space correlation functions for a monatomic amorphous 

material. They all convey the same structural information and really only differ in their as-

ymptotic behaviour at large 𝑟, as shown by Figure 2.5, 𝑅(𝑟) ∝ 𝑟,, 𝑇(𝑟) ∝ 𝑟 and 𝐺(𝑟) → 0. 

In a multicomponent system containing more than one element type such as in a binary sys-

tem which contains atom 𝑖 and 𝑗 types the partial pair distribution function 𝑔/0 is defined in 

terms of 𝜌/0(𝑟) by Equation 2.34, 

 𝑔/0(𝑟) =
𝜌/0(𝑟)
𝜌F𝑐0

=
𝜌/0(𝑟)
𝜌0

 Equation 2.34 

where 𝜌0 =
+Ç
�

, the number density for the	𝑗 type atoms and 𝑐0 the concentration of atom type 

𝑗 in the material. When 𝑟 is large, there is no 𝑖 − 𝑗 correlation and 𝑔/0(𝑟)®1 whereas for 

very small 𝑟, 𝑔/0(𝑟)®	0 as atoms does not interpenetrate. We can also deduce the partial 

correlation function, 𝑇/0, which is given by Equation 2.35, 

 𝑇/0(𝑟) = 4𝜋𝑟𝜌/0(𝑟) = 4𝜋𝑟𝜌0𝑔/0(𝑟) Equation 2.35 

and the partial differential function or partial reduced pair distribution, 𝐺/0(𝑟), is given by 

Equation 2.36. 

 𝐺/0(𝑟) = 4𝜋𝑟𝜌0[𝑔/0(𝑟) − 1] Equation 2.36 

 For 𝑛 types of atoms in a system the structure may be described in terms of 𝑛(𝑛 +

1)/2 independent partial correlation functions, i.e. 𝑛 pairs for 𝑖 = 𝑗 and Z
ÈgZ
,

 pairs for 𝑖 ≠ 𝑗 

without repeating, which will give the total correlation function, 𝑇(𝑟), expressed in Equation 

2.37. 

 𝑇(𝑟) =7 7 𝑐/
0/
𝑇/0(𝑟) Equation 2.37 

 MD provides positions of individual atoms as function of time, hence 𝑔(𝑟) can be 

obtained from the simulations. This local structure function is proportional to the probability 

of finding a pair of atoms separated by distance, 𝑟 ± 𝑑𝑟, and the expression by which 𝑔(𝑟) 
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is evaluated by taking an ensemble average over pairs. It is defined as the number of atom 

at distance (𝑟, 𝑟 + 𝑑𝑟) from a central atom over average number of atoms in same volume 

and its mathematical form of 𝑔(𝑟) is given by Equation 2.38 or 2.39, 

 𝑔(𝑟) =
1
𝑁 ∑ ∑ 𝛿(𝑟 − 𝑅/0)+

0¦/
+
/9)

4𝜋𝑟,𝜌F  
Equation 2.38 

 

 4𝜋𝑟,𝜌F𝑔(𝑟) =
1
𝑁
〈77𝛿

𝑁

𝑗≠𝑖

𝑁

𝑖

:𝑟 − 𝑅𝑖𝑗;〉 Equation 2.39 

 
where 𝜌F = 𝑁/𝑉 is the average number density, ()

+
Ê )Z

/9)  gives the average over all central 

atoms and 𝑅/0 is the distance between centres of atoms 𝑖 and 𝑗. The term ∑ 𝛿(𝑟 − 𝑅/0)+
0¦/  is 

the counting function and the 𝛿 is the delta function described elsewhere [29, 34] and it takes 

the following values: 

𝛿(𝑥 − 𝑥/) = 1, if centre of atom 𝑖 is located at 𝑥 and 

𝛿(𝑥 − 𝑥/) = 0, if centre of atom 𝑖 is not at 𝑥. 

 On any radial direction, 𝑔(𝑟) can be expressed in terms of 𝑇(𝑟) by Equation 2.40, 

 4𝜋𝑟,𝜌F𝑔(𝑟) = 𝑟	𝑇(𝑟) Equation 2.40 

and hence, the pair distribution function (PDF), 𝑇/0(𝑟), of model is given by Equation 2.41. 

The result obtained for the 33𝐵𝑎𝐹, − 67𝑍𝑟𝐹. glass and its associated crystal 𝐵𝑎𝑍𝑟,𝐹)F is 

given in Figure 2.7. 

 𝑇/0(𝑟) = 	
1
𝑟 	
Ì
1
𝑁/
77𝛿Í𝑟 − 𝑅/0Î

+

0¦/

+

/

Ï Equation 2.41 
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Figure 2.7 The PDF of 33𝐵𝑎𝐹, − 67𝑍𝑟𝐹. glass and its related 𝐵𝑎𝑍𝑟,𝐹)F crystal. 
 

2.6.2 Nearest neighbor distances and coordination numbers 
 
 The statistical information for the non-crystalline structure like inter atomic distances 

and coordination numbers are contained in a set of pair distribution function. Therefore, from 

the 𝑇/0 , the coordination number, 𝑁/0(𝑟), that is the number of atoms 𝑗	surrounding the 

atom	𝑖 at distance between 𝑅) and 𝑅,can be deduced by Equation 2.42, 

 𝑁/0 = Ð 𝑟𝑇/0(𝑟)
ÑÈ

ÑÒ
	𝑑𝑟 Equation 2.42 

where 𝑅) and 𝑅, define the beginning, and ending positons of the peak. Interatomic distance 

between atom 𝑖	and 𝑗 contributes to both 𝑛/0 and 𝑛0/. This gives the relationship between the 

coordination number 𝑁/0 and 𝑁0/ given by Equation 2.43. 

 𝑐/𝑁/0 = 𝑐0𝑁0/ Equation 2.43 
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2.6.3 Bond angle distribution functions 
 
 In amorphous material, the bond angle distribution functions (BAD) describes the 

randomness in the structure. If we consider the atom types	𝑖 and 𝑗 then the bond angle, 𝜃 is 

the angle subtended between atoms 𝑖 − 𝑗 − 𝑖, 𝑗 being the central atom type and hence the 

inter-connections between atoms inside the structural units can be analysed in term of BAD. 

Figure 2.8 shows the BAD subtend by two oxygen, 𝑂, atoms at silicon, 𝑆𝑖, atoms i.e. is 𝑂 −

𝑆𝑖 − 𝑂. The crystalline structure will have a narrow distribution centred on a single value 

however the amorphous will have a broad angle distribution due to the static variation, struc-

tural and thermal disorder. 

 

 
 

Figure 2.8 The BAD of 33𝐵𝑎𝑂 − 67𝑆𝑖𝑂, glass and its two related 𝛼 and 𝛽 − 𝐵𝑎𝑆𝑖,𝑂º 
crystals. 

 

2.6.4 Network connectivity 
 
 The averaged 𝑄Z structure of the glass is called the network connectivity, which can 

be understood as the number of bridging and non-bridging bonds in the glass structures that 

link each of the building blocks to their neighbours. Here 𝑄Z represents the structure unit 

and 𝑛	is the number of bridging atoms (i.e. oxygen or fluorine in this project). This can easily 

be calculated from the stoichiometric composition of glasses and the number of bridging 

bonds that are destroyed for each network modifier added. 
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 There are two methods used to analyse the network connectivity of the glass models. 

The first is a direct method from the pair distribution function, 𝑇/0(𝑟). For example, from 

Figure 2.7, the area under the first peak of 𝑇×�×�(𝑟) gives 𝐶𝑁×�×� which is an average con-

nectivity, at cutoff 4.55 Å. The other method is “xhst-hsc” software [50], which looks for 

the 𝑍𝑟 − 𝐹 − 𝑍𝑟 (i.e. corner sharing) and edge sharing fluorine in the model, which is illus-

trated by 𝑍𝑟()) and 𝑍𝑟(,) in Figure 2.9. In the direct method (i.e. from PDF), 	𝑍𝑟(,) and 𝑍𝑟(.) 

are counted once each from the 𝑍𝑟()) at certain cutoff but 𝑍𝑟(-) is not counted. However, in 

“xhst-hsc” method, 𝑍𝑟(,) is counted twice as connection is edge sharing (two fluorine) and 

𝑍𝑟(-) is counted once as corner sharing but 𝑍𝑟(.) is not counted. The “xhst-hsc” method par-

ticularly looks for the number < 𝑛 > of fluorine ion bridging between two zirconium ions 

whereas in direct method it is not necessary. 

 

 
 

Figure 2.9 Illustration of 𝑍𝑟 − 𝑍𝑟 connectivity calculation from the PDF and "xhst-hsc" 
program. 

 

From these two methods, percentage of corner sharing and edge sharing can be cal-

culated for the modelled glasses or crystals by Equation 2.44. 

 %	𝑐𝑜𝑟𝑛𝑒𝑟	𝑠ℎ𝑎𝑟𝑖𝑛𝑔 =
𝐶𝑁×�×� −

< n >
2

< n > −< n >
2

 Equation 2.44 
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2.6.5 X-ray and neutron diffraction structure factor 
 
 X-ray and neutron diffraction structure factors can be deduced from the 𝑔(𝑟) func-

tion from the MD models of the glasses and compared with experimental diffraction results. 

This is an essential process to validate the MD models of glasses. X-rays are high energy 

electromagnetic waves that consist of oscillating electric and magnetic field which interact 

with the electron cloud of atoms in a material. Neutrons are the neutral particles that will 

only interact with the nucleus of an atom via the strong nuclear force. It has the advantage 

of deep penetration to probe the bulk material but requires a large sample for strong scatter-

ing signal [55]. 

 In theory X-ray and neutron diffraction formalism can be similar. In a single crystal 

if constructive interference is to occur among outgoing beams of X-rays of wavelength 𝜆, 

then elastically scattered from regular plane of atoms, will obey the Bragg condition, given 

by Equation 2.45, 

 𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃 Equation 2.45 

where 𝑑 is the spacing of planes and 𝑛 is an integer and the resultant diffracted X-rays are 

observed only for scattering angles 2𝜃 and wavelengths 𝜆 that satisfy the scattering geome-

try for a point shown in Figure 2.10 [56]. 

 

 
 

Figure 2.10 The vector diagram for elastic scattering geometry |𝑲𝒊| = 3𝑲𝒇3 through an 
angle of 2𝜃	[56]. 
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 The diffraction pattern produced by crystalline material is characteristically very dif-

ferent to glassy material. The diffraction experiments conducted with a non-crystalline sam-

ple is no different from that with a crystalline material however, observed diffraction pattern 

by non-crystalline materials are diffuse haloes in character [57]. Hence the Bragg’s law is 

inappropriate and different conditions for diffraction should be derived for a non-crystalline 

structure material. 

 The scattering of both X-rays and neutrons from samples are characterised by the 

resultant change in the momentum and energy. If we consider the elastic scattering where 

energy is conserved then the scattering law will only depend on scattering vector or wave-

vector transfer, 𝑸. The vector diagram for elastic scattering is shown in Figure 2.10 where 

𝑲𝒊 is the incident wavevector on the sample and 𝑲𝒇 is the final wave vector scattered by the 

sample through an angle of 2𝜃. Intensities of the diffracted beams are recorded as a function 

of 2𝜃. 

 In a scattering theory X-rays or neutrons momentum and energy change as follows 

given by Equation 2.46 and 2.47, 

 ℏ𝑸 = ℏ𝑲𝒊 − ℏ𝑲𝒇 Equation 2.46 

 ℏ𝜔 = 𝐸/ − 𝐸à  Equation 2.47 

where Planck constant ℏ = ℎ/2𝜋, angular frequency 𝜔 = 2𝜋𝑓 and 𝑸 = 𝑲𝒊 − 𝑲𝒇. If there is 

no exchange of energy then after scattering, the modulus of the wave vector 𝑲 and the wave-

length 𝜆 remains unchanged as given by Equation 2.48. 

 |𝐊𝐢| = |𝐊𝐟| =
2π
λ  Equation 2.48 

The parameter 𝑄 can be deduced by elementary trigonometry as given by Equation 

2.49 and 2.50, 
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|𝑸|
2 = |𝑲𝒊|𝑠𝑖𝑛𝜃 Equation 2.49 

 

 𝑄 =
4𝜋𝑠𝑖𝑛𝜃
𝜆  Equation 2.50 

where 𝑄 = |𝑸| and this links the magnitude of the momentum transfer to the wavelength 

and scattering angle. This is known by the scattering vector in neutron diffraction and sym-

bol 𝑘 is conventionally used to represent the scattering vector in X-ray diffraction. 

 If the scatters are point charges, then the scattering intensity, 𝐼X©, in terms of ‘electron 

units’(𝑒𝑢) is given by modulus squared of amplitude as expressed in Equation 2.51, 

 𝐼X© = 𝑓X𝑓X∗ 
Equation 2.51 

𝑓X  is the scattering factor which is given Equation 2.52. 

 𝑓X = Ð𝑒𝑥𝑝[𝐐. 𝐫] 𝜌X(𝒓)𝑑𝑉 Equation 2.52 

 Here, atomic electron charge is assumed to be distributed in a small volume 𝑑𝑉, and 

𝜌X(𝒓) is the corresponding density variation as a function of 𝒓. Assuming the electron dis-

tribution to have spherical symmetry so that 𝑟 is simply treated as a scalar [53] gives Equa-

tion 2.53. 

 𝑓X = Ð 4𝜋𝑟,	𝜌X(𝑟)
𝑠𝑖𝑛𝑄𝑟
𝑄𝑟

ë

F
𝑑𝑟 Equation 2.53 

 For an atom containing several electrons, the ‘atomic scattering factor’ is simply the 

sum of the individual amplitudes as given by Equation 2.54, 

 𝑓 =7𝑓XZ
Z

= 7Ð 4𝜋𝑟,	𝜌XZ(𝑟)
𝑠𝑖𝑛𝑄𝑟
𝑄𝑟

ë

F
𝑑𝑟

Z

 Equation 2.54 

where 𝜌XZ(𝑟) is the density distribution of electrons and 𝑠𝑖𝑛𝑄𝑟/𝑄𝑟  tends to 1 for small 

value of 𝑄 and so integral will give the total number of elections in the atom or atomic num-
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ber 𝑍. Hence 𝑓 itself tends to 𝑍 as 𝑄 tends to zero. The atomic scattering factor, 𝑓, is a func-

tion of 𝑄 and the variation of 𝑓(𝑄) as function of 𝑄 is shown in Figure 2.11 [58] for X-rays 

and neutrons. 

 
 

Figure 2.11 Schematic diagram of 𝑄 dependence of atomic form factor, 𝑓, for X-ray and 
neutron diffraction [58]. 

 

 In an amorphous material, the scattered intensity 𝐼(𝑸) is given by the overall sum-

mation of the scattered amplitude 𝐴(𝑸) from all atoms, 𝑖, having positions, 𝒓𝒊, multiplied 

by its complex conjugate. Equation 2.55 and 2.56 defines 𝐴(𝑸) and 𝐼(𝑸)	respectively, 

 𝐴(𝑸) =7𝑓/	exp	(𝑖𝑸. 𝒓𝒊)
/

 Equation 2.55 

 

 𝐼(𝑸) =7𝑓/	exp	(𝑖𝑸. 𝒓𝒊)
/

7𝑓0
0

exp	(−𝑖𝑸. 𝒓𝒋) Equation 2.56 

where subscript 𝑖 is number of atoms 1…𝑁. By introducing the vector, 𝒓𝒊𝒋 = 𝒓𝒊 − 𝒓𝒋, and 

Equation 2.56 can be written as Equation 2.57. 

 𝐼(𝑸) = 77𝑓/𝑓0
0/

𝑒𝑥𝑝:𝑸. 𝒓𝒊𝒋	; Equation 2.57 

The probability of finding two atomic scatters at distance 𝑟/0 from a given atom is 

identical in all directions assuming the isotropic nature of the amorphous solid and taking 

the average of the exponential term in above equation yields the ‘Debye equation’ [54, 55] 

for an isotropic collection of scattering atoms, which is given in Equation 2.58. 
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 𝐼(𝑄) =77𝑓/
0

𝑓0
/

𝑠𝑖𝑛𝑄𝑟/0
𝑄𝑟/0

 Equation 2.58 

 If the type of atom in a material is monoatomic, i.e. one type of atoms, then 𝐼(𝑄)	is 

given by Equation 2.59. 

 𝐼(𝑄) =7 𝑓,
/

+7 7 𝑓,
/¦0

𝑠𝑖𝑛𝑄𝑟/0
𝑄𝑟/0/

 Equation 2.59 

 In the above Equation 2.59, the density function 𝜌/:𝑟/0; is introduced considering 𝑖 

as the atom at the origin and the summation over 𝑗 can be replaced by the integral over the 

sample volume with an assumed spherical symmetry to give Equation 2.60. 

 

 𝐼(𝑄) =7 𝑓,
/

+7 𝑓, Ð𝜌/(𝑟/0)
𝑠𝑖𝑛𝑄𝑟/0
𝑄𝑟/0/

	𝑑𝑉0 Equation 2.60 

 If the density is expressed as an appropriate isotropic function of 𝑟 and taking into 

consideration that at sufficiently large distance, 𝑟, 𝜌(𝑟) tends to 𝜌F, which is the constant 

average density then the Equation 2.60 can be written as Equation 2.61, 

 𝐼(𝑄) = 𝑁𝑓, + 𝑁𝑓, Ð 4𝜋𝑟,
ë

F
[𝜌(𝑟) − 𝜌F]

𝑠𝑖𝑛𝑄𝑟
𝑄𝑟 𝑑𝑟 Equation 2.61 

where the effect of 	𝜌F can be ignored at 𝑄 = 0, which is not measured and 𝑁 is the total 

number of atoms in the sample. The reduced scattering function, 𝐹(𝑄), is given by Equation 

2.62. 

 𝐹(𝑄) = 𝑄 ¢
I(Q)
𝑁𝑓, − 1¤ 

Equation 2.62 

 The differential or reduced radial distribution function, 𝐺(𝑟), is given by Equation 

2.33 and 𝐹(𝑄) and 𝐺(𝑟) oscillate about zero instead of being an increasing or decreasing 

function of 𝑄 or 𝑟. Thus 𝐹(𝑄) can be written as Equation 2.63. 

 𝐹(𝑄) = Ð 𝐺(𝑟)𝑠𝑖𝑛𝑄𝑟	𝑑𝑟
ë

F
 Equation 2.63 
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 The function 𝐹(𝑄) is obtained from the experimental scattering intensity in 𝑄-space. 

The reduced pair distribution function, 𝐺(𝑟), is related to 𝐹(𝑄) through a sine Fourier trans-

form as given by Equation 2.64. 

 𝐺(𝑟) =
2
𝜋
Ð 𝐹(𝑄)𝑠𝑖𝑛𝑄𝑟	𝑑𝑄
ë

F
 Equation 2.64 

 The structure factor, 𝑆(𝑄) is related to 𝐹(𝑄) by the expression given by Equation 

2.65, 

 𝐹(𝑄) = 𝑄[𝑆(𝑄) − 1] Equation 2.65 

and the 𝑆(𝑄) is defined in Equation 2.66. 

 𝑆(𝑄) =
𝐼(𝑄)
𝑁𝑓,  Equation 2.66 

 
 The structure factor can be calculated from the pair distribution function (PDF) as 

given by Equation 2.67. 

 𝑄[𝑆(𝑄) − 1] = Ð (𝑇(𝑟) − 4𝜋𝑟𝜌F)
ë

F
𝑠𝑖𝑛𝑄𝑟	𝑑𝑟 Equation 2.67 

 In a monoatomic system, all the atoms are chemically identical providing no corre-

lation between scattering length, and atomic positon in the sample. In a polyatomic system 

scattering length distribution is different for neutron for given chemical species, 𝑖, and for 

X-ray scattering length depends on 𝑍/. Different chemical species also have different inter-

atomic correlations so to describe the structure factor for polyatomic system one has to con-

sider several partial structure factors, 𝑆/0(𝑄) [53]. Therefore, for more than one type of at-

oms, the 𝑇/0(𝑟) contribution to 𝑆(𝑄) depends on concentration of atoms and the atomic scat-

tering factors. Hence, in Equation 2.67, weighting factor 𝑤/0  is added to generate 𝑆(𝑄) from 

𝑇/0, which is expressed in Equation 2.68, 
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 𝑄(𝑆(𝑄) − 1) =7𝑤/0
/0

(𝑄)Ð :𝑇/0(𝑟) − 4𝜋𝑟𝜌0;
ë

F
𝑠𝑖𝑛𝑄𝑟	𝑑𝑟 Equation 2.68 

where, 𝑤/0  is defined by Equation 2.78,  

 𝑤/0 =
𝑐/𝑐0	𝑓/𝑓0
〈𝑓〉,  Equation 2.69 

and defining 〈𝑓〉 = 	∑ 𝑐/𝑓/+
/9) . The monoatomic system is expressed in polyatomic system 

by using the weighted values for the scattering factors and 𝜌(𝑟) is expressed as function of 

scattering factors by the 𝑤/0	 as shown by Equation 2.70, 

 𝜌(𝑟) = 7𝑐/𝜌/0
/0

(𝑟) Equation 2.70 

where 𝜌/0(𝑟) is the average number of 𝑗 atoms per unit volume at distance 𝑟 from any 𝑖 

atom. 

 The 𝑤/0  are the main factors that causes the different scattering results for X-ray and 

neutron diffraction. The calculation of 𝑤/0  for X-ray is given by Equation 2.71, 

 𝑤/0 =
:2 − 𝛿/0;𝑐/𝑐0	𝑍/𝑍0

〈𝑧,〉  Equation 2.71 

where 𝛿/0 is the Kronecker delta function, 𝛿/0 = 1 for 𝑖 = 𝑗 and 𝛿/0 = 0 for 𝑖 ≠ 𝑗. Referring 

to Figure 2.11, this is a good approximation for X-ray, as 𝑓 → 𝑍 as 𝑄 → 0 but for the neu-

trons the weighting factor is true because it only depends on the scattering length, 𝑏, which 

is given by Equation 2.72. 

 𝑤/0 =
:2 − 𝛿/0;𝑐/𝑐0	𝑏/𝑏0

〈𝑏,〉  Equation 2.72 

 In the diffraction experiments, the value of maximum 𝑄 measured is finite and hence 

this 𝑄±£{ leads to peak broadening in real space after Fourier transformation as well as to 

non-physical oscillation in 𝑔(𝑟) and in other	𝑟-space functions. Therefore, the termination 

of the data can be represented by the modification function 𝑀(𝑄) describing the experi-

mental 𝑄-range, with 𝑀(𝑄 > 𝑄±£{) = 0. This is Fourier-transformed to produce the 𝑟-
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space modification function with which theoretical 𝑟-space function is convolved before 

comparison or fitting to Fourier-transformed diffraction data [53]. However, in this thesis 

only at Chapter 4 the Waser modification function (see Figure 1. 𝑐 in [59]) is used to show 

𝑇(𝑟) from X-ray diffraction data for the barium silicate glass. 
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Chapter 3  
The method of rotational invariants 
 

 Introduction 
 
 The pair distribution function and structure factor (i.e. obtained from its Fourier 

transformation), coordination number, network connectivity and bond angle distribution 

functions are some of the conventional techniques for local structure analysis of simulated 

glass models. In an atomistic model, the bond angle distribution functions (BAD) can de-

scribe the coordination geometries of atoms. The alternative parameters, known as rotational 

invariants, 𝑄", can also describe the type of and degree of order in coordination geometries 

[1]. In previous studies, they were used to describe liquid and amorphous structures, and 

were also referred to as “bond orientational order parameters” [2] and “spherical invariants” 

[3]. 

 Notably 𝑄" were used to characterise the order in coordination geometries of atoms 

in Lennard-Jones (LJ) liquids and dense random packing of hard spheres models. Remarka-

bly, 𝑄" were reported only for	𝑙 even (despite that 𝑄" for 𝑙	odd will be non-zero when there 

is lack of centrosymmetry) and thus proposing resemblance to icosahedral geometry [1]. 

There was a later study [4] done on LJ liquids that reported values for both 𝑙	even and odd 

but large values were found for 𝑙 odd, challenging the previous hypothesis of icosahedral 

geometry [1]. Perhaps, the most accepted previous study was done by Steinhardt et al. [2] as 

there are number of published studies such as [5-9], which are based on their work looking 

at different bond orientational order parameters. 

 Network former and modifier cations of glasses form a polyhedral structure with the 

nearest neighbouring anions and these cations coordination polyherdra have vertices, which 

are defined by the nearest neighbour anions to which the cations are ionically bonded (i.e. 

in the case of ionic glasses). Cations coordination polyhedra can be compared with the all 
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the possible reference convex polyhedra structures in terms of rotational invariant parame-

ters,	𝑄". The reference convex polyhdera of Johnson solids, Platonic solids and Archimedean 

solids with the vertices, 𝑁, between 4 and 12 are investigated. The Platonic solids are regular 

convex polyhedra with equivalent faces composed of congruent convex regular polygons, 

and the Archimedean solids are the convex polyhedra that have similar arrangement of non-

intersecting regular convex polygons of two or more different types arranged in the same 

way about each vertex with all sides the same length. The rest of the convex polyhedra with 

regular faces and equal length edges can be defined as the Johnson solids [10]. 

 

 Calculation of rotational invariants  
 
 In the glass, an atom at position, 𝑅*, is given by 𝑹𝒊 = (𝑥*, 𝑦*, 𝑧*). However, this can 

also be represented by the angular coordinate function or spherical function, 𝑓(𝑟, 𝜃, ∅) pic-

tured in Figure 3.1. 

 

 
 

Figure 3.1 Polar coordinates, where 0 ≤ 𝜃 ≤ 𝜋 and 0 ≤ ∅ ≤ 2𝜋. 
 

 The information between the neighbouring atoms 𝑗 relative to a given central atom 𝑖 

can be expressed in Equation 3.1, 

𝑇*@(𝑥, 𝑦, 𝑧) = A𝛿C𝑥 − 𝑥*@E𝛿C𝑦 − 𝑦*@E𝛿
@F*

(𝑧 − 𝑧*@) Equation 3.1 

∅ 

𝑓(𝑟, 𝜃, ∅) 

𝜃 
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where 𝑥*@ = (𝑥@ − 𝑥*) and for an isotropic material like glass, the correlation in radial posi-

tion of neighbouring atoms 𝑅*@ can be described using the pair distribution function, 𝑇*@(𝑟), 

given by Equation 2.41 (see Chapter 2), which is the orientational average of 𝑇*@(𝑥, 𝑦, 𝑧) 

over all atoms	𝑖 [1] and given by Equation 3.2. 

𝑇(𝑟) =
1
𝑁AAδ(𝑟 − 𝑅*@)

@F**

 Equation 3.2 

 In 𝑇(𝑟), bond length, 𝑟 (radial distance), corresponds to nearest neighbours. Alter-

natively, the correlation can be also expressed in angular positions of nearest neighbour at-

oms, 𝜃*@  and 𝜙*@, by using the bond angle distribution function. The part of the function, 

𝑇*@(𝑥, 𝑦, 𝑧), that depends on angular positions, 𝜃*@  and 𝜙*@, [1] is given by Equation 3.3, 

𝜏*@(𝜃, ∅) =A𝛿(𝜃 − 𝜃*@
@F*

)𝛿(𝜙 − ∅*@) Equation 3.3 

where 𝜃*@  gives the angular position of atom 𝑗 when atom 𝑖 is at the origin.  

 The BAD as a function of 𝜃	describing the coordinate geometries from the distribu-

tion of neighbouring atoms 1 and 2 relative to central atom can normally be calculated by 

Equation 3.4, 

 𝒓𝟏. 𝒓𝟐 = |𝒓𝟏||𝒓𝟐|𝑐𝑜𝑠𝜃 Equation 3.4 

where 𝒓𝟏 is the vector between centre atom and the first neighbouring atom and 𝒓𝟐 is the 

vector between centre atom and the second neighbouring atom. 

 From the theory of spherical harmonics [11], the spherical function, 𝑓(𝜃, ∅), can be 

decomposed as the sum of its harmonics [12], given by Equation 3.5, 

 𝑓(𝜃, 𝜙) = AA𝐶"S
S

𝑌"S
"

(𝜃, ∅) Equation 3.5 
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where radial factors 𝑟 can be ignored assuming it’s approximately equidistance from central 

atom to the nearest neighbour atoms and 𝑌"S(𝜃, ∅) is the spherical harmonic function with 

𝑙 = 0, 1, 2, 3, …, and 𝑚 = 	−𝑙, −𝑙 + 1, …, 𝑙 − 1, 𝑙. 

 From the properties of completeness and orthogonality [13], the value of coefficient 

𝐶"S is given by Equation 3.6, 

𝐶"S =Y𝑓(𝜃, ∅)𝑌"S∗ (𝜃, ∅)𝑠𝑖𝑛𝜃𝑑𝜃𝑑∅ Equation 3.6 

where ∗ denotes the complex conjugate. Normalization of 𝑓(𝜃, ∅) gives Equation 3.7, 

A|𝐶"S|^
_

"`a

= 1 
Equation 3.7 

 

where 𝐶"S depend on the axis orientation.  

 The function from Equation 3.3 is equal to Equation 3.5 [1] and are considered dis-

crete functions. The presence of the delta function in Equation 3.3	complicates the normali-

sation and for convenience 𝜏*@(𝜃, ∅) is not normalised. From Equations 3.3, 3.5 and 3.6, i.e. 

substituting 𝜏*@(𝜃, ∅) into the expression for 𝐶"S gives Equation 3.8. 

𝐶"S =A𝑌"S∗ (𝜃*@∅*@
@F*

) 
Equation 3.8 

 

 The coefficients 𝐶"S in their complex number form are rotationally-dependent [14], 

which cannot be important in an isotropic material. They can be converted to a rotationally 

invariant form by computing the magnitude of each coefficient. Therefore, the second order 

rotational invariant, 𝑄", is deduced by Equation 3.9, 

𝑄" = d
1

2𝑙 + 1A
|𝐶"S|^

S

e

f
^

 
Equation 3.9 
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here, the invariant circular 4𝜋 factor is not included whereas in other literature it is included 

in calculation of the 𝑄" values. The fact that 𝑄" does not depend on axis orientation can be 

demonstrated by using the example function given by Equation 3.10, 

 

𝑓(𝜃, 𝜙) = cos(2𝜃) = 𝑐𝑜𝑠2𝑧̂ Equation 3.10 

as this function has the spherical harmonic coefficients 𝐶aa = 0.489, 𝐶^a = 0.874 and com-

paring with the example function given by the Equation 3.11, 

𝑓(𝜃, 𝜙) = sin(2𝜃) cos	(2𝜙) = 𝑐𝑜𝑠2𝑥m Equation 3.11 

which has the spherical harmonic coefficients 𝐶aa = 0.489, 𝐶^a = −0.438 and 𝐶^^ =

𝐶n^n^ = 0.536. As illustrated in Figure 3.2 these two functions differ only in the axis ori-

entation and both functions have the same rotational invariants 𝑄a = 0.489 and 𝑄^ = 0.391. 

Figure 3.3 is another example of functions having same 𝑄" but different spherical harmonics 

coefficients. 

 

 
 

Figure 3.2 (Left) first example smooth function oriented along the 𝑧-axis 𝑓(𝜃, 𝜙) =
𝑐𝑜𝑠(2𝜃) and (right) second example smooth function oriented along the	𝑥-axis 𝑓(𝜃, 𝜙) =
𝑠𝑖𝑛(2𝜃) 𝑐𝑜𝑠	(2𝜙). Both functions have same rotational invariants 𝑄a = 0.489 and 𝑄^ =
0.936 but the spherical harmonic coefficients are different [1]. 
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Figure 3.3 The discrete function (four points in a cross) orientated in the (a) horizontal 𝑥, 
𝑦 plane and (b) vertical 𝑥, 𝑦 plane. The (c) and (d) are the reconstructions using spherical 
harmonics coefficient 𝐶"S for 𝑙 = 1	to	5. Both have different spherical harmonics coeffi-
cients but have same rotational invariants 𝑄a = 1.128, 𝑄^ = 0.564 and 𝑄o = 0.936 [1]. 

 

 

 Reference polyhedra 
 
 All the possible convex polyhedra with vertices, 4 ≤ 𝑁 ≤ 12 were extracted from 

the Wolfram Mathematica [15]. One way to distinguish polyhedra with the same vertices, 

𝑁, is by the values of their 𝑄" and 𝑙 can be thought of as the order of “nodal” symmetry. The 

names and the 3D pictures of the all reference convex polyherdra, 4 ≤ 𝑁 ≤ 12 are illus-

trated in Figures 3.4	– 3.7. 

 

 

 

 

 

 

 

1.128, C2–2= C22= 0.773, C20= 0.631, C4–4= C44= 0.885, C4–2= C42
=−0.669 and C40 = 2.327. These two functions differ only in axis ori-
entation and both functions have the same rotational invariants Q0

= 1.128, Q2 = 0.564 and Q4 = 0.936.
The calculation of rotational invariant Ql as described has been car-

ried out for cations in several molecular dynamics models of silicate
and oxide glasses. These include a 15,100 atommodel of Eu-doped sodi-
um silicate glass, 1Eu2O3–33Na2O–67SiO2. The model was made using
classical molecular dynamics and shows a good agreement to X-ray
and neutron diffraction of sodium silicate glass and X-ray absorption
spectroscopy results for Eu-doped silicate glasses as previously been re-
ported [7]. Fig. 4 shows the typical examples of coordination geometries
for individual Si, Na and Eu cations from themodel. The average CNs are
4 for Si, 5.1 for Na and 5.7 for Eu (using cutoffs of 2.25 Å for Si, 3 Å for Na

and 3 Å for Eu). Also included are 1000 atommodels 50CaO–50P2O5 [8],
63CaO–37Al2O3 [9], and 50MO–50SiO2 glasseswithM=Mg [8], Ca [10]
and Ba [11]. The average CNs are 4.6 for Mg, 6.0 for Ca and 6.6 for Ba
(using cutoffs of 2.75 Å for Mg, 3 Å for Ca and 3.3 Å for Ba). Although a
modifier cation in a glass will have a range of CNs, the results for Ql

are presented for cations classified by CN because the definition of Ql

is dependent of CN.

3. Results

Table 1 shows the values of rotational invariant parameter Ql for l =
0 to 10 for some regular coordination polyhedra including the platonic
solids. The values of Ql are consistent with previous studies [2,3] apart
from a different normalisation factor. Note that because τi(θ,ϕ) is a

Fig. 2.A smooth function oriented along the (left) z-axis (f(θ,ϕ)= cos(2θ)) and (right) x-axis (f(θ,ϕ)= sin(2θ)cos(2ϕ)).While the spherical harmonic coefficients are different, both have
the same rotational invariants Q0 = 0.489 and Q2 = 0.391.

Fig. 3. A discrete function (four points in a cross) oriented in the (top left) horizontal (x,y) and (top right) vertical (x,z) planes, and (bottom) reconstructions using spherical harmonic
coefficients Clm for l = 0 to 5. While the spherical coefficients are different, both have the same rotational invariants Q0 = 1.128, Q2 = 0.564 and Q4 = 0.936.

3D. Scott, G. Mountjoy / Journal of Non-Crystalline Solids xxx (2014) xxx–xxx

Please cite this article as: D. Scott, G.Mountjoy, Rotational invariants of network former andmodifier cations in silicate glasses, J. Non-Cryst. Solids
(2014), http://dx.doi.org/10.1016/j.jnoncrysol.2014.02.022
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Figure 3.4 Reference convex polyhedra 4 ≤ 𝑁 ≤ 6. 
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Figure 3.4 All the possible convex polyhedra 4 ≤ A ≤ 6. 
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Figure 3.5 Reference convex polyhedra 7 ≤ 𝑁 ≤ 8. 
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Figure 3.6 Reference convex polyhedra 9 ≤ 𝑁 ≤ 10. 
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Figure 3.7 Reference convex polyhedra 11 ≤ 𝑁 ≤ 12. 
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 Nearest neighbour distances, bond angle distributions 
and coordination numbers for reference polyhedra 

 
 In the following Figures 3.8	– 	3.13 are the examples of reference polyhedra with 

their parameters such as the number of vertices, 𝑁, or the coordination numbers, 𝐶𝑁, the 

vertices distances from the centre of the mass (COM), i.e. the neighbouring distances from 

the central position, and the angles subtend by each vertex with another vertex. 

 

 
 

Figure 3.8 Tetrahedron vertices, 𝑁 = 4, i.e. 𝐶𝑁 = 4 and the vertices distances from the 
COM. 

 

 
 

Figure 3.9 Tetrahedron distances from each vertex to another vertex and the number of 
distances between the vertices. 

 

 

 

	

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3

N
um

be
r o

f v
er

tic
es

 (N
)

Vertices distances  from the centre of mass (COM)/ unit distance

Tetrahedron 

Chapter 3: The method of rotational invariants  
 

69 

 Nearest neighbour distances, bond angle distributions 
and coordination numbers for reference polyhedra 

 

 In the following Figures 3.8	– 	3.13 are the examples of reference polyhedra with 

their parameters such as the number of vertices, C, or the coordination numbers, NC, the 

vertices distances from the centre of the mass (COM), i.e. the neighbouring distances from 

the central position, and the angles subtend by each vertex with another vertex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Tetrahedron vertices, C = 4, i.e. NC	 = 4 and the vertices distances from 
the COM. 

Figure 3.9 Tetrahedron distances from each vertex to another vertex and the number 
of distances between the vertices 
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Figure 3.10 Angles subtended by each vertex to another vertex in a tetrahedron polyhe-
dron. 

 

 

Figure 3.11 Elongated Square Pyramid vertices, 𝑁 = 9, i.e. 𝐶𝑁 = 9 and the vertices dis-
tances from the COM. 

 

 
 

Figure 3.12 Elongated Square Pyramid distances form each vertex to another vertex and 
number of distances between vertices. 

 

Chapter 3: The method of rotational invariants  
 

70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Angles subtended by each vertex to another vertex in a tetrahedron polyhedron. 

 

Figure 3.11 Elongated Square Pyramid vertices, C = 9, i.e. NC	 = 9 and the vertices 
distances from the COM. 

Figure 3.12 Elongated Square Pyramid distances form each vertex to another vertex 
and number of distances between vertices. 
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Figure 3.10 Angles subtended by each vertex to another vertex in a tetrahedron polyhedron. 

 

Figure 3.11 Elongated Square Pyramid vertices, C = 9, i.e. NC	 = 9 and the vertices 
distances from the COM. 

Figure 3.12 Elongated Square Pyramid distances form each vertex to another vertex 
and number of distances between vertices. 
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Figure 3.13 Angles subtended by each vertex to another vertex in Elongated Square Pyr-
amid polyhedron. 

 

 Rotational invariants values of the reference 
polyhedra 

 
 As aforementioned, the Cartesian coordinates of all possible convex polyhedra, 4 ≤

𝑁 ≤ 12 were extracted from Wolfram Mathematica [15] and they were converted to polar 

coordinates to evaluate the spherical harmonics coefficients, 𝐶"S. Then uing equation 3.9 

the 𝑄𝑙 values of the reference polyhedra were evaluated, which are shown in Tables 3.1 −

	3.13. 

 
Table 3.1 𝑄" values for 𝑙 = 1 to 10 of convex polyhedra with vertices, 𝑁 = 4. 
 

