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ABSTRACT In a directional modulation network, a general power iterative (GPI) based beamforming

scheme is proposed to maximize the secrecy rate (SR), where there are two optimization variables required to

be optimized. The first one is the useful precoding vector of transmitting confidential messages to the desired

user while the second one is the artificial noise (AN) projection matrix of forcing more AN to eavesdroppers.

In such a secure network, the paramount problem is how to design or optimize the two optimization variables

by different criteria. To maximize the SR (Max-SR), an alternatively iterative structure (AIS) is established

between the AN projection matrix and the precoding vector for confidential messages. To choose a good

initial value of iteration process of GPI, the proposed Max-SR method can readily double its convergence

speed compared to the random choice of initial value. With only four iterations, it may rapidly converge to

its rate ceil. From simulation results, it follows that the SR performance of the proposed AIS of GPI-based

Max-SR is much better than those of conventional leakage-based and null-space projection methods in the

medium and large signal-to-noise ratio (SNR) regions, and its achievable SR performance gain gradually

increases as SNR increases.

INDEX TERMS Secrecy rate, artificial noise, directional modulation, general power iterative, alternatively

iterative structure.

I. INTRODUCTION

In the recent decade, physical-layer security in wireless

networks, as a new tool to provide an incremental safeguard

of confidential message over conventional cryptography, has

drawn tremendous research attention and interests from both

academia and industry [1]–[11]. In [1], the author’s seminal

research work has established the channel model and found

the tradeoff curve between the transmission rate and the

data equivocation seen by the wire-tapper. More importantly,

the author also proved that reliable transmission at rates

up to C, is possible in approximately perfect secrecy. As a

physical layer secure transmit technique suitable for line-of-

propagation (LoP) scenario, directional modulation (DM) has

made great progresses in many aspects with the aid of artifi-

cial noise (AN) and antenna array beamforming [12]–[19].

To enhance security, the symbol-level precoder in [13]

was presented by using the concept of constructive inter-

ference in directional modulation with the goal of reduc-

ing the energy consumption at transmitter. In the presence

of direction measurement error, Devaney [17] and

Marengo and Gruber [18] designed three new robust

DM synthesis methods for three different application
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scenarios: single-desired user, multi-desired user broadcast-

ing, multi-desired user MIMO by fully making use of the

property of direction measurement error. Compared with

conventional non-robust methods, like null-space projection

(NSP) [16], [20], the proposed robust methods actually

harvests an appealing rate gain and almost an order-of-

magnitude bit error rate (BER) performance improvement

along desired directions. The works above only present

an investigation on conventional DM with only direction-

dependent property. However, if eavesdropper lies on the

same direction from as the desired user, and its distance from

the DM transmitter is different from the distance from the

desired user to the DM transmitter, then it can still intercept

the confidential messages successfully. This is the existing

intrinsic secure problem for the conventional DM networks.

To address the serious secure issue, recently, Colton and

Kirsch [21] andColton et al [22] proposed an original concept

of secure and precise wireless transmission. In their works,

the confidential messages are transmitted to the desired

position precisely and securely. If eavesdropper is outside

the small area around the desired position and locates in the

same direction as the desired direction, it can not intercept

the confidential messages successfully due to AN corruption

and frequency random property. However, in this paper, we

focus still on how to maximize the SR for conventional DM

networks via GPI algorithm.

However, in a three-node directional modulation network,

what is the maximum achievable secrecy rate in the absence

of direction estimation error? This is an open NP-hard prob-

lem. In the following, we will solve the problem via a

combination of general power iterative (GPI) method [23]

and alternatively iterative structure (AIS). From simulation

results, we find that the proposed GPI-based AIS can achieve

an obvious secrecy rate (SR) performance gain compared to

conventional NSP and leakage-based methods in the medium

and large SNR regions. Our main contributions are summa-

rized as follows:

1) In line-of-sight (LoS) scenarios, such asmmWave com-

munications (massive MIMO), internet of things (IoT),

unmanned aerial vehicle (UAV) and satellite commu-

nications, we propose a general power iterative (GPI)

scheme in DM system to maximize secrecy rate (SR),

which is shown to be much better than conventional

NSP and leakage-based methods in terms of SR.

2) To accelerate the convergence rate of our proposed

method, the leakage-based precoding vector and AN

projection matrix are chosen to be the initial values

instead of random generating. From simulation results,

it follows that the new initial values can greatly reduce

the number of iterations, and doubles the convergence

rate compared to the random ones. This means that a

good choice of initial values leads to a dramatic reduc-

tion in computational amount of the proposed method.