𝑸𝒍 
Tetrahedron 
(𝑵 = 𝟒) 

𝒍  

0 1.128 

1 0.000 

2 0.000 

3 0.841 

4 0.575 

5 0.000 

6 0.709 

7 0.691 

8 0.240 

9 0.584 

10 0.734 
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 Rotational invariants values of the reference polyhe-
dra 

 

 As aforementioned, the Cartesian coordinates of all possible convex polyhedra, 4 ≤
C ≤ 12 were extracted from Wolfram Mathematica [15] and they were converted to polar 

coordinates to evaluate the spherical harmonics coefficients, N"O. Then uing equation 3.9 

the !$ values of the reference polyhedra were evaluated, which are shown in Tables 3.1 −

	3.13. 

 

Table 3.1 !" values for $ = 1	hK	10	of convex polyhedra with vertices C = 4. 

 
 

 

 

 

 

 

 

 

 

 

 

ij	 Tetrahedron 
(k = l) 

j	  

0 1.128 
1 0.000 
2 0.000 
3 0.841 
4 0.575 
5 0.000 
6 0.709 
7 0.691 
8 0.240 
9 0.584 
10 0.734 

Figure 3.13 Angles subtended by each vertex to another vertex in Elongated Square 
Pyramid polyhedron. 
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Table 3.2 𝑄" values for 𝑙 = 1 to 10 of convex polyhedra with vertices, 𝑁 = 5. 
 

𝑸𝒍 
Square Pyramid 

(𝑵 = 𝟓) 
Triangular Dipyramid 

(𝑵 = 𝟓) 
𝒍   

0	 1.410	 1.410	
1	 0.061	 0.000	
2	 0.217	 0.141	
3	 0.593	 0.669	
4	 0.947	 0.881	
5	 0.458	 0.442	
6	 0.350	 0.643	
7	 0.782	 0.364	
8	 0.655	 0.885	
9	 0.654	 0.605	
10	 0.455	 0.482	

 

 

 

Table 3.3 𝑄" values for 𝑙 = 1 to 10 of convex polyhedra with vertices, 𝑁 = 6. 
 

𝑸𝒍 
Octahedron 
(𝑵 = 𝟔) 

Pentagonal Pyramid 
(𝑵 = 𝟔) 

Trigonal Prism 
(𝑵 = 𝟔) 

𝒍    
0	 1.693	 1.693	 1.693	

1	 0.000	 0.138	 0.000	

2	 0.000	 0.401	 0.242	

3	 0.000	 0.495	 0.578	

4	 1.293	 0.756	 0.725	

5	 0.000	 0.964	 1.092	

6	 0.598	 0.334	 0.215	

7	 0.000	 0.801	 0.102	

8	 1.215	 0.662	 0.942	

9	 0.000	 0.379	 0.747	

10	 0.696	 0.909	 0.770	
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Table 3.4 𝑄" values for 𝑙 = 1 to 10 of convex polyhedra with vertices, 𝑁 = 7. 
 

𝑸𝒍 
Elongated 

Triangular Pyramid 
(𝑵 = 𝟕) 

Pentagonal Dpyramid 
 

(𝑵 = 𝟕) 

Augmented 
Triangular Prism 

(𝑵 = 𝟕) 
𝒍    
0	 1.975	 1.975	 1.957	

1	 0.036	 0.000	 0.048	

2	 0.468	 0.141	 0.176	

3	 0.637	 0.000	 0.317	

4	 0.291	 1.093	 0.932	

5	 1.113	 0.990	 1.091	

6	 0.787	 0.123	 0.573	

7	 0.617	 0.670	 0.317	

8	 0.846	 0.950	 0.697	

9	 0.312	 0.559	 1.052	

10	 0.818	 0.865	 0.666	

 

 

 

Table 3.5 𝑄" values for 𝑙 = 1	to 10 of convex polyhedra with vertices, 𝑁 = 8. 
 

𝑸𝒍 
Biaugmented 

Triangular Prism 
(𝑵 = 𝟖) 

Cube 
 

(𝑵 = 𝟖) 

Elongated Triangular 
Dpyramid 
(𝑵 = 𝟖) 

𝒍    

0	 2.257	 2.257	 2.257	

1	 0.034	 0.000	 0.000	

2	 0.232	 0.000	 0.806	

3	 0.109	 0.000	 0.578	

4	 0.725	 1.149	 0.161	

5	 1.385	 0.000	 1.092	

6	 0.562	 1.418	 0.635	

7	 0.442	 0.000	 0.102	

8	 0.708	 0.480	 1.339	

9	 0.778	 0.000	 0.747	

10	 1.144	 1.467	 0.852	
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Table 3.6 𝑄" values for 𝑙 = 1	to 10 of convex polyhedra with vertices, 𝑁 = 8. (Note: the 
values of 𝑄" for Cube and Triakis Tetrahedraon is similar due to similar angular positon). 
 

𝑸𝒍 
Gyrobifastigium 

 
(𝑵 = 𝟖) 

Snub 
Disphenoid 

(𝑵 = 𝟖) 

Square 
Antiprism 
(𝑵 = 𝟖) 

Triakis Tetrahedron 
 

(𝑵 = 𝟖) 
𝒍     
0	 2.257	 2.257	 2.257	 2.257	

1	 0.000	 0.303	 0.000	 0.000	

2	 0.141	 0.500	 0.244	 0.000	

3	 0.473	 0.485	 0.000	 0.000	

4	 0.902	 0.870	 0.690	 1.149	

5	 0.782	 1.418	 1.397	 0.000	

6	 1.123	 0.557	 0.713	 1.418	

7	 0.641	 0.698	 0.236	 0.000	

8	 0.716	 0.896	 0.432	 0.480	

9	 0.188	 0.737	 0.944	 0.000	

10	 1.191	 1.228	 1.243	 1.467	

 

 

Table 3.7 𝑄" values for 𝑙 = 1	to 10 of convex polyhedra with vertices, 𝑁 = 9. 
 

𝑸𝒍 
Elongated 

Square Pyramid 
(𝑵 = 𝟗) 

Gyroelongated Square 
Pyramid 
(𝑵 = 𝟗) 

Triangular 
Cupola 
(𝑵 = 𝟗) 

𝒍    
0	 2.539	 2.539	 2.539	

1	 0.047	 0.027	 0.136	

2	 0.266	 0.037	 0.497	

3	 0.069	 0.182	 0.478	

4	 0.897	 0.396	 0.484	

5	 0.850	 1.532	 1.031	

6	 1.297	 0.868	 0.943	

7	 0.711	 0.206	 1.254	

8	 0.572	 0.764	 0.358	

9	 0.517	 0.555	 0.417	

10	 0.978	 1.235	 1.023	
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Table 3.8 𝑄" values for 𝑙 = 1 to 10 of convex polyhedra with vertices, 𝑁 = 9. 
 

𝑸𝒍 
Triaugmented Triangular Prism 

(𝑵 = 𝟗) 
Tridiminished Icosahedron 

(𝑵 = 𝟗) 
𝒍   
0	 2.539	 2.539	

1	 0.000	 0.068	

2	 0.181	 0.348	

3	 0.091	 0.670	

4	 0.408	 0.441	

5	 1.535	 0.466	

6	 0.814	 1.668	

7	 0.261	 0.432	

8	 0.851	 0.393	

9	 0.606	 0.631	

10	 1.139	 1.001	

 

 

Table 3.9 𝑄" values for 𝑙 = 1 to 10 of convex polyhedra with vertices, 𝑁 = 10. 
 

𝑸𝒍 
Augmented 

Tridiminished Icosahedron 
(𝑵 = 𝟏𝟎) 

Elongated 
Square Dipyramid 

(𝑵 = 𝟏𝟎) 

Gyroelongated 
Square Dipyramid 

(𝑵 = 𝟏𝟎) 
𝒍    
0	 2.539	 2.821	 2.821	

1	 0.027	 0.000	 0.000	

2	 0.037	 0.564	 0.320	

3	 0.182	 0.000	 0.000	

4	 0.396	 0.805	 0.126	

5	 1.532	 0.000	 1.397	

6	 0.868	 1.702	 1.277	

7	 0.206	 0.000	 0.236	

8	 0.764	 0.969	 0.630	

9	 0.555	 0.000	 0.944	

10	 1.235	 1.338	 1.151	
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Table 3.10 𝑄" values for 𝑙 = 1 to 10 of convex polyhedra with vertices, 𝑁 = 10. 
 

𝑸𝒍 
Metabidminished 

Icoshedron 
(𝑵 = 𝟏𝟎) 

Pentagonal 
Antiprism 
(𝑵 = 𝟏𝟎) 

Pentagonal 
Prism 

(𝑵 = 𝟏𝟎) 

Sphenocorona 
 

(𝑵 = 𝟏𝟏) 
𝒍     
0	 2.821	 2.821	 2.821	 2.821	

1	 0.099	 0.000	 0.000	 0.035	

2	 0.316	 0.564	 0.324	 0.207	

3	 0.465	 0.000	 0.000	 0.156	

4	 0.438	 0.564	 0.845	 0.224	

5	 0.697	 0.000	 0.942	 1.332	

6	 1.746	 1.918	 0.900	 1.363	

7	 0.475	 0.000	 1.492	 0.510	

8	 0.366	 0.564	 0.154	 0.513	

9	 0.595	 0.000	 0.585	 0.676	

10	 0.995	 1.151	 0.688	 0.921	

 

 

Table 3.11 𝑄" values for 𝑙 = 1 to 10 of convex polyhedra with vertices, 𝑁 = 11. 
 

𝑸𝒍 
Augmented 

Sphenocorona 
(𝑵 = 𝟏𝟏) 

Augmented 
Pentagonal Prism 

(𝑵 = 𝟏𝟏) 

Elongated 
Pentagonal Pyramid 

(𝑵 = 𝟏𝟏) 

Gyroelongated 
Pentagonal Pyramid 

(𝑵 = 𝟏𝟏) 
𝒍     
0	 3.103	 3.103	 3.103	 3.103	

1	 0.027	 0.054	 0.084	 0.077	

2	 0.271	 0.518	 0.042	 0.276	

3	 0.208	 0.192	 0.203	 0.285	

4	 0.257	 0.751	 0.501	 0.239	

5	 0.968	 0.683	 1.196	 0.675	

6	 1.746	 1.181	 1.072	 1.949	

7	 0.482	 1.455	 1.380	 0.443	

8	 0.546	 0.557	 0.659	 0.158	

9	 0.728	 0.798	 0.505	 0.576	

10	 0.987	 0.809	 0.426	 0.971	
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Table 3.12 𝑄" values for 𝑙 = 1 to 10 of convex polyhedra with vertices, 𝑁 = 12. 
 

𝑸𝒍 

Biaugmented 
Pentagonal 

Prism 
(𝑵 = 𝟏𝟐) 

Elongated 
Pentagonal 
Dipyramid 
(𝑵 = 𝟏𝟐) 

Hexagonal 
Antiprism 

 
(𝑵 = 𝟏𝟐) 

Hexagonal 
Prism 

 
(𝑵 = 𝟏𝟐) 

Icosahedron 
 
 

(𝑵 = 𝟏𝟐) 
𝒍      

0	 3.385	 3.385	 3.385	 3.385 3.385	

1	 0.017	 0.000	 0.000	 0.000 0.000	

2	 0.736	 0.240	 0.907	 0.677 0.000	

3	 0.326	 0.000	 0.000	 0.000 0.000	

4	 0.687	 0.281	 0.340	 0.677 0.000	

5	 0.555	 0.942	 0.000	 0.000 0.000	

6	 0.899	 1.464	 0.965	 1.609 2.245	

7	 1.741	 1.492	 1.948	 0.000 0.000	

8	 0.451	 0.410	 0.922	 1.725 0.000	

9	 0.914	 0.585	 0.305	 0.001 0.000	

10	 1.002	 0.380	 0.388	 1.003 1.229	

 

 

Table 3.13 𝑄" values for 𝑙 = 1 to 10 of convex polyhedra with vertices, 𝑁 = 12. 
 

𝑸𝒍 
Cuboctahedron 

 
(𝑵 = 𝟏𝟐) 

Sphenomegacorona 
 

(𝑵 = 𝟏𝟐) 

Square 
Cupola 

(𝑵 = 𝟏𝟐) 

Triangular 
Orthobicupola 

(𝑵 = 𝟏𝟐) 

Truncated 
Tetrahedron 
(𝑵 = 𝟏𝟐) 

𝒍      
0	 3.385	 3.385	 3.385	 3.385	 3.385	

1	 0.000	 0.046	 0.225	 0.000	 0.000	

2	 0.000	 0.596	 1.065	 0.000	 0.000	

3	 0.000	 0.267	 0.112	 0.258	 1.078	

4	 0.646	 0.301	 0.438	 0.329	 0.556	

5	 0.000	 0.902	 0.958	 0.852	 0.000	

6	 1.945	 1.351	 0.640	 1.641	 0.158	

7	 0.000	 1.233	 1.030	 1.052	 1.690	

8	 1.367	 0.931	 1.106	 1.073	 1.399	

9	 0.000	 0.739	 1.575	 0.467	 0.866	

10	 0.044	 0.705	 0.967	 0.034	 0.572	
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 Conclusions 
 
 The method of rotational invariants can be use to describe arrangement of nearest 

neighbour atoms. This method is suitable for isotropic material like glass by comparing with 

the complete set of reference polyhedra. For the first time, all rotational invariants have been 

presented for 4 ≤ 𝑁 ≤ 12, including values for odd 𝑙 and in the following Chapters they 

will be used to analyse models of glasses. 
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Chapter 4  
Molecular dynamics modelling of barium silicate 
𝐵𝑎𝑂 − 𝑆𝑖𝑂' glasses 
 
4.1 Introduction 
 
 Oxide glasses are the most widely used and extensively studied inorganic glasses. In 

the alkaline earth series of silicate systems, barium silicate minerals are very rare [1] com-

pared to the lighter alkaline earth magnesium silicate and calcium silicate minerals. In the 

glass formation of binary silicate systems such as 𝐵𝑎𝑂 − 𝑆𝑖𝑂' glasses, silica acts as a net-

work former and alkali earth cation barium acts as a modifier. Interestingly, silica itself can 

exist in vitreous form and its tetrahedron structure [2] is well understood and it keeps a per-

sistent structure in both phases of crystal and glass. However, its amorphous structure is 

primarily described in a variation of the 𝑆𝑖 − 𝑂 − 𝑆𝑖 bond angles [3]. 𝑆𝑖 atoms are sur-

rounded by four bridging oxygens, 𝑂(, in silica but in silicate oxide glasses 𝑆𝑖 atoms can be 

surrounded by one, two, three or four non-bridging oxygen, 𝑂)(, depending upon the con-

centration of the modifiers. Thus, the connectivity of the network former is described by 𝑄) 

distribution where 𝑄 is the tetrahedra unit and 𝑛 is number of bridging oxygen atoms [4]. 

Therefore, introducing 𝐵𝑎 increases 𝑂)( that depolymerise the silicon network [5] hence 

varying the glass transition temperature and the glass-forming conditions [6]. A phase dia-

gram of 𝐵𝑎𝑂 − 𝑆𝑖𝑂' is shown in Figure 4.1 [7] that specifies the glass melting temperature, 

𝑇0, of 𝑥𝐵𝑎𝑂 − (100 − 𝑥)𝑆𝑖𝑂	' for 𝑥 = 25 (𝐵𝑆3), 33.3 (𝐵𝑆2), 40 (𝐵2𝑆3) and 50 (𝐵𝑆). 

 The alkaline metal oxide (e.g. 𝐵𝑎, 𝐶𝑎, 𝑀𝑔) and 𝑆𝑖𝑂' chemically reacts with each 

other to form silicate melts and its thermodynamic stability largely depends upon the char-

acter of modifying oxide [7]. Also, in the 𝐵𝑎𝑂 − 𝑆𝑖𝑂' system there is sub-liquid phase sep-

aration for 𝑥 < 33.3 [8] which borders on the glass forming region. The glass structure of 

binary oxide silicate system has been described by modified random network (MRN) [9]. 
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Figure 4.1 The phase diagram of 𝐵𝑎𝑂 − 𝑆𝑖𝑂' binary system [7]. 

 

 In the series of alkaline earth silicates system, 𝐵𝑎𝑂 − 𝑆𝑖𝑂' glass structural studies 

by diffraction are less common compared to 𝑀𝑔𝑂 − 𝑆𝑖𝑂' and 𝐶𝑎𝑂 − 𝑆𝑖𝑂' binary glasses. 

Hasegawa and Yasui [10] studied 𝐵𝑎𝑆𝑖'𝑂A (𝑥 = 33.3) glass by X-ray and neutron diffrac-

tion. They compared their results with the corresponding crystals as well and reported the 

bond length of 1.6	Å, 2.75	Å and 2.6	Å for nearest neighbours of 𝑆𝑖 − 0, 𝐵𝑎 −O and 𝑂 − 𝑂 

pairs respectively. Cormier et al [11] reported the neutron diffraction result for 𝐵𝑎'𝑆𝑖E𝑂F 

(𝑥 = 40) glass. They compared with the corresponding crystal structures obtained from sim-

ulation and reported the presence of quasi-lattice planes in the glass. 

 The depolymerisation (𝑄)) in amorphous barium silicate glasses for composition 

𝑥 = 33.3 and 𝑥 = 33.7 compared with corresponding crystal were studied by Bender et al 

[12] with X-ray absorption and photoemission electron spectroscopy. They reported an av-

erage 𝑄) between 𝑛 = 3 and	4 for 𝑥 = 33.3. Thompson et al [13] studied barium metasili-

cate glass (𝐵𝑎𝑆𝑖𝑂E, 𝑥 = 	50) by 17O nuclear magnetic resonance (NMR) spectroscopy and 

reported that it contains roughly 67% of non-bridging oxygen, 𝑂)(, as expected for a meta-

silicate. 
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of the following ions were detected in the mass spec-
tra of the vapor: Ba+, BaO+, MoO2

+, MoO3
+, BaMoO3

+,
and BaMoO4

+ in the ratio 0.61 : 1 : 0.030 : 0.079 :
0.014 : 0.018. The nature of ions found in the mass
spectrum was studied in detail in [10]. The Ba+/BaO+

ion current ratio varied from 0.73 at 1615 K to 0.61 at
1841 K. To deduce an equation for the temperature
dependence of the partial pressure of BaO over in-
dividual barium oxide, Paule and Mandel [11] mea-
sured BaO+ ion current in the range of 1615 1841 K
and determined the partial pressure of barium oxide
using gold as internal pressure standard. The tempera-
ture dependence of the partial pressure of BaO can be
described by Eq. (19).

log p (BaO, Pa) = (21652 336)/T + (12.16 0.20). (19)

Vaporization and thermodynamic properties of
the system BaO SiO2. The phase diagram of the
BaO SiO2 system is shown in Fig. 1. The diagram
shows both heterogeneous regions and a homogeneous
melt region in the range 1840 1970 K. The SiO+,
Ba+, BaO+, MoO2

+, MoO3
+, BaMoO4

+, and BaMoO3
+

ions were found in the mass spectra of the vapor over
the system with various component contents in the
range 1840 1970 K. The ion current intensity ratio
was dependent on the temperature and the composi-
tion of the condensed phase. To determine the mole-
cular composition of the vapor over glasses and melts
of the BaO SiO2 system, the appearance energies of
ions were measured by the vanishing ion current
method using gold as standard [12]. The resulting
values were as follows, eV ( 0.3 eV): SiO+ 10.6, Ba+

5.6, BaO+ 6.5, MoO2
+ 9.5, MoO3

+ 12.1, and BaMoO4
+

9.0. The appearance energy of the BaMoO+
3 ion was

not measured because of the low intensity of the ion
current. The SiO+, BaO+, Ba+, MoO2

+, MoO3
+, and

BaMoO4
+ ions are molecular, as the ionization ef-

ficiency curves contain no inflections and the ap-
pearance energies of the ions coincide with the ioniza-
tion energies of the corresponding molecules within
the limits of measurement errors [10, 12].

The mass spectra of the vapor over glasses and
melts of the BaO SiO2 system, the dependences of
the ion current intensities on the temperature and
evaporation time, and also the appearance energies of
ions point to the fact that the first to pass into vapor
on heating to 1840 1970 K are SiO, BaO, and oxygen.
The reaction of the samples with chamber material
results in formation of gaseous molybdenum oxides
MoO2 and MoO3, as well as barium molybdates
BaMoO3 and BaMoO4 [10].

The activities of BaO and SiO2 in glasses and
melts of the BaO SiO2 system were determined by
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Fig. 1. Phase diagram of the BaO SiO2 system [2].

differential mass spectrometry using Eqs. (20) and
(21), respectively.

aBaO = p BaO/p 0
BaO = IBaO/I 0

BaO+, (20)

aSiO2
= p SiO2

/p 0
SiO2

= p SiOp O/p 0
SiOp 0

O

= ISiO+IO+/I 0
SiO+I 0

O+. (21)

Here p i and Ii, p 0
i and I0

i are the partial pressures of
molecular species in vapor and the intensities of ion
currents in the mass spectrum of the vapor over a
sample under study and individual oxides BaO or
SiO2, respectively. Barium oxide and silicon dioxide
placed in the reference cell were used as activity
standards. The dissociation of silicon dioxide into
gaseous monoxide and oxygen and the reaction of
samples with chamber material can be described by
Eqs. (22) (26).

SiO2(s.) = SiO(gas) + O(gas), (22)

Mo(s.) + 2SiO2(s.) = MoO2(gas) + 2SiO(gas), (23)

Mo(s.) + 3SiO2(s.) = MoO3(gas) + 3SiO(gas), (24)

Mo(s.) + 2BaO(s.) = MoO2(gas) + 2Ba(gas), (25)

Mo(s.) + 3BaO(s.) = MoO3(gas) + 3Ba(gas). (26)

The partial pressures of molybdenum oxides and
atomic and molecular oxygen are related to each other
by Eqs. (27) and (28):

MoO3(gas) = MoO2(gas) + O(gas), (27)

O2(gas) = 2O(gas). (28)



Chapter 4: Molecular dynamics modelling of barium silicate BaO-SiO2 glasses  86 
 
 Schlenz et al [14] studied the structure of barium silicates glasses for 𝑥 = 33.3 and 

𝑥 = 33.7 by combined experimental (X-ray diffraction and 29Si NMR) and molecular dy-

namics (MD) modelling but did not directly compare diffraction and modelling results or 

report 𝐵𝑎 − 𝑂 bond lengths or coordination numbers. Therefore, here new MD models for 

𝑥 = 25, 33.3, 40 and 50 glasses are studied to analyse the local environments of 𝑆𝑖	and 𝐵𝑎 

cations in the glasses also by the method of rotational invariants, 𝑄L, presented in Chapter 3. 

 

4.2 Method 
 

4.2.1 Structure of barium silicate crystals 
 
 The inter atomic potential parameters used to model the glasses can be validified by 

first using them for barium silicate crystals structures. All the associated crystals available 

are studied to compare the structures with the glass structures from the models. 

 

 𝜶-𝑺𝒊𝑶𝟐 (Quartz) 
 
 The quartz [15] tetrahedral crystal is shown in Figure 4.2. The lattice parameters are: 

𝑎 = 4.902 Å, 𝑏 = 4.902 Å and 𝑐 = 5.399 Å with 𝛼 = 90°, 𝛽 = 90° and 𝛾 = 120°. 

 

Figure 4.2 The unit cell of 𝛼 − 𝑆𝑖𝑂' tetrahedra (clay colour) and the red spheres are ox-
ygen atoms. 
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 𝑩𝒂𝑺𝒊𝟒𝑶𝟗 
 
 The barium tecto-tetrasilicate (𝐵𝑎𝑆𝑖\𝑂]) [16] crystal is shown in Figure 4.3. The 

lattice parameters are: 𝑎 = 6.495 Å, 𝑏 = 6.495 Å and 𝑐 = 9.347 Å with 𝛼 = 90°, 𝛽 = 90° 

and 𝛾 = 120°. 

 

Figure 4.3 The unit cell of barium tecto-tetrasilicate where 𝑆𝑖𝑂\ tetrahedra are indicated 
in clay colour, and red and grey spheres are oxygen and barium atoms respectively. 

 

 𝜶-𝑩𝒂𝑺𝒊𝟐𝑶𝟓 
 
 The 𝛼- Sanbornite [17] crystal is shown in Figure 4.4. The lattice parameters are: 

𝑎 = 7.688 Å, 𝑏 = 4.629 Å and 𝑐 = 13.523 Å with 𝛼 = 90°, 𝛽 = 90° and 𝛾 = 90°. 

 

Figure 4.4 The unit cell of 𝛼- Sanbornite where 𝑆𝑖𝑂\ tetrahedra are indicated in clay 
colour, and red and grey spheres are oxygen and barium atoms respectively. 
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 𝜷-𝑩𝒂𝑺𝒊𝟐𝑶𝟓 
 
 The 𝛽- Sanbornite [18] crystal is shown in Figure 4.5. The lattice parameters are: 

𝑎 = 23.202 Å, 𝑏 = 4.661 Å and 𝑐 = 13.613 Å with 𝛼 = 90°, 𝛽 = 97° and 𝛾 = 90°. 

 

Figure 4.5 The unit cell of 𝛽- Sanbornite where 𝑆𝑖𝑂\ tetrahedra are indicated in clay 
colour, and red and grey spheres are oxygen and barium atoms respectively. 

 

 𝑩𝒂𝟐𝑺𝒊𝟑𝑶𝟕 
 
 The 𝐵𝑎'𝑆𝑖E𝑂b [19] crystal is shown in Figure 4.6. The lattice parameters are: 𝑎 =

12.476 Å, 𝑏 = 13.962	Å and 𝑐 = 4.688 Å with 𝛼 = 90°, 𝛽 = 90° and 𝛾 = 93.54°. 

 

Figure 4.6 The unit cell of 𝐵𝑎'𝑆𝑖E𝑂b crystal where 𝑆𝑖𝑂\ tetrahedra are indicated in clay 
colour, and red and grey spheres are oxygen and barium atoms respectively. 
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 𝑩𝒂𝑺𝒊𝑶𝟑 
 
 The barium metasillicate (𝐵𝑎𝑆𝑖𝑂E) [20] crystal is shown in Figure 4.7. The lattice 

parameters are: 𝑎 = 4.58 Å, 𝑏 = 5.611 Å and 𝑐 = 12.431 Å with 𝛼 = 90°, 𝛽 = 90° and 

𝛾 = 90°. 

 

Figure 4.7 The unit cell of 𝐵𝑎𝑆𝑖𝑂E crystal where 𝑆𝑖𝑂\ tetrahedra are indicated in clay 
colour, and red and grey spheres are oxygen and barium atoms respectively. 

 

 𝑩𝒂𝟐𝑺𝒊𝑶𝟒	
 
 The barium ortho silicate (𝐵𝑎'𝑆𝑖𝑂\) [21] crystal is shown in Figure 4.8. The lattice 

parameters are: 𝑎 = 5.805 Å, 𝑏 = 10.20 Å and 𝑐 = 7.99 Å with 𝛼 = 90°, 𝛽 = 90° and 𝛾 =

90°. 

 

Figure 4.8 The unit cell of 𝐵𝑎'𝑆𝑖𝑂\ crystal where 𝑆𝑖𝑂\ tetrahedra are indicated in clay 
colour, and red and grey spheres are oxygen and barium atoms respectively. 
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 𝑩𝒂𝑶 
 
 The barium oxide 𝐵𝑎𝑂 [22] crystal is shown in Figure 4.9. The lattice parameters 

are: 𝑎 = 5.538 Å, 𝑏 = 5.538 Å and 𝑐 = 5.538 Å with 𝛼 = 90°, 𝛽 = 90° and 𝛾 = 90°. 

 

Figure 4.9 The unit cell of 𝐵𝑎𝑂 crystal where red and grey spheres are oxygen and barium 
atoms respectively. 

 

4.2.2 Potentials for barium silicate systems 
 
 The interaction between the pairs of ions in 𝐵𝑎𝑂 − 𝑆𝑖𝑂' binary alkaline earth silicate 

glasses were model by using the Coulombic and Buckingham rigid ion potentials which were 

described in Equations 2.2	 − 2.4. The potential parameters used were derived by Teter [23] 

and these are listed in Table 4.1 for 𝑆𝑖 − 𝑂, 𝐵𝑎 − 𝑂 and 𝑂 − 𝑂 interactions. 

 

Table 4.1 Teter potential parameters for 𝐵𝑎𝑂 − 𝑆𝑖𝑂' binary system. 

𝑖 − 𝑗 𝑞e(𝑒) 𝐴eh(𝑒𝑉) 𝜌eh(Å) 𝐶eh(𝑒𝑉Åkl) 

𝑆𝑖 − 𝑂 2.4 13702.905 0.193817 54.681 

𝐵𝑎 − 𝑂 1.2 8636.3836 0.275149 122.93 

𝑂 − 𝑂 −1.2 1844.7458 0.343645 192.58 
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4.2.3 Testing of potentials 
 
 Teter interatomic potentials energy function parameters were tested by applying 

them in well-known barium silicate crystals structures of 𝛼- quartz (𝑆𝑖𝑂'), barium tecto-

tetrasilicate (𝐵𝑎𝑆𝑖\𝑂]), 𝛼 and 𝛽 Sanbornite (𝐵𝑎𝑆𝑖'𝑂A), 𝐵𝑎'𝑆𝑖E𝑂b, barium metasilicate 

(𝐵𝑎𝑆𝑖𝑂E), barium orthosilicate (𝐵𝑎'𝑆𝑖𝑂\) and barium oxide (𝐵𝑎𝑂). These crystals corre-

spond to 𝑥 = 0, 20, 33.3, 33.3, 40, 50, 80 and 100. The General Utility Lattice Program 

(GULP) [24] software was used to evaluate the potential parameters. The GULP algorithm 

performs under the principle of energy minimisation described in Chapter 2 (see section 

2.1.4 and 2.2). The results obtained from the GULP minimisation process are given in Table 

4.2 − 4.9. 

 

Table 4.2 The result from the GULP energy minimisation for 𝛼 − 𝑆𝑖𝑂' crystal initial and 
final structures displaying the low percentage errors. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume ÅE 129.659 132.531 2.872 2.21 

𝑎 Å 4.901 4.934 0.033 0.67 

𝑏 Å 4.901 4.934 0.033 0.67 

𝑐 Å 5.398 5.444 0.046 0.85 

𝛼 Degree 90 90 0 0.00 

𝛽 Degree 90 90 0 0.00 

𝛾 Degree 120 120 0 0.00 

𝑆𝑖 − 𝑂 distance Å 1.612 1.594 −0.018 −1.12 
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Table 4.3 The result from the GULP energy minimisation for 𝐵𝑎𝑆𝑖\𝑂] crystal initial and 
final structures displaying the low percentage errors. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume ÅE 341.490 347.509 6.019 1.76 

𝑎 Å 6.495 6.529 0.033 0.51 

𝑏 Å 6.495 6.529 0.033 0.51 

𝑐 Å 9.347 9.414 0.068 0.72 

𝛼 Degree 90.000 90.000 0.000 0.00 

𝛽 Degree 90.000 90.000 0.000 0.00 

𝛾 Degree 120.000 120.000 0.000 0.00 

𝑆𝑖 − 𝑂 distance Å 1.626 1.573 −0.038 2.78 

𝐵𝑎 − 𝑂 distance Å 3.0111 3.095 0.018 0.63 

𝐵𝑎 − 𝑂 𝐶𝑁  12 12 0 0.00 

 

 

Table 4.4 The result from the GULP energy minimisation for 𝛼 − 𝐵𝑎𝑆𝑖'𝑂A crystal initial 
and final structures displaying the low percentage errors. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume ÅE 481.253 479.609 −1.644 −0.34 

𝑎 Å 7.688 7.762 0.074 0.96 

𝑏 Å 4.629 4.745 0.116 2.51 

𝑐 Å 13.523 13.022 −0.501 −3.70 

𝛼 Degree 90 90 0.000 0.00 

𝛽 Degree 90 90 0.000 0.00 

𝛾 Degree 90 90 0.000 0.00 

𝑆𝑖 − 𝑂 distance Å 1.614 1.588 −0.026 −1.61 

𝐵𝑎 − 𝑂 distance Å 2.888 2.918 0.030 1.04 

𝐵𝑎 − 𝑂 𝐶𝑁  9 9 0.000 0.00 
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Table 4.5 The result from the GULP energy minimisation for 𝛽 − 𝐵𝑎𝑆𝑖'𝑂A crystal initial 
and final structures displaying the low percentage errors. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume ÅE 1470.780 1470.647 −0.133 −0.01 

𝑎 Å 23.195 23.334 0.139 0.60 

𝑏 Å 4.658 4.742 0.084 1.80 

𝑐 Å 13.613 13.291 −0.322 −2.37 

𝛼 Degree 90 90 0.000 0.00 

𝛽 Degree 97.57 98.424 0.854 0.88 

𝛾 Degree 90 90 0.000 0.00 

𝑆𝑖 − 𝑂 distance Å 1.616 1.586 −0.030 −1.86 

𝐵𝑎 − 𝑂 distance Å 2.886 2.928 0.042 1.46 

𝐵𝑎 − 𝑂 𝐶𝑁  8.667 8.667 0.000 0.00 

 

 

Table 4.6 The result from the GULP energy minimisation for 𝐵𝑎'𝑆𝑖E𝑂b crystal initial and 
final structures displaying the low percentage errors. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume ÅE 813.538 822.656 9.118 1.12 

𝑎 Å 12.477 12.218 −0.259 −2.10 

𝑏 Å 4.685 4.760 0.075 1.60 

𝑐 Å 13.944 14.176 0.232 1.50 

𝛼 Degree 90.000 90.000 0.000 0.00 

𝛽 Degree 93.540 93.926 0.386 0.40 

𝛾 Degree 90.000 90.000 0.000 0.00 

𝑆𝑖 − 𝑂 distance Å 1.624 1.586 −0.038 −2.36 

𝐵𝑎 − 𝑂 distance Å 2.882 2.900 0.018 0.63 

𝐵𝑎 − 𝑂 𝐶𝑁  7.500 8.000 0.500 6.67 
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Table 4.7 The result from the GULP energy minimisation for 𝐵𝑎𝑆𝑖𝑂E crystal initial and 
final structures displaying the low percentage errors. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume ÅE 319.457 322.415 2.958 0.93 

𝑎 Å 4.58 4.578 −0.002 −0.04 

𝑏 Å 5.611 5.645 0.034 0.61 

𝑐 Å 12.431 12.476 0.045 0.36 

𝛼 Degree 90 90 0.000 0.00 

𝛽 Degree 90 90 0.000 0.00 

𝛾 Degree 90 90 0.000 0.00 

𝑆𝑖 − 𝑂 distance Å 1.628 1.585 −0.043 −2.64 

𝐵𝑎 − 𝑂 distance Å 2.775 2.839 0.064 2.31 

𝐵𝑎 − 𝑂 𝐶𝑁  7 7 0.000 0.00 

 

 

Table 4.8 The result from the GULP energy minimisation for 𝐵𝑎'𝑆𝑖𝑂\ crystal initial and 
final structures displaying the low percentage errors. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume Å3 444.023 446.117 2.094 0.47 

𝑎 Å 5.805 5.900 0.095 1.65 

𝑏 Å 10.200 10.203 0.003 0.03 

𝑐 Å 7.499 7.409 −0.089 −1.19 

𝛼 Degree 90.000 90.000 0.000 0.00 

𝛽 Degree 90.000 90.000 0.000 0.00 

𝛾 Degree 90.000 90.000 0.000 0.00 

𝑆𝑖 − 𝑂 distance Å 1.633 1.578 −0.055 −3.37 

𝐵𝑎 − 𝑂 distance Å 2.906 2.925 0.019 0.64 

𝐵𝑎 − 𝑂 𝐶𝑁  9.5 9.5 0 0 
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Table 4.9 The result from the GULP energy minimisation for 𝐵𝑎𝑂 crystal initial and final 
structures displaying the low percentage errors. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume ÅE 169.939 160.812 −9.128 −5.37 

𝑎 Å 5.539 5.438 −0.101 −1.82 

𝑏 Å 5.539 5.438 −0.101 −1.82 

𝑐 Å 5.539 5.438 −0.101 −1.82 

𝛼 Degree 90 90 0.000 0.00 

𝛽 Degree 90 90 0.000 0.00 

𝛾 Degree 90 90 0.000 0.00 

𝐵𝑎 − 𝑂 distance Å 2.769 2.719 −0.050 −1.81 

𝐵𝑎 − 𝑂 𝐶𝑁  6 6 0.000 0.00 

 

4.2.4 Initial configurations for barium silicate glasses 
 
 Models were made of 𝑥(𝐵𝑎𝑂) − (100 − 𝑥)𝑆𝑖𝑂' glasses with 𝑥 = 25, 33.3, 40 and 

50. The initial random distribution of atoms numbers, cubic box lengths and densities of 

glasses are given in Table 4.10. Each model density is based on the experiential values [25-

27]. 

 

Table 4.10 Initial configuration of the binary glasses 𝑥𝐵𝑎𝑂 − (𝑥 − 100)𝑆𝑖𝑂' with the com-
positions 𝑥 = 25 − 50. 

 
Chemical 

compositions 
glasses (𝑥) 

Number of 
𝑆𝑖 atoms 

Number of 
𝐵𝑎 atoms 

Density 
(𝑔𝑐𝑚kE) 

Box length 
(Å) 𝑇0 (𝐾) 

25(𝐵𝑆3) 330 110 3.33 26.34 1950 

33.3(𝐵𝑆2) 335 165 3.74 27.21 2000 

40 (B2S3) 282 188 4.00 28.95 2000 

50	(𝐵𝑆) 240 240 4.21 27.21 2200 

 

 

 



Chapter 4: Molecular dynamics modelling of barium silicate BaO-SiO2 glasses  96 
 
4.2.5 Parameters for MD modelling of barium silicate glasses 
 
 MD simulations were performed in DL_POLY_2 [28] (see details Chapter 2, section 

2.4 − 2.5). The melt temperature, 𝑇0, for 𝑥 = 25 − 50 glasses were deduced from the phase 

diagram [7]. Typical control parameters for MD modelling of barium silicate glasses are 

given in Table 2.3 (see Chapter 2, section 2.5.2). The cutoff for short-range and long-range 

potentials were 9 Å and 12 Å respectively.  

 

4.3 Results 
 
 Figure 4.10 displays the images of 𝑥𝐵𝑎𝑂 − (𝑥 − 100)𝑆𝑖𝑂' alkaline earth silicate 

binary glass models for 𝑥 = 25, 33.3, 40 and 50. As expected the clay polyhedra are 𝑆𝑖𝑂\ 

tetrahedra network formers. The dark grey spheres are barium atoms that are modifiers and 

the red spheres are oxygen atoms  

 

Figure 4.10 MD image of (top-left) 𝑥 = 25, (top-right) 𝑥 = 33.3, (bottom-left) 
𝑥 = 	40 and (bottom-right) 𝑥 = 50 glass models. 
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4.3.1 Pair distribution function, nearest neighbour distances and 

coordination numbers 
 
 Figure 4.11 displays the pair distribution function, 𝑇eh(𝑟), for the binary glass model 

𝑥𝐵𝑎𝑂 − (𝑥 − 100)𝑆𝑖𝑂' for 𝑥 = 25, 33.3, 40 and 50. The position and width of the peak 

in 	𝑇eh(𝑟) indicates the distribution of the distances for different atomic correlations from 

which the average bond length, 𝑅eh, can be calculated. The area under these peaks provides 

the average coordination number, 𝑁eh. The first peak in 	𝑇res(𝑟) represent 𝑆𝑖 − 𝑂 nearest 

neighbours and is found to have 𝑅res = 1.59 Å and 𝑁res = 4 in all the glass models which 

was expected.  