The remainder is organized as follows: Section II describes

the system model. An AIS of maximizing secrecy rate

(Max-SR) based on GPI with aided AN is proposed in

Section III. Section IV presents the simulation results

and complexity analysis. Finally, we draw conclusions in

Section V.

Notations: Throughout the paper, matrices, vectors, and

scalars are denoted by letters of bold upper case, bold lower

case, and lower case, respectively. Signs (·)T , (·)∗ and (·)H
denote transpose, conjugate, and conjugate transpose, respec-

tively. Notation E{·} stands for the expectation operation.

Matrices IN denotes the N × N identity matrix and 0M×N
denotes M × N matrix of all zeros. tr(·) denotes matrix

trace. Operation ⊗ denotes the Kronecker product of two

matrices [24].

FIGURE 1. Directional modulation network.

II. SYSTEM MODEL

Fig. 1 sketches a diagram block of directional modula-

tion (DM) network consisting of one base station (BS, Alice)

equipped with N antennas, one desired node (Bob) and one

eavesdropping node (Eve). Here, it is assumed that both

desired node and eavesdropping node are employed with sin-

gle antenna and BS employs an N -element uniformly spaced

linear array. Due to its directional property, DMusuallyworks

in LoP channel. By introducing the precoding vector of con-

fidential messages and AN projection matrix at transmitter,

the transmit baseband signal from antenna array of BS is of

the form

s = β1

√

Psvdx + αβ2

√

PsPAN z, (1)

where x is the confidential message with E
{

xHx
}

= 1

and z ∈ C
N×1 denotes the AN vector of obeying complex

Gaussian distribution CN (0, IN−1).Ps denotes the total trans-

mit power, β1 and β2 stand for the power allocation (PA)

factors of confidential message and AN with β2
1 + β2

2 = 1.

vd ∈ C
N×1 denotes the transmit beamforming vector to align

the confidential message to desired direction, vHd vd = 1.

PAN ∈ C
N×(N−1) is the projectionmatrix, α normalizesPAN z

such that α2
E{Tr[PAN zzHPHAN ]} = 1.

After experiencing the LoP channel, the received signal

along direction θ is given by

y(θ ) = hH (θ )s + nr

= β1

√

Psh
H (θ )vdx + αβ2

√

Psh
H (θ )PAN z + nr , (2)

where nr is additive white Gaussian noise (AWGN)with nr ∼
CN (0, σ 2

r ), h(θ ) ∈ C
N×1 is the normalized steering vector

defined by h(θ ) =
√
N−1[exp (j2π9θ (1)) , · · · ,

exp (j2π9θ (N ))]T , and the phase function 9θ (n) along
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H. Yu et al.: GPI-Based Secrecy Rate Maximization Beamforming Scheme for Wireless Transmission

direction θ is denoted as 9θ (n) , −[n − (N + 1)/2]d

cos θλ−1, (n = 1, 2, · · · ,N ), where n indexes the elements

of transmit antenna array, d denotes the spacing of two

adjacent antennas, and λ is the wavelength of the carrier. The

receive signals at Bob and Eve are written as

y(θd ) = β1

√

Psh
H (θd )vdx + αβ2

√

Psh
H (θd )PAN z + nd ,

(3)

and

y(θe) = β1

√

Psh
H (θe)vdx + αβ2

√

Psh
H (θe)PAN z + ne,

(4)

where nd ∼ CN (0, σ 2
d ) and ne ∼ CN (0, σ 2

e ) represent

the noise at Bob and Eve. With the help of some classic

estimation algorithms such as Capon’s method, MUSIC and

ESPRIT, the DM transmitter in Fig. 1 can obtain the direction

knowledge of eavesdroppers and desired users. Without loss

of generality, it is assumed that the variances of σ 2
r , σ

2
d , and

σ er are equal, i.e., σ 2
r = σ 2

d = σ 2
e = σ 2.

To derive the SR, the achievable rates of Bob and Eve,

R(θd ) and R(θe) are defined as follows

R(θd ) = log2

(

1 +
β2
1Psh

H (θd )vdv
H
d h(θd )

σ 2
d + α2β2

2Psh
H (θd )PANP

H
ANh(θd )

)

,

(5)

and

R(θe) = log2

(

1 +
β2
1Psh

H (θe)vdv
H
d h(θe)

σ 2
e + α2β2

2Psh
H (θe)PANP

H
ANh(θe)

)

,

(6)

Then, the SR Rs(vd ,PAN ) is defined as follows

Rs(vd ,PAN ) = max{0,R(θd ) − R(θe)}

= max{0, log2

(

vHd (Hd + Ad IN )vd

vHd (He + AeIN )vd
× B

)

},

(7)

where Hd , hdh
H
d , He , heh

H
e ,

Ad = α2β2
2β

−2
1 hH (θd )PANP

H
ANh(θd ) + σ 2(β2

1Ps)
−1, (8)

Ae = α2β2
2β

−2
1 hH (θe)PANP

H
ANh(θe) + σ 2(β2

1Ps)
−1, (9)

and

B =
hH (θe)PANP

H
ANh(θe) + σ 2(α2β2

2Ps)
−1

hH (θd )PANP
H
ANh(θd ) + σ 2(α2β2

2Ps)
−1

. (10)

The RS defined in (7) should be larger than or equal to zero.

If it is less than zero, then the eavesdropper will get more

mutual information than the desired user. This is not desired

in a secure system. However, the second term on right hand

side of (7) can be less than zero sometimes, i.e.,

log2

(

vHd (Hd + Ad IN )vd

vHd (He + AeIN )vd
× B

)

< 0 (11)

if the eavesdropper is closer to the DM transmitter than the

desired user. Thus, the operation max in RS given by (7)

should be kept such that the SR is larger than or equal to

zero. In what follows, wewill maximize the SR by optimizing

the beamforming vector vd of confidential messages and the

projection matrix PAN of AN, which can be casted as

(P1) : max
vd ,PAN

Rs(vd ,PAN )

subject to vHd vd = 1, Tr[PANP
H
AN ] = α−2. (12)

Obviously, the above optimization problem is NP-hard, and it

is hard to be solved directly or find a closed-from solution to

the above problem. The objective function in (12) as shown

in (7) is divided into a sum of two non-convex functions of

variables vd , and PAN . This means that it is still a non-convex

function. Thus, we make a conclusion that the optimization

problem in (12) is a nonlinear non-convex optimization.

III. PROPOSED ITERATIVE ALGORITHM TO DESIGN

BEAMFORMING VECTOR vd AND PROJECTION

MATRIX PAN

Since the joint optimization vd and PAN in (12) is too com-

plicated, we divided it into two mutual coupling subproblems

and construct an iterative structure between them. By fix-

ing the beamforming vector vd , the optimal PAN is solved

by utilizing the GPI algorithm [23]. For given projection

matrix PAN , the optimal vd is derived according to general-

ized Rayleigh-Ritz ratio in [24]. This forms an alternatively

iterative structure. The Max-SR method outputs the beam-

forming vector vd and projection matrix PAN by repeatedly

applying the GPI in [23].

A. OPTIMIZE PAN FOR FIXED vd

If the beamforming vector vd in (12) is fixed, then the opti-

mization problem (12) can be reduced to

(P1.1) : max
PAN

Rs(fixed vd ,PAN )

subject to Tr[PANP
H
AN ] = α−2. (13)

The cost function Rs(fixed vd ,PAN ) is rewritten as

Rs = log2

(

Tr(PHANBdPAN )

Tr(PHANBePAN )
×

Tr(PHANCePAN )

Tr(PHANCdPAN )

)

= log2

(

wH (IN−1⊗Bd )w

wH (IN−1⊗Be)w
×

wH (IN−1 ⊗ Ce)w

wH (IN−1 ⊗ Cd )w

)

, (14)

where w , vec(PAN ) ∈ C
N (N−1)×1,

Bd =
β2
2

β2
1

Hd + (
σ 2

β2
1Ps

+ hH (θd )vdv
H
d h(θd ))IN , (15)

Be =
β2
2

β2
1

He + (
σ 2

β2
1Ps

+ hH (θe)vdv
H
d h(θe))IN , (16)

Cd = Hd + σ 2(β2
2Ps)

−1IN , and Ce = He + σ 2(β2
2Ps)

−1IN .

Consider that shrinking or stretching PAN does not change

the ratio value as shown in (14), the problem (P1.1) is

12046 VOLUME 6, 2018
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equivalent to

(P1.2) :max
w

wH (IN−1 ⊗ Bd )w

wH (IN−1 ⊗ Be)w
×

wH (IN−1 ⊗ Ce)w

wH (IN−1 ⊗ Cd )w
.