 In all the glass models, 	𝑇ss(𝑟) has the first peak at 2.59 Å, which represent 𝑂 −

𝑆𝑖 − 𝑂 configurations (i.e. 𝑂 atom coordination 𝑆𝑖 atom). These first peaks are followed by 

the broad peak from 3.0	– 	3.5 Å representing 𝑂 − 𝐵𝑎 − 𝑂 configurations. The first peaks of 

𝑇rere(𝑟) are roughly at 3.15 Å representing 𝑆𝑖 − 𝑂 − 𝑆𝑖 linkages in the silica network in 

glass models from which the network connectivity (𝑁rere) can be calculated. The area under 

this peak decrease as 𝑥 increases i.e. as the number of bridging oxygen, 𝑂(, decreases. 

 The first peak in 𝑇uvs(𝑟) also has roughly constant 𝑅uvs = 2.75 Å and 𝑁uvs = 6.7. 

The correlation results for 	𝑇reuv(𝑟) and 	𝑇uvuv(𝑟) has the first peaks at 3.7 Å and 4.1 Å 

respectively. These correlations have increasing area under the first peak as the number bar-

ium increases. The values of 𝑅eh and 𝑁eh for the glass models are given in Tables 4.11 and 

4.12 where 𝑖 and	𝑗 are either 𝐵𝑎, 𝑆𝑖	or 𝑂 atoms. The estimated errors in the results are ±0.02 

Å for average bond length and ±0.1 for coordination numbers. 
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Figure 4.11 Pair distribution function, 𝑇eh, for 𝑥 = 25, 33.3, 40 and 50 glass models. Top 
figure shows 𝑇res, 𝑇rere and 𝑇ss, middle figure displays 𝑇uvs, and bottom figure shows 
𝑇reuv and 𝑇uvuv. 
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 The average connectivity for 𝑁rere can be also theoretically predicted, assuming the 

average connectivity, < 𝑛 >, is expected to vary from < 𝑛 >= 4 when 𝑥 = 0 to < 𝑛 >= 0 

when 𝑥 = 67.7 (i.e. orthosilicate). Therefore, it can be predicated by using < 𝑛 >= 4 −

'y
z{{ky

. There are overlaps between the first peaks of 𝑆𝑖 − 𝐵𝑎 and 𝐵𝑎 − 𝐵𝑎 correlations 

around the region 3.3 − 4.4 Å. There are predictable effects on the height of the first peak 

of 𝑇eh(𝑟) while changing 𝑥. The changes in the height of the peaks are clearly visible in 𝑆𝑖 −

𝐵𝑎, 𝐵𝑎 − 𝐵𝑎, 𝐵𝑎 − 𝑂 and 𝑆𝑖 − 𝑆𝑖 correlations due to the change in barium and non-bridg-

ing oxygen contents. 

 

Table 4.11 Average bond length, 𝑅eh, and coordination number, 𝑁eh, of 𝐵𝑎𝑂 − 𝑆𝑖𝑂' binary 
glass models. PDF indicates the result has been extracted from the area under the curve of 
𝑇eh(𝑟) functions. The cutoff distances were ~1.75 Å and	~3.33 Å for 𝑁res and 𝑁rere respec-
tively. 
 

 

Table 4.12  𝑅eh and 𝑁eh of 𝐵𝑎𝑂 − 𝑆𝑖𝑂' binary glass models. The cutoff distances for 𝑁uvs 
was 3.3 Å, for 𝑁uvuv ranges from 5.09 − 5.33 Å, and for 𝑁reuv ranges from 4.61 − 4.71 Å. 
 

𝑥 𝑅uvs  𝑁uvs 𝑅uvuv  
𝐵𝑎𝐵𝑎 
< 𝑛 > 
Model 

𝑁uvuv 
PDF 𝑅reuv 𝑁reuv 

25 2.75Å 6.5 4.27 Å 4.3 3.6 3.77 Å 2.67 

33.3 2.79Å 6.9 4.27 Å 5.0 5.1 3.77 Å 4.04 

40 2.79Å 6.8 4.29 Å 5.7 6.0 3.77 Å 4.95 

50 2.79Å 6.7 4.25 Å 6.1 7.1 3.77 Å 6.37 

 

 

𝑥 𝑂: 𝑆𝑖 𝑅res 𝑁res 𝑅rere 
𝑆𝑖𝑆𝑖 
< 𝑛 > 
Model 

𝑆𝑖𝑆𝑖 
< 𝑛 >
	Theory 

𝑁rere 
PDF 

25 2.3 1.59Å 4.0 3.15 Å 3.37 3.33 3.36 

33.3 2.3 1.59Å 4.0 3.15 Å 3.07 3.00 3.05 

40 2.7 1.59Å 4.0 3.15 Å 2.68 2.67 2.68 

50 3.0 1.59Å 4.0 3.15 Å 2.04 2.00 2.02 
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4.3.2 Bond angle distribution functions 
 
 Figure 4.12 displays 𝑂 − 𝑆𝑖 − 𝑂 (top) and 𝑂 − 𝐵𝑎 − 𝑂 (bottom) bond angle distri-

bution functions (BAD) for 𝑥(𝐵𝑎𝑂) − (100 − 𝑥)𝑆𝑖𝑂' model glasses where 𝑥 = 25, 33.3, 

40 and 50. The cutoff distances were 2.25 Å and 3.3 Å for 𝑆𝑖 − 𝑂 and 𝐵𝑎 − 𝑂 respectively. 

As expected for the tetrahedral structure silicates, the primary peak of 𝑂 − 𝑆𝑖 − 𝑂 for all 

glass models were at 109°. There is decrease in width of BAD relative probability with the 

increase of 𝐵𝑎 content in the glass models. However, for 𝑂 − 𝐵𝑎 − 𝑂, there were two prom-

inent peaks, a primary peak at 51° and a secondary peak around 80°. The secondary peaks 

have wider shoulder and there are minimum around 59° between these two peaks. In 𝑂 −

𝐵𝑎 − 𝑂, as 𝐵𝑎 content increases the relative probability of primary peaks decreases whereas 

relative probability for secondary peaks increases with the increase of 𝐵𝑎 content. 

 

 
 

Figure 4.12 The BAD of 𝑥𝐵𝑎𝑂 − 𝑥 − (100)𝑆𝑖𝑂' glasses for 𝑥 = 25, 33.3, 40 and 50. 
(Top) 𝑂 − 𝑆𝑖 − 𝑂	and (bottom) 𝑂 − 𝐵𝑎 − 𝑂. 
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 Figure 4.13 displays BAD of 𝑥(𝐵𝑎𝑂) − (100 − 𝑥)𝑆𝑖𝑂' glasses and related crystals 

for 𝑥 = 33.3, 40 and 50. The 𝑂 − 𝑆𝑖 − 𝑂 (top) of crystals have narrow sharp peaks com-

pared to the glasses but 𝑥 = 50 crystal has three distinctive peaks at	101°, 109° and 117°, 

indicating a distortion in tetrahedral angle. In 𝑥 = 33.3 𝛼-crystal primary peak is at 109° 

whereas for 𝑥	 = 	33.3 𝛽-crystal and 𝑥 = 40 crystal the primary peak is around 111° due to 

some distortion of the tetrahedron. 

 
Figure 4.13 The BAD of 𝑥𝐵𝑎𝑂 − 𝑥 − (100)𝑆𝑖𝑂' glasses and related crystals for 𝑥 = 25, 
33.3, 40 and 50. (Top) 𝑂 − 𝑆𝑖 − 𝑂 and (bottom) 𝑂 − 𝐵𝑎 − 𝑂. 

 

 In 𝑂 − 𝐵𝑎 − 𝑂 (bottom) BAD crystals have range of several peaks compared to the 

smooth distribution of glasses. This is because in glass 𝐵𝑎𝑂) polyhedra have various differ-

ent shapes which on average give smooth curves. However, in crystals only few different 

𝐵𝑎'� ions local sites exist which are repeated and are indicated by several peaks. There is a 
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wider distribution for 𝑂 − 𝐵𝑎 − 𝑂 ranging from 50° − 180° in glasses due to 𝑁uvs ≥ 6. 

For example, in case of undistorted octahedra there is only two main peaks at 90° and 180°. 

 

4.3.3 Network connectivity 
 
 Figure 4.14 shows as expected network connectivity, 𝑄), for 𝑆𝑖 decreases with in-

crease of 𝑥 and with the increase of 𝐵𝑎 content the 𝐵𝑎 − 𝐵𝑎 connectivity increases.  

 

 
 

Figure 4.14 𝑆𝑖 − 𝑂 − 𝑆𝑖 linkage per	𝑆𝑖 (top) and 𝐵𝑎 − 𝑂 − 𝐵𝑎 linkage per 𝐵𝑎 (bottom) 
for 𝑥𝐵𝑎𝑂 − (𝑥 − 100)𝑆𝑖𝑂' glasses. 

 

 Figure 4.15 shows the network connectivity calculated for the two methods de-

scribed in Chapter 2 (see section 2.6.4). The 𝑆𝑖 − 𝑆𝑖 (top) results from both methods give 

the same results signifying 100% corner sharing between 𝑆𝑖𝑂' tetrahedral structural units. 

However, for 𝐵𝑎 − 𝐵𝑎 average connectivity as indicated by Table 4.12 (𝑁uvuv) there are 

differences of less than or equal to one between these two methods. When PDF is less than 

“xhst-hsc” which is case for 𝑥 = 25, this is due to the edge sharing. When the PDF is greater 
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than “xhst-hsc” which is case for 𝑥 = 50 this is due to mixture of edge sharing and non-

bridging oxygen, 𝑂)(, coordinated to three of 𝐵𝑎	atoms. If PDF is equal to “xhst-hsc” in 

case of 𝑥 = 33.3 and and 𝑥 = 40 this is due to both scenarios. 

 

 
 

Figure 4.15 Comparisons of 𝑆𝑖 − 𝑂 − 𝑆𝑖 linkage per Si (top) and 𝐵𝑎 − 𝑂 − 𝐵𝑎 linkage 
per 𝐵𝑎 (bottom) for 𝑥𝐵𝑎𝑂 − 𝑥 − (100)	𝑆𝑖𝑂' glasses computed from pair distribution 
function (PDF) and “xhst-hsc” method. 

 

 Figure 4.16	shows 𝑆𝑖 − 𝑆𝑖 (top) and 𝐵𝑎 − 𝐵𝑎 (bottom) network connectivity be-

tween glasses and its related crystals. The result compares very well between them as crys-

tals shows the narrow distribution (same connectivity) due to their more ordered structures 

whereas as glasses have wider distributions. There is an average 𝐵𝑎 − 𝐵𝑎 connectivity of 6 

similar in 𝑥 = 33.3-𝛼, 40 and 50 crystals. 
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Figure 4.16 𝑆𝑖 − 𝑂 − 𝑆𝑖 linkage per 𝑆𝑖(top) and 𝐵𝑎 − 𝑂 − 𝐵𝑎 linkage per 𝐵𝑎 (bottom) 
for 𝑥 = 33, 40 and 50 glasses and crystals. 

 

4.3.4 Neutron and X-ray diffraction structure factors 
 
 The changes occurring in 𝑇eh lead to change in the diffraction structure factor 𝑆(𝑄) 

[29] according to the relation given by Equation 2.68 (see Chapter 2). Figure 4.17 shows 

the neutron diffraction structure factors 𝑆(𝑄) for the models with 𝑥 = 33.3 and 𝑥 = 40 

compared to experimental results [10, 11]. For X-ray diffraction, only the total pair distribu-

tion function, 𝑇(𝑟), is reported for glass model 𝑥 = 33.3 [10] which can be also obtained 

from Equation 2.68 (this equation is based on 𝑟 → ∞ but the calculation uses maximum 𝑟 =

�
'
 where 𝐿 is the model box length). There is also neutron 𝑇(𝑟) reported for 𝑥 = 33.3 glass 

[10] and 𝑇(𝑟) for X-rays and neutron diffractions are compared with the model result in 
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Figure 4.18. There have not been reports of experimental diffraction data for 𝑥 = 25 and 

𝑥 = 50 glasses due to the difficulty of preparing these glasses. 

 
 

Figure 4.17 Neutron diffraction structure factor for 𝑥 = 33.3 and 𝑥 = 40 glass models 
and experiments [10, 11]. 

 

 
 

Figure 4.18 Total pair distribution function, 𝑇(𝑟), obtained from X-ray and neutron dif-
fraction for 𝑥 = 33.3 glass model and experiment [10]. 
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4.3.5 Rotational invariants for 𝑆𝑖 and 𝐵𝑎 in 𝐵𝑎𝑂 − 𝑆𝑖𝑂' binary 

glasses 
 
 Figure 4.19 shows tetrahedron structural units of silicate glass models and its related 

crystal. As expected crystal 𝑄L values are closer to reference tetrahedron than glasses. Figure 

4.20	compares the structure of 𝐵𝑎𝑂) polyhedra in glasses with all the possible reference 

convex polyhedra. The 𝐶𝑁 for 𝐵𝑎	in glasses are mostly between 6 and 7 with roughly 31% 

and 35% respectively. For 𝐶𝑁 = 6 and 𝐶𝑁 = 7 from 𝑙 = 4 for glasses, 𝑄L	 are close to ran-

dom. The uncertainty in the average 𝑄L for glasses were ±0.05 (one standard deviation). 

 The average 𝐵𝑎 − 𝑂 coordination number in crystals are found higher than 7 but the 

metasilicate crystal (𝑥 = 50) has 100% of 𝐶𝑁 = 7 and its 𝑄L result is closer to glasses than 

reference convex polyhedra for vertices, 𝑁 = 7. The 𝛽-Sanbornite (𝑥 = 33.3) crystal and 

𝑥 = 40 crystal has 𝐵𝑎 − 𝑂 coordination of 8.7 and 7.5 respectively. There was 27% of 

𝐶𝑁 = 7 for 𝛽-Sanbornite and 19% of 𝐶𝑁 = 7 for 𝑥 = 40 crystal. The shape of 𝑄L curve 

(see Figure 4.20) for 𝐵𝑎 − 𝑂 with 𝐶𝑁 = 7 for 𝑥 = 40 and 𝑥 = 50 crystals have similar 

trend but 𝛽-Sanbornite is much more similar to that of glasses. 

 

 
 

Figure 4.19 Rotational invariant, 𝑄L, of 𝑆𝑖𝑂' tetrahedra for glass, crystal and reference 
Tetrahedron. 
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Figure 4.20 Rotational invariant 𝑄L of 𝐵𝑎𝑂	polyhedra 𝐶𝑁 = 6 (top) and 𝐶𝑁 = 7 (bottom) 
for glasses and 𝑥 = 33.3 (𝛽) and 𝑥 = 50 crystals compared with all the possible reference 
convex polyhedra of vertices, 𝑁 = 6 and 7. 
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4.4 Discussion 
 
 The rigid ion potentials applied in this work have a good ability to reproduce short-

range order found in 𝑥𝐵𝑎𝑂 − (𝑥 − 100)𝑆𝑖𝑂' crystals for 𝑥 = 0, 25, 33.3, 40, 50, 75 and 

100. There were very low percentages of discrepancies in the volume of crystal structures 

overall less than 5%. The result from the glass pair distribution functions shows there are no 

significant change in nearest neighbour distance with changing compositions 𝑥. The present 

models have 𝑆𝑖 − 𝑂 average bond length of 1.59 Å which is slightly shorter than in the 

crystals but the tetrahedral silicate network found in crystals also existed in the glass models 

which have the expected amount of 𝑆𝑖 − 𝑂 − 𝑆𝑖 connectivity < 𝑛 > shown in Table 4.11. 

Notable changes are seen in the increase of coordination numbers of 𝐵𝑎 − 𝐵𝑎, 𝑆𝑖 − 𝐵𝑎 and 

decrease of coordination number in 𝑆𝑖 − 𝑆𝑖 with increase of compositions 𝑥. 

 Generally, the crystals show higher 𝐵𝑎𝑂 coordination number than glasses. The 

𝑇eh(𝑟) correlation of 𝑥 = 33.3 -𝛽 crystal roughly matches to that of glasses rather than other 

crystals presented from the comparison of the pair distribution functions between MD model 

glasses and their related crystals in Figure 4.21 and Figure 4.22. 

 In crystals, the short-range order around 𝐵𝑎 changes as 𝑥 decreased from 50 to 25 

with the 𝐵𝑎 − 𝑂 average bond length increasing from 2.78 to 2.89 Å and the coordination 

number increases from 7 to 12. Over the same range of 𝑥 from 50 to 25 glass models have 

𝐵𝑎 − 𝑂 average peak distance of 2.78 Å with coordination number of approximately 7, sim-

ilar to the 𝑥 = 50 crystal but clearly different to 𝑥 = 33.3 and 40 crystals. In 𝑇uvs correla-

tions the broad peaks of glasses are due to the presence of multiple distances compared to 

the sharp narrow peaks of crystals. The short-range order for 𝐵𝑎 − 𝑂 peak distance of 2.75 

Å which was previously been reported from X-ray diffraction [10] for 𝑥 = 33.3 is consistent 

with the result found here (Table 4.12). 
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Figure 4.21 Comparison of 𝑇eh(𝑟) between glasses and corresponding crystals for com-
positions 𝑥 = 33.3, 40 and 50. Correlations 𝑇res(𝑟) (top), 𝑇uvs(𝑟) (middle) and 𝑇ss(𝑟) 
(bottom). 
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Figure 4.22 Comparison 𝑇eh(𝑟) between glasses and corresponding crystals for composi-
tions 𝑥 = 33.3, 40 and 50. Correlations 𝑇re�e(𝑟) (top), 𝑇uvuv(𝑟) (middle) and 𝑇reuv(𝑟) 
(bottom). 
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 The 	𝑇ss(𝑟) correlations curve is sharper in crystals at 2.6 Å indicating less distortion 

of tetrahedra 𝑂 − 𝑆𝑖 − 𝑂 structures than found in glasses which is also followed by range of 

distinctive sharp peaks from 3.0 to 3.5 Å in crystals compared to the broad peaks of the 

glasses representing 𝑂 − 𝐵𝑎 − 𝑂 configurations due to mixture of 𝐵𝑎𝑂 polyhedra present 

in glasses. In 𝑇rere(𝑟) correlations 𝑥 = 40 and 50 crystals has average primary peak 𝑆𝑖 − 𝑆𝑖 

at 2.97 Å compared to others crystals and glasses at 3.1 − 3.15 Å, which specify almost all 

𝑆𝑖 − 𝑆𝑖 connectivity < 𝑛 > are corner sharing especially in 𝑥 = 50 crystal. The previous 

MD study [14] had < 𝑛 >	= 2.7 for 𝑥 = 33.3 glass which is not consistent with the result 

here, < 𝑛 >	= 3 but X-ray absorption spectroscopy [12] reported < 𝑛 >= 3. Glasses dis-

play the broad peaks for 𝑇uvuv(𝑟) correlations compared to the sharp narrow peaks of crys-

tals suggesting that barium is much more randomly sited in the glasses. 

 There is reasonable agreement between the present models and the experimental neu-

tron diffraction structure factors. However, comparing with experimental pair distribution 

functions shows fair agreement up to 3.0 Å (see Figure 4.17). The models agree less well 

with X-ray diffraction data in the region of 3.5 − 5.0 Å (see Figure 4.18) and the reason may 

be due to the 𝐵𝑎 − 𝐵𝑎 correlations that may influence X-ray diffraction data strongly. 

 The result from 𝑆𝑖 − 𝑂 − 𝑆𝑖 connectivity and 𝐵𝑎 − 𝑂 − 𝐵𝑎 connectivity indicates 

the present glass models are homogeneous because < 𝑛 > remains approximately linear 

with 𝑥. However, previous studies suggested that the 𝑥 < 33.3 has sub-liquidus phase sep-

aration [8]. Similarly, 𝐵𝑎 − 𝑂 − 𝐵𝑎 linkage per 𝐵𝑎 (see Figure 4.14) which has been esti-

mated from the numbers of 𝐵𝑎 − 𝑂 − 𝐵𝑎 correlations (see Table 4.12) corresponding to the 

first peak in 𝑇uvuv(𝑟) shows that there is smooth progression from 𝑥 = 25 to 50, with no 

deviation at 𝑥 = 25. For phase separation, the 𝑥 = 25 glass 𝐵𝑎 rich silicate phase would 

have similar result for 𝐵𝑎 − 𝑂 − 𝐵𝑎 connectivity seen at higher values of 𝑥. But it was found 
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that all 𝐵𝑎 are interconnected by 𝐵𝑎 − 𝑂 − 𝐵𝑎 linkages crossing the models, with no sepa-

rated “clusters” of 𝐵𝑎. The absence of evidence for phase separation at 𝑥 = 25 may be due 

to the high quench rates used in the modelling method and another reason may be that the 

phase separation is likely to be on length scales of several nanometer rather than the model-

ling box size presented here. This will be explored further in the following Chapter 5. 

 The neutron diffraction study of 𝑥 = 40 glass [11] reported that the position of the 

“first sharp diffraction peak” in glass at 1.7 Åkz is very similar to the position of the (112 −) 

and (210) Bragg peaks for the 𝑥 = 40 crystal. This was hypothesised to be evidence of 

“quasi-Bragg planes” in the glass structures, i.e. apparent layers with differing atomic den-

sity and an inter-layer spacing of 4.2 Å [30] which is supposed to be an equivalent to (112 −) 

and (210) planes in the 𝑥 = 40 crystal and are illustrated in Figure 4.23. However, this 

hypothesis is not supported by the present glass modelling result for 𝑥 = 40 glass (see Figure 

4.10) that clearly indicated 𝐵𝑎 atoms are mixed with silicate tetrahedra structures and there 

is no layer-like ordering of 𝐵𝑎 cations in the glass structures. 

 

Figure 4.23 Illustration of 𝑥 = 40 crystal showing (112 −) and (210) planes correspond-
ing to pronounced layers with differing atomic density and an inter-layer spacing of 4.2 Å 
[29]. In a previous study [11] it was noticed that the positon of (112 −) and (210) Bragg 
peaks are similar to the “first sharp diffraction peak” in the 𝑥 = 40 glass at 𝑄 = 1.7 	Åkz. 
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Figure 4.22 Illustration of 2 = 40 crystal showing (112−) and (210) planes corresponding to pronounced layers with 
differing atomic density and an inter-layer spacing of 4.2Å [29]. In a previous study [11] it was noticed that the positon 
of (112-) and (210) Bragg peaks are similar to the “first sharp diffraction peak” in the 2 = 40 glass at + = 1.7Ånä 



Chapter 4: Molecular dynamics modelling of barium silicate BaO-SiO2 glasses  113 
 

4.5 Conclusions 
 
 The new molecular dynamics models of 𝑥(𝐵𝑎𝑂) − (100− 𝑥)𝑆𝑖𝑂' glasses pre-

sented here give fair agreement with experimental diffraction data for 𝑥 = 33.3 and 𝑥 = 40. 

The glass models have the expected silicate network and the short-range order around 𝐵𝑎 

typically has 𝐵𝑎 − 𝑂 peak distance of 2.79 Å and coordination of approximately 7, which 

is similar to 𝑥 = 50 crystal and inconsistent with 𝑥 ≤ 40 crystals. The glasses gave the 

smooth bond angle distribution functions for 𝑂 − 𝐵𝑎 − 𝑂 signifying mixture of irregular 

𝐵𝑎𝑂) polyhedra in the glasses. The results of rotational invariants, 𝑄L, for 𝑆𝑖 cations, i.e. 

archetypal network former, is similar to tetrahedral geometry, and there was obvious varia-

tion in tetrahedral distortion between glasses and crystals. The 𝑄L values for glasses with 

𝐵𝑎 − 𝑂 coordination number 6 and 7 on average were closer to random values comparing 

directly with the convex polyhedra geometries. The 𝑥 = 25 glass model did not show any 

evidence of sub-liquidus phase separation which may be due to the extremely high quench 

rate used and the small size box of the model. Furthermore, 𝑥 = 40 glass model did not 

agree with the previous hypothesis [11] of layered structures with approximately 4.2 Å spac-

ing which were proposed to correspond between the first sharp diffraction peaks and the 

prominent Bragg peaks in 𝑥 = 40 crystal. 
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Chapter 5  
Modifier cation distribution in large models of 
alkaline earth silicate glasses 
 
5.1 Introduction 
 
 The region of glass formation in binary silicate system is limited by the separation 

of the melt within a certain composition range into two liquids of different composition [1]. 

The immiscibility or phase separation in the binary alkaline earth silicates glasses are com-

mon phenomena. The phase diagram for binary alkaline earth silicate system showing mis-

cibility gaps is illustrated in Figure 5.1 [2]		for 𝑀𝑂− 𝑆𝑖𝑂- systems (i.e. 𝑀 = 𝑀𝑔, 𝐶𝑎 and 

𝐵𝑎). The tendency of phase separation depends on the strength of the ionic bond between 

the modifier cation and the non-bridging oxygen anions [1] and the ionic potential of cation 

can be defined by 𝑧/𝑅, where 𝑧 is the ion charge and 𝑅 is its radius. Therefore, in 𝑀𝑂 −

𝑆𝑖𝑂- systems the tendency towards immiscibility phase separation increases (i.e. 𝐵𝑎 <

𝐶𝑎 < 𝑀𝑔) with a decrease in the basicity [3]. That is the width of immiscibility is larger for 

𝑀𝑔 and 𝐶𝑎 than 𝐵𝑎. 

 

 
 

Figure 5.1 The phase diagram showing miscibility gaps for binary alkaline earth silicate 
glasses [2]. 
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 Usually, glasses are made by cooling homogenous (single phase) melts but many of 

them have a heterogeneous structure on sub-microscopic scale [4]. For the melts to form 

homogenous or heterogeneous glasses may depend on the free energy of the system. If mix-

ing of two components yields a lower free energy, the mixture will remain homogenous but 

if the separation of the mixture into two components yields a lower free energy, separation 

will have occurred if allowed by kinetic consideration [5]. 

 Previous MD structural studies were performed on 𝑥𝑀𝑔𝑂 − (1 − 𝑥)𝑆𝑖𝑂- glasses for 

𝑥 = 50, 54, 58, 62 and 67 in [6, 7]. For the glasses 𝑥 = 50, 58 and 67 the X-ray and neutron 

diffraction data from the experiments [8-11] were compared with the models with fair agree-

ment. Previous MD structural studies were done on 𝑥𝐶𝑎𝑂 − (1 − 𝑥)𝑆𝑖𝑂- glasses for 𝑥 =

10, 20, 30, 40 and 50 in [12]. The X-ray diffraction data [13] for 𝑥 = 42 and 50 glasses, 

and neutron diffraction [14] for 𝑥 = 42 glass was compared to the model with a fair agree-

ment. Both studies reported the bond length of 𝑆𝑖 − 𝑂 about 1.6 Å and as expected 𝑆𝑖 re-

taining tetrahedra structure similar to the crystal. The bond length for 𝑀𝑔 − 𝑂 and 𝐶𝑎 − 𝑂 

was reported to be about	2.0 Å and 2.4 Å respectively with coordination number for 𝑀𝑔 

between 4.5 to 5.5 and for 𝐶𝑎 between 5 to 7. In both glasses, the network of structural units 

was corner shared and 𝑆𝑖 − 𝑆𝑖 connectivity drops as composition of 𝑥 is increased. The MD 

structural studies for 𝑥𝐵𝑎𝑂 − (1 − 𝑥)𝑆𝑖𝑂- glasses for 𝑥 = 25, 33.3, 40 and 50 are pre-

sented in the previous Chapter 4. 

 In the binary alkaline earth silicate system, the glass properties such as viscosity, 

chemical durability and electrical conductivity are affected by phase separation [2]. The 

electron microscope can unveil the phase separation in the real glass (e.g. heat treatment of 

𝐵𝑎𝑂 − 𝑆𝑖𝑂- glasses [15] and see Figure 5.2 [5]). The MD studies on phase separation was 

done on 𝑥𝐶𝑎𝑂 − (1 − 𝑥)𝑆𝑖𝑂- glasses for 𝑥 = 10 and 20 [12] where the clustering of 𝐶𝑎 

cations was investigated by calculating the average number of neighbours 𝐶𝑎 around a given 

𝐶𝑎. For the 𝐵𝑎𝑂 − 𝑆𝑖𝑂- system there is sub-liquidus phase separation for 𝑥 < 30 which 
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borders on the glass forming region as shown in Figure 5.3 [15]. Hence 𝐵𝑎𝑂 − 𝑆𝑖𝑂- glasses 

with 𝑥 < 30 have been extensively studied in [15, 16] for phase separation, nucleation, and 

crystallisation. 

 

 
 

Figure 5.2 The phase separated glass showing interconnected morphology [5]. 
 

 
 

Figure 5.3 Part of 𝐵𝑎𝑂 − 𝑆𝑖𝑂- phase diagram showing binodal (sub-liquidus liquid-liq-
uid immiscibility) boundary [15]. 

 

 On the basis of MD structural studies on 𝐵𝑎𝑂 − 𝑆𝑖𝑂- system (Chapter 4) in 𝑥 = 25 

glass model all 𝐵𝑎 cations were interconnected by 𝐵 − 𝑂 − 𝐵𝑎 linkages crossing the model 

homogenously. The analysis of 𝐵𝑎 − 𝑂 − 𝐵𝑎 linkage per 𝐵𝑎 shows that there is smooth 

progression from 𝑥 = 50 to lower value of 𝑥, with no deviation at 𝑥 = 25. This contrasts 
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with what was seen in 𝐶𝑎𝑂 − 𝑆𝑖𝑂- system for 𝑥 = 10 and 𝑥 = 20 [12]. Subsequently, the 

𝐵𝑎𝑂 − 𝑆𝑖𝑂- glass for 𝑥 = 25 model in Chapter 4 did not show the phase separation due the 

one reason being the model was made using a high quench rate (10AB 𝐾/𝑠) and another 

reason might be that the phase separation is likely to be on length scales of serval nanometre 

whereas the model box length was about 27 Å. Therefore, here the new large models for 

𝑥𝑀𝑂 − (1 − 𝑥)𝑆𝑖𝑂- glasses where 𝑀 = 𝑀𝑔, 𝐶𝑎 and 𝐵𝑎 for 𝑥 = 25 and 𝑥 = 50 were made 

to study this immiscibility phenomena including in 𝐵𝑎𝑂 − 𝑆𝑖𝑂- system. 

 

5.2 Method 
 

5.2.1 Interatomic potentials for 𝑀𝑂 − 𝑆𝑖𝑂- systems with 𝑀 =
𝑀𝑔, 𝐶𝑎 and 𝐵𝑎 

 
 The pair interaction between the ions in these three binary 𝑀𝑂− 𝑆𝑖𝑂- systems (i.e. 

𝑀 = 𝑀𝑔, 𝐶𝑎 and	𝐵𝑎) are described by the Coulombic and Buckingham ion potentials given 

by Equations 2.2 to 2.4. The potential parameters used were derived by Teter [17] and they 

are listed in Table	5.1 for 𝑀𝑔 − 𝑂, 𝐶𝑎 − 𝑂, 𝐵𝑎 − 𝑂 and 𝑂 − 𝑂 interactions. 

 The testing of these potential parameters with its related crystals have already been 

done in the earlier work of [7] for 𝑀𝑔𝑂 − 𝑆𝑖𝑂-, and [12] for 𝐶𝑎𝑂 − 𝑆𝑖𝑂- systems. For 

𝐵𝑎𝑂 − 𝑆𝑖𝑂- system the work is done in the previous Chapter 4. 

 

Table 5.1 Teter potential parameters for 𝑀𝑂− 𝑆𝑖𝑂- binary systems.  
 

𝑖 − 𝑗 𝑞G(𝑒) 𝐴GJ(𝑒𝑉) 𝜌GJ(Å) 𝐶GJ(𝑒𝑉ÅMN) 

𝑀𝑔 − 𝑂 1.2 7063.4907 0.210901 19.210 

𝐶𝑎 − 𝑂 1.2 7747.1834 0.252623 93.109 

𝐵𝑎 − 𝑂 1.2 8636.3836 0.275149 122.93 

𝑆𝑖 − 𝑂 2.4 13702.905 0.193817 54.681 

𝑂 − 𝑂 −1.2 1844.7458 0.343645 192.58 
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5.2.2 Initial configurations for 𝑀𝑂 − 𝑆𝑖𝑂- glasses with 𝑀 = 𝑀𝑔, 

𝐶𝑎 and 𝐵𝑎 
 
 The large models made for the alkaline earth silicate glasses, 𝑥(𝑀𝑂) −

(100 − 𝑥)𝑆𝑖𝑂- (i.e. 𝑀 = 𝑀𝑔, 𝐶𝑎 and 𝐵𝑎) are for the compositions of 𝑥	 = 25 and 50. The 

atoms numbers, cubic box lengths and densities of glasses are given in Table 5.2. The den-

sities of the models were based on the experimental values which were used in previous 

studies except for the 25𝑀𝑔𝑂 − 75𝑆𝑖𝑂- glass where it is estimated by linear trend progres-

sion. 

 

Table 5.2 Initial configuration of the binary glasses 𝑥𝑀𝑂 − (𝑥 − 100)𝑆𝑖𝑂- for the compo-
sitions 𝑥 = 25 and 50. 
 

Chemical 
compositions 

glasses (𝑥) 

Number 
of 𝑀𝑔 
atoms 

Number 
of 𝐶𝑎 
atoms 

Number 
of 𝐵𝑎 
atoms 

Number 
of 𝑆𝑖 
atoms 

Density 
(𝑔𝑐𝑚MB) 

Box 
length 

(Å) 

𝑇STUV  
(𝐾) 

25𝑀𝑔𝑂 1650 − − 4950 2.48 62.42 2100 

50𝑀𝑔𝑂 4000 − − 4000 2.74 62.42 2000 

25𝐶𝑎𝑂 − 1650 − 4950 2.90 63.30 2000 

50𝐶𝑎𝑂 − 4000 − 4000 2.90 64.32 2000 

25𝐵𝑎𝑂 − − 1650 4950 3.33 64.96 1950 

50𝐵𝑎𝑂 − − 4000 4000 4.21 69.57 2200 

 

5.2.3 Parameters for MD modelling of 𝑀𝑂 − 𝑆𝑖𝑂- glasses with 
𝑀 = 𝑀𝑔, 𝐶𝑎 and 𝐵𝑎 

 
 MD simulation on these binary glasses were performed in DL_POLY_2 [18] and the 

control parameters for MD modelling are given in Table 2.3 (see Chapter 2). The time-steps 

for quench stage for these glasses depended on melt temperature, 𝑇STUV, illustrated in Table 

5.2 which are taken from the phase diagram for each of these glasses. The quench rate used 

was 10AB 𝐾/𝑠 and the cutoffs for the short-range and long-range potentials were 7.0 Å and 

12.0 Å. However, at stage 3 of the ‘melt’ before quench a larger number of time-steps to 
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equilibrate were performed in some cases. As for 25𝑀𝑔𝑂 − 75𝑆𝑖𝑂- glass up to 2,720,000 

time-steps was performed and for both 25𝐶𝑎𝑂 − 75𝑆𝑖𝑂- glass and 25𝐵𝑎𝑂 − 75𝑆𝑖𝑂- glass 

up to 1,840,000 time-steps were performed. 

 

5.2.4 Sphere grid and cubic grid sampling of cation distributions 
 
 The clustering of cation or phase separation in the model can be surveyed by using 

sphere grid and cubic grid methods. That is a way to look for regions with different compo-

sitions in the glass structure. In the model based on random distribution, the number of mod-

ifier neighbours, 𝑁GG, in term of atomic number density, 𝜌G, can be deduced as; 𝑁GG = 𝜌G
YZ[\\

]

B
 

where 𝑑GG is the cutoff distance for 𝑖 − 𝑖 modifier neighbours and 𝜌G =
_\
`

 for 𝑖 modifier as 

illustrated in Figure 5.4. 

 

 
 

Figure 5.4 The neighbouring atoms sphere search with radius 𝑑GG and the green spheres 
are modifiers. 

 

 In the glass model, the pair distribution function is averaged over whole structure 

that provides good statistics in number of neighbouring atoms, 𝑁, and neighbouring dis-

tances, 𝑅. However, the distribution of modifier cations in the glass model can be surveyed 

by measuring the local density of modifier particles in different regions of glass structure. 

Therefore, the local quantity is number of modifiers, 𝑁G, in search volume, 𝑉G. The search 

volume can be either a sphere or cube as shown in Figure 5.5. Then, the average number of 

modifiers locally is < 𝑁G >= 𝑉G 	× (𝑁c/𝐿B) where, 𝑁c is the total number of modifiers and 

𝐿 is the length of glass model as illustrated in Figure 5.5. Also, the < 𝑁G > does not depend 

𝑑GG 
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on shape or position of search volume 𝑉G but it does depend on 𝑉G. The variation of 𝑁G results 

will be displayed in histogram. 

 

 
 

Figure 5.5 The model box showing the distribution of modifiers (green spheres) and 
sphere grid and cube grid search methods. 

 

5.2.5 Theory of Poisson and binomial distributions 
 
 The modifier distribution in the glass model can be compared to statistical distribu-

tions, particularly by Poisson and binomial discrete distribution. The Poisson distribution 

describes random events that are independent and occur randomly but at a definite average 

rate over unit of time or space [18]. The random variable 𝑥 that represents the number of 

events in a fixed unit of time or space has Poisson probability distribution function as fol-

lows: 

 𝑃(𝑥) =
𝜆g𝑒Mh

𝑥!  Equation 5.1 

where 𝜆 is expected average number of occurrences per unit of time or space and 𝑃(𝑥) is the 

probability of outcome (i.e. 𝑥 = 0, 1, 2, .., 𝑛) but the number of trials 𝑛 is indefinitely large 

i.e. 𝑛 → ∞. 

 On the other hand, the binominal distribution is a discrete probability function de-

fined as: 

 𝑃(𝑥) = m
𝑛
𝑥n	𝑝

g(1 − 𝑝)pMg  Equation 5.2 
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where	𝑥 is discrete random variable and 𝑥 = 0, 1, 2, .., 𝑛. The 𝑃(𝑥) is the probability of 𝑥 

successes in 𝑛 trials and the binominal coefficient qpgr =
p!

g!(pMg)!
 [19]. 

 The Poisson distribution function is a simple because it’s defined by single parameter 

𝜆 and it can be linked with the distribution of cations where 𝑥 are the different observed 

values of cations, 𝑁G, in different regions of space and 𝜆 is average value, < 𝑁G >. However, 

there is nothing to stop atoms from stacking on top of the other atoms which is physically 

unrealistic. This will produce a wide distribution function as some search grid boxes have 

large value of 𝑥 and some have small value of 𝑥. 

 In a physically realistic model, atoms are stopped from being too close and distribu-

tion will be narrower and the search grid box will have roughly an average number of atoms. 

Therefore, this affect can be achieved with binomial distribution functions where smallest 

volume for one atom is 1/𝑛 of the search volume and this may have one atom which is 

defined by 𝑝 or may not have one atom which is defined by (1 − 𝑝). Hence, in a search grid 

box the maximum number of atoms 𝑛 will be the number of smallest volumes for one atom 

that fit in the search volume (i.e. maximum 𝑥 = 𝑛 and on average 𝑥 < 𝑛) and the average 

number of atoms, < 𝑁G >, is defined by 𝑝𝑛 (i.e. 𝑝𝑛 =< 𝑁G >). 

 

5.3 Results 
 

5.3.1 Modifier cation distribution in initial configurations 
 
 Figure 5.6 shows the pictorial distribution of only 𝐵𝑎 modifier initial configurations 

in the glass model without the 𝑆𝑖 and 𝑂 atoms. The top part of the figure with the pink 

spheres and green spheres are the distribution of 𝐵𝑎	modifiers from the MD method and 

random method respectively for 25𝐵𝑎 − 75𝑆𝑖𝑂- glass model. Likewise, the bottom part of 

the figure with the pink spheres and green spheres are the distribution of 𝐵a modifiers from 
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the MD method and random method respectively for 50𝐵𝑎 − 50𝑆𝑖𝑂- glass model. The ran-

dom positons of modifiers are generated by randomly generating the total number of re-

quired modifier’s 𝑥, 𝑦 and 𝑧 positons (i.e. between 0 and 1), and finally 𝑥, 𝑦 and 𝑧 positons 

are multiplied by the length of model box. 

 

 
 

Figure 5.6 The initial configuration of 25𝐵𝑎𝑂 − 75𝑆𝑖𝑂- (top) and 50𝐵𝑎𝑂 − 50𝑆𝑖𝑂- 
(bottom) glass model only showing 𝐵𝑎 modifiers. The distribution of pink spheres is from 
the MD configuration and the green spheres are from random method. 

 

 Figure 5.7 shows the distribution of modifiers 𝑀 in 𝑥𝑀𝑂 − (𝑥 − 100)𝑆𝑖𝑂- glasses 

for 𝑥 = 25 and 50 where 𝑀 = 𝑀𝑔, 𝐶𝑎 and 𝐵𝑎. The results were obtained by the cubic 

sampling method where the glass model was divided into 8 × 8 × 8 grid of cubic boxes and 

total number of cubic grid search boxes was 512. For 25𝑀𝑂 − 75𝑆𝑖𝑂- glasses, the average 

number of modifiers in a search cube was 3.22 (i.e. < 𝑁G >= mt
u
n
B _v
t]

). Similarly, in 
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Figure 5.6 The initial configuration of 2521) − 75+,)- (top) and 5021) − 50+,)- 
(bottom) glass model only showing 21 modifiers. The distribution of pink spheres is from 
the MD configuration and the green spheres are from random method.  
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50𝑀𝑂 − 50𝑆𝑖𝑂- glasses the average number of modifiers was 7.81. The cubic grid sam-

pling of distributions of positions of modifiers from random method are broader compared 

to MD method. However, in MD method the configuration of the initial positions of modifier 

cations do not overlap each other as they are separated by roughly minimum value of inter 

atomic distance due to their similar charges which produces a narrower distribution as seen 

in Figure 5.7 (bottom). 

 

 
 

Figure 5.7 The cubic grid sampling of distributions of 𝑀 modifiers in the initial configu-
ration of glass model for 25𝑀𝑂 − 50𝑆𝑖𝑂- (top) and 50𝑀𝑂 − 𝑆𝑖𝑂- (bottom) glass model 
with 𝑀 = 𝑀𝑔, 𝐶𝑎 and 𝐵𝑎. 

 

5.3.2 Modifier cation distribution in 50𝑀𝑂 − 50𝑆𝑖𝑂- glasses 
with 𝑀 = 𝑀𝑔, 𝐶𝑎 and 𝐵𝑎 

 
 Figure 5.8 shows the pictorial distribution of modifier cation 𝑀 in 50𝑀𝑂 − 50𝑆𝑖𝑂- 

glasses with 𝑀 = 𝑀𝑔, 𝐶𝑎 and 𝐵𝑎. The figures do not contain 𝑆𝑖 and 𝑂 atoms and green 

spheres are 𝑀𝑔 cations in 50𝑀𝑔𝑂 − 50𝑆𝑖𝑂- glass, yellow spheres are 𝐶𝑎 in 50𝐶𝑎𝑂 −

50𝑆𝑖𝑂- glass, and pink spheres are 𝐵𝑎 cations in 50𝐵𝑎𝑂 − 50𝑆𝑖𝑂- glass. The distribution 
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Figure 5.7 The cubic grid sampling of distributions of (	modifiers in the initial con-
figuration of glass model for 25() − 50+,)- (top) and 50() − +,)- (bottom) glass 
model with ( = (/, 01 and 21. 
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of modifier 𝑀 is expected to be homogenous. The cubic sampling with the total cubic grid 

search of 512 boxes were computed in the glasses, as shown Figure 5.9 (top). The observed 

values of cations in the cubic grid sampling box shows the highest probability at	8 but for 

𝑀𝑔 and	𝐵𝑎 there is high probability at 7 as well. The resultant curve of 𝑀𝑔 modifier is 

broader and lower than 𝐶𝑎 and 𝐵𝑎 modifiers. 

 

 
 

Figure 5.8 The distributions of 𝑀 modifiers in 50𝑀𝑂 − 50𝑆𝑖𝑂- glass models in the final 
configuration for 𝑀 = 𝑀𝑔, 𝐶𝑎 and 𝐵𝑎. The green spheres are 𝑀𝑔, yellow spheres are 𝐶𝑎 
and pink spheres are 𝐵𝑎 modifiers. 

 

 Figure 5.9 (bottom) compares the results of cubic sampling between the initial and 

final MD configurations. The modifier 𝑀 from MD final configurations have narrow distri-

bution indicating the high probabilities towards the expected of 7.81. The result is much 

more distinctive for 𝐵𝑎 and 𝐶𝑎 compared to 𝑀𝑔	modifer. This characterised that there is 
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Figure 5.8 The distributions of ( modifiers in 50() − 50+,)- glass models in the final 
configuration for ( = (/, 01 and 21. The green spheres are (/, yellow spheres are 
01 and pink spheres are 21 modifiers. 
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homogenous distribution of 𝑀 modifiers in 50𝑀𝑂 − 𝑆𝑖𝑂- glasses. The homogeneity of 

modifiers is greater for larger alkaline earth size (e.g. 𝐵𝑎 > 𝐶𝑎 > 𝑀𝑔), this can be associ-

ated with the miscibility gap being large for binary magnesium silicate glasses compared to 

two other 𝐶𝑎 and 𝐵𝑎 silicate glasses as was mentioned in introduction. 

 

 
 

Figure 5.9 The cubic grid sampling of distributions of 𝑀 modifiers in final configuration 
in 50𝑀𝑂 − 50𝑆𝑖𝑂- glasses with 𝑀 = 𝑀𝑔, 𝐶𝑎 and 𝐵𝑎 (top). The comparison of cubic 
grid sampling of 𝑀 modifier distributions between initial and final MD configuration in 
50𝑀𝑂 − 50𝑆𝑖𝑂- glasses (bottom). Vertical offsets of 0.2 have been used for display. 

 

5.3.3 Modifier cation distribution in 25𝑀𝑂 − 75𝑆𝑖𝑂- glasses 
with 𝑀 = 𝑀𝑔, 𝐶𝑎 and 𝐵𝑎 

 
 Figure 5.10 shows the pictorial distributions of modifiers cations 𝑀 in 25𝑀𝑂 −

75𝑆𝑖𝑂- glasses (i.e. 𝑀 = 𝑀𝑔, 𝐶𝑎 and 𝐵𝑎). In the figure 𝑆𝑖 and 𝑂 atoms are lacking and 

green spheres are 𝑀𝑔 cations in 25𝑀𝑔𝑂 − 75𝑆𝑖𝑂- glass, yellow spheres are 𝐶𝑎 in 25𝐶𝑎𝑂 −

75𝑆𝑖𝑂- glass, and pink spheres are 𝐵𝑎 cations in 25𝐵𝑎𝑂 − 75𝑆𝑖𝑂- glass. When the cubic 
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grid sampling with the total of 512 cubic search grid were computed the resultant curve of 

𝑀𝑔 modifier is broader and lower than 𝐶𝑎 and 𝐵𝑎 modifiers as shown Figure 5.11 (top). 

The curve for 𝐶𝑎 is broader than 𝐵𝑎 too. The probability of observed values of cations for 

𝑀𝑔 and 𝐶𝑎 are high at 3 but for 𝐵𝑎 is higher at 4. The distribution of 𝑀𝑔 modifier is ex-

pected to be heterogeneous due to the miscibility gap. 

 

 
 

Figure 5.10 The distributions of 𝑀 modifiers in 25𝑀𝑂 − 75𝑆𝑖𝑂- glass models in the final 
configuration for 𝑀 = 𝑀𝑔, 𝐶𝑎 and 𝐵𝑎. The green spheres are 𝑀𝑔, yellow spheres are 𝐶𝑎 
and pink spheres are 𝐵𝑎 modifiers. 

 

 Figure 5.11 (bottom) compares the results of cubic sampling between the initial and 

final MD configurations. The curves from the initial and final configuration from MD follow 

different trends as for 𝑀𝑔 it gets wider, for 𝐶𝑎 it stays same and for 𝐵𝑎 it gets narrower. 
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Therefore, the narrow curve indicating the high probabilities towards the expected value of 

3.22. The wide-range observed for numbers, 𝑁G, of 𝑀𝑔 modifier in the MD final configura-

tion of glass model characterised the heterogeneity of 𝑀𝑔 modifier in 25𝑀𝑂 − 75𝑆𝑖𝑂- 

glasses. 

 

 
 

Figure 5.11 The cubic grid sampling of distributions of 𝑀 modifiers in final configuration 
in 25𝑀𝑂 − 75𝑆𝑖𝑂- glasses with 𝑀 = 𝑀𝑔, 𝐶𝑎 and 𝐵𝑎 (top). The comparison of cubic 
sampling of 𝑀 modifiers distributions between initial and final MD configuration in 
25𝑀𝑂 − 75𝑆𝑖𝑂- glasses (bottom). Vertical offsets of 0.2 have been used for display. 

 

5.4 Discussion 
 
 The cubic sampling results from MD initial configurations shows that modifiers 𝑀 

are not truly randomly distributed when it was compared with the initial configurations from 

the random method. The curves of modifiers 𝑀 from random initial configuration are 

broader than from MD initial configuration. For both 25𝑀𝑂 − 75𝑆𝑖𝑂- and 50𝑀𝑂 −
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50𝑆𝑖𝑂- (i.e. 𝑀 = 𝑀𝑔, 𝐶𝑎 and 𝐵𝑎) glass models the Poisson distribution functions were 

calculated and presented in Figure 5.12 with the expected values of 𝜆 = 3.22 and 𝜆 = 7.81 

respectively. Figure 5.12 also shows that truly random configurations agreeing with the 

Poisson results. 

 

 
 

Figure 5.12 Comparison of the Poisson distribution function and cubic grid sampling 
of distributions of modifiers 𝑀 in initial configuration from random method for 25𝑀𝑂 −
75𝑆𝑖𝑂- (top) and 50𝑀𝑂 − 50𝑆𝑖𝑂- (bottom) glasses with 𝑀 = 𝑀𝑔, 𝐶𝑎 and 𝐵𝑎. Vertical 
offsets of 0.2 have been used for display. 

 

 The cubic sampling results from final MD configuration for distribution of modifiers 

𝑀 in 50𝑀𝑂 − 50𝑆𝑖𝑂- glasses gave the full width at half maximum (FWHM) narrower than 

Poisson functions which is shown in Figure 5.13. Hence final MD configurations give less 

statistical fluctuations than random distributions. The figure also shows the final MD con-

figuration matches the characteristics of binominal distribution function where < 𝑁G >=

𝜆 = 𝑛𝑝 = 7.81. However, the two parameters that can be adjusted are 𝑛 and 𝑝 where 𝑛 =
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18 for 𝑀𝑔 and 𝑛 = 11 for both 𝐶𝑎 and 𝐵𝑎, and 𝑝 = 7.81/𝑛. Modifiers are evenly distrib-

uted because of 𝑖 − 𝑖 separation (i.e. 𝑟GG ≥ 𝑅SS). This effect is incorporated in the binomial 

distribution because in cubic grid search boxes each smallest volume can have at most 1 

modifier. 

 

 
 

Figure 5.13 Comparison of cubic grid sampling distributions of modifiers 𝑀 in the MD 
final configuration of 50𝑀𝑂 − 50𝑆𝑖𝑂- glasses (i.e.	𝑀 = 𝑀𝑔, 𝐶𝑎 and 𝐵𝑎), with Poisson 
and binomial distribution functions. Vertical offsets of 0.2 have been used for display. 

 

 The cubic sampling results from final MD configuration of distribution of modifiers 

𝑀 in 25𝑀𝑂 − 75𝑆𝑖𝑂- glasses gave the full width at half maximum (FWHM) similar to 

Poisson function as shown in Figure 5.14. The result for 𝐵𝑎 is narrow than random, 𝐶𝑎 is 

similar to random and 𝑀𝑔 is wider than random. This shows the greater effect for smaller 

alkaline earth size (i.e. 𝑀𝑔 < 𝐶𝑎 < 𝐵𝑎). 
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Figure 5.14 Comparison of cubic sampling (𝑙 = 8 Å) distributions of modifiers 𝑀 in the 
MD final configuration of 25𝑀𝑂 − 75𝑆𝑖𝑂- glasses (i.e. 𝑀 = 𝑀𝑔, 𝐶𝑎 and 𝐵𝑎) with Pois-
son distribution functions. Vertical offsets of 0.2 have been used for display. 

 

 In MD, a large number of time-steps were performed in the melts before quench to 

see the effects on homogeneity of the glasses. This is so the melts have got enough time for 

a completely homogenous distribution to be achieved. Figure 5.15 shows that for 𝐵𝑎 and 

𝐶𝑎 the large number of time-steps results in a distribution getting close to a random distri-

bution. Instead 𝑀𝑔 gets more different to a random distribution and in particular higher 

probability for 𝑥 = 0 and for 𝑥 ≥ 6, and lower probability for 𝑥 = 3. This shows the misci-

bility gap for 𝑀𝑔. 
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Figure 5.15 The result of cubic sampling distributions of modifiers 𝑀 in the MD final 
configuration of 25𝑀𝑂 − 75𝑆𝑖𝑂- glasses with 𝑀 = 𝑀𝑔 (top), 𝐶𝑎 (bottom-left) and 𝐵𝑎 
(bottom-right) from different time-steps used in the melt before quenching. 

 

5.5 Conclusions 
 
 The phase diagram of alkaline earth silicate systems and the barium silicate glasses 

in Chapter 4 shows whether there is phase separation for 𝑥 ≤ 25 glasses. To see better in 

alkaline earth silicate glasses large models were made. These were investigated with a new 

method to quantify the distribution of modifiers, 𝑀, with the so called cubic grid search. 

When examining 50𝑀𝑂 − 50𝑆𝑖𝑂- glasses the results show narrower than a random distri-

bution. The physical reason is the minimum separation distances between the modifiers. This 

can be approximated by the binomial distribution. Instead for 25𝑀𝑂 − 75𝑆𝑖𝑂- glasses 

where there is lower concentration of modifiers it is seen that 𝐵𝑎 and 𝐶𝑎 are similar to a 
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random distribution. However, for 𝑀𝑔	it was wider than the random distribution which is a 

sign of the miscibility gap. 
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Chapter 6  
Molecular dynamics modelling of barium zirconium 
fluoride 𝑍𝑟𝐹$ − 𝐵𝑎𝐹( glasses 
 
6.1 Introduction 
 
 Glass formation based on the fluorozirconate system was discovered by Poulain et 

al. in 1975 [1]. It was first observed in the 𝑍𝑟𝐹$ − 𝐵𝑎𝐹( − 𝑁𝑎𝐹 ternary system and later in 

1979 [2] it was observed in the 𝑍𝑟𝐹$ − 𝐵𝑎𝐹( binary system [3]. Zirconium tetrafluoride 

itself does not exist in the vitreous form but it can form binary glasses if associated with 

other fluorides, particularly 𝐵𝑎𝐹( [4]. Fluorozirconate glasses have a tendency for crystalli-

zation and the differences between the crystallization temperature and 𝑇+ are generally ap-

proximately 300 𝐾, which is indicative of the instability of these glasses [5]. However, in 

the binary systems the combination of fluorozirconate with di- and trivalent fluorides like 

𝐵𝑎𝐹( and 𝐿𝑎𝐹0 can give rise to rather stable glasses, but over limited ranges of compositions 

[6]. A phase diagram of 𝑍𝑟F$ − 𝐵𝑎𝐹( is shown in Figure 1 [7]. The first such binary glasses, 

𝑥𝑍𝑟𝐹$ − (100 − 𝑥)𝐵𝑎𝐹( reported by Poulian et al. [2] contained 𝑍𝑟𝐹$ between 𝑥 = 60 to 

70. Later, in 1981 with the same quenching rate Almeida et al. reported the glass forming 

region to be 𝑥 = 52 to 74 [8]. 

 The compositions of glass forming in the fluorozirconate system can be described by 

the ratio of 𝐹 to 𝑍𝑟, which is independent of the compositions of the counter-cations such as 

𝐿𝑖, 𝑁𝑎, 𝐾, 𝑅𝑏 and 𝐵𝑎 [9]. The ratio for the binary system 𝑍𝑟𝐹$ − 𝐵𝑎𝐹( is between 4.5 and 

6 [9], i.e. glass-forming region around 𝑥 = 50 to 82. 

 The chemical bonding ionicity estimated from the electronegative differences for 

𝑍𝑟𝐹$ is 83% and 𝐵𝑎𝐹( is 91% [10]. This indicates that with the relatively high atomic num-

ber cations, the closed shell configuration of 𝐹E is relatively undeformed, hence the heavy-

metal fluoride bonding can be described by considering spherically symmetric interatomic 
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interactions [11]. Although the tendency towards the formation of complex ions 𝑍𝑟𝐹F$EF in 

melts and crystals has been attributed to mixed ionic-covalent bond [5], it is a good first 

order representation of their interatomic potentials to be treated as ionic [11]. 

 

 
 

Figure 6.1 The phase diagram of binary system 𝑍𝑟𝐹$ − 𝐵𝑎𝐹( [7]. 
 

 In term of glass structure, the fluorozirconate glasses do no follow Zachriasen’s rules 

and 𝑍𝑟𝐹$ is considered the main component of glass former or glass progenitor [3] rather 

than the concept of network former that is common in oxide glasses. The barium fluorozir-

conate based binary systems are the simplest fluorozirconate glasses, where 𝐵𝑎𝐹( plays the 

role of network modifier [12] but this description remains controversial. For ionic system, 

such as heavy-metal fluoride glasses, the structural theory of random closed packed (RCP) 

model [13] is proposed (e.g. [14]) rather than common theory of modified random network 

or continuous random network (CRN) to describe the structural theories of glass formation. 

 The fluorozirconates are puzzling glass systems and the prominent reasons may be 

the extreme ability of 𝑍𝑟$G ions to modify its own environment around 𝐹E ions [15]. The 

	

74 T. Grande et al. / Phase equilibria in ZrF4-BaF 2 

3. Results 

The melt in this system showed considerable 
supercooling as expected for a glass-forming sys- 
tem and, as a result, accurate measurement of 
the freezing point was not possible. Equilibrium 
data from the cooling curves were only obtained 
in the composition range XB,F2 > 0.70, where the 
melt is probably purely ionic. Melts close to the 
composition BaZr2F m could be kept supercooled 
50-100 °C for several hours without any crystal- 
lization. In this region, subsequent heating after 
cooling showed far from equilibrium behaviour. 
Annealing at around 500 ° C of the samples after 
crystallization was necessary to be able to mea- 
sure equilibrium data due to polymorphism of 
both BaZr2F m and BaZrF 6 and the observed 
higher nucleation/crystall ization rate of BaZrF 6 
than BaZr2F~0. Vitreous transparent pieces of 
thickness 1-2 mm were obtained in the same 
region by fast quenching of the supercooled liq- 
uid from sub eutectic temperatures. 

The reproducibility of measured liquidus tem- 
peratures in the region 0.1 < X~, h < 0.3, which is 
a region with a steep liquidus line, was not satis- 
factory. Low heating rates gave the most accurate 
result at the expense of the necessary magnitude 
of the heat effect. Additional measurements of 
liquidus temperatures were carried out in this 
region by scanning calorimetry to check the accu- 
racy of the thermal analysis (TA) results. 

An unexpected and probably non-equilibrium 
endothermal effect measured along the same liq- 
uidus line in the temperature range 700-850 °C 
gave additional difficulties. These observations 
and the dependence on the heat rate mentioned 
above are probably due to t ime-dependent reac- 
tions between the melt and ZrF 4. This points to a 
change of the physical nature of melts when the 
content of ZrF 4 increases, but this warrants fur- 
ther investigation. 

The ZrF 4 used in the recently published phase 
study in the ZrF4-BaF 2 system [3] is clearly dif- 
ferent from the ZrF 4 used in this work. The 
published melting point of ZrF 4 at 1000 °C is 
much higher than our value. In addition, two 
phase transitions are reported, neither of which 
has ever been observed by the present group. 
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These differences should be kept in mind when 
the two phase diagrams are compared. 

The phase diagram for the system ZrF4-BaF 2 
is given in fig. 1. The large negative enthalpy of 
mixing [8,13] in the ZrF4-BaF2-NaF system indi- 
cates large negative deviation from ideality. The 
low temperatures of the eutectic points at XBa h 
= 0.30 and 569 _+ I ° C  and at  XBaF2 = 0.38 and 
549 _+ 1 ° C are therefore not surprising. The eu- 
tectic point at XBaF2 = 0.38 and 549 + I ° C  has 
also previously been reported [3]. 

The binary phase BaZr2F10 melts congruently 
at 5 9 0 _  2 ° C. BaZr2Fa0 has previously been re- 
ported to melt congruently at 575 + 10 °C [8] and 
incongruently at 585 o C [3]. Two phase transitions 
at 523 ___ 2 and 540 +_ 2 ° C were observed by TA. 
a-BaZr2F10 was identified by XRD [6] in samples 
annealed below 523 ° C, and XRD diagrams of 
samples quenched from above 525 °C were simi- 
lar to that given by Parker et al. for/3-BaZr2F10 
[14]. The reported a-/3 BaZr2F10 transition at 
480°C [8] was not observed, and the reported 
phase transition at 515 °C [3] corresponds proba- 
bly to the transition at 523°C measured by the 
present authors. A new modification of BaZr2F10 
was identified by XRD in samples quenched from 
temperatures above 540 ° C. 
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coordination number for 𝐹 about 𝑍𝑟 (𝑁HIJ) can be 6, 7 or 8, even in the fluorozirconate 

crystals [16]. Therefore, to understand heavy-metal fluoride glass structures that lack the 

structural units one has to grasp the knowledge on how these various polyhedra form a glassy 

material and how they are affected by the addition of modifiers or substitution of other glass 

formers [11]. 

 The early short-range structure of fluorozirconate glasses were studied with infrared 

and Raman spectroscopy by Almeida and Mackenzie [8]. They reported structural charac-

teristics for three different model glasses and comparing the Raman spectra to fluoride crys-

tals based on stoichiometry [17]. The three model glasses that were investigated were barium 

dizirconate (67𝑍𝑟𝐹$ − 33𝐵𝑎𝐹( and 64𝑍𝑟𝐹$ − 36𝐵𝑎𝐹(), barium metazirconate (52𝑍𝑟𝐹$ −

48𝐵𝑎𝐹() and barium trizirconate (74𝑍𝑟𝐹$ − 26𝐵𝑎𝐹(). They suggested that barium dizir-

conate glass was composed of zigzag chains of 𝑍𝑟𝐹K octahedra (i.e. 𝑁HIJ = 6 with 2 bridg-

ing fluorine atoms), cross linked by 𝐵𝑎 − 𝐹 ionic bonds. For barium metazirconate and tri-

zirconate, reported 𝑁HIJ were 7 and 5 respectively. However, they concluded that all glasses 

appeared to have a small number of isolated 𝑍𝑟𝐹K(E octahedra units and the structure of 

fluorozirconate glasses varies gradually with the 𝑍𝑟𝐹$ content. They also proposed that the 

inter-ochtahedral angle (𝑍𝑟 − 𝐹 − 𝑍𝑟) was roughly 136°. 

 Later work done by Phifer et al [18] with Raman spectroscopy found that 𝐵𝑎𝑍𝑟(𝐹MN 

glass has 𝑁HIJ between 7 and	8. However, for 52𝑍𝑟𝐹$ − 48𝐵𝑎𝐹( glass, they reported 𝑁HIJ 

was about 8 and for 74𝑍𝑟𝐹$ − 26𝐵𝑎𝐹( glass was mostly 7, with some 6. Kawamoto et al 

[19] studied crystals structures of 𝑍𝑟𝐹$ − 𝐵𝑎𝐹( binary system with Raman scattering spectra 

and these were compared with the glass structures. 

 Several X-ray and neutron diffraction studies were carried out on 𝑍𝑟𝐹$ − 𝐵𝑎𝐹( bi-

nary glasses. The early X-ray studies were reported by Coupe΄ et al. [20] and they studied 

𝑥𝑍𝑟𝐹$ − (100 − 𝑥)𝐵𝑎𝐹( glass for compositions 𝑥 = 50 to 82. The average 𝐶𝑁 reported for 
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the zirconium atom were in the range of 7.08 to 8.35 that depended on the chemical com-

positions. The 𝐶𝑁 for barium with respect to fluorine atoms (𝑁QRJ) were reported ranging 

from 8.1 to 10.7. They found the short-range order distances for 𝑍𝑟 − 𝐹 (𝑅HIJ) and 𝐵𝑎 − 𝐹 

(𝑅QRJ) from 2.09 − 2.11 Å and 2.61 − 2.68 Å respectively. They also reported the average 

values of the 𝑍𝑟 − 𝐹 − 𝑍𝑟 angle varying from 143° to 160° again depending on the chemi-

cal composition. 

 The X-ray diffraction study done on 50𝑍𝑟𝐹$	– 50𝐵𝑎𝐹( glass by Kawamoto and Hori-

saka [21] proposed that the basic structure of the glasses consists of chains of edge shared 

𝑍𝑟𝐹U dodecahedra polyhedra by comparing with the crystal structure of 𝛽 − 𝐵𝑎𝑍𝑟𝐹K and 

𝛼 − 𝐵𝑎𝑍𝑟𝐹K. Etheringron and Almeida et al. [22] studied 64𝑍𝑟𝐹$ − 36𝐵𝑎𝐹( glass with X-

ray diffraction and found 𝑁HIJ = 7.6. They implied that results from the diffraction are con-

sistent either with a structural model consisting of a three-dimensional random network of 

𝑍𝑟𝐹U structural units, or a chain model of the type proposed by Almeida and Mackenzie [8] 

on the basis of Raman data. 

 Almeida and Mackenzie [23] studied the 64𝑍𝑟𝐹$ − 36𝐵𝑎𝐹( glass, by both methods 

of X-ray and neutron diffraction techniques by also found 𝑁HIJ between 6 and 7. They also 

proposed that there is existence of both bridging and non-bridging fluorine atoms. XPS (X-

ray photoemission spectroscopy) studies done by Almedia et al [24] on 𝑥𝑍𝑟𝐹$ − (100 −

𝑥)𝐵𝑎𝐹( glasses of composition 𝑥 = 55 to 75, also suggested the existence of an extensive 

degree of bridging fluorine in these glassy networks. 

 Wagner et al [25] studied 67𝑍𝑟𝐹$	– 33𝐵𝑎𝐹( glass by both X-rays and neutron dif-

fraction techniques in details. They reported the 𝑍𝑟 − 𝐹 short-range distance order 2.06 Å 

for both X-ray and neutrons diffraction and slightly different 𝑁HIJ = 7.4 for X-ray and 6.9 

for neutrons. Le Bail et al [26] investigated 𝑍𝑟𝐹$ − (100 − 𝑥)𝐵𝑎𝐹( glasses by neutron dif-

fraction with compositions 𝑥 = 60, 67 and 75. They only performed X-ray diffraction on 
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67𝑍𝑟𝐹$	– 33𝐵𝑎𝐹( glass and characterised it as the most detailed of their investigations. They 

reported 𝑁HIJ	 between 7 − 7.5 and 𝑁QRJ~10, with the details of pair distribution function 

over distances up to 6 Å. 

 Boulard et al. [27] studied the 𝑥𝑍𝑟𝐹$ − (100 − 𝑥)𝐵𝑎𝐹( glasses by EXAFS for com-

positions 𝑥 = 60, 67 and 75. They reported the 𝑁HIJ of 6.8, 7.1 and 8.1 respectively, with 

𝑅HIJ short-range order distance of roughly 2.1 Å. However, the EXAFS studies of 67𝑍𝑟𝐹$ −

33𝐵𝑎𝐹( and 60𝑍𝑟𝐹$ − 40𝐵𝑎𝐹( glasses performed by Fudging and Kunquan et al [28] re-

ported the 𝑁HIJ of 6 and 𝑅HIJ	 short-range order distance between 2.03 − 2.05 Å. On the 

other hand, Almeida et al [29] studied 𝐵𝑎 atom structural environments in 67𝑍𝑟𝐹$ −

33𝐵𝑎𝐹( glass with EXAFS and reported 𝑁QRJ = 7.4 and 𝑅QRJ = 2.71 Å. 

 Youngman and Sen [30] studied 𝑥𝑍𝑟𝐹$ − (100 − 𝑥)𝐵𝑎𝐹( glasses using high-reso-

lution 19F NMR spectroscopy for 𝑥 = 58 to 78. Their structural studies reported 𝑁HIJ about 

7.6 to	7.1. They also looked at bridging fluorine between corner sharing 𝑍𝑟 − 𝐹 polyhedra 

and one non-bridging fluorine which is bonded to one 𝑍𝑟 and one 𝐵𝑎 atom or is bonded to 

one 𝑍𝑟 and two 𝐵𝑎 atoms. They concluded that the edge shared 𝑍𝑟 − 𝐹 polyhedral in these 

binary glasses are insignificant. 

 Several other studies done on the structural modelling of 𝑍𝑟𝐹$ − 𝐵𝑎𝐹( binary glasses 

were by molecular dynamics (MD) techniques. One of the early modelling studies by Lucas 

et al [31] was performed on 64𝑍𝑟𝐹$ − 36𝐵𝑎𝐹( glass and analysis was focused on 𝑍𝑟 − 𝑍𝑟 

distances due to the previous report of edge sharing like that observed in the crystal 𝛼 −

𝑍𝑟𝐹$. They reported that the 𝐶𝑁 of 𝐹 by 𝑍𝑟 was around 1.5 compared with 2.0 expected if 

each 𝑍𝑟 were bridged by a single fluoride and 𝐶𝑁 of 𝑍𝑟 by 𝐹 about 7.7. On the other hand, 

Kawamoto et al [32] performed structural modelling on 50𝑍𝑟𝐹$ − 50𝐵𝑎𝐹( glass. They 

found short-range order distances, 𝑅HIJ = 2.12 Å and 𝑅QRJ = 2.75 Å and reported 𝑁HIJ =

8 and 𝑁QRJ = 10. They also proposed that the structural units 𝑍𝑟𝐹Y were mostly triangular 
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decahedron (Snub Disphenoid) and small amount of monocapped trigonal prism with 𝐶𝑁 =

7. Also, they summarised from the 𝑍𝑟 − 𝑍𝑟 pair correlation function that the 𝑍𝑟𝐹Y poly-

herdra were linked by 3: 2 ratio of edge sharing and corner sharing. 

 Yasui and Inoue [33] studied 𝑥𝑍𝑟𝐹$ − (100 − 𝑥)𝐵𝑎𝐹( glasses by both molecular 

dynamics simulations and X-ray diffraction for 𝑥 = 60 and 75. Their MD result revealed 

that the structural units in these glasses were mainly 𝑍𝑟𝐹U polyhedra and they were either 

linked by corners or edges. They concluded that the edge shared structure was similar to the 

crystal 𝛽 − 𝐵𝑎𝑍𝑟𝐹K. Phifer et al [34] reviewed all the previous structural data and MD re-

sults for binary 𝑍𝑟𝐹$ − 𝐵𝑎𝐹( glasses and proposed a 𝑍𝑟(𝐹M0 bi-polyhedra module based 

model, with strong edge sharing in 67𝑍𝑟𝐹$ − 37𝐵𝑎𝐹( glass and also by considering struc-

ture of the same composition crystal 𝐵𝑎𝑍𝑟(𝐹MN. Whereas Simmons et al [35] did MD studies 

of 𝑥𝑍𝑟𝐹$ − (100 − 𝑥)𝐵𝑎𝐹( glasses for 𝑥 = 50 to 75 and reported that the 𝑍𝑟$G ions are 

primarily 8-fold coordinated to 𝐹E ions. 

 Structural studies of this binary glass system by first principles (quantum mechanics) 

MD technique performed by Voit et al [36] and Lin-xiang et al [37] also reported that 𝐶𝑁 of 

𝑍𝑟 can be equal to 7 or 8 and connection is mixed by edges or corners. From all the previous 

structural studies, the basic structural units of these glasses are not firmly established and it 

is not clearly determined the manner in which these structural units are interconnected. Also, 

there is the puzzling glass structure interpretation by either random packing or random net-

work theories. Therefore, we are making new MD models of the binary 𝑍𝑟𝐹$ − 𝐵𝑎𝐹( glasses 

in order to carry out detailed analysis of structural units and for this purpose we will make 

use of results for rotational invariants, 𝑄\, presented in Chapter 3. 
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6.2 Method 
 

 Structure of barium fluorozirconate crystals 
 
 The crystal structures are studied to compare the structural units and the short-range 

order to the corresponding glasses. It also tests the validity of the inter-atomic potential pa-

rameters used for the structural studies of the glasses by MD. 

 

 𝜶 − 	𝒁𝒓𝑭𝟒 
 
 The alpha zirconium tetrafluoride crystal polyhedra [38] with the 𝑍𝑟 − 𝐹 𝐶𝑁 = 8 is 

shown in Figure 6.2. The calculated density of the crystal is 4.60 𝑔𝑐𝑚E0. The lattice param-

eters are: 𝑎 = 7.896 Å, 𝑏 = 7.896 Å and 𝑐 = 7.754 Å with 𝛼 = 90°, 𝛽 = 90° and 𝛾 = 90°. 

 

 
 

Figure 6.2 The unit cell of 𝛼 − 𝑍𝑟𝐹$ with 𝑍𝑟𝐹Y polyhedra indicated in grey and the yellow 
spheres are fluorine atoms. 

 

  𝜷 − 	𝒁𝒓𝑭𝟒 
 
 The beta zirconium tetrafluoride crystal polyhedra [39] is shown in Figure	6.3. This 

crystal has peculiar 𝐶𝑁 with some 𝑍𝑟 having 𝐶𝑁 = 6 and some having 𝐶𝑁 = 8. Likewise, 

𝑍𝑟 with 𝐶𝑁 = 8 for this particular crystal has been reported elsewhere [20]. The lattice pa-

rameters are 𝑎 = 9.570 Å, 𝑏 = 9.930 Å and 𝑐 = 7.730 Å with 𝛼 = 90°, 𝛽 = 94.28° and 

𝛾 = 90°. 
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Figure 6.3 The unit cell of 𝛽 − 	𝑍𝑟𝐹$ with 𝑍𝑟𝐹Y polyhedra indicated in grey and the yel-
low spheres are fluorine atoms. 

 

 𝜷 − 𝑩𝒂𝒁𝒓𝟐𝑭	𝟏𝟎 
 
 The beta barium dizirconate crystal [40] is shown in Figure 6.4. The two distinctive 

polyhedra are 𝑍𝑟 − 𝐹 with 𝐶𝑁 = 7 indicated by grey polyhedra and 𝐵𝑎 − 𝐹 with 𝐶𝑁 = 11 

indicated by blue polyhedra. The calculated density of the crystal is 4.35 𝑔𝑐𝑚E0. The lattice 

parameters are 𝑎 = 6.064 Å, 𝑏 = 15.383 Å and 𝑐 = 9.057 Å with 𝛼 = 90°, 𝛽 = 112.98° 

and 𝛾 = 90°. 

 

 
 

Figure 6.4 The unit cell of 𝛽 − 𝐵𝑎𝑍𝑟(𝐹	MN crystal, grey indicating the 𝑍𝑟𝐹Y polyhedra 
and blue indicating 𝐵𝑎𝐹Y polyhedra. 
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 𝜶 − 𝑩𝒂𝒁𝒓𝑭𝟔 

 
 The alpha barium metaflurozirconate crystal [41] is shown in Figure 6.5. The grey 

polyhedra are 𝑍𝑟 − 𝐹 with 𝐶𝑁 = 8 and the blue polyhedra are 𝐵𝑎 − 𝐹 with 𝐶𝑁 = 11. How-

ever, for 𝛼 − 𝐵𝑎𝑍𝑟𝐹K crystal, 𝑍𝑟 − 𝐹 with 𝐶𝑁 = 7 can be found elsewhere [19]. The 𝛽 −

𝐵𝑎𝑍𝑟𝐹K crystal polyhedra having 𝑍𝑟 − 𝐹 with 𝐶𝑁 = 8 and 𝐵𝑎 − 𝐹 with 𝐶𝑁 = 10 is also 

reported [20]. The calculated density of the crystal is 5.01 𝑔𝑐𝑚E0. The lattice parameters 

are 𝑎 = 6.493 Å, 𝑏 = 9.530 Å and 𝑐 = 9.203 Å with 𝛼 = 90°, 𝛽 = 127.09° and 𝛾 = 90°. 

 

 
 

Figure 6.5 The unit cell of	𝛼 − 𝐵𝑎𝑍𝑟𝐹K crystal, grey indicating the 𝑍𝑟𝐹Y polyhedra and 
blue indicating 𝐵𝑎𝐹Y polyhedra. 

 

 𝜶 − 𝑩𝒂𝟐𝒁𝒓𝑭𝟖 
 
 The 𝛼 − 𝐵𝑎(𝑍𝑟𝐹U crystal [42] is shown in Figure 6.6. The grey polyhedra are 𝑍𝑟 −

𝐹 with 𝐶𝑁 = 8 and the blue polyhedra are 𝐵𝑎 − 𝐹 with 𝐶𝑁 = 11. The calculated density of 

the crystal is 5.29 𝑔𝑐𝑚E0. Its lattice parameters are: 𝑎 = 9.740 Å, 𝑏 = 5.614 Å and 𝑐 =

11.887 Å with 𝛼 = 90°, 𝛽 = 90° and 𝛾 = 90°. 
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Figure 6.6 The unit cell of	𝛼 − 𝐵𝑎(𝑍𝑟𝐹U crystal, grey indicating the 𝑍𝑟𝐹Y polyhedra and 
blue indicating 𝐵𝑎𝐹Y polyhedra. 

 

 𝑩𝒂𝑭𝟐 
 
 The structural unit cell of barium fluoride crystal [43] is shown in Figure 6.7 with 

𝐵𝑎 − 𝐹 having 𝐶𝑁 = 8. The calculated density of the crystal is 4.89 𝑔𝑐𝑚E0. Its lattice pa-

rameters are: 𝑎 = 6.196 Å, 𝑏 = 6.196 Å and 𝑐 = 6.196 Å with 𝛼 = 90°, 𝛽 = 90° and 𝛾 =

90°. 