(17)

Since (17) is a non-convex quadratic fractional function,

(IN−1 ⊗ Bd ), (IN−1 ⊗ Be), (IN−1 ⊗ Cd ) and (IN−1 ⊗ Cd )

are N (N − 1) × N (N − 1) positive semi-definite matrices.

w can be solved by utilizing GPI algorithm in [23]. Then,

PAN is able to be reconstructed from w.

B. OPTIMIZE vd FOR FIXED PAN

If the AN projection matrix PAN in (12) is fixed, the optimiza-

tion problem (12) is simplified to

(P1.3) : max
vd

Rs(vd , fixed PAN )

subject to vHd vd = 1 (18)

Observing (7), we find that above optimization problem is

equivalent to

(P1.4) : max
vd

vHd (Hd + Ad IN )vd

vHd (He + AeIN )vd

subject to vHd vd = 1 (19)

Actually, this is a generalized Rayleigh-Ritz ratio problem

and the optimal vd is the eigenvector corresponding to the

largest eigenvalue of the matrix

(He + AeIN )
−1(Hd + Ad IN ). (20)

FIGURE 2. Schematic diagram of AIS.

C. INITIALIZATION OF PAN AND vd

Based on the two previous subsections, we propose an AIS by

alternatively solving PAN and vd to further improve secrecy

rate Rs as shown in Fig. 2. The basic idea is to apply the

two steps in Subsections A and B individually and repeatedly

until the SR converges. The detailed process is as follows.

Firstly, we take the initial values of PAN and vd being the

associated eigen-vectors of the largest egienvalues of (23)

and (25), respectively. Then, we compute PAN by utilizing

GPI algorithm in [23] for a given fixed vd . Subsequently,

vd is chosen to be the associated eigen-vectors of the largest

egienvalues of matrix(20) under the condition PAN is fixed.

We repeat the process until the termination condition is

satisfied.

Generally, the convergence rate of the iterative algorithm

in Fig. 2 depends intimately on the the initial value. In what

flows, we focus on the initialization of PAN and vd using the

leakage concept in accordance with (3) and (4).

From the aspect of interfering the eavesdropper, the AN

along direction θe should be viewed a useful component for

eavesdropper, and the leakage of AN to the desired direc-

tion θd is regarded as interference. Hence, the AN-to-leakage-

plus-noise ratio (ANLNR) corresponding toPAN is defined as

ANLNR(PAN ) =
α2β2

2Psh
H (θe)PANP

H
ANh(θe)

α2β2
2Psh

H (θd )PANP
H
ANh(θd ) + σ 2

=
Tr[PHANHePAN ]

Tr[PHAN (Hd + σ 2

β2
2Ps

IN )PAN ]
. (21)

When maximizing the above cost function ANLNR(PAN ), the

optimization variable PAN is a matrix. To solve this problem,

we convert matrix PAN into a column vector w using vec

operation, and the associated cost function becomes

ANLNR(w) =
wH (IN−1 ⊗ He)w

wH [IN−1 ⊗ (Hd + σ 2

β2
2Ps

IN )]w
. (22)

Therefore, by maximizing the above objective function

ANLNR(w), we have the optimum w being the eigenvector

corresponding to the largest eigenvalues of matrix
[

IN−1 ⊗ (Hd + σ 2(β2
2Ps)

−1IN )
]−1

(IN−1 ⊗ He). (23)

This completes the initialization of PAN .

Similarly, as the desired user hopes that the confidential

message x should be leaked to the eavesdropper along the

eavesdropper direction θe as little as possible, we define

the confidential signal-to-leakage-plus-noise ratio (CSLNR)

corresponding to vd as

CSLNR(vd ) =
β2
1Psv

H
d h(θd )h(θd )

Hvd

β2
1Psv

H
d h(θe)h(θe)

Hvd + σ 2

=
vHd Hdvd

vHd (He + σ 2

β2
1Ps

IN )vd
. (24)

Maximizing (24) yields the initial value of vd being

the eigenvector corresponding to the largest eigenvalues of

matrix

(He + σ 2(β2
1Ps)

−1IN )
−1Hd . (25)

Finally, the detailed implementation process of our pro-

posed AIS scheme is summarized in Algorithm 1.

InAlgorithm 1, parameter δ is the tolerance factor. Tomake

the above algorithm more clear, the corresponding detailed

flow graph is also presented in Fig. 3.

IV. SIMULATION, DISCUSSION, AND

COMPLEXITY ANALYSIS

In this section, simulation results are presented to evaluate

the performance of the proposed algorithm. The leakage-

based method in [25] and NSP method in [20] are used For
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FIGURE 3. Flow graph of our proposed algorithm.

comparison,. The system parameters are chosen as: N = 8,

PA factors β1 =
√
0.9 and β2 =

√
0.1, θd = 45◦ and

θe = 70◦, and QPSK.