 

 
 

Figure 6.7 The unit cell of 𝐵𝑎𝐹(	crystal, blue spheres representing barium atoms and yel-
low spheres representing fluorine atoms. 
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 Potentials for barium fluorozirconate systems 

 
 The interaction between the pairs of ions in 𝑍𝑟𝐹$ − 𝐵𝑎𝐹( binary system was de-

scribed by using the Buckingham rigid ion interatomic potentials. The form of Coulomb and 

Buckingham potentials are given in Equation 2.2 − 2.4. The potential parameters used were 

derived by Teter [44] and these are listed in Table 6.1 for 𝑍𝑟 − 𝐹, 𝐵𝑎 − 𝐹 and 𝐹 − 𝐹 inter-

actions. 

 

Table 6.1 Teter potential parameters for 𝑍𝑟𝐹$ − 𝐵𝑎𝐹( binary system. 
 

𝑖 − 𝑗 𝑞q(𝑒) 𝐴qt(𝑒𝑉) 𝜌qt(Å) 𝐶qt(𝑒𝑉ÅEK) 

𝑍𝑟 − 𝐹 2.4 216847.86 0.150759 0.06858 

𝐵𝑎 − 𝐹 1.2 472934.92 0.190284 140.80 

𝐹 − 𝐹 −0.6 11510.58 0.225005 29.53 

 

 Testing of potentials  
 
 Before the application of MD simulation to the modelling of melt quenched glasses 

to study the atomic structure, at first one has to test the interatomic potentials. Therefore, to 

evaluate the legitimacy of Teter interatomic potential energy function parameters, they were 

applied in the energy minimisation algorithm of well-known crystal structures of 𝛼 − 𝑍𝑟𝐹$, 

𝛽 − 𝑍𝑟𝐹$, 𝛽 − 𝐵𝑎𝑍𝑟(𝐹MN, 𝛼 − 𝐵𝑎𝑍𝑟𝐹K, 𝛼 − 𝐵𝑎(𝑍𝑟𝐹U and 𝐵𝑎𝐹(. In 𝑍𝑟𝐹$ − (100 −

𝑥)𝐵𝑎𝐹( glasses these correspond to 𝑥 = 100, 75, 67, 50 and 0 respectively. The principle 

and algorithms of the energy minimisation method to test these potential parameters by the 

General Utility Lattice Program (GULP) are explained in Chapter 2. The results obtained 

from the GULP minimisation process are given in the following Tables 6.2 − 6.7. 
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Table 6.2 The result from the GULP energy minimisation for 𝛼 − 𝑍𝑟𝐹$ crystal initial and 
final structures displaying the low percentage errors. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume Å0 481.566 471.044 -10.521 −2.18 

𝑎 Å 7.896 7.849 −0.046 −0.59 

𝑏 Å 7.896 7.849 −0.046 −0.59 

𝑐 Å 7.724 7.644 −0.79 −1.02 

𝛼 Degree 90.000 89.99 −0.001 0.00 

𝛽 Degree 90.000 89.99 0.001 0.00 

𝛾 Degree 90.000 89.99 −0.002 0.00 

𝑍𝑟 − 𝐹 distance Å 2.216 2.091 −0.125 -5.63 

𝑍𝑟 − 𝐹 𝐶𝑁  8 8 0 0 

 

 

 

Table 6.3 The result from the GULP energy minimisation for 𝛽 − 𝑍𝑟𝐹$ crystal initial and 
final structures displaying the low percentage errors except for the change in 𝑍𝑟 − 𝐹 𝐶𝑁. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume Å0 732.534 717.016 −15.517 −2.12 

𝑎 Å 9.570 9.444 −0.125 −1.31 

𝑏 Å 9.930 9.910 −0.019 −0.20 

𝑐 Å 7.730 7.679 −0.059 −0.66 

𝛼 Degree 90.000 90.000 0.000 0.00 

𝛽 Degree 94.280 94.010 −0.269 −0.29 

𝛾 Degree 90.000 90.000 0.000 0.00 

𝑍𝑟 − 𝐹 distance Å 2.232 2.098 -0.134 −6.00 

𝑍𝑟 − 𝐹 𝐶𝑁  6.700 7.700 1.00 14.8 
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Table 6.4 The result from the GULP energy minimisation for 𝛽 − 𝐵𝑎𝑍𝑟(𝐹MN crystal initial 
and final structures displaying the low percentage errors. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume Å0 777.812 760.148 −17.663 −2.27 

𝑎 Å 6.064 6.096 0.032 0.54 

𝑏 Å 15.383 15.582 0.199 1.30 

𝑐 Å 9.057 8.759 −0.297 −3.29 

𝛼 Degree 90.000 90.000 0.000 0.00 

𝛽 Degree 112.980 114.010 1.030 0.91 

𝛾 Degree 90.000 90.000 0.000 0.00 

𝑍𝑟 − 𝐹 distance Å 2.050 2.026 −0.024 −1.16 

𝑍𝑟 − 𝐹 𝐶𝑁  7 7 0 0 

𝐵𝑎 − 𝐹 distance Å 2.783 2.858 0.075 2.69 

𝐵𝑎 − 𝐹 𝐶𝑁  10 10 0 0 

 

 

Table 6.5 The result from the GULP energy minimisation for 𝛼 − 𝐵𝑎𝑍𝑟𝐹K crystal initial and 
final structures displaying the low percentage errors. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume Å0 454.256 437.466 −16.790 −3.70 

𝑎 Å 6.493 6.556 0.638 0.98 

𝑏 Å 9.530 8.873 −0.656 −6.89 

𝑐 Å 9.203 9.404 0.201 2.19 

𝛼 Degree 90.000 90.000 0.000 0.00 

𝛽 Degree 127.090 126.915 -0.174 −0.14 

𝛾 Degree 90.000 90.000 0.000 0.000 

𝑍𝑟 − 𝐹 distance Å 2.152 2.145 0.007 0.32 

𝑍𝑟 − 𝐹 𝐶𝑁  8 8 0 0 

𝐵𝑎 − 𝐹 distance Å 2.841 2.878 0.037 1.30 

𝐵𝑎 − 𝐹 𝐶𝑁  11 12 1 9.1 
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Table 6.6 The result from the GULP energy minimisation for 𝛼 − 𝐵𝑎(𝑍𝑟𝐹U crystal initial 
and final structures displaying the low percentage errors except for the change in 𝐵𝑎 − 𝐹 
𝐶𝑁. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume Å0 650.078 625.065 −25.013 −3.85 

𝑎 Å 9.740 9.061 −0.678 −6.97 

𝑏 Å 5.614 5.628 0.013 0.25 

𝑐 Å 11.887 12.255 0.368 3.10 

𝛼 Degree 90.000 90.000 0.000 0.00 

𝛽 Degree 90.000 90.000 0.000 0.00 

𝛾 Degree 90.000 90.000 0.000 0.00 

𝑍𝑟 − 𝐹 distance Å 2.098 2.098 0.000 0.00 

𝑍𝑟 − 𝐹 𝐶𝑁  8 8 0 0 

𝐵𝑎 − 𝐹 distance Å 2.811 2.852 0.041 1.46 

𝐵𝑎 − 𝐹 𝐶𝑁  11 12.5 1.5 13.6 

 

 

Table 6.7 The result from the GULP energy minimisation for 𝐵𝑎𝐹( crystal initial and final 
structures displaying the low percentage errors. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume Å0 237.913 260.752 22.839 9.60 

𝑎 Å 6.196 6.388 0.192 3.10 

𝑏 Å 6.196 6.388 0.192 3.10 

𝑐 Å 6.196 6.388 0.192 3.10 

𝛼 Degree 90.000 90.000 0.000 0.00 

𝛽 Degree 90.000 90.000 0.000 0.00 

𝛾 Degree 90.000 90.000 0.000 0.00 

𝐵𝑎 − 𝐹 distance Å 2.746 2.765 0.019 0.68 

𝐵𝑎 − 𝐹 𝐶𝑁  8 8 0 0 
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 Initial configurations for barium fluorozirconate glasses 

 
 Models were made of 𝑥𝑍𝑟𝐹$ − (𝑥 − 100)𝐵𝑎𝐹( glasses with compositions 𝑥 = 50, 

60, 67 and 75. The initial random distributions (see Chapter	2), had numbers of atoms, cubic 

box length and density with details shown in Table 6.8. The densities of glasses reported in 

literature were 4.57 𝑔𝑐𝑚E0 [20] for 75𝑍𝑟𝐹$ − 25𝐵𝑎𝐹(, 4.64 𝑔𝑐𝑚E0 [22] for 64𝑍𝑟𝐹$ −

36𝐵𝑎𝐹(, 4.64 𝑔𝑐𝑚E0 [25] for 67𝑍𝑟𝐹$ − 33𝐵𝑎𝐹( and 4.37 𝑔𝑐𝑚E0 [45] for 65𝑍𝑟𝐹$ −

35𝐵𝑎𝐹( glasses. The densities used in the model were based largely on those reported in the 

literature and the comparing with the densities of related crystals.  

 

Table 6.8 Initial configurations of the binary glasses 𝑥𝑍𝑟𝐹$ − (𝑥 − 100)𝐵𝑎𝐹( with the com-
positions 𝑥 = 50 to 75. 
 

Chemical 
compositions 
of glasses (𝑥) 

Number of 
𝑍𝑟	atoms 

Number of 
𝐵𝑎 atoms 

Density 
(𝑔𝑐𝑚E0) Length (Å) 

50(𝑍𝐵) 200 200 est. 4.76 28.79 

60(𝑍3𝐵2) 240 160 4.64 28.99 

67(𝑍2𝐵) 268 132 4.64 28.95 

75(𝑍3𝐵) 300 100 4.64 28.93 

 

 Parameters for MD modelling of barium fluorozirconate 
glasses 

 
 MD simulation of these binary glasses were performed in DL_POLY_2 as described 

in Chapter 2 (see section 2.4). Normally the equilibrations are performed in the certain tem-

perature sequence e.g. shown in Table 2.3 (Chapter 2). However, Table 6.9 displays the new 

scheme that was applied here with many temperature stages to heat the system at high tem-

perature and equilibrate the random configuration and quenched at 2,000 𝐾. In this many 

stage method, the temperature was dropped by 100 𝐾 from 5,000 𝐾 until 2,000 𝐾 equili-
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brating for 5,000	time-steps. The time-steps were 2 𝑓𝑠. At the final stage of bath with tem-

perature 300 𝐾, the first 80,000 time-steps was equilibrated and sample only was collected 

after 80,000 time-steps at every 400 time-steps. Typical control parameters for MD model-

ling of glasses are described in Chapter 2 (see Section 2.4.1). For the barium fluorozirconate 

glasses the cutoffs for short-range and long-range potentials were 7.0 Å and 12.0 Å with 

quench rate of 10M0 𝐾𝑠EM. 

 

Table 6.9 MD stages for melt-quenched barium fluorozirconate glasses. 
 

Stages Temperature (𝐾) Time-steps Process 
(NVT Berendsen thermostat) 

1 5000 40000 Equilibrate 

(30 stages) 4900 − 2000 5000 Equilibrate 

3 2000 85000 Quench 

4 300 160000 Equilibrate and collect 

 

6.3 Results 
 Figure 6.10 shows the images of 𝑥𝑍𝑟𝐹$ − (𝑥 − 100)𝐵𝑎𝐹( binary glass models for 

𝑥 = 50, 60, 67 and 75. Networks of grey polyhedra are 𝑍𝑟𝐹Y polyhedra forming the struc-

tural units of the glass or acting as network formers. The fluorine atoms as yellow spheres 

are present at every vertex of polyhedra structures and act as the bridging between these 

networks of polyhedra. The dark blue spheres are the barium atoms, whose increase in con-

centration seems to destroy these network polyhedra structures and give rise to the disorder 

in the models. 
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Figure 6.8 Image of (top-left) 𝑥 = 75, (top-right)	𝑥 = 67, (bottom-left) 𝑥 = 60 and 
(bottom-right) 𝑥 = 50 glass models. 

 

 Pair distribution function, nearest neighbour distances 
and coordination numbers 

 
 The pair distribution functions, 𝑇qt(𝑟), for the binary glass model of 𝑥𝑍𝑟𝐹$ − (𝑥 −

100)𝐵𝑎𝐹( for 𝑥 = 50, 60, 67 and 75 are shown in Figure 6.9. The first prominent peaks in 

Figure 6.9 (top) and Figure 6.9 (bottom) i.e. 𝑇HIJ(𝑟) and 𝑇QRJ(𝑟) represent 𝑍𝑟 − 𝐹 and 

𝐵𝑎 − 𝐹 nearest neighbours respectively with the average bond length, 𝑅qt. The area under 

these peaks determines coordination numbers, 𝑁qt, around 𝑍𝑟 and 𝐵𝑎 atoms respectively. 

𝑇JJ(𝑟) has the first peak around 2.55 Å which represents 𝐹 − 𝑍𝑟 − 𝐹 average distance in 

𝑍𝑟𝐹Y polyhedra in the glass models. The second peak roughly at 3.95 Å may indicate 𝐹 −
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𝐵𝑎 − 𝐹 average distance in 𝐵𝑎𝐹Y polyhedra. The correlation 𝑇HIHI(𝑟) shown in the second-

ary axis of Figure 6.9 (top), which peaks at 4.09 Å indicates the network connectivity, 𝑁HIHI, 

of 𝑍𝑟𝐹Y polyhedra. 

 

 
 

Figure 6.9 The pair distribution functions,	𝑇qt(𝑟), for 𝑥 = 50, 60, 67 and 75 glass mod-
els. 𝑇HIJ, 	𝑇JJ and 𝑇HIzI, (top).		𝑇HIJ, 	𝑇HIQR and 	𝑇QRQR (bottom). 

 

 Likewise, the correlation results shown in the secondary axis of Figure 6.9 (bottom) 

are 𝑇QRQR	(𝑟) and 𝑇HIQR(𝑟) which has first peak roughly at 4.6 Å	and at	4.1 Å respectively. 

The average coordination number of fluorine atoms found under these correlations curves 

indicates the non-bridging fluorine atoms in the models i.e. 𝐵𝑎 − 𝐹 − 𝐵𝑎 or 𝑍𝑟 − 𝐹 − 𝐵𝑎. 

The 𝑅qt and 𝑁qt for all the glass models are given in Tables 6.10	–6.11, where 𝑖 and 𝑗	are 
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Table 6.10 Average bond length, Aqt, and the coordination number, )qt, of !"#$ − &'#( 
binary glass models. The cutoff distances were 2.75	Å and	~4.5 for )JKL and )JKJK respec-
tively. 
 

4 #: !" AJKL )JKL AJKJK 
!"!" 
< { > 
Model 

!"!" 
< { >
	Theory 

)JKJK 
 

PDF 

50 6.00 2.03Å 7.5 4.11Å 3.07 3.00 2.86 

60 5.33 2.03Å 7.4 4.09Å 4.14 4.32 4.02 

67 4.99 2.03Å 7.4 4.07Å 4.87 5.00 4.68 

75 4.67 2.03Å 7.5 4.09Å 5.63 5.66 5.55 

Figure 6.9 The pair distribution functions,	*qt("), for 4 = 50, 60, 67 and 75 glass models. 
*JKL, 	*LL and *JK�K, (top).		*JKL, 	*JKRS and 	*RSRS (bottom). 
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either 𝐵𝑎, 𝑍𝑟 or 𝐹 atoms. The estimated error in the results are ±0.02 Å for atomic separa-

tions, 𝑅qt, and ±0.1 in the coordination number, 𝑁qt. 

 

Table 6.10 Average bond length, 𝑅qt, and the coordination number, 𝑁qt, of 𝑍𝑟𝐹$ − 𝐵𝑎𝐹( 
binary glass models. The cutoff distances were 2.75 Å and	~4.5 Å for 𝑁HIJ and 𝑁HIHI re-
spectively. 
 

 

Table 6.11 Average bond length, 𝑅qt, and coordination number, 𝑁qt, of 𝑍𝑟𝐹$ − 𝐵𝑎𝐹( binary 
glass models. The cutoff distances were 3.3 Å, ~6.0 Å and ~5.1 Å, for 𝑁QRJ, 𝑁QRQR and 
𝑁HIQR respectively. 
 

𝑥 𝑅QRJ  𝑁QRJ 𝑅QRQR  
𝐵𝑎𝐵𝑎 
< 𝑛 > 
Model 

𝑁QRQR 
 

PDF 
𝑅HIQR  𝑁HIQR 

PDF 

50 2.83Å 10.5 4.67 Å 8.98 6.59 4.27 Å 6.73 

60 2.83Å 10.3 4.67 Å 7.87 5.08 4.37 Å 4.96 

67 2.81Å 10.4 4.57 Å 7.31 4.31 4.39 Å 3.94 

75 2.81Å 10.5 4.63 Å 5.84 3.35 4.37 Å 2.73 

 

 The theory behind the calculation of network connectivity initially assumes the cor-

ner sharing of 𝑍𝑟𝐹Y polyhedra, where < 𝑛 > is the number of bridging fluorine atoms. The 

bridging fluorine atoms are deduced from the chemical composition ratio of 𝐹:	𝑍𝑟 assuming 

the average 𝑍𝑟 − 𝐹 𝐶𝑁 to be 7.5 in the glass. Assuming the average connectivity, < 𝑛 >, 

can vary from < 𝑛 >= 5.0 when	𝑥 = 67 to < 𝑛 >= 3.0 when 𝑥 = 50, it can be estimated 

using < 𝑛 >	= 	 (11𝑥 − 400)/𝑥. 

𝑥 𝐹: 𝑍𝑟 𝑅HIJ  𝑁HIJ  𝑅HIHI  
𝑍𝑟𝑍𝑟 
< 𝑛 > 
Model 

𝑍𝑟𝑍𝑟 
< 𝑛 >
	Theory 

𝑁HIHI  
 

PDF 

50 6.00 2.03Å 7.5 4.11 Å 3.07 3.00 2.86 

60 5.33 2.03Å 7.4 4.09 Å 4.14 4.32 4.02 

67 4.99 2.03Å 7.4 4.07 Å 4.87 5.00 4.68 

75 4.67 2.03Å 7.5 4.09 Å 5.63 5.66 5.55 
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 The 𝑇qt(𝑟) function shows that there is an overlap between 𝐵𝑎 − 𝑍𝑟 and 𝐵𝑎 − 𝐵𝑎 

correlations between 3.5 − 5.4 Å. There are also clear indications of change in heights of 

the peaks as 𝑥 changes from 50 to 75. Particularly the change in the height of the peaks are 

clearly visible in 𝑍𝑟 − 𝑍𝑟, 𝑍𝑟 − 𝐵𝑎, 𝐵𝑎 − 𝐵𝑎 and 𝐹 − 𝐹 correlations. The 𝑇HIHI(𝑟) corre-

lation clearly shows that the < 𝑛 > decreases as the composition of 𝑍𝑟 ions decreases. The 

cutoff for 𝑁qt were estimated from the minimum of the first peak of each respective 𝑇qt(𝑟) 

correlation functions. 

 

 Bond angle distribution functions 
 
 Further information about the local structural units is provided by the bond angle 

distribution functions (BAD). Although it’s the very common method for analysing the local 

structure of amorphous systems, to our knowledge this higher order correlation function has 

not been investigated for the 𝑍𝑟𝐹$ − 𝐵𝑎𝐹( binary glass system. Figure	6.10 displays 𝐹 −

𝑍𝑟 − 𝐹 and 𝐹 − 𝐵𝑎 − 𝐹 bond angle distribution functions of all glass models for cutoff dis-

tances of 2.75 Å and 3.3 Å respectively. In 𝐹 − 𝑍𝑟 − 𝐹 there are two prominent peaks, the 

primary peak at 75° and secondary peak at 141°. There is a minimum at 105° between these 

two peaks. Similarly, for the 𝐹 − 𝐵𝑎 − 𝐹, there are also two typical peaks at 55° and 109° 

but the secondary peak is broad and has wider shoulders. There is a minimum around 85° 

between these two peaks. 
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Figure 6.10 The bond angle distribution functions (BAD) of all the glass compositions. 
𝐹 − 𝑍𝑟 − 𝐹 (top) and 𝐹 − 𝐵𝑎 − 𝐹 (bottom). 

 

 Figure 6.11 displays the BAD of glasses and related crystals, with compositions 𝑥 =

67 and 50. In addition it also shows the BAD for 𝛼 − 𝑍𝑟𝐹$, 𝛽 − 𝑍𝑟𝐹$ and 𝐵aF( crystals. 

For 𝑥 = 67 crystal, 𝐹 − 𝑍𝑟 − 𝐹 has two main peaks whereas 𝑥 = 50 crystal has one main 

peak and two secondary peaks. Both crystals have a primary peak around 77°. There is sec-

ondary peak at	141° for 𝑥 = 67 crystal but 𝑥 = 50 crystal has two secondary peaks at 133° 

and 149°. Also, between the primary and secondary peaks there is a minimum at 117° and 

109° for 𝑥 = 67 crystal and for 𝑥 = 50 crystal respectively. The BAD for pure 𝛼 − 𝑍𝑟𝐹$ 

shows two distinctive peaks, the primary peak at 75° and secondary peak 139° and a mini-

mum in between those two peaks at 115°, whereas 𝛽 − 𝑍𝑟𝐹$ crystal has three distinctive 

peaks at	75°, 115° and 141°. The peak at 115° is not seen in any other crystals or glasses. 
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at	75°, 115° and 141°. The peak at 115° is not seen in any other crystals or glasses. Fur-

thermore, the W − !"#$ peaks are more widely distributed than	V − !"#$. The BAD signa-

ture of both 4 = 67 and 50 crystals are similar to the glasses however 4 = 50	crystal has 

two secondary peaks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 The bond angle distribution functions (BAD) of all the glass compositions. 
# − !" − # (top) and # − &' − # (bottom). 
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Furthermore, the 𝛼 − 𝑍𝑟𝐹$ peaks are more widely distributed than 𝛽 − 𝑍𝑟𝐹$. The BAD sig-

nature of both 𝑥 = 67 and 50 crystals are similar to the glasses however 𝑥 = 50 crystal has 

two secondary peaks. 

 

 
 

Figure 6.11 The bond angle distribution functions (BAD) of glasses and related crystals. 
(Top) 𝐹 − 𝑍𝑟 − 𝐹 of pure 𝛼 − 𝑍𝑟𝐹$ crystal, 𝛽 − 𝑍𝑟𝐹$ crystals, and 𝑥 = 67 and 50 glasses 
and its corresponding crystals. (Bottom) 𝐹 − 𝐵𝑎 − 𝐹 of pure 𝐵𝑎𝐹( crystal and 𝑥 = 67 and 
50 glasses and its corresponding crystals. 

 

 The BAD of 𝐹 − 𝐵𝑎 − 𝐹 (see Figure 6.11 bottom) in crystals show the range of 

angles with more characteristic peaks than glasses. Crystals 𝑥 = 67 and 50 both have rec-

ognizable peaks at	53°, 61° and 137°. For 𝑥 = 67 crystal another recognizable peak is at 

105° and for 𝑥 = 50 crystal other distinctive peaks are at 93° and 163°. The pure 𝐵𝑎𝐹( 

crystal has three distinctive peaks. The two peaks with similar intensities are at 65° and 

113°	and there is small third peak at 171°. The peaks of 𝑥 = 50 crystal have higher inten-

sities than other crystals. The BAD result for 𝑥 = 67 crystal has similar signature to the 

glasses. 
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 Network connectivity 

 
 From Table 6.10 the 𝑁HIHI denotes nearest neighbours and < 𝑛 > denotes 𝑍𝑟 − 𝐹 −

𝑍𝑟 links per	𝑍𝑟 (a formula was given in section 6.3.1). Figure 6.12 shows the proportion of 

𝑍𝑟 having different values of 𝑍𝑟 − 𝐹 − 𝑍𝑟 connectivity per 𝑍𝑟 and the proportion of 𝐵𝑎 

having different values of 𝐵𝑎 − 𝐹 − 𝐵𝑎 connectivity per 𝐵𝑎 (i.e. 𝑄HIY  and 𝑄QRY  respectively) 

in all the glass models. As the concentration of 𝑍𝑟 increases the < 𝑛 > also increases and 

the < 𝑛 > mostly lies between 3 − 6. The 𝐵𝑎 − 𝐹 − 𝐵𝑎 connectivity is decreasing approx-

imately linearly when percentage of 𝐵𝑎 is reduced thus indicating no phase separation in the 

glass models.  

 

 
 

Figure 6.12 𝑍𝑟 − 𝐹 − 𝑍𝑟 linkage per 𝑍𝑟 (top) and 𝐵𝑎 − 𝐹 − 𝐵𝑎 linkage per 𝐵𝑎 (bottom) 
for 𝑥𝑍𝑟𝐹$ − (𝑥 − 100)𝐵𝑎𝐹( glass models. 

 

 Figure 6.13 shows average 𝑍𝑟 − 𝐹 − 𝑍𝑟 linkage per 𝑍𝑟 and average 𝐵𝑎 − 𝐹 − 𝐵𝑎 

linkage per 𝐵𝑎 calculated from the two methods described in Chapter 2 (see section 2.6.4) 

with 𝑍𝑟 − 𝑍𝑟 cutoff of 4.5 Å and 𝐵𝑎 − 𝐵𝑎 cutoff of 6.0 Å. The 𝑍𝑟 − 𝐹 − 𝑍𝑟 linkage results 

compare very well between two methods because 𝑍𝑟 − 𝐹 − 𝑍𝑟 linkages are mostly corner 

	

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8

Pr
op

or
tio

n 
of

 Z
r (

%
)

Zr-F-Zr connectivity per Zr

75

67

60

50

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Pr
op

or
tio

n 
of

 B
a 

(%
)

Ba-F-Ba connectivity per Ba

75

67

60

50



Chapter 6: Molecular dynamics modelling of barium zirconium fluoride ZrF4-BaF2 glasses  159 
 

sharing but 𝐵𝑎 − 𝐹 − 𝐵𝑎 does not because 𝐵𝑎 − 𝐹 − 𝐵𝑎 is mostly edge sharing. The corner 

sharing and edge sharing between the 𝑍𝑟 − 𝑍𝑟 network can also be deduced from these two 

methods using Equation 2.44 and the result is given Table 6.12. 

 

 
 

Figure 6.13 Comparisons of 𝑍𝑟 − 𝐹 − 𝑍𝑟 linkage per 𝑍𝑟 (top) and 𝐵𝑎 − 𝐹 − 𝐵𝑎 linkage 
per 𝐵𝑎 (bottom) for 𝑥𝑍𝑟𝐹$ − (𝑥 − 100)𝐵𝑎𝐹( glass models computed from the pair dis-
tribution function and by “xhst-hsc” method (see Chapter 2 section 2.6.4). 

 

Table 6.12 Percentage of 𝑍𝑟 − 𝑍𝑟 corner sharing and edge sharing for 𝑍𝑟𝐹$ − 𝐵𝑎𝐹( glass 
models 
 

𝑥 % corner sharing % edge sharing 

50 86.25 13.75 

60 94.01 5.99 

67 92.32 7.68 

75 96.98 3.02 

 

 The comparison between 𝑍𝑟 − 𝐹 − 𝑍𝑟 connectivity per 𝑍𝑟 and 𝐵𝑎 − 𝐹 − 𝐵𝑎 con-

nectivity per 𝐵𝑎 for 𝑥 = 50 and 67 glasses and related crystals is shown in Figure 6.14. The 

linkage of 𝑍𝑟 and 𝐵𝑎 compare well between 𝑥 = 50 crystal and glass. The comparison of 

𝑥 = 67 crystal and glass indicates that the glass has higher average connectivity per 𝑍𝑟 and 
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per 𝐵𝑎 than the crystal. Probably, in the crystal there are more 𝑍𝑟 − 𝐹 − 𝐵𝑎 connections 

than in the glass. 

 

 
Figure 6.14 𝑍𝑟 − 𝐹 − 𝑍𝑟 linkage per 𝑍𝑟 (top) and 𝐵𝑎 − 𝐹 − 𝐵𝑎 linkage per 𝐵𝑎 (bottom) 
for 𝑥 = 50 and 67 glasses and its corresponding crystals. 

 

 Neutron and X-ray diffraction structure factors 
 
 Comparison between the glass models and experiments for the neutron and X-ray 

diffraction structure factors, 𝑆(𝑄), are shown in Figure 6.15 and Figure 6.16 respectively. 

For the neutron diffraction 𝑆(𝑄) of the glasses 𝑥 = 75, 67 and 60 experimental results [26] 

agree very well with the glass models. On other hand, experimental results [21, 25, 26] for 

X-ray diffraction 𝑆(𝑄) compare well with the 𝑥 = 67 and 50 glass models. The experi-

mental results for 𝑥 = 65 [45] and 64 [22] are also compared with the 𝑥 = 67 glass model, 

which gave good agreement. 
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Figure 6.15 Neutron diffraction structure factors for 𝑥 = 67, 60 and 𝑥 = 75 glass models 
and experiments [25, 26]. 

 

 
 

Figure 6.16 X-ray diffraction structure factors for 𝑥 = 67 and 𝑥 = 50 glass models and 
experiments [21, 22, 25, 26, 45]. 
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 Rotational invariants for 𝑍𝑟 and 𝐵𝑎 in 𝑍𝑟𝐹$ − 𝐵𝑎𝐹( binary 
glasses 

 
 The rotational invariants, 𝑄\, for the glass models are calculated by using Equation 

3.9. Figure 6.17 shows the average values of 𝑄\ for 𝑙 = 1 to 10, for 𝑍𝑟𝐹Y	 polyhedra with 

𝐶𝑁 = 7 (top) and 𝐶𝑁 = 8 (bottom) respectively for the glass models 𝑥𝑍𝑟𝐹$ − (𝑥 −

100)𝐵𝑎𝐹( with 𝑥 = 50, 60, 67 and 75. 

 

 
 

Figure 6.17 Rotational invariant, 𝑄\, of 𝑍𝑟𝐹Y polyhedra 𝐶𝑁 = 7 (top) and 𝐶𝑁 = 8 (bot-
tom) for glass models and compared with its corresponding crystals 𝑥 = 50 and 𝑥 = 67. 
The 𝑄\ of 𝛼−𝑍𝑟𝐹$ and 𝛽 − 𝑍𝑟𝐹$ crystals both with 𝐶𝑁 = 8 is also compared (bottom). 

 

 The average value 𝑄\ of 𝑍𝑟𝐹Y	 polyhedra from the different glass models gave iden-

tical results for 𝐶𝑁 = 7 and for 𝐶𝑁 = 8. These average values 𝑄\ for 𝑥 = 50 and 67 glasses 

and its related crystals are compared also with the random distribution for 𝐶𝑁 = 7 and 𝐶𝑁 =

8. The glass models gave the mixture of 𝐶𝑁 = 7 and 𝐶𝑁 = 8 which is given by Table 6.13. 
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The average values 𝑄\ for 𝑥 = 50 and 𝑥 = 67 crystals also gave the mixtures of 𝐶𝑁 but for 

𝛼−𝑍𝑟𝐹$ and 𝛽 − 𝑍𝑟𝐹$ crystals deduced by the MD method gave the 100	% of 𝐶𝑁 = 8 and 

their average values 𝑄\ are compared in Figure 6.17 (bottom). The uncertainty in the average 

values of 𝑄\ for glasses were ±0.05 (one standard deviation). 

 
Table 6.13 Percentages mixtures of 𝐶𝑁 = 7 and 𝐶𝑁 = 8 in 𝑍𝑟𝐹Y polyhedra from the glass 
models 𝑥𝑍𝑟𝐹$ − (𝑥 − 100)𝐵𝑎𝐹( and in parentheses (red) for the corresponding crys-
tals.	𝑍𝑟𝐹Y polyhedra for 𝑥 = 67 crystal was mainly dominated by mixture of 𝐶𝑁 = 6 
(24.6%) and 𝐶𝑁 = 7 (58.3%). 
 

𝑥 % 𝐶𝑁 = 7 % 𝐶𝑁 = 8 

50 49.0 (43.1) 48.5 (55.6) 

60 56.3 40.8 

67 48.9 (58.3) 44.8 (15.0) 

75 46.0 50.7 

 

 For the 𝑍𝑟𝐹Y polyhedra with 𝐶𝑁 = 7, the average value 𝑄\ for crystal 𝑥 = 67 is more 

similar to glasses than 𝑥 = 50 crystal where its average values 𝑄\ approaches towards ran-

dom value 𝑄\ at 𝑙 = 10. For 𝑍𝑟𝐹Y polyhedra with 𝐶𝑁 = 8, crystal 𝑥 = 50 has an identical 

average value 𝑄\ with the glass models. Also, 𝛼−𝑍𝑟𝐹$ crystal average values 𝑄\ has very 

similar result with the glasses compared to 𝛽 − 𝑍𝑟𝐹$ crystal. 

 Figure 6.18 shows average values of 𝑄\ for 𝑙 = 1 to 10, for 𝑍𝑟𝐹Y	 polyhedra with the 

𝐶𝑁 = 7 (top) and 𝐶𝑁 = 8 (bottom) for 𝑥 = 67 and 𝑥 = 50 glass models compared with all 

the possible reference convex polyhedral of vertices, 𝑁 = 7 and 𝑁 = 8. Augmented Trian-

gular Prism has very similar average values of 𝑄\ compared to the glasses rather than other 

reference convex polyhedra for vertices, 𝑁 = 7. For 𝐶𝑁 = 8, average values of 𝑄\ for 𝑍𝑟𝐹Y	 

polyhedra of glasses have similar results with Biaugmented Triangular Prism, Square An-

tiprism and Snub Disphenoid polyhedra. However, average value of 𝑄\ between glasses of 

𝑍𝑟𝐹Y polyhedra with 𝐶𝑁 = 8 and Biagumented Triangular Prism of vertices, 𝑁 = 8, com-

pares better than other references convex polyhedra of vertices, 𝑁 = 8. 
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Figure 6.18 Rotational invariant, 𝑄\, of 𝑍𝑟𝐹Y polyhedra from the glass models are com-
pared with all the reference convex polyhedra of vertices, 𝑁 = 7 (top) and 𝑁 = 8 (bot-
tom). 

 

 Figure 6.19 displays average value of 𝑄\ for 𝑙 = 1 to 10, for 𝐵𝑎𝐹Y polyhedra for 

𝐶𝑁 = 10 (top) and 𝐶𝑁 = 11 (bottom) of the glass models 𝑥𝑍𝑟𝐹$ − (𝑥 − 100)𝐵𝑎𝐹( for 𝑥 =

50, 60, 67 and 75. The average value 𝑄\ of 𝐵𝑎𝐹Y	 polyhedra from the different glass models 

gave identical results for 𝐶𝑁 = 10 and for 𝐶𝑁 = 11. There is a clear indication in glasses 

that 𝐶𝑁 of 𝐵𝑎𝐹Y	 polyhedra are mainly dominated by a mixture of 𝐶𝑁 = 10 and 𝐶𝑁 = 11, 

which is illustrated in Table 6.14. The average values 𝑄\ for 𝑥 = 50 and 67 glasses and its 

corresponding crystals are also compared with the random distribution for 𝐶𝑁 = 10 and 

𝐶𝑁 = 11. The values of 𝑄\ of 𝑥 = 67 crystals are similar to the glasses and are closer to 

random values of 𝑄\. 
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Figure 6.19 Rotational invariant 𝑄\ of 𝐵𝑎𝐹Y polyhedra with 𝐶𝑁 = 10 (top) and 𝐶𝑁 = 11 
(bottom) for the glass models are compared with corresponding crystals for 𝑥 = 50 and 
𝑥 = 67 crystals. 

 

Table 6.14 Percentages mixtures of 𝐶𝑁 = 10 and 𝐶𝑁 = 11 in 𝐵𝑎𝐹Y polyhedra from the 
glass models 𝑥𝑍𝑟𝐹$ − (𝑥 − 100)𝐵𝑎𝐹( and in parentheses (red) for the corresponding crys-
tals. For 𝑥 = 67 crystal it is mainly a mixture of 𝐶𝑁 = 9 (26.7%) and 𝐶𝑁 = 10 (33.3%). 

 
𝑥 % 𝐶𝑁 = 10 % 𝐶𝑁 = 11 

50 35.0 (55.6) 37.0 (44.4) 

60 33.8 33.8 

67 32.6 (33.3) 28.8 (6.7) 

75 35.0 27.0 

 

 Figure 6.20 displays average values of 𝑄\ for 𝑙 = 1 to 10, for 𝐵𝑎𝐹Y polyhedra with 

the 𝐶𝑁 = 10 (top) and 𝐶𝑁 = 11 (bottom) of the glass models 𝑥 = 67 and 𝑥 = 50 compared 

with all the possible reference convex polyhedra with the vertices, 𝑁 = 10 and 𝑁 = 11. The 
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average values of 𝑄\ for 𝐵𝑎𝐹Y polyhedra 𝐶𝑁 = 10 and 𝐶𝑁 = 11 from the glasses tend to be 

closer to the values of 𝑄\ for Metabidiminished Icoashedron or Pentagonal Prism (𝑁 = 10) 

and Augmented Pentagonal Prism (𝑁 = 11). The average values of 𝑄\ from the glasses gave 

a smooth curve compared to the values of 𝑄\ from 𝑥 = 50 crystal and from the references 

convex polyhedra. 

 

 
 

Figure 6.20 Rotational invariant 𝑄\ of 𝐵𝑎𝐹Y polyhedra from glass models are compared 
with all the reference convex polyhedra of vertices, 𝑁 = 10 (top) and 𝑁 = 11 (bottom). 
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6.4 Discussion 
 
 The rigid ion potentials used to model the glasses gave good results when they were 

initially tested with the 𝑥𝑍𝑟𝐹$ − (100 − 𝑥)𝐵𝑎𝐹( crystal structures. There were very low 

percentages of discrepancies in the volumes of crystals structures apart from 𝐵𝑎𝐹( crystal 

value around 10%. Short-range order in the crystals were fairly reproducible however, 𝛽 −

𝑍𝑟𝐹$ crystal gave 𝑁HIJ discrepancies, and 𝑁QRJ discrepancies were also found in 𝑥 = 50 

and 𝑥 = 33.3 crystals. 

 The result from glass pair distribution functions indicates nearest neighbour dis-

tances are not changing with compositions 𝑥. The coordination number for 𝑍𝑟	and 𝐵𝑎 re-

mains stable with changing composition 𝑥. The main changes are increase of 𝑍𝑟 − 𝑍𝑟 coor-

dination number, and decrease of 𝑍𝑟 − 𝐵𝑎 and 𝐵𝑎 − 𝐵𝑎 coordination numbers with increase 

of composition 𝑥. This effect is seen in pair distribution functions illustrated in Figure 6.21 

for 𝑥 = 67 and 𝑥 = 50 crystals which show higher coordination numbers for 𝐵𝑎 − 𝐹, 𝑍𝑟 −

𝐵𝑎 and 𝐵𝑎 − 𝐵𝑎 for 𝑥 = 50 crystal. 

 

 
 

Figure 6.21 𝑇qt(𝑟) comparison between 𝑥 = 50 and 𝑥 = 67 crystal. 
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 MD models of glasses and its related crystals are compared in term of pair distribu-

tion functions which are shown in Figure 6.22 for 𝑥 = 67 glass and Figure 6.23 for 𝑥 = 50 

glass. Generally, in both glass models for 𝑥 = 50 and 𝑥 = 67, glasses show similar 𝑇qt(𝑟) 

correlations with their associated crystals. Only slightly higher 𝐶𝑁 for 𝐵𝑎 − 𝐵𝑎 and 𝑍𝑟 −

𝑍𝑟 were seen at the same cutoff for glasses but 𝑥 = 50 crystal gave higher 𝐶𝑁 for 𝑍𝑟 − 𝐵𝑎 

at the same cutoff. 

 

 
 

Figure 6.22 𝑇qt(𝑟) comparison between 𝑥 = 67 glass and its related 𝐵𝑎𝑍𝑟(𝐹MN crystal. 
 

	
	
	
	

-3

-2

-1

0

1

2

3

4

5

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10

T ij
(r)

r(Å)

Glass (ZrF) Crystal (ZrF)

Glass (FF) Crystal (FF)

Glass (ZrZr) Crystal (ZrZr)

-3

-2

-1

0

1

2

3

0

2

4

6

8

10

12

1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

T ij
(r)

r(Å)

Glass (BaF) Crystal (BaF)

Glass (ZrBa) Crystal (ZrBa)

Glass (BaBa) Crystal (BaBa)



Chapter 6: Molecular dynamics modelling of barium zirconium fluoride ZrF4-BaF2 glasses  169 
 

 
 

Figure 6.23 𝑇qt(𝑟) comparison between 𝑥 = 50 glass and its related 𝐵𝑎𝑍𝑟𝐹K crystal. 
 

 At short-range 𝑍𝑟 − 𝑍𝑟 distances the crystals have two prominent peaks compared 

to glasses having just one prominent peak. This first and second peaks indicate the edge 

sharing and corner sharing in the crystals 𝑍𝑟 − 𝐹 − 𝑍𝑟 networks respectively. It can be said 

there are significantly more edge sharing in the crystals than glasses, and glasses are pre-

dominately corner sharing. Both 𝑥 = 50 and 𝑥 = 67 glasses have more area under 𝐵𝑎 − 𝐵𝑎 

peak compared to crystals which suggest 𝐵𝑎 is less mixed in the zirconium fluoride network. 

Furthermore, the 𝑥 = 67 glass shows slightly more 𝑍𝑟 − 𝐹 − 𝑍𝑟 connectivity and more of 

𝐵𝑎 − 𝐹 − 𝐵𝑎 connectivity than its related crystal, whereas 𝑥 = 50 glass and corresponding 

crystal are approximately similar. 

 The results of the model glasses can be compared with the work of [18], who used 

Raman spectroscopy to study the 𝐶𝑁. They reported the 𝑁HIJ between 7 and 8 for 𝑥 = 67 
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glass and for 𝑥 = 74 glass 𝑁HIJ between 7 and 6. However, here 𝑥 = 75 glass 𝑁HIJ was 

mostly between 7 and	8. The 𝑁HIJ results from the work of [20, 21, 22, 23, 25 and 26], who 

used X-ray and neutron diffraction also reported 𝐶𝑁 mostly between 7 and 8. However, 

work by [20] found 𝑁QRJ between 8 and 10 but the work here shows it is mostly between 

10 and 11. The 𝑁HIJ = 7.4 result from the work of [25] by X-ray diffraction is similar to 

the result for 𝑥 = 67 glass model. The results of short-range order distances 𝑅HIJ = 2.03 Å 

and 𝑅QRJ = 2.71 Å for 𝑥 = 67 glass from [27] by EXAFS compare well to results from the 

model. 

 The work from [30] done by 19F NMR spectroscopy found that there was significant 

corner sharing 𝑍𝑟𝐹Y polyhedra which coincided very well with the results found here. The 

results of 𝑍𝑟𝐹Y polyhedra network connectivity by [31 and 33], who used by both MD and 

X-ray diffraction, proposed strongly edge sharing but the MD modelling study done here for 

𝑥 = 50 to 75 glasses suggested well above 85 to 95% of corner sharing. The trends in 𝑍𝑟 −

𝐹 − 𝑍𝑟 connectivity in the glasses also increase with the increase of 𝑥 which can be predicted 

using a formula (see results section 6.3.1). 

 The BAD from the glasses and crystals can also be compared with the number of 

occurrences of polyhedra angles subtended from each vertex to vertex, which is given in 

Figure 6.24 for 𝐶𝑁 = 7 and Figure 6.25 for 𝐶𝑁 = 8. This technique was applied to BAD 

in metallic glasses [46]. For glasses and crystals, the average BAD includes both 𝐶𝑁 = 7 

and 𝐶𝑁 = 8. Augmented Triangular Prism and Biaugmented Triangular Prism polyhedra 

have a similar bond angle distribution functions for 𝐶𝑁 = 7 and for 𝐶𝑁 = 8 respectively, 

which was also shown by the rotational invariant, 𝑄\, values. 
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Figure 6.24 The average 𝐹 − 𝑍𝑟 − 𝐹 BAD for glass and crystals for 𝐶𝑁 = 7 compared 
with the 𝐹 − 𝑍𝑟 − 𝐹 BAD of all possible convex polyhedra with vertices, 𝑁 = 7. 

 

 
 

Figure 6.25 The average 𝐹 − 𝑍𝑟 − 𝐹 BAD for glass and crystals for 𝐶𝑁 = 8 compared 
with the 𝐹 − 𝑍𝑟 − 𝐹 BAD of three possible convex polyhedra (rest excluded due to very 
indifferent results) with vertices, 𝑁 = 8. 

 

 Studies suggested the 𝐹 − 𝑍𝑟 − 𝐹 angle distribution varying from 136° [17] and 

143° to 160° [20] but the results found here showed the average angle distribution function 

has the range from 53° to 179° with two prominent peaks, a primary peak at 75° and a 

secondary peak at 141°. However, the 𝑄\ analysis here has provided the direct means to 

match between glasses and reference convex polyhedra structures as an alternative to the 

BAD comparison analysis (see Figure 6.24 and 6.25). 𝑄\ analysis shows that in glasses the 

𝑍𝑟𝐹Y polyhedra with mixture of 𝐶𝑁 = 7 and 8 have very similar 𝑍𝑟 cation sites to Aug-

mented Triangular Prism and Biaugmented Triangular Prism respectively. For 𝐵𝑎𝐹Y poly-

hedra with the mixture of 𝐶𝑁 = 10 and 11, both gave very similar 𝑄\ results and their cation 
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sites can be roughly linked with the reference polyhedra like Metabidiminished Icoashedron 

or Pentagonal Prism and Augmented Pentagonal Prism respectively. 

 The result of 𝑄\ values as shown in Figure 6.26 for static 𝛽 − 𝐵𝑎𝑍𝑟(𝐹MN (𝑥 = 67) 

crystal unit cell have indicated that its structural unit is very close to Pentagonal Dipyramid 

as proposed by [40]. They also made a suggestion that the 𝑍𝑟𝐹� Pentagonal Dipyramid struc-

ture units linked by 𝐵𝑎 atoms are compactly preserved in glass, which may explain why 

these binary 𝑍𝑟𝐹$ − 𝐵𝑎𝐹( glasses have higher densities than crystals unlike common oxide 

glasses. But for the simulated 𝛽 − 𝐵𝑎𝑍𝑟(𝐹MN crystal the result of 𝑄\ values were similar to 

Augmented Triangular Prism. Fascinatingly, the result of 𝑄\ values (i.e. 7 out of 10 𝑄\val-

ues) for 𝑥 = 67 glass is much more closed to Augmented Triangular Prism than its related 

crystal (see Figure 6.26). There was another proposal of the structural units of these glasses 

from the MD analysis [32] which suggest that it constitutes of mainly 𝑍𝑟𝐹U polyhedra with 

small amount of 𝑍𝑟𝐹� polyhedra but our analysis showed that there was almost similar 

amount of both types of polyhedra. They also proposed that the shape structure of 𝑍𝑟𝐹U 

polyhedra were similar to Snub Disphenoid which contrasts to the result here and for the 

𝑍𝑟𝐹U polyhedra as they did not mention whether it is Elongated or Augmented Triangular 

Prism. 

 

 
Figure 6.26 Rotational invariants, 𝑄\, of 𝑍𝑟𝐹Y polyhedra for 𝑥 = 67 crystal and	𝑥 =
67	glass for 𝐶𝑁 = 7 compared with convex polyherda for vertices 𝑁 = 7 (Elongated Tri-
angular Pyramid not included due to very different 𝑄\ values). 
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 As discussed in Chapter	1 (section 1.3.3) from the theory of random close packing 

bonding criteria, ionic binary glasses like 𝑍𝑟𝐹$ − 𝐵𝑎𝐹( which have a large radius ratio and 

large values of 𝐶𝑁 will have more than one type of polyhedra of structural units [47]. Here 

the model results presented more than one 𝑍𝑟𝐹Y polyhedra structural unit. Similarly, 𝐵𝑎𝐹Y 

polyhedra in glasses had mostly 𝐶𝑁 ≥ 10, which leads to a less well-defined coordination 

polyhedra as was shown by the results of rotational invariants, 𝑄\. 

 

6.5 Conclusions 
 
 The new molecular dynamics models of 𝑥𝑍𝑟𝐹$ − (100 − 𝑥)𝐵𝑎𝐹( glasses presented 

here gave fair agreement with the experimental X-ray diffraction data for 𝑥 = 50 and 67 

glasses and with neutron diffraction data for 𝑥 = 60, 67 and 75 glasses. The metazirconate 

(𝑥 = 50), dizirconate (𝑥 = 67) and trizirconate (𝑥 = 75) glasses shows mixtures of 7 and 8 

coordinated 𝑍𝑟 atoms and primarily 10 and 11 coordinated 𝐵𝑎 atoms. The short-range order 

agrees very well with a previous EXFAS study. The metazirconate crystal (𝑥 = 50) gave 

similar results but the dizirconate crystal (𝑥 = 67) gave mixtures of 6 and 7 coordinated 𝑍𝑟 

atoms and 9 and 11 coordinated 𝐵𝑎 atoms. The BAD and 𝑄\ analysis showed that the 𝑍𝑟𝐹Y 

polyhedra for 𝑥 = 67 and 50 glasses and its related crystals are in fair agreement with the 

structural units of Augmented Triangular Prism (𝑁 = 7) for 𝑍𝑟𝐹� polyhedra and Biaug-

mented Triangular Prism (𝑁 = 8) for 𝑍𝑟𝐹U polyhedra. However, 𝑄\ analysis offers more the 

direct comparison than BAD between these structural units. The network of 𝑍𝑟𝐹Y polyhedra 

in glasses are found to be significantly corner sharing. Additionally, the 𝑄\ results of 𝐵𝑎𝐹Y 

polyhedra in glasses showed that the 𝑄\ values tend towards random as the 𝐵𝑎 − 𝐹 coordi-

nation number increases. 

 



Chapter 6: Molecular dynamics modelling of barium zirconium fluoride ZrF4-BaF2 glasses  174 
 

6.6 References 
 
[1] M. Poulain, M. Poulain, J. Lucas, Verres fluores au tetrafluorure de zirconium proprietes 
optiques d'un verre dope au Nd3+, Mater. Res. Bull. 10 (1975) 243-246. 
 
[2] M. Poulain, M. Poulain, J. Lucas, Etude comparee de verres fluores dans les diagramm 
ternaires ZrF4–BaF2–MFn (M= Na, Ca, La, Th; n = 1, 2, 3, 4), Rev.Chim. Miner. 16 (1979) 
267-276. 
 
[3] M. Poulain, Fluoride glass composition and processing, Fluoride Glass Fibre Optics. 
(1991). 
 
[4] C. Fouassier, Inorganic Solid Fluorides: Chemistry and Physics, Chap.Optical properties 
of fluorides. Academic Press Inc. (1985) 477-487. 
 
[5] C.M. Baldwin, R.M. Almeida, J.D. Mackenzie, Halide glasses, J. Non Cryst. Solids. 43 
(1981) 309-344. 
 
[6] K.J. Rao, Structural Chemistry of Glasses, Elsevier, 2002. 
 
[7] T. Grande, S. Aasland, S. Julsrud, Phase equilibria in the glass-forming system ZrF4-
BaF2, J. Non Cryst. Solids. 140 (1992) 73-76. 
 
[8] R.M. Almeida, J.D. Mackenzie, Vibrational spectra and structure of fluorozirconate 
glasses, J. Chem. Phys. 74 (1981) 5954-5961. 
 
[9] S. Aasland, T. Grande, Structure of fluorozirconate glasses and melts, Chemical Papers. 
52 (1998) 21-28. 
 
[10] S.M. Brian, A. Mitchell, An introduction to materials engineering and science for chem-
ical and materials engineers, Vol.1st Edition: Wiley Blackwell. (2004). 
 
[11] J.H. Simmons, C.J. Simmons, R. Ochoa, A.C. Wright, Fluoride glass structure, in: 
Anonymous Academic Press, San Diego, 1991, pp. 37-84. 
 
[12] G. de Leede, Crystallisation behaviour of a fluorozirconate glass, (1989). 
 
[13] R. Zallen, The Physics of Amorphous Solids, Wiley Classics Library Edition ed., John 
Wiley & Sons, 1998. 
 
[14] A.C. Wright, Diffraction studies of halide glasses, in: Anonymous Halide Glasses for 
Infrared Fiberoptics, Springer, 1987, pp. 75-117. 
 
[15] R.M. Almeida, Halide Glasses for Infrared Fiberoptics,NATO ASI serie E-123.(1987)1. 
 
[16] M.G. Drexhage, Heavy metal fluoride glasses, Treatise on materials science and tech-
nology. 26 (1985) 151-243. 
 
[17] S. Gross, D.G. Lancaster, H. Ebendorff-Heidepriem, T.M. Monro, A. Fuerbach, M.J. 
Withford, Femtosecond laser induced structural changes in fluorozirconate glass, Optical 
Materials Express. 3 (2013) 574-583. 



Chapter 6: Molecular dynamics modelling of barium zirconium fluoride ZrF4-BaF2 glasses  175 
 

[18] C.C. Phifer, D.J. Gosztola, J. Kieffer, C.A. Angell, Effects of coordination environment 
on the Zr–F symmetric stretching frequency of fluorozirconate glasses, crystals, and melts, 
J. Chem. Phys. 94 (1991) 3440-3450. 
 
[19] Y. Kawamoto, F. Sakaguchi, Thermal properties and Raman spectra of crystalline and 
vitreous BaZrF6, PbZrF6, and SrZrF6. Bull. Chem. Soc. Jpn. 56 (1983) 2138-2141. 
 
[20] R. Coupe, D. Louer, J. Lucas, A. Leonard, X-Ray Scattering Studies of Glasses in the 
System ZrF4-BaF2, J Am Ceram Soc. 66 (1983) 523-529. 
 
[21] Y. Kawamoto, T. Horisaka, Short-range structures of barium, lead, and strontium meta-
fluorozirconate glasses, J. Non Cryst. Solids. 56 (1983) 39-44. 
 
[22] G. Etherington, L. Keller, A. Lee, C. Wagner, R.M. Almeida, An X-ray diffraction 
study of the structure of barium fluorozirconate and fluorohafnate glasses, J. Non Cryst. 
Solids. 69 (1984) 69-80. 
 
[23] R.M. Almeida, J.D. Mackenzie, Short range structures of Fluoride glasse, Journal de 
Physique Colloques. 46 (1985) 79. 
 
[24] R.M. Almeida, J. Lau, J.D. Mackenzie, XPS Studies of Fluorozirconates, 5 (1985) 465-
470. 
 
[25] C. Wagner, S.B. Jost, G. Etherington, M.S. Boldrick, The Structure of Heavy Metal 
Fluoride Glasses, 19 (1987) 137-140. 
 
[26] A. Le Bail, B. Boulard, C. Jacoboni, Structure of Barium Fluorozirconate Glasses: A 
Quasi-Crystalline Modelling of "BaZr2F10", 19 (1987) 127-136. 
 
[27] B. Boulard, A. Le Bail, J.P. Laval, C. Jacoboni, Local environment of Zr in barium 
fluorozirconate glasses: The EXAFS point of view, Le Journal de Physique Colloques. 47 
(1986) 794. 
 
[28] F. Ma, Z. Shen, L. Ye, M. Zhang, K. Lu, Y. Zhao, EXAFS study of glasses in the system 
BaF2-ZrF4, J. Non Cryst. Solids. 99 (1988) 387-393. 
 
[29] R.M. Almeida, M.I. de Barros Marques, M.C. Gonalves, EXAFS study of Ba and La 
structural environments in fluorozirconate glasses, J. Non Cryst. Solids. 168 (1994) 144-
149. 
 
[30] R.E. Youngman, S. Sen, A high-resolution 19F NMR spectroscopic study of barium 
fluorozirconate glasses and related crystals, Solid State Nucl. Magn. Reson. 27 (2005) 77-
89. 
 
[31] J. Lucas, C.A. Angell, S. Tamaddon, Fluoride bridging modes in fluorozirconate glasses 
by X-ray and computer simulation studies, Mater. Res. Bull. 19 (1984) 945-951. 
 
[32] Y. Kawamoto, T. Horisaka, K. Hirao, N. Soga, A molecular dynamics study of barium 
meta-fluorozirconate glass, J. Chem. Phys. 83 (1985) 2398-2404. 
 



Chapter 6: Molecular dynamics modelling of barium zirconium fluoride ZrF4-BaF2 glasses  176 
 

[33] I. Yasui, H. Inoue, Molecular dynamic simulations of changes in structure in ZrF4 based 
glasses, J. Non Cryst. Solids. 71 (1985) 39-47. 
 
[34] C.C. Phifer, C.A. Angell, J.P. Laval, J. Lucas, A structural model for prototypical 
fluorozirconate glass, J. Non Cryst. Solids. 94 (1987) 315-335. 
 
[35] J.H. Simmons, G. O'Rear, T.P. Swiler, A.C. Wright, Structural modeling of the 
ZrF4�BaF2 binary using molecular dynamics, J. Non Cryst. Solids. 106 (1988) 325-329. 
 
[36] E.I. Voit, A.V. Voit, V.I. Sergienko, Quantum-Chemical Justification of the Structure 
of Fluorozirconate Glasses1, Glass physics and chemistry. 27 (2001) 195-203. 
 
[37] Z. Lin-xiang, J.R. Hardy, X. Xin, Molecular Dynamics Simulation of Binary Fluorozir-
conate Glass ZrF4-BaF2, Chinese physics letters. 15 (1998) 326. 
 
[38] R. Papiernik, D. Mercurio, B. Frit, Structure du tétrafluorure de zirconium, α-ZrF4, Acta 
Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 38 (1982) 
2347-2353. 
 
[39] C. Legein, F. Fayon, C. Martineau, M. Body, J. Buzaré, D. Massiot, E. Durand, A. 
Tressaud, A. Demourgues, O. Péron, 19F High Magnetic Field NMR Study of β-ZrF4 and 
CeF4: From Spectra Reconstruction to Correlation between Fluorine Sites and 19F Isotropic 
Chemical Shifts, Inorg. Chem. 45 (2006) 10636-10641. 
 
[40] J.P. Laval, B. Frit, J. Lucas, Crystal structure of the β-BaZr2 F10 compound. Relations 
with the ReO3-type and the fluorozirconate glasses, Journal of Solid State Chemistry. 72 
(1988) 181-192. 
 
[41] J. Laval, R. Papiernik, B. Frit, α-BaZrF6: une structure à anion complexe [Zr2F12]4− Acta 
Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 34 (1978) 
1070-1074. 
 
[42] A. Le Bail, J. Laval, Synthesis and crystal structure of α-Ba2ZrF8 and Pb2ZrF8 deter-
mined ab initio from synchrotron and neutron powder diffraction data, European journal of 
solid state and inorganic chemistry. 35 (1998) 357-372. 
 
[43] A.S. Radtke G.E. Brown, Frankdicksonite, BaF2, a New Mineral from Nevada, Am. 
Mineral. 59 (1974) 885-888. 
 
[44] D. Teter, Private Communication (2004). 
 
[45] J. Wasylak, L. Samek, Structural aspects of fluorozirconate glasses and some of their 
properties, J. Non Cryst. Solids. 129 (1991) 137-144. 
 
[46] J. Hafner, Bond-angle distribution functions in metallic glasses, Le Journal de Physique 
Colloques. 46 (1985) 78. 
 
[47] C.J. Simmons, O.H. El-Bayoumi, Experimental Techniques of Glass Science, Amer 
Ceramic Society, 1993. 



 177 

Chapter 7  
Molecular dynamics modelling of 𝐸𝑢#$ doped 
𝑍𝐵𝐿𝐴𝑁 glasses 
 
7.1 Introduction 
 
 The discovery fluoride based ternary glass 𝑍𝑟𝐹, − 𝐵𝑎𝐹/ − 𝑁𝑎𝐹 (𝑍𝐵𝑁) by Poulain 

et al [1] has triggered extensive study of the structures of glasses based on zirconium barium 

fluoride. Typically, interest was on fluorozirconate systems based on the 𝑍𝑟𝐹, − 𝐵𝑎𝐹/ −

𝐿𝑎𝐹# − 𝐴𝑙𝐹# − 𝑁𝑎𝐹 (𝑍𝐵𝐿𝐴𝑁) glass composition due to their stability against devitrification 

amongst the fluoride glasses [2]. It can also be doped with rare-earth ions, e.g. europium 

(𝐸𝑢#$), [3] for optical applications [4]. The glass formation regions are also found in 𝑍𝑟𝐹, −

𝐵𝑎𝐹/ − 𝐿𝑎𝐹# (𝑍𝐵𝐿) [5], 𝑍𝑟𝐹, − 𝐵𝑎𝐹/ − 𝐿𝑎𝐹# − 𝐴𝑙𝐹# (𝑍𝐵𝐿𝐴) [6] and 𝑍𝑟𝐹, − 𝐵𝑎𝐹/ −

𝐿𝑎𝐹# − 𝑁𝑎𝐹 (𝑍𝐵𝐿𝑁) [7] systems. 

 The glass transition temperature, 𝑇2, of these heavy metal fluoride glasses are in 

range of 300 ℃ and melting temperature, 𝑇6, between 450 ℃ and 600 ℃	depending on the 

glass compositions [8]. The stability of these glasses can be predicted by the Hruby factor, 

𝐻< = (𝑇? − 𝑇2)/(𝑇6 − 𝑇?), where 𝑇? is the crystallization temperature [9]. The 𝑇? and the 

glass formation regions for 𝑍𝐵𝑁, 𝑍𝐵𝐿, 𝑍𝐵𝐿𝐴, 𝑍𝐵𝐿𝑁 and 𝑍𝐵𝐿𝐴𝑁 are well reported in [2], 

[10], [11], [12]. Generally, 𝑇? ranges from 250 ℃ to 410 ℃ depending on composition. 

 The simple binary system of 𝑍𝑟𝐹, − 𝐵𝑎𝐹/ is considered the base component for 

these multicomponent fluorozirconate glasses. The reported glasses illustrate that 𝑍𝑟𝐹, is a 

primary network former with roughly more than 50 mol % of 𝑍𝑟𝐹, and 𝐵𝑎𝐹/ as a modifier 

with at least 20 mol % of 𝐵𝑎𝐹/. The heavy metal fluoride glasses like 𝑍𝐵𝐿𝐴𝑁 which can 

be easily doped with rare earth ions are interesting for optical applications and are superior 

to binary and ternary glasses which exhibit large crystallization rates [13]. However, due to 

the multicomponent nature of these glasses there are very few structural studies reported. 
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Nevertheless, there are reports of their physical properties, and selected glass compositions 

were studied in this project. 

 Samek et al [14] studied a series of compositions for	𝑍𝐵𝐿 glasses by Raman spec-

troscopy and only reported the wavenumber caused by the vibrations of [𝑍𝑟𝐹F]H/ ocatahe-

dra. Aasland et al [15] studied a series of 𝑍𝐵𝑁 ternary glass compositions constrained by a 

ratio 𝐹/𝑍𝑟 = 5 with infrared and Raman spectroscopies and they concluded that the glass 

structure is depended on the 𝐹/𝑍𝑟 ratio. 

 Wasylak and Samek [16] studied 𝑍𝐵𝐿𝐴 glass containing mole percentage of 

53𝑍𝑟𝐹, − 32𝐵𝑎𝐹/ − 9𝐿𝑎𝐹# − 9𝐴𝑙𝐹# by X-ray diffraction. They reported the bond length 

of 2.1 Å and 2.7 Å for 𝑍𝑟 − 𝐹 and 𝐵𝑎 − 𝐹 respectively. They also reported nearest neighbour 

distances of 4.2 Å for 𝐵𝑎 − 𝐵𝑎 cations, and for Z𝑟 − 𝐵𝑎 and 𝑍𝑟 − 𝑍𝑟 ranging from 3.8 −

4.8 Å. Braglia et al [17] studied local atomic environment of 𝑍𝐵𝐿𝐴𝑁 glass containing mole 

percentage of 53𝑍𝑟𝐹, − 20𝐵𝑎𝐹/ − 4𝐿𝑎𝐹# 	− 3𝐴𝑙𝐹# − 20𝑁𝑎𝐹 by extended absorption fine 

structure (EXAFS) and anomalous X-ray scattering techniques. They reported the bond 

length of 2.1 Å for 𝑍𝑟 − 𝐹, 2.6 Å for 𝐵𝑎 − 𝐹 and nearest neighbour distances of 4.1 Å for 

both 𝑍𝑟 − 𝑍𝑟 and 𝐵𝑎 − 𝐵𝑎 cations. 

 Harrison and Denning [18] studied the 𝐸𝑢#$ doped 𝑍𝐵𝐿𝐴𝑁 glass by classical mo-

lecular dynamics method. The simulated glass contained 2 mol % of 𝐸𝑢 and other compo-

nents mole percentage were 53𝑍𝑟𝐹, − 20𝐵𝑎𝐹/ − 2𝐿𝑎𝐹# 	− 3𝐴𝑙𝐹# − 20𝑁𝑎. They calcu-

lated the short-range order with bond length of 2.05 Å, 2.65 Å, 2.30 Å, and 2.25 Å for 𝑍𝑟 −

𝐹, 𝐵𝑎 − 𝐹, 𝑁𝑎 − 𝐹 and 𝐸𝑢 − 𝐹 respectively. They also reported non-integer coordination 

numbers of 7.6, 8.5, and 7.5 for 𝑍𝑟 − 𝐹, 𝐵𝑎 − 𝐹 and 𝐸𝑢 − 𝐹 respectively and 6.0 for 𝐴𝑙 −

𝐹. 

 The structure of 𝑍𝐵𝐿𝐴𝑁 glass are still not well understood. The compounds such as 

𝐵𝑎𝐹/ and 𝑁𝑎𝐹 breakup the Z𝑟 − 𝐹 − 𝑍𝑟 network [19]. Therefore, new MD models for 𝑍𝐵𝐿, 



Chapter 7: Molecular dynamics modelling of Eu3+ doped ZBLAN glasses  179 
 

 

 

𝑍𝐵𝐴, 𝑍𝐵𝑁, 𝑍𝐵𝐿𝐴, 𝑍𝐵𝐿𝐴𝑁 and 𝐸𝑢#$ doped 𝑍𝐵𝐿𝐴N glasses are studied in this project to 

analyse the local environment of the cations in the glasses also by the method of rotational 

invariants,	𝑄O, presented in Chapter 3. 

 

7.2 Method 
 

7.2.1 Structures of multicomponent fluorozirconate crystals 
 
 The multicomponent fluorozirconate crystals are very rarely found. Only few ternary 

and quaternary crystals were found to compare short-range order and local structures with 

the 𝑍𝐵𝐿𝐴𝑁 glass system. 

 

7.2.1.1 𝑬𝒖𝑭𝟑 
 
 The unit cell of europium fluoride crystal [20] is shown in Figure 7.1. The calculated 

density of the crystal is 6.81 𝑔𝑐𝑚H#. Its lattice parameters are: 𝑎 = 6.616 Å, 𝑏 = 7.013 Å 

and 𝑐 = 4.392 Å with 𝛼 = 90°, 𝛽 = 90° and 𝛾 = 90°. 

 

 
 

Figure 7.1 The unit cell of 𝐸𝑢𝐹# crystal. The violet spheres are europium atoms and green 
spheres are fluorine atoms. 
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7.2.1.2 𝑳𝒂𝑭𝟑 
 
 The unit cell of lanthanum fluoride crystal [21] is shown in Figure 7.2. The calculated 

density of the crystal is 5.94 𝑔𝑐𝑚H#. Its lattice parameters are: 𝑎 = 7.185 Å, 𝑏 = 7.185 Å 

and 𝑐 = 7.351 Å with 𝛼 = 90°, 𝛽 = 90° and 𝛾 = 120°. 

 

 
 

Figure 7.2 The unit cell of 𝐿𝑎𝐹# crystal. The light pink spheres are lanthanum atoms and 
green spheres are fluorine atoms. 

 

7.2.1.3 𝑨𝒍𝑭𝟑 
 
 The unit cell of aluminium fluoride crystal [22] is shown in Figure 7.1. The calcu-

lated density of the crystal is 3.19 𝑔𝑐𝑚H#. Its lattice parameters are: 𝑎 = 4.931 Å, 𝑏 =

4.931 Å and 𝑐 = 12.445 Å with 𝛼 = 90°, 𝛽 = 90° and 𝛾 = 120°. 

 

 
 

Figure 7.3 The unit cell of 𝐴𝑙𝐹# crystal. The silver spheres are aluminium atoms and green 
spheres are fluorine atoms. 
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7.2.1.4 𝑵𝒂𝑭 
 
 The unit cell of sodium fluoride crystal [23] is shown in Figure 7.4. The calculated 

density of the crystal is 2.81 𝑔𝑐𝑚H#. Its lattice parameters are: 𝑎 = 4.630 Å, 𝑏 = 4.630 Å 

and 𝑐 = 4.630 Å with 𝛼 = 90°, 𝛽 = 90° and 𝛾 = 90°. 

 

 
 

Figure 7.4 The unit cell of 𝑁𝑎𝐹 crystal. The blue spheres are sodium atoms and green 
spheres are fluorine atoms. 

 

7.2.1.5 𝑬𝒖𝟑𝒁𝒓𝟑𝑭𝟏𝟓 
 
 The unit cell of europium zirconium fluoride crystal [24] is shown in Figure 7.5. The 

calculated density of the crystal is 4.64 𝑔𝑐𝑚H#. Its lattice parameters are: 𝑎 = 12.461 Å, 

𝑏 = 12.461 Å and 𝑐 = 11.344 Å with 𝛼 = 90°, 𝛽 = 90° and 𝛾 = 120°. 

 

 
 

Figure 7.5 The unit cell of 𝐸𝑢#𝑍𝑟#𝐹ef crystal. The violet spheres are europium atoms, red 
spheres are zirconium atoms and green spheres are fluorine atoms. The 𝐸𝑢 sites are mixed 
occupancy of 0.3333 𝐸𝑢 and 0.6667 𝑍𝑟. 
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7.2.1.6 𝑬𝒖𝟑𝑩𝒂𝟒𝑭𝟏𝟕 
 
 The unit cell of tetrabarium heptadecafluorotrieuropate crystal [25] is shown in Fig-

ure 7.6. The calculated density of the crystal is 5.94 𝑔𝑐𝑚H#. Its lattice parameters are: 𝑎 =

11.179 Å, 𝑏 = 11.179 Å and 𝑐 = 20.579 Å with 𝛼 = 90°, 𝛽 = 90° and 𝛾 = 120°. 

 

 
 

Figure 7.6 The unit cell of 𝐸𝑢#𝐵𝑎,𝐹ej crystal. The violet spheres are europium atoms, 
brown spheres are barium atoms and green spheres are fluorine atoms. 

 

7.2.1.7 𝜷 − 𝑬𝒖𝑵𝒂𝑭𝟒 
 
 The unit cell of 𝛽- sodium europium fluoride crystal [26] is shown in Figure 7.7. The 

calculated density of the crystal is 5.45 𝑔𝑐𝑚H#. Its lattice parameters are: 𝑎 = 6.04 Å, 𝑏 =

6.04 Å and 𝑐 = 3.632 Å with 𝛼 = 90°, 𝛽 = 90° and 𝛾 = 120°. 

 

 
 

Figure 7.7 The unit cell of 𝑁𝑎𝐸𝑢𝐹, crystal. The violet spheres are europium atoms, blue 
spheres are sodium atoms and green spheres are fluorine atoms. 
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7.2.1.8 𝑵𝒂𝑩𝒂𝒁𝒓𝟐𝑭𝟏𝟏 
 
 The unit cell of sodium barium zirconium fluoride crystal, 𝑁𝑎𝐵𝑎𝑍𝑟/𝐹ee [27] is 

shown in Figure 7.8. The calculated density of the crystal is 4.59 𝑔𝑐𝑚H#. Its lattice param-

eters are: 𝑎 = 8.233 Å, 𝑏 = 8.233 Å and 𝑐 = 23.610 Å with 𝛼 = 90°, 𝛽 = 90° and 𝛾 =

90°. 

 

 
 

Figure 7.8 The unit cell of 𝑁𝑎𝐵𝑎𝑍𝑟/𝐹ee crystal. The red spheres are zirconium atoms, 
brown spheres are barium atoms, blue spheres are sodium atoms and green spheres are 
fluorine atoms. 

 

7.2.1.9 𝑵𝒂𝑩𝒂𝒁𝒓𝑭𝟕 
 
 The unit cell of sodium barium zirconium fluoride crystal, 𝑁𝑎𝐵𝑎𝑍𝑟𝐹j [28] is shown 

in Figure 7.9. The calculated density of the crystal is 4.49 𝑔𝑐𝑚H#. Its lattice parameters are: 

𝑎 = 9.118 Å, 𝑏 = 5.556 Å and 𝑐 = 11.236 Å with 𝛼 = 90°, 𝛽 = 90° and 𝛾 = 90°. 

 

 
 

Figure 7.9 The unit cell of 𝑁𝑎𝐵𝑎𝑍𝑟𝐹j crystal. The red spheres are zirconium atoms, 
brown spheres are barium atoms, blue spheres are sodium atoms and green spheres are 
fluorine atoms. 

 



Chapter 7: Molecular dynamics modelling of Eu3+ doped ZBLAN glasses  184 
 

 

 

7.2.2 Potentials for 𝑍𝐵𝐿𝐴𝑁 Systems including 𝐸𝑢#$ 
 
 The two-body interaction is considered for the multicomponent system. The interac-

tion of ions in 𝑍𝐵𝐿𝐴𝑁 systems including 𝐸𝑢#$ was described by using the Buckingham 

rigid ion interatomic potentials. The form of Coulomb and Buckingham potentials are given 

in Equation 2.2 − 2.4. The potential parameters used were derived by Teter [29] and these 

are listed in Table 7.1 for 𝑍𝑟 − 𝐹, 𝐵𝑎 − 𝐹, 𝐿𝑎 − 𝐹, 𝐴𝑙 − 𝐹, 𝑁𝑎 − 𝐹, 𝐹 − 𝐹 and 𝐸𝑢 − 𝐹 

interactions. 

 

Table 7.1 Teter potential parameters for multicomponent fluorozirconate systems. 
 

𝑖 − 𝑗 𝑞p(𝑒) 𝐴pr(𝑒𝑉) 𝜌pr(Å) 𝐶pr(𝑒𝑉ÅHF) 

𝑍𝑟 − 𝐹 2.4 216847.86 0.150759 0.06858 

𝐵𝑎 − 𝐹 1.2 472934.92 0.190284 140.80 

𝐿𝑎 − 𝐹 1.8 74564.178 0.196472 49.873 

𝐴𝑙 − 𝐹 1.8 55493.596 0.147476 5.9767 

𝑁𝑎 − 𝐹 0.6 58286.14 0.169113 4.1555 

𝐸𝑢 − 𝐹 1.8 23177.141 0.203968 11.188 

𝐹 − 𝐹 −0.6 11510.594 0.225005 29.527 

 

7.2.3 Testing of potentials 
 
 The potentials parameters used on the multicomponent fluorozirconate glass systems 

were initially used to mimic the crystal structures. The short-range order, coordination num-

bers and lattice parameters of crystals were compared to test the potentials and the results 

are shown in the Tables 7.2	 − 7.10. 
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Table 7.2 The result from the GULP energy minimisation for 𝐸𝑢𝐹# crystal initial and final 
structures displaying the low percentage errors. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume Å3 203.780 205.611 1.831 0.90 

𝑎 Å 6.616 6.650 0.034 0.51 

𝑏 Å 7.013 7.034 0.021 0.29 

𝑐 Å 4.392 4.396 0.004 0.09 

𝛼 Degree 90 90 0 0 

𝛽 Degree 90 90 0 0 

𝛾 Degree 90 90 0 0 

𝐸𝑢 − 𝐹 distance Å 2.314 2.381 0.066 2.87 

𝐸𝑢 − 𝐹 𝐶𝑁  9 9 0 0 

 

 

 

Table 7.3 The result from the GULP energy minimisation for 𝐿𝑎𝐹# crystal initial and final 
structures displaying the low percentage errors. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume Å3 328.648 319.359 −9.288 −2.83 

𝑎 Å 7.185 7.11207 −0.073 −1.02 

𝑏 Å 7.185 7.11207 −0.073 −1.02 

𝑐 Å 7.351 7.291 −0.060 −0.82 

𝛼 Degree 90 90 0 0 

𝛽 Degree 90 90 0 0 

𝛾 Degree 120 120 0 0 

𝐿𝑎 − 𝐹 distance Å 2.58 2.56 −0.01 −0.56 

𝐿𝑎 − 𝐹 𝐶𝑁  11 11 0 0 
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Table 7.4 The result from the GULP energy minimisation for 𝐴𝑙𝐹# crystal initial and final 
structures displaying the low percentage errors. 
 