A. SIMULATION RESULTS AND ANALYSIS

Fig. 4 shows the achievable SR versus the number of iter-

ations between PAN and vd for leakage-based and random

initial values, respectively. Here, SNR is chosen to be 10dB.

It is seen that the iterative algorithm with leakage-based

solution as initialization value converges more rapidly than

that with random initialization. As shown in Fig. 4, the former

converges to a constant rate after 4 iterations, while the latter

requires 7 iterations to converge. And the two initialization

methods finally converge to the same SR limit value. This

implies that the SLNR initialization can provide a faster

convergence speed than the random initialization.

Algorithm 1 Proposed Iterative Algorithm to Solve PAN and

vd

Input: hd , he, β1, β2, α and δ

Output: PAN , vd , Rs
Initialization: i = 1, and compute the

initial value of P1
AN and v1d by using (23)

and (25).

repeat

1. i = i+ 1.

2. Update PiAN utilizing GPI algorithm in [23];

3. Update vid based on (20);

4. Compute Ris in (7) using updated PiAN and vid .

until |Ris − Ri−1
s | < δ.

return PAN , vd and Rs.

FIGURE 4. Curves of achievable secrecy rate versus the number of
iterations (SNR=10dB).

Fig. 5 illustrates the achievable SR versus SNR of the

proposed method, leakage-based method in [25] and NSP

method in [20]. It can be seen that our proposed method

performs better than the remaining two methods in almost

all SNR regions. With the increase of SNR, the secrecy rate

gain over them achieved by the proposed method show a

gradual growth trend. For example, at SNR=15dB, the pro-

posed method attains an approximate ten-percent and twenty-

percent rate improvements over leakage and NSP methods,

respectively.

Fig. 6 plots the bit error rate (BER) versus SNR of

the proposedmethod, leakage-basedmethod and NSP. All the

three methods achieve their best BER performance along the

desired direction θd = 45◦, and a sharp BER performance

degradation appears once the desired receiver deviates from

the main beam of the desired direction 45◦. Both NSP and

our proposed method have approximately the same BER per-

formance around the desired direction 45◦. The main reason

is that the proposed method reduces the effect of artificial

noise on the desired direction by maximizing SR. The NSP

12048 VOLUME 6, 2018
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FIGURE 5. Achievable secrecy rate versus SNR of three different methods.

FIGURE 6. Curves of BER versus directional angles of three different
methods.

even makes AN vanish in the desired direction. However,

the conventional NSP one shows a better BER performance

than the proposed method along the eavesdropper direction

θe = 70◦, which means that the confidential messages can be

easily intercepted along the direction.

B. COMPLEXITY COMPARISON AND

CONVERGENCE ANALYSIS

The complexities of the proposedMax-SR, NSP, and leakage-

based methods are O(I (N 6)), O(N 3), and O(N 3) floating-

point operations (FLOPs), respectively, where I stands for

the number of iterations. Our proposed method is due to

the fact that the optimization variable w , vec(PAN ) in

(13) is an N (N − 1)-D column vector. Clearly, the proposed

method has much higher complexity than NSP and leakage-

based methods. Both NSP and leakage-based methods have

the same order of complexity.

For the aspect of convergence, we propose two different

choices of initial values in Section III: random and leakage-

based. From Fig. 4, the former requires 7 iterations to con-

verge the limit and the latter needs only 4 iterations. Clearly,

the leakage-based initialization approximately doubles the

convergence rate compared to the random initialization. This

means a good initial choice accelerates the convergence of

our proposed method.

V. CONCLUSION

In this paper, we have investigated three beamforming

schemes including the proposed GPI-based Max-SR, leak-

age, and NSP. Compared to the last two methods based on

NSP and leakage, the proposed GPI-based Max-SR method

achieved a substantial SR improvement in the medium and

large SNR regions. In particular, as SNR increases, the SR

performance gain increases. Additionally, by an appropriate

choice of initialization value, for example, with the leakage-

based solution as initial value of GPI, the proposed method

required only 4 iterations to converge to the limit value

of SR. The random initialization requires 7 iterations. Thus,

the leakage-based initialization saves about 40-percent com-

putational amount over random one. In the coming future, the

proposed scheme will be potentially applied to the following

diverse applications such as mmWave communications (mas-

sive MIMO), IoT, UAV, satellite communications, and flying

ad-hoc networks.
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