Parameter Unit Initial value Final value Difference Percent 

Volume Å3 262.029 261.186 −0.843 −0.32 

𝑎 Å 4.931 4.932 0.001 0.02 

𝑏 Å 4.931 4.932 0.001 0.02 

𝑐 Å 12.446 12.400 −0.046 −0.37 

𝛼 Degree 90 90 0 0.00 

𝛽 Degree 90 90 0 0.00 

𝛾 Degree 120 120 0 0.00 

𝐴𝑙 − 𝐹 distance Å 1.797 1.737 −0.060 −3.32 

𝐴𝑙 − 𝐹 𝐶𝑁  6 6 0 0.00 

 

 

 

Table 7.5 The result from the GULP energy minimisation for 𝑁𝑎𝐹 crystal initial and final 
structures displaying the low percentage errors. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume Å3 99.253 98.754 −0.499 −0.50 

𝑎 Å 4.630 4.622 −0.008 −0.17 

𝑏 Å 4.630 4.622 −0.008 −0.17 

𝑐 Å 4.630 4.622 −0.008 −0.17 

𝛼 Degree 90 90 0 0.00 

𝛽 Degree 90 90 0 0.00 

𝛾 Degree 90 90 0 0.00 

𝑁𝑎 − 𝐹 distance Å 2.315 2.311 −0.004 −0.17 

𝑁𝑎 − 𝐹 𝐶𝑁  6 6 0 0.00 
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Table 7.6 The result from the GULP energy minimisation for 𝐸𝑢#𝑍𝑟#𝐹ef crystal initial and 
final structures displaying the low percentage errors. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume Å3 508.489 495.687 −12.802 −2.52 

𝑎 Å 8.128 8.042 −0.085 −1.05 

𝑏 Å 8.128 8.042 −0.085 −1.05 

𝑐 Å 8.128 8.042 −0.085 −1.05 

𝛼 Degree 100.097 99.566 −0.531 −0.53 

𝛽 Degree 100.097 99.566 −0.531 −0.53 

𝛾 Degree 100.097 99.566 −0.531 −0.53 

𝑍𝑟 − 𝐹 distance Å 2.095 2.088 −0.007 −0.34 

𝑍𝑟 − 𝐹 𝐶𝑁  7 7 0 0.00 

𝐸𝑢 − 𝐹 distance Å 2.195 2.168 −0.027 −1.25 

𝐸𝑢 − 𝐹 𝐶𝑁  8 8 0 0.00 

 

 

 

Table 7.7 The result from the GULP energy minimisation for 𝐸𝑢#𝐵𝑎,𝐹ej crystal initial and 
final structures displaying the low percentage errors. Apart from 𝐸𝑢 − 𝐹 coordination num-
ber. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume Å3 2227.078 2358.807 131.730 5.91 

𝑎 Å 11.179 11.626 0.447 4.00 

𝑏 Å 11.179 11.248 0.069 0.62 

𝑐 Å 20.579 20.882 0.303 1.47 

𝛼 Degree 90 90.154 0.154 0.17 

𝛽 Degree 90 89.519 −0.481 −0.53 

𝛾 Degree 120 120.247 0.247 0.21 

𝐵𝑎 − 𝐹 distance Å 2.773 2.778 0.005 0.20 

𝐵𝑎 − 𝐹 𝐶𝑁  9.604 9.333 −0.271 −2.82 

𝐸𝑢 − 𝐹 distance Å 2.357 2.406 0.050 2.11 

𝐸𝑢 − 𝐹 𝐶𝑁  10.5 9.306 −1.194 −11.38 
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Table 7.8 The result from the GULP energy minimisation for 𝛽 − 𝐸𝑢𝑁𝑎𝐹, crystal initial 
and final structures displaying the low percentage errors. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume Å3 114.74938 120.175 5.425 4.73 

𝑎 Å 6.04 5.945 −0.095 −1.57 

𝑏 Å 6.04 5.945 −0.095 −1.57 

𝑐 Å 3.632 3.926 0.294 8.10 

𝛼 Degree 90 90 0 0.00 

𝛽 Degree 90 90 0 0.00 

𝛾 Degree 120 120 0 0.00 

𝑁𝑎 − 𝐹 distance Å 2.374 2.390 0.016 0.67 

𝑁𝑎 − 𝐹 𝐶𝑁  7 7 0 0.00 

𝐸𝑢 − 𝐹 distance Å 2.357 2.349 −0.008 −0.32 

𝐸𝑢 − 𝐹 𝐶𝑁  9 9 0 0.00 

 

 

Table 7.9 The result from the GULP energy minimisation for 𝑁𝑎𝐵𝑎𝑍𝑟/𝐹ee crystal initial 
and final structures displaying the low percentage errors. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume Å3 1596.455 1642.429 45.975 2.88 

𝑎 Å 8.223 8.322 0.099 1.2 

𝑏 Å 8.223 8.317 0.094 1.14 

𝑐 Å 23.610 23.731 0.121 0.51 

𝛼 Degree 90 90.035 0.035 0.04 

𝛽 Degree 90 89.972 −0.028 −0.03 

𝛾 Degree 90 90.016 0.016 0.02 

𝑍𝑟 − 𝐹 distance Å 2.127 2.275 0.148 6.95 

𝑍𝑟 − 𝐹 𝐶𝑁  7.81 7.63 −0.18 −2.4 

𝐵𝑎 − 𝐹 distance Å 2.751 2.708 −0.043 −1.61 

𝐵𝑎 − 𝐹 𝐶𝑁  11 11 0 0.00 

𝑁𝑎 − 𝐹 distance Å 2.327 2.322 −0.005 −0.25 

𝑁𝑎 − 𝐹 𝐶𝑁  6.37 6.37 0 0 
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Table 7.10 The result from the GULP energy minimisation for 𝑁𝑎𝐵𝑎𝑍𝑟𝐹j crystal initial and 
final structures displaying the low percentage errors. 
 

Parameter Unit Initial Value Final Value Difference Percent 

Volume Å3 569.242 549.034 −20.208 −3.55 

𝑎 Å 9.118 8.975 −0.143 −1.57 

𝑏 Å 5.556 5.628 0.072 1.29 

𝑐 Å 11.236 10.870 −0.366 −3.26 

𝛼 Degree 90 90 0 0.00 

𝛽 Degree 90 90 0 0.00 

𝛾 Degree 90 90 0 0.00 

𝑍𝑟 − 𝐹 distance Å 2.061 2.024 −0.037 −1.79 

𝑍𝑟 − 𝐹 𝐶𝑁  7 7 0 0.00 

𝐵𝑎 − 𝐹 distance Å 2.855 2.827 −0.028 −0.98 

𝐵𝑎 − 𝐹 𝐶𝑁  12 12 0 0.00 

𝑁𝑎 − 𝐹 distance Å 2.430 2.418 −0.012 −0.51 

𝑁𝑎 − 𝐹 𝐶𝑁  8 8 0 0.00 

 

7.2.4 Initial configurations for 𝐸𝑢#$ doped 𝑍𝐵𝐿𝐴𝑁 glasses 
 
The glass models made are shown in Table 7.11. The particular compositions and experi-

mental densities of these glasses are taken from the literature for 𝑍𝐵𝐿 [5] [10] [30] [31], 

𝑍𝐵𝐴 [32], 𝑍𝐵𝑁 [29] [33], 𝑍𝐵𝐿𝐴 [6] [34] [35], 𝑍𝐵𝐿𝐴𝑁 [36] [37] [38] [39] and 𝐸𝑢#$ doped 

𝑍𝐵𝐿𝐴𝑁 [19] [40] glasses. The 𝐸𝑢#$ doped 𝑍𝐵𝐿𝐴𝑁 glass models had total number of atoms 

of 78900 with the box size of 101.5 Å. 
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Table 7.11 Initial configuration of multicomponent 𝑍𝐵𝐿𝐴𝑁	glasses including 𝐸𝑢#$ doped. 
In parenthesis are the percentage of atoms compositions 
 

Glasses 
Number 

of 𝑍𝑟 
atoms 

Number 
of 𝐵𝑎 
atoms 

Number 
of 𝐿𝑎 
atoms 

Number 
of 𝐴𝑙 
atoms 

Number 
of 𝑁𝑎 
atoms 

Number 
of 𝐸𝑢 
atoms 

Density 
(𝑔𝑐𝑚H#) 

Length 
(Å) 

𝑍𝐵𝐿 2170 
(62%) 

1155 
(33%) 

175 
(5%) 0 0 0 4.69 

 59.63 

𝑍𝐵𝐴 2100 
(60%) 

1050 
(30%) 0 350 

(10%) 0 0 4.43 59.59 

𝑍𝐵𝑁 2000 
(50%) 

1000 
(25%) 0 0 1000 

(25%)  4.5 58.81 

ZBLA 2052 
(57%) 

1224 
(34%) 

180 
(5%) 

144 
(4%) 0 0 4.54 60.46 

 

𝑍𝐵𝐿𝐴𝑁 2862 
(53%) 

1080 
(20%) 

216 
(4%) 

162 
(3%) 

1080 
(20%) 0 4.50 65.68 

𝑍𝐵𝐿𝐴𝑁 
– 	𝐸𝑢1% 

10600 
(53%) 

4000 
(20%) 

600 
(3%) 

600 
(3%) 

4000 
(20%) 

200 
(1%) 4.52 101.51 

𝑍𝐵𝐿𝐴𝑁
− 	𝐸𝑢2% 

10600	
(53%) 

4000	
(20%) 

400	
(2%) 

600	
(3%) 

4000	
(20%) 

400	
(2%) 4.52 101.55 

 

7.2.5 Parameters for MD modelling of 𝐸𝑢#$ doped 𝑍𝐵𝐿𝐴𝑁 
glasses 

 
 MD Simulations were performed in DL_POLY_2 with the parameters given in Table 

7.12. The melts temperature, 𝑇6, was taken from [41] and the quench rate used was 10e/ 

𝐾/𝑠. This quench rate was possible due to the greater computing resources available at this 

stage of the project. The other parameters are same as for the binary ‘𝑍𝐵’ glass simulations 

from the previous Chapter 6. 
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Table 7.12 The MD parameters and stages for melt-quenched 𝑍𝐵𝐿𝐴𝑁 glasses 
 

 
Stages 

 
Temperature (𝐾) Time-steps Process 

(NVT Brendsen thermostat) 

1 5000 80000 Equilibrate 

2 3000 80000 Equilibrate 

3 2000 (𝑇6) [41] 350000 Quench 

4 300 150000 Equilibrate and collect 

 

7.3 Results 
 
 Figures 7.10 − 7.12 display the models of 𝑍𝐵𝐴, 𝑍𝐵𝐿, 𝑍𝐵𝑁, 𝑍𝐵𝐿𝐴, 𝑍𝐵𝐿𝐴𝑁, 1% 𝐸𝑢 

doped 𝑍𝐵𝐿𝐴𝑁 and 2%	𝐸𝑢 doped 𝑍𝐵𝐿𝐴𝑁 glasses. The pink polyhedra are 𝑍𝑟𝐹y, brown 

spheres are 𝐵𝑎 cations and green spheres are 𝐹 anions. Similarly, the blue polyhedra are 

𝐴𝑙𝐹y, yellow spheres, grey spheres and red spheres are 𝐿𝑎 𝑁𝑎 and 𝐸𝑢 cations respectively 

in the glass models. 
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Figure 7.10 The model images of 𝑍𝐵𝐴 (top-left), 𝑍𝐵𝐿 (top-right) and 𝑍𝐵𝑁 (bottom) 
glasses. The pink polyhedra are 𝑍𝑟𝐹y, brown and green spheres are 𝐵𝑎 cations and 𝐹 
anions. The blue polyhera are 𝐴𝑙𝐹y in 𝑍𝐵𝐴, yellow spheres are 𝐿𝑎 cations in 𝑍𝐵𝐿, and 
grey spheres are 𝑁𝑎 cations in 𝑍𝐵𝑁.  
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Figure 7.11 The model images of 𝑍𝐵𝐿𝐴 (top) and 𝑍𝐵𝐿𝐴𝑁 (bottom) glasses. The pink 
polyhedra are 𝑍𝑟𝐹y, brown and yellow spheres are 𝐵𝑎 and 𝐿𝑎 cations respectively, blue 
polyhedra are 𝐴𝑙𝐹y, and green spheres are 𝐹	anions. The grey spheres are 𝑁𝑎 cations in 
𝑍𝐵𝑙𝐴𝑁. 
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Figure 7.12 The model of 𝑍𝐵𝐿𝐴𝑁 doped with of 1% (top) and 2% (bottom) of 𝐸𝑢#$. The 
pink and blue polyhedra are 𝑍𝑟𝐹y and 𝐴𝑙𝐹y polyhedra structures. The red, brown, yellow, 
and grey spheres are 𝐸𝑢, 𝐵𝑎, 𝐿𝑎 and 𝑁𝑎 cations respectively. The green spheres are 𝐹 
anions. 
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7.3.1 Pair distribution function, nearest neighbour distances 
and coordination numbers 

 
 The pair distribution functions, 𝑇pr	(𝑟), for 𝑍𝐵𝐿, 𝑍𝐵𝐴, 𝑍𝐵𝑁, 𝑍𝐵𝐿𝐴 and 𝑍𝐵𝐿𝐴𝑁 

glasses are shown in Figure 7.13 and Figure 7.14. The partial correlation for 𝑗 as fluorine 

ion and 𝑖 either as zirconium, barium, lanthanum, aluminium or sodium ion is shown in the 

top part of Figure 7.13. Likewise, the bottom part of Figure 7.13 displays the partial corre-

lation for 𝑖 as zirconium ion and 𝑗	as either zirconium, barium, lanthanum, aluminium or 

sodium ion. The partial correlation for	𝑖 as barium ion and 𝑗 either as barium, lanthanum, 

aluminium or sodium ion is show in the top part of Figure 7.14. For 𝑖 and 𝑗 ions that are both 

lanthanum, or aluminium or sodium or either one or the other is shown in the bottom part of 

Figure 7.14. 

 Figure 7.15 and Figure 7.16 display 𝑇pr(𝑟) for the 𝐸𝑢	#$ doped 𝑍𝐵𝐿𝐴𝑁 glasses. The 

partial correlation for 𝑗 as fluorine ion and 𝑖 either as zirconium, barium, lanthanum, alumin-

ium, sodium or europium ion is shown in the top part of Figure 7.15. The middle part of 

Figure 7.15 displays the partial correlation for 𝑖 as zirconium ion and 𝑗 as either zirconium 

barium, lanthanum, aluminium, sodium or europium ion. The bottom part of Figure 7.15 

displays the partial correlation for 𝑖 as barium ion and 𝑗 either as barium, lanthanum, euro-

pium, aluminium or sodium ion. 

 Likewise, top part of Figure 7.16 displays the pair correlation for 𝑖 as lanthanum, 

aluminium or sodium ion and 𝑗 as either lanthanum, aluminium or sodium ion. The bottom 

part of Figure 7.16 displays the partial correlation for 𝑖 as lanthanum or europium ion and 𝑗 

as either aluminium, sodium or europium ion. 
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Figure 7.13 𝑇pr for 𝑍𝐵𝐴, 𝑍𝐵𝐿, 𝑍𝐵𝑁, 𝑍𝐵𝐿𝐴 and 𝑍𝐵𝐿𝐴𝑁 glass models. Top figure shows 
𝑇z<{, 𝑇|}{, 𝑇~O{, 𝑇�}{, 𝑇�}{  and 𝑇{{, and bottom figure shows 𝑇z<z<, 𝑇z<|}, 𝑇z<~O, 𝑇z<�} 
and 𝑇z<�}. 
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Figure 7.14 𝑇pr for 𝑍𝐵𝐴, 𝑍𝐵𝐿, 𝑍𝐵𝑁, 𝑍𝐵𝐿𝐴 and 𝑍𝐵𝐿𝐴𝑁 glass models. Top figure shows 
𝑇|}|}, 𝑇|}~O, 𝑇|}�} and 𝑇|}�}, and bottom figure shows 𝑇~O~O, 𝑇�}�}, 𝑇�}�} , 𝑇�}~O, 𝑇�}�}  
and 𝑇~O�} . 
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Figure 7.15 𝑇pr for 𝑍𝐵𝐿𝐴𝑁 − 𝐸𝑢1% and 𝑍𝐵𝐿𝐴𝑁 − 𝐸𝑢2% glass models. Top figure 
shows 𝑇z<{, 𝑇|}{, 𝑇~O{, 𝑇�}{, 𝑇�}{ , 𝑇��{ and 𝑇{{, middle figure shows 𝑇z<z<, 𝑇z<|}, 𝑇z<~O, 
𝑇z<�}, 𝑇z<�} and 𝑇z<��, and bottom figure shows 𝑇|}|}, 𝑇|}~O, 𝑇|}�}, 𝑇|}�} and 𝑇|}��. 
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Figure 7.16 𝑇pr for 𝑍𝐵𝐿𝐴𝑁 − 𝐸𝑢	1% and 𝑍𝐵𝐿𝐴𝑁 − 𝐸𝑢	2% glass models. Top figure 
shows 𝑇�}�}, 𝑇�}~O, 𝑇�}�}  𝑇~O~O, 𝑇~O�}  and 𝑇�}�} , and bottom figure shows 𝑇����, 
𝑇��~O,𝑇���} , and 𝑇�}��. 

 

 

 

	

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2.5 3.5 4.5 5.5 6.5 7.5 8.5

T i
j(r

)

r(Å)

LaLa (ZBLAN - Eu1%)

LaLa (ZBLAN - Eu2%)

LaAl (ZBLAN - Eu1%)

LaAl (ZBLAN - Eu2%)

LaNa (ZBLAN - Eu1%)

LaNa (ZBLAN - Eu2%)

AlAl (ZBLAN - Eu1%)

AlAl (ZBLAN - Eu2%)

AlNa (ZBLAN - Eu1%)

AlNa (ZBLAN - Eu2%)

NaNa (ZBLAN - Eu1%)

NaNa (ZBLAN - Eu2%)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2.5 3.5 4.5 5.5 6.5 7.5 8.5

T i
j(r

)

r(Å)

EuAl (ZBLAN - Eu1%)

EuNa (ZBLAN - Eu1%)

EuAl (ZBLAN - Eu2%)

EuNa (ZBLAN - Eu2%)

EuEu (ZBLAN - Eu1%)

EuEu (ZBLAN - Eu2%)

LaEu (ZBLAN - Eu1%)

LaEu (ZBLAN - Eu2%)



Chapter 7: Molecular dynamics modelling of Eu3+ doped ZBLAN glasses  200 
 

 

 

 The prominent first peaks of 𝑇z<{(𝑟), 𝑇|}{(𝑟), 𝑇�}{(𝑟), 𝑇~O{(𝑟), 𝑇�}{(𝑟) and 

𝑇��{(𝑟) provide the average bond length or the short-range order and the area under this 

curve determines the coordination number which are given in Tables 7.13 − 7.18. The par-

tial functions 𝑇{{	(𝑟) in all the glass models have primary peaks at 2.54 − 2.57 Å indicating 

𝐹 − 𝑍𝑟 − 𝐹 average nearest neighbour distances in 𝑍𝑟𝐹y polyhedra structures, and the sec-

ond and third peaks are 3.93 − 3.95 Å and 5.03 − 5.09 Å respectively. These two secondary 

peaks include the average nearest neighbours’ distances for 𝐹 − 𝐵𝑎 − 𝐹 in 𝐵𝑎𝐹y polyhedra. 

The first peaks of 𝑍𝑟 − 𝐹 and 𝐴𝑙 − 𝐹 correlation are narrower and reach to zero value after 

the first peak where as for other cations the first peaks are wider and it does not reach to zero 

value. This corresponds with the role of 𝑍𝑟 and 𝐴𝑙 as network formers and the role of 𝐵𝑎, 

𝐿𝑎 and 𝑁𝑎 as network modifiers. 

 The 𝑇pr(𝑟) where 𝑖 is 𝑍𝑟 and 𝑗 are either 𝐵𝑎, 𝐿𝑎, 𝐴𝑙 or 𝑁𝑎 has average nearest neigh-

bouring distances between 3.81	– 	4.33 Å. There are peaks between 3.61 − 5.49 Å, 

3.27	– 	4.83 Å and 2.91 − 5.27 Å for 𝑇|}�}, 𝑇|}~O and 𝑇|}�} respectively. Similarly, for 

𝑇�}~O, 𝑇�}�}  and 𝑇~O�}  primary peaks are between 3.31 − 4.73 Å, 3.03 − 5.17 Å and 2.91 −

4.53 Å respectively. These partial correlations indicate the non-bridging fluorides in the 

glass structures because it involves 𝐵𝑎, 𝐿𝑎, or 𝑁𝑎. The exception is 𝑍𝑟 − 𝐴𝑙 which is bridg-

ing fluorine.  

 The partial correlations 𝑇z<�� and 𝑇|}�� in the 𝐸𝑢#$ doped 𝑍𝐵𝐿𝐴𝑁 glasses has av-

erage neighbouring distances roughly at 4.19 Å and 4.29 Å (see Figure 7.15) respectively. 

There are prominent peaks between 3.63 − 4.97 Å, 3.07 − 4.49 Å and 3.05 − 4.89 Å	for 

𝑇�}��, 𝑇��~O and 𝑇���}  (see Figure 7.16) respectively. 
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Table 7.13 Average 𝑍𝑟 − 𝐹 and 𝑍𝑟 − 𝑍𝑟 nearest neighbour distance, 𝑅pr, and coordination 
number, 𝑁pr, for 𝑍𝐵𝐿𝐴𝑁 glasses and with 𝐸𝑢#$ doping. The cutoff distances were 2.75 Å 
and ~4.57 Å for 𝑁z<{ and 𝑁z<z<. 
 

Glass Models 𝑅z<{  
(Å) 𝑁z<{  𝑅z<z<  

(Å) 

𝑍𝑟𝑍𝑟 
< 𝑛 > 
Model 

𝑁z<z<  
PDF 

𝑍𝐵𝐴 2.03 7.35 4.1 4.40 4.20 

𝑍𝐵𝐿 2.03 7.41 4.1 4.38 4.20 

𝑍𝐵𝑁 2.03 7.53 4.1 4.15 4.12 

𝑍𝐵𝐿𝐴 2.05 7.35 4.1 3.89 3.81 

𝑍𝐵𝐿𝐴𝑁 2.03 7.52 4.1 4.37 4.26 

𝑍𝐵𝐿𝐴𝑁	– 𝐸𝑢	1% 2.03 7.55 4.1 4.42 4.32 

𝑍𝐵𝐿𝐴𝑁	– 𝐸𝑢	2% 2.03 7.52 4.1 4.40 4.32 

 

 

Table 7.14 Average 𝐵𝑎 − 𝐹 and 𝐵𝑎 − 𝐵𝑎 nearest neighbour distance, 𝑅pr, and coordination 
number, 𝑁pr, for 𝑍𝐵𝐿𝐴𝑁 glasses and with 𝐸𝑢#$ doping. The cutoff distances were 3.3 Å, 
6.0 Å and 5.3 Å	for 𝑁|}{, 𝑁|}|} and 𝑁z<|} respectively. 
 

Glass Models 𝑅|}{  
(Å) 𝑁|}{ 𝑅|}|} 

(Å) 

𝐵𝑎𝐵𝑎 
< 𝑛 > 
Model 

𝑁|}|} 
PDF 

𝑅z<|}  
(Å) 

𝑁z<|}  
PDF 

𝑍𝐵𝐴 2.82 10.09 4.61 6.62 4.05 4.39 3.51 

𝑍𝐵𝐿 2.83 10.60 4.57 7.07 4.34 4.31 4.10 

𝑍𝐵𝑁 2.83 10.98 4.63 6.43 3.97 4.31 3.70 

𝑍𝐵𝐿𝐴 2.83 10.17 4.61 7.12 4.63 4.33 4.15 

𝑍𝐵𝐿𝐴𝑁 2.83 10.91 4.67 5.25 2.90 4.33 2.80 

𝑍𝐵𝐿𝐴𝑁	–𝐸𝑢	1% 2.83 10.89 4.57 5.24 2.89 4.31 2.80 

𝑍𝐵𝐿𝐴𝑁	–𝐸𝑢	2% 2.83 10.88 4.57 5.27 2.87 4.31 2.80 
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Table 7.15 Average 𝐴𝑙 − 𝐹 and 𝐴𝑙 − 𝐴𝑙 nearest neighbour, 𝑅pr, and coordination number, 
𝑁pr, for 𝑍𝐵𝐿𝐴𝑁 glasses and with 𝐸𝑢#$ doping. The cutoff distances were 2.5 Å and 4.0 Å 
for 𝑁~O{ and 𝑁~O~O. 
 

Glass Models 𝑅~O{ 
(Å) 𝑁~O{ 𝑅~O~O 

(Å) 

𝐴𝑙𝐴𝑙 
< 𝑛 > 
Model 

𝑁~O~O 
PDF 

𝑍𝐵𝐴 1.79 5.95 3.53 0.55 0.54 

𝑍𝐵𝐿𝐴 1.79 5.99 4.09 0.14 0.14 

𝑍𝐵𝐿𝐴𝑁 1.79 5.99 3.47 0.21 0.18 

𝑍𝐵𝐿𝐴𝑁	–𝐸𝑢	1% 1.79 5.99 3.47 0.16 0.15 

𝑍𝐵𝐿𝐴𝑁	–𝐸𝑢	2% 1.79 5.97 3.49 0.17 0.16 

 

Table 7.16 Average 𝐿𝑎 − 𝐹 and 𝐿𝑎 − 𝐿𝑎 nearest neighbour distance, 𝑅pr, and coordination 
number, 𝑁pr, for 𝑍𝐵𝐿𝐴𝑁 glassed and with 𝐸𝑢#$ doped. The cutoff distances were 3.1 Å and 
5.3 Å for 𝑁�}{ and 𝑁�}�}. 
 

Glass Models 𝑅�}{ 
(Å) 𝑁�}{ 𝑅�}�} 

(Å) 

𝐿𝑎𝐿𝐴 
< 𝑛 > 
Model 

𝑁�}�} 
PDF 

𝑍𝐵𝐿 2.47 9.04 4.49 0.54 0.40 

𝑍𝐵𝐿𝐴 2.47 8.72 4.27 0.67 0.45 

𝑍𝐵𝐿𝐴𝑁 2.47 9.24 4.43 0.79 0.58 

𝑍𝐵𝐿𝐴𝑁	–𝐸𝑢	1% 2.47 9.25 4.55 0.57 0.40 

𝑍𝐵𝐿𝐴𝑁	–𝐸𝑢	2% 2.47 9.04 435 0.38 0.26 

 

Table 7.17 Average 𝑁𝑎 − 𝐹 and 𝑁𝑎 − 𝑁𝑎 nearest neighbour distance, 𝑅pr, and coordination 
number, 𝑁pr, for 𝑍𝐵𝐿𝐴𝑁 glasses and with 𝐸𝑢#$ doping. The cutoff distances were 3 Å and 
5.0 Å for 𝑁�}{  and 𝑁�}�} . 
 

Glass Models 𝑅�}{ 
(Å) 𝑁�}{ 𝑅�}�} 

(Å) 

𝑁𝑎𝑁𝑎 
< 𝑛 > 
Model 

𝑁�}�} 
PDF 

𝑍𝐵𝑁 2.33 6.95 3.39 3.21 2.55 

𝑍𝐵𝐿𝐴𝑁 2.35 6.92 3.41 2.73 2.13 

𝑍𝐵𝐿𝐴𝑁	–𝐸𝑢	1% 2.33 7.0 3.35 2.78 2.16 

𝑍𝐵𝐿𝐴𝑁	–𝐸𝑢	2% 2.33 7.15 3.35 2.79 2.17 
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Table 7.18 Average 𝐸𝑢 − 𝐹 and 𝐸𝑢 − 𝐸𝑢 nearest neighbour distance, 𝑅pr, and coordination 
number, 𝑁pr, for 𝑍𝐵𝐿𝐴𝑁 glasses and with 𝐸𝑢#$ doping. The cutoff distances were 3 Å and 
5.2 Å for 𝑁��{  and 𝑁����. 

 

Glass Models 𝑅��{ 
(Å) 𝑁��{  𝑅����  

(Å) 

𝐸𝑢𝐸𝑢 
< 𝑛 > 
Model 

𝑁����  
PDF 

𝑍𝐵𝐿𝐴𝑁	–𝐸𝑢	1% 2.33 8.34 4.37 0.13 0.10 

𝑍𝐵𝐿𝐴𝑁	–𝐸𝑢	2% 2.33 8.24 4.35 0.26 0.22 

 

7.3.2 Bond angle distribution functions 
 
 The bond angle distribution functions (BAD) between 𝑗	– 	𝑖	– 	𝑗 where 𝑗 is fluoride 

ion and 𝑖 are the cations of 𝑍𝑟 or 𝐵𝑎 or 𝐿𝑎 or 𝐴𝑙 or 𝑁𝑎 or 𝐸𝑢 are shown in Figure 7.17. The 

BAD when 𝑖 is 𝑍𝑟	(or 𝐴𝑙) has two well separated peaks, primary at 75° (or 89°) degree and 

secondary at 141° (or 173°) respectively. There is a strong minimum at 103° for 𝐹 − 𝑍𝑟 −

𝐹 and 𝐹 − 𝐴𝑙 − 𝐹 has zero probability between 120° and 150°. We associated these type of 

BAD with the role of network former. 

 The BAD for other cations of 𝐵𝑎, 𝐿𝑎 and 𝐸𝑢 has a similar shape with the two main 

peaks, primary peaks at 53°, 67°and 68° respectively, and secondary peaks at 107°, 

125°and 135° respectively. These peaks are much broader than those for 𝐹 − 𝑍𝑟 − 𝐹 and 

there is less deep minimum at 81°, 101° and 103° for 𝐵𝑎, 𝐿𝑎 and 𝐸𝑢 respectively. The BAD 

for 𝑁𝑎 cation have main peak at 65° with a very shallow minimum at 101° before secondary 

peak at 123°. 
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Figure 7.17 The BAD of glasses (top-left) 𝐹 − 𝑍𝑟 − 𝐹, (top-right) 𝐹 − 𝐵𝑎 − 𝐹, (middle 
- left) 𝐹 − 𝐴𝑙 − 𝐹, (middle-right) 𝐹 − 𝐿𝑎 − 𝐹, (bottom-left) 𝐹 − 𝑁𝑎 − 𝐹 and (bottom-
right) 𝐹 − 𝐸𝑢 − 𝐹. 

 

7.3.3 Network connectivity 
 
 Figure 7.18 shows 𝑖 − 𝑗 − 𝑖 connectivity per	𝑖	where 𝑗 is 𝐹 and 𝑖 is either 𝑍𝑟, 𝐵𝑎, 

𝐿𝑎, 𝐴𝑙, 𝑁𝑎 or 𝐸𝑢#$ cations for modelled glasses. The compositions in these glasses were 

between 50 − 62% for 𝑍𝑟𝐹, and 20 − 34% for 𝐵𝑎𝐹/ with addition of different composi-

tions of other cations. Tables 7.13 and 7.14 show the average connectivity for 𝑍𝑟 were 

roughly 4 and for 𝐵𝑎 ranges from 5 to 7. Tables 7.15, 7.16 and 7.18 show the 𝑖 − 𝑗 − 𝑖 
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linkage per 𝑖	for 𝐿𝑎, 𝐴𝑙 and 𝐸𝑢 is distributed from 0 − 4 with very high proportion of 0 

values due to lower concentration of these cations and hence this gives the average connec-

tivity for these cations less then 1. For, 𝑁𝑎 − 𝐹 − 𝑁𝑎 the linkage per 𝑁𝑎 in Table 7.17 were 

roughly 3 reflecting compositions of 20 − 25% for 𝑁𝑎𝐹. 

 

 
 

Figure 7.18 𝑍𝑟 − 𝐹 − 𝑍𝑟 linkage per 𝑍𝑟 (top-left), 𝐵𝑎 − 𝐹 − 𝐵𝑎 linkage per 𝐵𝑎 (top-right), 
𝐿𝑎 − 𝐹 − 𝐿𝑎 linkage per 𝐿𝑎 (middle-left), 𝐴𝑙 − 𝐹 − 𝐴𝑙 linkage per 𝐴𝑙 (middle-right), 𝑁𝑎 − 𝐹 −
𝑁𝑎 linkage per 𝑁𝑎 (bottom-left) and 𝐸𝑢 − 𝐹 − 𝐸𝑢 linkage per 𝐸𝑢 (bottom-right) for modelled 
glasses. 

 

 The average connectivity was computed by two methods mentioned in Chapter 2 

(see section 2.6.4). The results were illustrated in Tables 7.13 − 7.18 that gives the average 

connectivity, < 𝑛 >, from the model i.e. by “xhst-hsc” and from PDF as a direct method. 

Furthermore, from these two results the corner sharing and edge sharing in 𝑍𝑟 − 𝐹 − 𝑍𝑟 and 

𝐵𝑎 − 𝐹 − 𝐵𝑎 connectivity were computed using Equation 2.44 with the results given in 
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Table 7.19. Although the average connectivity is less than 1 for other cations 𝐿𝑎, 𝐴𝑙 and 𝐸𝑢 

the difference between the average connectivity calculated by the two methods were less 

than 0.7. This signified there are mixture of corner sharing and edge sharing networks in 

those cations except in 𝐴𝑙 − 𝐹 − 𝐴𝑙 with high corner sharing connectivity. The high corner 

sharing of 𝑍𝑟 and 𝐴𝑙	is associated with their role as network formers. 

 

Table 7.19 Percentage of majority corner sharing or edge sharing of 𝑖 − 𝑗 − 𝑖 connectivity 
glasses models where 𝑗 are fluorine ions and 𝑖 are cations. 

 

Glass 
Model 

𝑍𝑟 − 𝐹 − 𝑍𝑟 
% corner 
sharing 

𝐵𝑎 − 𝐹 − 𝐵𝑎 
% edge 
sharing 

𝑁𝑎 − 𝐹 −𝑁𝑎 
% corner 
sharing 

𝐿𝑎 − 𝐹 − 𝐿𝑎 
% edge 
sharing 

𝐴𝑙 − 𝐹 − 𝐴𝑙 
% corner 
sharing 

𝐸𝑢 − 𝐹 − 𝐸𝑢 
% corner 
sharing 

𝑍𝐵𝐿 91.78 77.23 - 51.85 - - 

𝑍𝐵𝐴 90.91 77.64 - - 96.36 - 

𝑍𝐵𝑁 98.55 76.52 58.88 - - - 

𝑍𝐵𝐿𝐴 95.89 69.94 - 65.67 100 - 

𝑍𝐵𝐿𝐴𝑁 94.97 89.52 56.04 53.16 71.43  

𝑍𝐵𝐿𝐴𝑁	
− 	𝐸𝑢	1% 

95.48 89.69 55.40 59.65 87.50 53.85 

𝑍𝐵𝐿𝐴𝑁	
− 	𝐸𝑢	2% 

96.36 91.08 55.56 63.16 88.24 69.23 

 

7.3.4 X-ray diffraction structure factor for	𝑍𝐵𝐿𝐴 and 𝑍𝐵𝐿𝐴𝑁 
glasses 

 
 The only X-ray diffraction experimental data in the literature were for	𝑍𝐵𝐿𝐴 [16] 

and 𝑍𝐵𝐿𝐴𝑁 [17] glasses. The structure factors [𝑆(𝑄) − 1] for 𝑍𝐵𝐿𝐴 glass model is shown 

in the top of Figure 7. 19, which computed from 𝑇pr by using Equation 2.68 and it is com-

pared with the experiment data. The total pair distribution function, 𝑇(𝑟), for undoped 

𝑍𝐵𝐿𝐴𝑁 glass [17] is compared with the 𝑍𝐵𝐿𝐴𝑁 model that is computed by using equation, 

𝑇(𝑟) = ∑ 𝑤pr𝑇pr(𝑟)pr , where 𝑤pr	 are weighting factor for XRD explained in Equation 2.71. 
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There are fair agreements on the both comparisons although 𝑍𝐵𝐿𝐴 glass model and experi-

ment have slightly different compositions between them. 

 The total pair distribution function of reported 𝑍𝐵𝐿𝐴𝑁	glass shows first peak at 2.07 

Å which complements the model result and is due to the 𝑍𝑟 − 𝐹 correlation and the second 

peak at 2.62 Å are mostly due 𝐹 − 𝐹 and 𝐵𝑎 − 𝐹 due to their high content. However, the 

model clearly shows more detailed peaks at 2.50 Å and 2.79 Å which are due to 𝐿𝑎 − 𝐹, 

𝐹 − 𝐹 and 𝐵𝑎 − 𝐹 respectively. That model does not clearly show the contribution of high 

content of 𝑁𝑎 − 𝐹 correlation at 2.35 Å due to low X-ray scattering power of 𝑁𝑎 although 

it seems to contribute the experiment result. 

 

 
 

Figure 7.19 X-ray diffraction structure factor for 𝑍𝐵𝐿𝐴 glass model and experiment [16] 
(top) and the total pair distribution functions, 𝑇(𝑟), for 𝑍𝐵𝐿𝐴𝑁 glass obtained from ex-
periment [17] compared with the model glass (bottom). 
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7.3.5 Rotational invariants for 𝑍𝑟, 𝐵𝑎, 𝐿𝑎, 𝐴𝑙, 𝑁𝑎 and 𝐸𝑢 cations 
in 𝑍𝐵𝐿𝐴𝑁 and 𝐸𝑢#$ doped 𝑍𝐵𝐿𝐴𝑁 glasses 

 
 The calculation of rotational invariants, 𝑄O, as described in Chapter 3 has been car-

ried out for all the cations involved in these model glasses. Most of these cations in the 

glasses don’t seem to have well-defined single coordination numbers and their percentage 

mixtures of coordination numbers are illustrated in Tables 7.20 − 7.21. The exception is 

𝐴𝑙𝐹y polyhedra which gave well-defined single 𝐶𝑁 = 6. The percentage mixture of 𝐶𝑁 for 

the cations varies between the glasses. The average coordination number for 𝑍𝑟𝐹y polyhedra 

for 𝑍𝐵𝐿, 𝑍𝐵𝐴 and 𝑍𝐵𝐿𝐴 glasses has high percentage of 𝐶𝑁 = 7 and for 𝑍𝐵𝑁, 𝑍𝐵𝐿𝐴, 

𝑍𝐵𝐿𝐴𝑁 and 𝐸𝑢#$ doped 𝑍𝐵𝐿𝐴𝑁 glasses has high percentage of 𝐶𝑁 = 8. For 𝐵𝑎𝐹y polyhe-

dra in 𝑍𝐵𝐴 and 𝑍𝐵𝐿𝐴 glasses there is a has high percentage of 𝐶𝑁 = 10 and others glasses 

have a high percentage of 𝐶𝑁 = 11. However, for 𝑁𝑎𝐹y, 𝐸𝑢𝐹y and 𝐿𝑎𝐹y, polyhedra, all the 

glasses have high percentage of 𝐶𝑁 = 7, 8 and 9 respectively. 

 

Table 7.20 Percentage mixtures 𝐶𝑁 for 𝑍𝑟 − 𝐹, 𝐵𝑎 − 𝐹 and 𝐴𝑙 − 𝐹 for model glasses. 
 

Model 
Glasses 

%	𝑍𝑟 
𝐶𝑁	7 

%	𝑍𝑟 
𝐶𝑁	8 

%	𝐵𝑎 
𝐶𝑁	9 

%	𝐵𝑎 
𝐶𝑁	10 

%	𝐵𝑎 
𝐶𝑁	11 

%	𝐵𝑎 
𝐶𝑁12 

%	𝐴𝑙 
𝐶𝑁	6 

𝑍𝐵𝐿 53.5 43.3 14.2 30.3 33.0 15.2 96.32 

𝑍𝐵𝐴 57.1 38.0 22.5 34.4 24.1 9.4 98.88 

𝑍𝐵𝑁 46.0 51.6 8.5 26.3 36.7 21.2 97.38 

𝑍𝐵𝐿𝐴 59.1 36.8 21.7 33.0 26.3 10.0 98.90 

𝑍𝐵𝐿𝐴𝑁 46.1 51.0 9.2 26.0 34.1 22.2 97.38 

𝑍𝐵𝐿𝐴𝑁	–𝐸𝑢	1% 44.4 53.0 9.4 26.7 34.4 21.2 97.06 

𝑍𝐵𝐿𝐴𝑁	– 	𝐸𝑢	2% 45.5 52.0 9.7 26.3 34.4 22.1 96.03 
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Table 7.21 Percentage mixtures 𝐶𝑁 for 𝐿𝑎 − 𝐹, 𝑁𝑎 − 𝐹 and 𝐸𝑢 − 𝐹 for model glasses. 

 
Model 
Glasses 

%	𝐿𝑎 
𝐶𝑁	8 

%	𝐿𝑎 
𝐶𝑁	9 

%	𝐿𝑎 
𝐶𝑁	10 

%	𝑁𝑎 
𝐶𝑁	6 

%	𝑁𝑎 
𝐶𝑁	7 

%	𝑁𝑎 
𝐶𝑁	8 

%	𝐸𝑢 
𝐶𝑁	7 

%	𝐸𝑢 
𝐶𝑁	8 

%	𝐸𝑢 
𝐶𝑁	9 

𝑍𝐵𝐿 30.78 51.20 15.65 - - - - - - 

𝑍𝐵𝑁 - - - 26.3 36.7 21.2 - - - 

𝑍𝐵𝐿𝐴 32.86 51.62 9.96 - - - - - - 

𝑍𝐵𝐿𝐴𝑁 21.25 51.41 23.72 27.16 37.01 21.10 - - - 

𝑍𝐵𝐿𝐴𝑁	– 
𝐸𝑢	1% 

 
21.25 51.41 24.37 25.89 36.86 22.64 10.99 47.91 36.50 

𝑍𝐵𝐿𝐴𝑁	– 
𝐸𝑢	2% 22.00 51.15 23.41 26.07 36.25 22.12 12.61 51.05 32.98 

 

 Figures 7.20 - 7.22 display the average values of 𝑄O for 𝑙 = 0 to 10 for the cations 

polyhedra found in all the glass structures. Apart from this, 𝑄O were calculated for 𝐶𝑁 = 7 

and 8 for 𝑍𝑟𝐹y polyhedra, 𝐶𝑁 = 10, 11 and 12 for 𝐵𝑎𝐹y polyhedra, 𝐶𝑁 = 8, 9 and 10 for 

𝐿𝑎𝐹y polyhedra, 𝐶𝑁 = 6, 7 and 8 for 𝑁𝑎𝐹y polyhedra, and 𝐶𝑁 = 8 and 9	for 𝐸𝑢𝐹y polyhe-

dra. Additionally, for 𝑍𝐵𝐴 and 𝑍𝐵𝐿𝐴 glasses the 𝑄O for 𝐶𝑁 = 9 for 𝐵𝑎𝐹y polyhedra were 

calculated as those glasses had mixture of 𝐶𝑁 mostly between 9 − 11. The rotational invar-

iant results show that the structures of these cation fluorine polyhedra in these multicompo-

nent fluorozicorante glasses do not change with the compositions. The uncertainty in the 

average values of 𝑄O for glasses were ±0.05 (one standard deviation). 

 

 

 

 



Chapter 7: Molecular dynamics modelling of Eu3+ doped ZBLAN glasses  210 
 

 

 

 

 

 

 
 

Figure 7.20 The average 𝑄O values for 𝑙 = 0 to	10 for 𝑍𝑟𝐹y polyhedra for 𝐶𝑁 = 7 (top-
left) and 8 (top-right), and 𝐵𝑎𝐹y polyhedra for 𝐶𝑁 = 9 (middle-left), 10 (middle-right), 
11 (bottom-left) and 12 (bottom-left) in multicomponent fluorozirconte glasses. 
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Figure 7.21 The average 𝑄O values for 𝑙 = 0 to	10 for 𝑁𝑎𝐹y polyhedra for 𝐶𝑁 = 6 (top-
left), 7 (top-right) and 8 (middle-left), and 𝐿𝑎𝐹y polyhedra for 𝐶𝑁	 = 	8 (middle-right), 9 
(bottom-left) and 10 (bottom-right) in multicomponent fluorozirconte glasses. 
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Figure 7.22 The average 𝑄O values for 𝑙 = 0 to	10 for 𝐴𝑙𝐹y polyhedra for 𝐶𝑁 = 6 (top), 
and 𝐸𝑢𝐹y polyhedra for 𝐶𝑁 = 8 (bottom-left) and 9 (bottom-right) in multicomponent 
fluorozirconte glasses. 

 

 The results comparing the average values of 𝑄O for 𝑙 = 0 to 10 for the different cat-

ions with the similar coordination numbers are displayed in Figures 7.23 to 7.25. Further-

more, it shows the comparison of 𝑄O values between all the possible references convex pol-

yhedra for vertices, 𝑁 = 6 to 12, and the cations polyhedra from the model glasses. For the 

𝐴𝑙𝐹F polyhedra the average value of 𝑄O is similar to Octahedron but for 𝑁𝑎𝐹F polyhedra the 

average value of 𝑄O for 𝑙 = 4 to 10 is close to random values. The average 𝑄O for 𝑍𝑟𝐹j 

polyhedra and Augmented Triangular Prism very similar but for 𝑁𝑎𝐹j polyhedra the 𝑄O for 

𝑙 = 5 to 10 values are close to random. In the case of 𝑍𝑟𝐹� polyhedra the 𝑄O values are very 

close to that of Biaugmented Triangular Prism. In the case of 𝐿𝑎𝐹� and 𝐸𝑢𝐹� polyhedra 𝑄O 

results are very similar and they do not closely retain the shape of 𝑍𝑟𝐹� polyhedra. On other 

hand 𝑁𝑎𝐹� polyhedra have broadly similar 𝑄O to 𝐿𝑎𝐹� and to 𝐸𝑢𝐹� but the 𝑄O values for 𝑙 =

5 to 10 are closer to random values. 
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Figure 7.23 Rotational invariant 𝑄O of 𝐴𝑙𝐹F and 𝑁𝑎𝐹F polyhedra (top), 𝑍𝑟𝐹j and 𝑁𝑎𝐹j 
polyhedra (middle), and 𝑍𝑟𝐹�, 𝐿𝑎𝐹� and 𝑁𝑎𝐹� polyhedra (bottom) are compared with all 
possible reference convex polyhedra of vertices, 𝑁 = 6, 7 and 8 respectively. 
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 Figure 7.24 (top) displays the results of average values of 𝑄O for 𝐵𝑎𝐹�, 𝐿𝑎𝐹� and 

𝐸𝑢𝐹� polyhedra. For	𝐿𝑎𝐹� and 𝐸𝑢𝐹� polyhedra the 𝑄O results are similar. However, 𝐵𝑎𝐹� 

polyhedra gave different 𝑄O values particularly for 𝑙 = 4 to 10 which are closer to random 

values. The average 𝑄O values of Gyroelongated Square Pyramid and Triaugmented Trian-

gular Prism are very similar from 𝑙 = 3 to 10. Also 𝐸𝑢𝐹� and 𝐿𝑎𝐹� roughly retain the shape 

of these two polyhedra. The result of 𝑄O values for 𝐿𝑎𝐹e� and 𝐵𝑎𝐹e� polyhedra are shown 

in the Figure 7.24 (bottom) For 𝐵𝑎𝐹e� polyhedra the shape is flatter and closer to random 

compared to 𝐿𝑎𝐹e� mainly in 𝑄O values for 𝑙 = 4 to 10. 

 The result of 𝑄O values for 𝐵𝑎𝐹ee polyhedra shown in Figure 7.25 (top) indicates 

that the shape does not match with any of the reference convex polyhedra with vertices, 𝑁 =

11. However, the 𝑄O values for 𝐵𝑎𝐹ee polyhedra are close to Augmented Pentagonal Prism. 

For 𝐵𝑎𝐹e/ polyhedra the 𝑄O result is shown in Figure 7.25 (bottom) compared with all the 

possible reference convex polyhedra for vertices, 𝑁 = 12. The 𝑄O result of 𝐵𝑎𝐹e/ is close to 

Sphenomegacorna and also retain the shape mainly in 𝑄O values for 𝑙 = 5 to 10. 
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Figure 7.24 Rotational invariant 𝑄O of 𝐵𝑎𝐹�, 𝐿𝑎𝐹� and 𝐸𝑢𝐹� polyhedra (top), and 𝐵𝑎𝐹e� 
and 𝐿𝑎𝐹e� polyhedra (bottom) are compared with all possible reference convex polyhedra 
of vertices 𝑁 = 9 and 10 respectively. 
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Figure 7.25 Rotational invariant 𝑄O of 𝐵𝑎𝐹ee polyhedra (top) and 𝐵𝑎𝐹e/ polyhedra 
(bottom) are compared with all possible reference convex polyhedra of vertices, 𝑁 = 11 
and 12 respectively. 
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7.4 Discussion 
 
 The rigid ion potential parameters used to model these multicomponent fluorozir-

conate glasses initially tested in the crystal structures produce fair results. Tables 7.2 to 7.10 

show that there is good agreement in short range order and the coordination number found 

in 𝐸𝑢𝐹#, 𝐿𝑎𝐹#, 𝐴𝑙𝐹#, 𝑁𝑎𝐹, 𝐸𝑢#𝑍𝑟#𝐹ef, 𝐸𝑢#𝐵𝑎,𝐹ej, 𝛽	– 	𝐸𝑢𝑁𝑎𝐹,, 𝑁𝑎𝐵𝑎𝑍𝑟/𝐹ee and 

𝑁𝑎𝐵𝑎𝑍𝑟𝐹j crystals. The biggest discrepancies were on the coordination numbers mainly for 

𝐸𝑢 − 𝐹 in 𝐸𝑢#𝐵𝑎,𝐹ej crystal. 

 The similar results from the pair distribution functions and the bond angle distribu-

tion functions between 𝑍𝑟 and 𝐴𝑙 suggest that 𝐴𝑙 act as network former. However, 𝐿𝑎 

and	𝑁𝑎 cations acts more of a modifier as their results are more similar to 𝐵𝑎 cation. The 

multicomponent fluorozirconate glasses seems to retain the properties similar to binary ‘𝑍𝐵’ 

glasses in term of short-range order and the coordination numbers for 𝑍𝑟 − 𝐹 and 𝐵𝑎 − 𝐹. 

The only slight differences are in the coordination numbers specially for 𝐵𝑎 − 𝐹 which are 

slightly higher in multicomponent fluorozirconate glasses for 𝑍𝐵𝑁, 𝑍𝐵𝐿𝐴𝑁 and 𝐸𝑢#$ doped 

𝑍𝐵𝐿𝐴𝑁 glasses, i.e. with the 𝑁𝑎 cations added to the glass. 

 In the national chemical database, there was only 𝑁𝑎𝐵𝑎𝑍𝑟/𝐹ee and 𝑁𝑎𝐵𝑎𝑍𝑟𝐹j 

crystal found that are directly related to multicomponent fluorozirconate glasses. In addition, 

𝑁𝑎𝐵𝑎𝑍𝑟/𝐹ee crystal has similar composition (50𝑍𝑟𝐹, − 	25𝐵𝑎𝐹/ − 25𝑁𝑎𝐹) with the 𝑍𝐵𝑁 

model glass and their pair distribution functions were compared, which is illustrated in 

Figure 7.26. The similarity of the first peaks of 𝑇z<{(𝑟), 𝑇|}{(𝑟), 𝑇{{(𝑟) and	𝑇�}{(𝑟) 

correlations imply a fair agreement at short-range order. However, 𝑍𝐵𝑁 glass has slightly 

lower coordination number for 𝑍𝑟 − 𝐹 and slightly high coordination number for 𝑁𝑎 − 𝐹 

than its related crystal. In terms of 𝑍𝑟 − 𝐹 − 𝑍𝑟 connectivity from 𝑇z<z<(𝑟), the crystal 

shows higher percentage of mixed edge sharing (61%) and corner sharing (38%) compared 
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to the 𝑍𝐵𝑁 glass where the connectivity is almost 99% corner sharing. Figure 7.26 also 

shows glass has more shorter distances for 𝑁𝑎 − 𝑁𝑎 and 𝐵𝑎 − 𝑁𝑎 nearest neighbours. 

 

 
 

Figure 7.26 The comparison of 𝑇pr(𝑟) between 𝑍𝐵𝑁 glass and its related 𝑁𝑎𝐵𝑎𝑍𝑟/𝐹ee 
crystal. 

 

 The comparison of 𝑇pr between 𝑁𝑎𝐵𝑎𝑍𝑟/𝐹ee and 𝑁𝑎𝐵𝑎𝑍𝑟𝐹j crystals of the same 

system 𝑍𝑟𝐹, − 𝐵𝑎𝐹/ − 𝑁𝑎𝐹 in Figure 7.27 illustrates the slight change in short-range order 

and coordination numbers because of different amounts of 𝑍𝑟𝐹, (see Tables 7.9 and 7.10). 
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The result also shows differences in cations nearest neighbour distances. The largest differ-

ence is in 𝑍𝑟 − 𝑍𝑟 where nearest neighbour distances are very long for 𝑁𝑎𝐵𝑎𝑍𝑟𝐹j crystal 

which has less 𝑍𝑟 than 𝑍𝐵𝑁 glass. 

 

 
 

Figure 7.27 The comparison of 𝑇pr(𝑟) between 𝑁𝑎𝐵𝑎𝑍𝑟/𝐹ee and 𝑁𝑎𝐵𝑎𝑍𝑟𝐹j crystal. 
 

 The result from the bond angle distribution functions suggested that 𝑁𝑎 and 𝐿𝑎 cat-

ions in multicomponent fluorozirconate glasses act more like modifiers like 𝐵𝑎 cations in 

the glass matrix. The BAD for 𝑍𝐵𝑁 glass was compared with its related similar composition 

𝑁𝑎𝐵𝑎𝑍𝑟/𝐹ee crystal and with different composition 𝑁𝑎𝐵𝑎𝑍𝑟𝐹j crystal in Figure 7.28. It 
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shows that the crystal 𝑁𝑎𝐵𝑎𝑍𝑟/𝐹ee has similar trend to that of glass for 𝐹 − 𝑍𝑟 − 𝐹, 𝐹 −

𝐵𝑎 − 𝐹 and 𝐹 − 𝑁𝑎 − 𝐹 bond angles. 

 

 
 

Figure 7.28 Comparison of the BAD between the 𝑍𝐵𝑁 glass, its related 𝑁𝑎𝐵𝑎𝑍𝑟/𝐹ee 
crystal and different composition 𝑁𝑎𝐵𝑎𝑍𝑟𝐹j crystal. Top part of the figure shows BAD 
of 𝐹 − 𝑍𝑟 − 𝐹 and bottom part of the figure shows BAD of 𝐹 − 𝐵𝑎 − 𝐹 (primary axis) 
and 𝐹 − 𝑁𝑎 − 𝐹 (secondary axis). 

 

 The 𝐴𝑙 cations are considered as the network former in the glass matrix where its 

average connectivity 𝐴𝑙 − 𝐹 − 𝐴𝑙 is less than 1 (see Figure 7.18). However, when the con-

nectivity is calculated combining both network formers 𝑍𝑟 and 𝐴𝑙 cations at cutoff 2.75 Å, 

the average connectivity of 𝐴𝑙 increases approximately to 4 as expected due to the very high 

content of 𝑍𝑟 cations, which is illustrated in Figure 7.29. Conversely, combining 𝑍𝑟 − 𝐹 −
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𝑍𝑟 and 𝑍𝑟 − 𝐹 − 𝐴𝑙 to get 𝑍𝑟 − 𝐹 − 𝑍𝑟/𝐴𝑙 as shown in Figure 7.29 there is only a slight 

increase in the average connectivity of 𝑍𝑟 compared to the result from Figure 7.18 because 

of very low composition of 𝐴𝑙 in the glass matrix. 

 

 
 

Figure 7.29 𝑍𝑟 − 𝐹 − 𝑍𝑟/𝐴𝑙 linkage per 𝑍𝑟/𝐴𝑙 (primary axis) and 𝐴𝑙 − 𝐹 − 𝐴𝑙/𝑍𝑟 link-
age per 𝐴𝑙/𝑍𝑟 (secondary axis). 

 

 Similarly, the average connectivity for 𝐿𝑎, 𝑁𝑎 and 𝐵𝑎 cations were calculated in 

combination as a modifier at the cutoff 3 Å for 𝐿𝑎 and 𝑁𝑎, and 3.3 Å for 𝐵𝑎. As expected 

there was increased in the average connectivity for 𝐿𝑎 due to the high proportion of 𝑁𝑎 and 

𝐵𝑎 cations in the glass matrix as illustrated in Figure 7.30. The glass matrices have equal 

amount of 𝐵𝑎 and 𝑁𝑎 but very less amount of 𝐿𝑎 which will not much affect the high aver-

age connectivity for 𝐵𝑎 and 𝑁𝑎. The change in average connectivity for 𝑁𝑎 increases from 

~3 to ~	5.5 when they were calculated with other modifiers but for 𝐵𝑎 it increases from 7 

to 8. 
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Figure 7.30 𝐿𝑎 − 𝐹 − 𝐿𝑎/𝑁𝑎/𝐵𝑎 linkage per 𝐿𝑎/𝑁𝑎/𝐵𝑎 (primary axis) and 𝑁𝑎 − 𝐹 −
𝑁𝑎/𝐿𝑎/𝐵𝑎 linkage per 𝑁𝑎/𝐿𝑎/𝐵𝑎 (secondary axis). 

 

 𝑍𝑟 and 𝐵𝑎 cations retain their properties of connectivity < 𝑛 > the same as in binary 

‘𝑍𝐵’ glasses. 𝑍𝑟 is a network former with very high proportion of corner sharing and 𝐵𝑎 is 

a modifier with high proportion of edge sharing. However, 𝐿𝑎 and 𝑁𝑎 cations have mixture 

of edge and corner sharing as illustrated in Table 7.19. There is decrease in connectivity for 

𝐵𝑎 when its content is decreased and similarly in connectivity of 𝐴𝑙 when glass matrix is 

mixed with 𝑁𝑎 compositions. 

 For the binary 𝑍𝑟𝐹, − 𝐵𝑎𝐹/ system, the network connectivity, 𝑁z<z<, could have 

been predicted by the theory based on two types of fluorine. The ‘bridging’ 𝐹 in 𝑍𝑟 − 𝐹 −

𝑍𝑟 and ‘non-bridging’ 𝐹	in 𝑍𝑟 − 𝐹 − 𝐵𝑎. However, multicomponent fluorozirconate 

glasses have other types of fluorine which will not be included, e.g. the fluorine in 𝐴𝑙 − 𝐹 −

𝐴𝑙 and 𝐴𝑙 − 𝐹 − 𝐵𝑎. Furthermore, in the binary ‘𝑍𝐵’ glasses the connectivity < 𝑛 > for 𝑍𝑟 

depends on 𝐹/𝑍𝑟 ratio. For e.g. ‘𝑍𝐵’ glass with 60% 𝑍𝑟𝐹,	has 𝐹/𝑍𝑟 ratio 5.33 and has 

𝑁z<z< = 4.1. Looking at the multicomponent fluorozirconate glasses the same way, the 

model glasses have 𝑍𝑟𝐹, content between 50 to 62%. The corresponding 𝐹/𝑍𝑟 ratio is 
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between 5.3 to 5.6 and 𝑁z<z< from 3.9 to 4.4. There is slightly higher connectivity < 𝑛 > 

in the multicomponent fluorozirconate glasses compared to binary ‘𝑍𝐵’ glass with 60% 

𝑍𝑟𝐹,. 

 The structural study on 𝑍𝐵𝐿𝐴 glass [16] and undoped 𝑍𝐵𝐿𝐴𝑁 glass [17] by X-ray 

diffraction reported 𝑅z<{ = 2.1 Å and 𝑅|}{ = 2.7 Å that were similar to the model glass but 

𝑅|}{  from [17] was 2.6 Å. For the 𝑍𝐵𝐿𝐴 glasses reported 𝑅|}|}, 𝑅z<|} are shorter and 

𝑅z<z< is longer than the model results. Whereas for 𝑍𝐵𝐿𝐴𝑁 glass the reported nearest neigh-

bour distances for all of these cations were 4.1 Å which are shorter than 𝑍𝐵𝐿𝐴𝑁 model 

results. The X-ray diffraction for praseodymium (𝑃𝑟#$) doped 𝑍𝐵𝐿𝐴𝑁 glass [17] also re-

ported differential correlation functions for 𝑃𝑟 − 𝐹 and these can be compared to 𝐿𝑎 − 𝐹 

since 𝑃𝑟 and 𝐿𝑎 have similar size. Besides, X-ray diffraction is based on high atomic number 

that is highly affected by 𝑍𝑟, 𝐵𝑎 and 𝐿𝑎 and less by 𝐹, 𝑁𝑎 and 𝐴𝑙. But the reported first 

peak for 𝑃𝑟 − 𝐹 is at 2.75 Å which seems too long compared to 2.47 Å for 𝐿𝑎 − 𝐹 from the 

model. 

 The MD results [18] reported for 2% of 𝐸𝑢#$ doped 𝑍𝐵𝐿𝐴𝑁 glass compares well 

for the short-range order of 𝑍𝑟 − 𝐹 and 𝐹 − 𝐹 found by current glass models. However, 

results from [18] for bond length for 𝐵𝑎 − 𝐹, 𝐸𝑢 − 𝐹 and nearest neighbour distance for 

𝑍𝑟 − 𝑍𝑟 were shorter than results found in these current glass models. Consequently, the 

coordination numbers reported for 𝐵𝑎 − 𝐹 and 𝐸𝑢 − 𝐹 are lower as well. The previous very 

small model [18] has only used 393 atoms with cell length of 17.36 Å but the current model 

has 78,600 atoms with cell length of 101.5 Å which should be more reliable. 

 In terms of the 𝑍𝑟:𝐵𝑎 ratio in the glass matrix, the higher 𝑍𝑟: 𝐵𝑎 ratio in 𝑍𝐵𝐿, 𝑍𝐵𝐴 

and 𝑍𝐵𝐿𝐴 glasses have coordination numbers of 7.3 and 10.1	for 𝑍𝑟 − 𝐹 and 𝐵𝑎 − 𝐹. In 

contrast, for lower ratio 𝑍𝑟: 𝐵𝑎 in 𝑍𝐵𝑁, 𝑍𝐵𝐿𝐴𝑁 and 𝐸𝑢#$ doped	𝑍𝐵𝐿𝐴𝑁 glasses which 

have 𝑁𝑎 added gave coordination numbers of 7.5 and 10.9 for 𝑍𝑟 − 𝐹 and 𝐵𝑎 − 𝐹. This 
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can be explained that by adding 𝑁𝑎 cations in the glass matrix increase the coordination of 

𝑍𝑟 − 𝐹 and 𝐵𝑎 − 𝐹 as displayed in Table 7.20. However, in 𝑍𝑟𝐹, − 𝐵𝑎𝐹/ binary glass, the 

𝑍𝑟 − 𝐹 and 𝐵𝑎 − 𝐹 coordination numbers were not affected by the 𝑍𝑟: 𝐵𝑎 ratio. 

 The 𝑍𝑟 sites in these glasses are mainly in the mixture of 𝑍𝑟𝐹j and 𝑍𝑟𝐹�	polyhedra, 

which were also seen in ‘𝑍𝐵’ binary glasses. The ternary 𝑁𝑎𝐵𝑎𝑍𝑟/𝐹ee crystal also gave the 

mixture of 𝐶𝑁 = 7 and 8 for 𝑍𝑟 − 𝐹 and its average 𝑄O values were compared with the 𝑍𝐵𝑁 

glass model which is illustrated in Figure 7.31. It also shows that the glass and crystal aver-

age 𝑄O values are highly correlated to Augmented Triangular Prism and Biaugmented Tri-

angular Prism respectively. This strongly suggests that in the glass the network former 𝑍𝑟𝐹y 

polyhedra retain its sites as in its related crystal. This is further supported by the results from 

𝐴𝑙𝐹F polyhedra in the glass models where its average 𝑄O values are highly correlated to Oc-

tahedron (see Figure 7.23). 

 

 
 

Figure 7.31 The 𝑄O values for 𝑍𝑟𝐹j (primary axis) and 𝑍𝑟𝐹� (secondary axis) polyhedra 
of 𝑍𝐵𝑁 glass with its related 𝑁𝑎𝐵𝑎𝑍𝑟/𝐹ee crystal and different composition 𝑁𝑎𝐵𝑎𝑍𝑟𝐹j 
crystal. These 𝑄O values are compared with reference polyhedral of vertices, 𝑁 = 7 (Aug-
mented Triangular Prism, Pentagonal Dipyramid) and 𝑁 = 8 (Biaugmented Triangular 
Prism) respectively. 

 

 In contrast, modifier 𝐵𝑎 cation sites in the glass are very different to that of its related 

crystals as illustrated in Figure 7.32 where 𝐵𝑎𝐹ee polyhedra for the crystal are much more 
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similar to Augmented Pentagonal Prism than the glass of related composition. This result 

can be further seen in the 𝑁𝑎𝐹F polyhedra between same composition of 𝑍𝐵𝑁 glass and 

crystal where the average 𝑄O values for crystal are much closer to Pentagonal Pyramid than 

the glass. 

 

 
 

Figure 7.32 The 𝑄O of 𝑍𝐵𝑁 glass and its related 𝑁𝑎𝐵𝑎𝑍𝑟/𝐹ee crystal for 𝐵𝑎𝐹ee polyhedra 
(primary axis) and 𝑁𝑎𝐹F polyhedra (secondary axis) compared with the reference convex 
polyhedra Augmented Pentagonal Prism (𝑁 = 11) and Pentagonal Pyramid (𝑁 = 6) 
respectively. 

 

 In the glass 𝐸𝑢#$ dopant short-range order has 𝐸𝑢 − 𝐹 distance of 2.3 Å which 

agrees roughly with various 𝐸𝑢𝐹# associated crystals but those crystals show 𝐸𝑢 − 𝐹 coor-

dination number ranging from 7 to 10.5 whereas in the glass it is around 8.3, with high 

percentage mixture of coordination numbers 8 and 9. The shape of the bond angle distribu-

tion is similar to that of 𝐿𝑎 cation that act more like a modifier in the glass matrix (see Figure 

7.17). Similarly, 𝐸𝑢𝐹y and 𝐿𝑎𝐹y for 𝑛 = 8 and 9 have similar rotational invariants, 𝑄O, result 

(see Figure 7.23 and 7.24). Also, the 𝑄O results for 𝐸𝑢𝐹� are between Biaugmented Trian-

gular Prism, Snub Disphenoid and Gyrobifastigium reference polyhedra (see Figure 7.23). 

For 𝐸𝑢𝐹� polyhedra 𝐸𝑢#$ cation sites can be roughly modelled by Gyroelongated Square 

Pyramid and Triaugmented Triangular Prism (see Figure 7.24). 
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 The result from connectivity (see Figure 7.18) shows that the 1% doped 𝐸𝑢#$ is 

more isolated than 2% in 𝑍𝐵𝐿𝐴𝑁 glasses. If the 𝐸𝑢#$ cations are not isolated than they are 

connected to neighbouring 𝐸𝑢#$ cations by mixture of corner and edge sharing (see Table 

7.19). For good optical properties, 𝐸𝑢 ions should be isolated and distributed homogenously 

in the glass matrix. The result from Figure 7.33 illustrate that the distribution of 𝐸𝑢#$ cations 

in 𝑍𝐵𝐿𝐴𝑁 glasses are homogenous as the mean expected number of 𝐸𝑢 atoms in a cubic 

box of length 4 Å are 3 for 1% (i.e. for 400 𝐸𝑢 atoms) and 6 for 2% (i.e. for 600 𝐸𝑢 atoms) 

as predicated (refer to cubic grid analysis in Chapter 5). 

 

 
 

Figure 7.33 The distribution of 𝐸𝑢 ions in box size 4 Å in 𝑍𝐵𝐿𝐴𝑁 glass models with cell 
length of 101.51 Å and total number of 78,600 atoms. 

 

7.5 Conclusions 
 
 The new and large molecular dynamics models for fluorozirconate based multicom-

ponent glasses including 𝐸𝑢#$ dopant with the box sizes ranging from 61 Å to 102 Å are 

presented here. The only previous multicomponent glass MD model was reported for 

𝑍𝐵𝐿𝐴𝑁 doped with 2% of 𝐸𝑢#$ but it had only total numbers of 393 atoms with no com-

parison of diffraction data with the experiments. The new model of 𝑍𝐵𝐿𝐴 and 𝑍𝐵𝐿𝐴𝑁 
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glasses gave a fair agreement with experimental X-ray diffraction data. All these 𝑍𝐵𝐿, 𝑍𝐵𝐴, 

𝑍𝐵𝑁, 𝑍𝐵𝐿𝐴, 𝑍𝐵𝐿𝐴𝑁 and 𝐸𝑢#$ doped 𝑍𝐵𝐿𝐴𝑁 glasses gave the mixture of coordination 

numbers of 7 and 8 for 𝑍𝑟 and mostly 10, 11 and 12 for 𝐵𝑎 atoms. The slight change in 

coordination numbers seen in these glasses for higher and lower 𝑍𝑟:𝐵𝑎 ratio can be ex-

plained by the introduction of 𝑁𝑎 cations in the glass matrix which may have increased the 

coordination numbers for 𝑍𝑟 and 𝐵𝑎 cations at lower 𝑍𝑟: 𝐵𝑎 ratio. The related 𝑁𝑎𝐵𝑎𝑍𝑟/𝐹ee 

crystal for 𝑍𝐵𝑁 glass also gave the mixture of 7 and 8 coordination number for 𝑍𝑟. Although 

𝑍𝑟 − 𝐹 and 𝐵𝑎 − 𝐹 short-range order of these multicomponent glasses were similar to that 

of binary ‘𝑍𝐵’ glasses but the change in 𝑍𝑟: 𝐵𝑎 ratio did not affected the coordination num-

bers for ‘𝑍𝐵’ glasses.  

 The results from the pair distribution functions, bond-angle distribution functions 

and network connectivity suggested that 𝐴𝑙 cations act as a network former whereas 𝐿𝑎 and 

𝑁𝑎 cations act more as modifiers in these multicomponent glass matrices. The 𝐴𝑙 cations in 

the glass very much retain its short-range order and coordination number like that of 𝐴𝑙𝐹F 

crystal. The rotational invariants, 𝑄O, analysis further suggested that cations sites for 𝑍𝑟 and 

𝐵𝑎 are in similar to binary ‘𝑍𝐵’ glasses and its related crystals. 

 The tiny percentage of 𝐸𝑢#$ ions as a dopant in the glass roughly retain the short- 

range order that of 𝐸𝑢𝐹# crystal but it gave the mixture of coordination numbers of 8	and 9 

with high percentage of 8. The network connectivity result showed that 𝐸𝑢 cations in the 

glass are largely isolated and rotational invariants analysis suggested that its sites are similar 

to 𝐿𝑎 cations. The model also concluded that 𝐸𝑢#$ ions are homogenously distributed in the 

glasses. 
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Chapter 8  
 

Conclusions 
 
 In this thesis, atomic structures of glasses are analysed from the results of computer 

simulation where the classical molecular dynamics modelling technique is used. The validity 

of glass model was scrutinised by comparing with available experimental diffraction data 

and also comparing structure of short-range order with its related crystal (i.e. simulated at 

same conditions). Furthermore, the new method of rotational invariants was used to carefully 

study the structural units in the glass. Also, very large size models of alkaline earth silicate 

glasses were made to study immiscibility where a new grid analysis method was introduced 

to see the distributions of alkaline earth cations. 

 The models of 𝑥(𝐵𝑎𝑂) − (100 − 𝑥)𝑆𝑖𝑂, glass gave fair agreement with experi-

mental diffraction data for 𝑥 = 33.3 (both neutron and X-ray) and 𝑥 = 40 (only neutron). 

In short-range order, the bond length and coordination number for 𝐵𝑎 were 2.97 Å and ap-

proximately 7 respectively which was similar to 𝑥 = 50 crystal and inconsistent with 𝑥 ≤

40 crystals. As expected the result of rotational invariants, 𝑄8, for structural units of 𝑆𝑖 cat-

ions were extremely similar to tetrahedral geometry. A previous neutron diffraction study of 

𝑥 = 40 glass [1] was hypothesised to be evidence of “quasi-Bragg planes” in the glass struc-

ture that was not seen in the model in which there was no layer-like ordering of 𝐵𝑎 cations. 

The 𝑇:;:;(𝑟) correlation function showed smooth progression from 𝑥 = 25 to 50, with no 

deviation at 𝑥 = 25, hence the glass models indicating no phase separation in 𝑥 ≤ 33.3 

glasses. 

 Very large size models of 25𝑀𝑂 − 75𝑆𝑖𝑂, (i.e. 𝑀 = 𝑀𝑔, 𝐶𝑎 and 𝐵𝑎) glasses were 

made to study the immiscibility gaps in the alkaline earth silicate systems. The new method 

of grid analysis was introduced to see the distribution of these alkaline earth cations. Addi-
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tionally, very large size models of 50𝑀𝑂 − 50𝑆𝑖𝑂, glasses were made, in order to under-

stand the distribution of alkaline earth cations in comparison to Poisson and binominal ran-

dom distributions. The distribution of alkaline earth cations in 50𝑀𝑂 − 50𝑆𝑖𝑂, glasses were 

described by the binominal random distributions (i.e. homogenously distributed). In the case 

of 25𝑀𝑂 − 75𝑆𝑖𝑂, glasses the distribution of alkaline earth cations of these low 𝑀 contents 

were approximated by Poisson distribution where 𝐵𝑎 and 𝐶𝑎 were similar to random distri-

butions. However, the distribution of 𝑀𝑔 was wider than the Poisson distribution indicating 

immiscibility gap in 25𝑀𝑂 − 75𝑆𝑖𝑂, glasses. 

 One of the interesting reasons to model binary barium fluorozirconate ‘𝑍𝐵’ glass was 

to carefully study its structure because it does not follow the general Zachariasen rules for 

glass formation. Models of 𝑥𝑍𝑟𝐹B − (100− 𝑥)𝐵𝑎𝐹, glasses gave fair agreement with X-

ray diffraction for 𝑥 = 50 and 𝑥 = 67 and with neutron diffraction data for 𝑥 = 60, 67 and 

75 glasses. From the theory of random close packing bonding criteria, it is expected that a 

large ionic radius ratio and large values of coordination number will have more than one 

type of polyhedra structural units which was seen in the case of ‘𝑍𝐵’ binary glasses for both 

𝑍𝑟𝐹D and 𝐵𝑎𝐹D. 

 In the models of ‘𝑍𝐵’ glasses the coordination number of 𝑍𝑟 was a mixture of 7 and 

8 which was seen in the 𝑥 = 50 crystal. From the 𝑇FGFG(𝑟) correlation functions of 𝑥 = 50 

and 67 crystals showed that there was significantly more edge sharing in crystals than 

glasses. In a previous study [2], it was reported that the 𝑍𝑟𝐹H structural unit in the 𝑥 = 67 

crystal was similar to Pentagonal Dipyramid polyhedra and suggested that this structural unit 

was compactly preserved in glass and that this may be the reason ‘𝑍𝐵’ glasses have higher 

densities than its related crystals (unlike oxide glasses). The rotational invariants analysis 

(𝑄8 values) showed otherwise, as the crystals have structural units which are similar to Aug-

mented Triangular Prism and interestingly the glasses have structural units which are much 

closer to Augmented Triangular Prism than in related crystals. Also, previous MD structural 
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studies of glass [3] suggested that 𝑍𝑟𝐹I structural units are similar to Snub Disphenoid pol-

yhedra but the rotational invariants analysis suggested they are similar to Biagumented Tri-

angular Prism. In glasses 𝐵𝑎 has 𝐶𝑁 ≥ 10 which leads to a less well-defined coordination 

polyhedra which was shown when its 𝑄8 values were compared with reference convex pol-

yhedra. 

 The large multicomponent glass matrix of 𝐸𝑢NO doped 𝑍𝐵𝐿𝐴𝑁 glass was modelled 

as it was heavily studied for optical applications. Initially the new large models for 𝑍𝐵𝐿, 

𝑍𝐵𝐴, 𝑍𝐵𝑁, 𝑍𝐵𝐿𝐴 and 𝑍𝐵𝐿𝐴𝑁 glasses were made to check for any structural changes in 

𝑍𝑟𝐹D and 𝐵𝑎𝐹D polyhedra. The short-range order of 𝑍𝑟 and 𝐵𝑎 in these complex glasses was 

similar to that of binary ‘𝑍𝐵’ glasses but there was slight change in coordination numbers 

seen between higher and lower 𝑍𝑟:	𝐵𝑎 ratio (although the change in 𝑍𝑟:	𝐵𝑎 ratio did not 

affect binary ‘𝑍𝐵’ glasses). Also, the 𝑍𝐵𝑁 glass is seen to have short-range order similar to 

its related 𝑁𝑎𝐵𝑎𝑍𝑟,𝐹TT crystal with a mixture of 𝐶𝑁 for 𝑍𝑟. 

 From the pair distribution functions, bond angle distribution functions and network 

connectivity for models of	𝑍𝐵𝐿𝐴𝑁 glasses it can be established that 𝐴𝑙 acts as a network 

former that has octahedra structural units whereas 𝐿𝑎 and 𝑁𝑎 behave like modifiers in the 

glass with the mixture of coordination numbers 8 and 9 for 𝐿𝑎 and coordination numbers of 

6 and 7 for	𝑁𝑎	cations. Doped 𝐸𝑢 atoms have short-range 𝐸𝑢 − 𝐹 distance of 2.33 Å	that 

roughly agrees with the 𝐸𝑢𝐹N and related crystals and have mixture of coordination numbers 

8 and 9 but predominantly coordination number of 8. The connectivity results show that 𝐸𝑢 

atoms are isolated from each other and grid analysis shows they are uniformly distributed in 

the glass. 

 In the future work, it could be good to do more modelling of binary 𝐵𝑎𝑂 − 𝑆𝑖𝑂, 

glasses this is to compare with phase separation found in experiments (e.g. [3]) because the 

results from the present 𝐵𝑎𝑂 − 𝑆𝑖𝑂, glass models did not show any phase separation. The 

grid analysis used here to see the distribution of single alkaline earth cations (such as 𝑀𝑔, 



Chapter 8: Conclusions  234 
 

 

𝐶𝑎, and 𝐵𝑎) can be applied to alkali cations such (e.g. 𝑁𝑎) and to multicomponent silicates 

glasses that have more than one modifier. It would be interesting to look at the distribution 

of mixed modifiers compared to the single modifier cations studied in the present work. 

 The results of the bond angle distribution functions (BAD) of glasses based on bar-

ium fluorozirconate can be directly compared with the bond angle distribution of reference 

polyhedra. However, here only the glass structural units of 𝑍𝑟𝐹H and 𝑍𝑟𝐹I polyhedra were 

directly compared with all the reference polyhedra of vertices 7 and 8. Further such analysis 

might help to give a clearer understanding between rotational invariants, 𝑄8, and more gen-

eral method of BAD in regards to identifying the glass structural units. Furthermore the 𝑄8 

values depend on symmetry and interaction between cations and anions. The reference pol-

yhedra have symmetrical faces, e.g. equilateral triangles, similar to those in crystals. Glass 

has similar interactions to crystals but does not have well-defined symmetry, and the poly-

hedra have distorted faces, e.g. non-equilateral triangles. The software used in this project is 

only able to calculate the average shape of polyhedra from the model, and rotational invari-

ants analysis might be improved by also calculating the distortion of the polyhedra faces.  

 In order that the large models of 𝑍𝐵𝐿𝐴𝑁 glasses including 𝐸𝑢 doped results pre-

sented in this thesis can be rigorously compared and complimented one can perform exper-

iments (e.g. diffraction) on 𝑍𝐵𝐿𝐴𝑁 glasses to have a better atomic structural understanding 

of these glasses. 
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