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THE CELLULAR SECOND FUNDAMENTAL THEOREM OF

INVARIANT THEORY FOR CLASSICAL GROUPS

CHRISTOPHER BOWMAN, JOHN ENYANG, AND FREDERICK M. GOODMAN

Abstract. We construct explicit integral bases for the kernels and the images of diagram

algebras (including the symmetric groups, orthogonal and symplectic Brauer algebras) acting

on tensor space. We do this by providing an axiomatic framework for studying quotients of

diagram algebras.
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Introduction

Schur–Weyl duality relates the classical matrix groups GL(V ), SL(V ), O(V ), or Sp(V ), where
V is a finite dimensional vector space, with certain quotients of diagram algebras – symmetric
group algebras, Brauer algebras or walled Brauer algebras – via mutually centralizing actions on
tensor space. The surjectivity of the map from the diagram algebra to the centralizer algebra
of the matrix group is equivalent to the first fundamental theorem of invariant theory. Any
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effective description of the kernel of the map is a form of the second fundamental theorem
(SFT) of invariant theory.

This paper studies the centralizer algebras and the second fundamental theorem from the
point of view of cellularity [19]. We construct integral cellular bases for the centralizer algebras,
and simultaneously bases of the kernel of the map from the diagram algebras to the centralizer
algebras.

There are two remarkable cellular bases of the Iwahori Hecke algebras of finite type A – the
Kazhdan–Lusztig bases [27, 19] and the Murphy bases [34]. Each has its own merits. The
Kazhdan–Lusztig bases encode a great deal of representation theory and have a deep relation
to geometry. The Murphy bases are simpler and more explicit; they encode the restriction of
cell-modules along the tower of Hecke algebras; they are related to the seminormal bases by a
dominance triangular transformation and consequently the Jucys–Murphy elements act on the
Murphy bases by dominance triangular matrices. Relationships between the two types of bases
are investigated in [15]. As evidence of the enduring utility of the Murphy bases, we mention
that they were used in [22] to construct graded cellular bases of the Hecke algebras.

The Kazhdan–Lusztig bases have been generalized in [40] to the Brauer centralizer algebras
and to many other examples using the theory of dual canonical bases of quantum groups from
[30]. In this paper we concentrate on generalizing the Murphy bases. In previous work [11],
we have already generalized the Murphy bases to the Brauer diagram algebras (and to other
diagram algebras related to the Jones basic construction). In this paper we extend this analysis
to encompass centralizer algebras for the classical groups. The bases we obtain, for the diagram
algebras and for the centralizer algebras, share all the properties of original Murphy bases
mentioned above.

We are using the phrase “centralizer algebra” as a shorthand for the image of the diagram
algebra (for example, the Brauer diagram algebra) acting on tensor space, over an arbitrary field
or over the integers. In fact, these algebras are generically centralizer algebras in the classical
sense, see Theorems 7.1 and 8.1.

In order to produce Murphy bases of centralizer algebras, we first develop a quotient con-
struction for cellularity of towers of diagram algebras. We then apply this construction to the
integral versions of the Brauer algebras acting on orthogonal or symplectic tensor space. The
construction involves modifying the Murphy type basis of the tower of diagram algebras con-
structed following [11] in such a way that the modified basis splits into a basis of the kernel of
the map Φ from the diagram algebra to endomorphisms of tensor space, and a subset which
maps onto a cellular basis of the image of Φ.1 This construction thus provides simultaneously
an integral cellular basis of the centralizer algebra, and a version of the SFT, namely an explicit
description of the kernel of Φ. Moreover, it is evident from the construction that ker(Φ) is
generated as an ideal by certain “diagrammatic minors” or “diagrammatic Pfaffians”, so we
also recover the version of the SFT from [13]. The combinatorics underlying our construction is
the same as that in [38], namely the cellular basis of the centralizer algebra is indexed by pairs
of “permissible paths” on the generic branching diagram for the tower of diagram algebras. The
cell modules of the integral centralizer algebras are in general proper quotients of certain cell
modules of the integral diagram algebra.

All of these results are compatible with reduction from Z to a field of arbitrary characteristic
(except that characteristic 2 is excluded in the orthogonal case). For a symplectic or orthogonal
bilinear form on a finite dimensional vector space V over a field k, and for Φ the corresponding
map from the Brauer diagram algebra to End(V ⊗r), our bases of im(Φ) and of ker(Φ) are
independent of the field, of the characteristic, and of the choice of the bilinear form. They
depend only on the dimension of V . It follows from our results that for a fixed field k and
fixed dim(V ), and for fixed symmetry type of the form (symplectic or orthogonal) the Brauer

1Integral bases of the Brauer diagram algebras with a similar splitting property were constructed in [9, 21].
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centralizer algebra im(Φ) is independent, up to isomorphism, of the choice of the form. For
example, if the field is the real numbers, and the form is symmetric, the Brauer centralizer
algebra is independent, up to isomorphism, of the signature of the form.

We also explain in our context the well-known phenomenon that the seminormal representa-
tions of centralizer algebras of the classical groups are truncations of the seminormal represen-
tations of the corresponding diagram algebras.

We wish to remark upon our emphasis on working over the integers. As noted in [14],
cellularity “provides a systematic framework for studying the representation theory of non-
semisimple algebras which are deformations of semisimple ones.” Typically, a “cellular algebra”
A is actually a family of algebras AS defined over various ground rings S, and typically there
is a generic ground ring R such that: each instance AS of A is a specialization of AR, i.e.
AS = AR⊗R S; with F the field of fractions of R, AF is semisimple; and if k is any field, the cell
modules and cellular basis of Ak are obtained by specializing those of AR, and the simple Ak

modules appear as heads of (some of) the cell modules. This point of view was not stressed in
the original papers [19, 34], but is a sort of folk wisdom. In our applications, the integers are the
generic ground ring for the centralizer algebras; it is not altogether obvious, but it follows from
our results that the centralizer algebras over fields of prime characteristic are specializations of
the integral versions; see Sections 7 and 8 for precise statements.

In the orthogonal and symplectic cases, our bases are new. In the general linear case, our
result is equivalent to [20] for tensor space and [37, 39] for mixed-tensor space, respectively.
A completely different and very general approach to proving the existence of abstract cellular
bases of centralizer algebras of quantum groups over a field has been developed in [1].

Our method should apply to other examples as well. The case of the BMW algebra acting on
symplectic tensor space should be straightforward, using the q–analogue of the diagrammatic
Pfaffians obtained in [23]. The case of the BMW algebra acting on orthogonal tensor space
could be more challenging as the appropriate q–analogues of the diagrammatic minors are not
yet available.
Outline. The paper is structured as follows. In Section 1 we recall the necessary background
material on diagram algebras and their branching graphs; this is taken from [4, 11, 17, 18, 19].
In Section 2, we introduce an axiomatic framework for cellularity of a sequence of quotients of a
sequence of diagram algebras. This culminates in Theorem 2.7, which contains the main result
on cellular bases of quotient algebras as well as an abstract “second fundamental theorem” —
that is, a description of the kernel of the quotient map.

In Section 4 we treat the Murphy basis of the symmetric group algebras, and a dual version,
twisted by the automorphism si 7→ −si of the symmetric group. Section 5 treats the Murphy
and dual Murphy bases of Brauer algebras. Finally, in Sections 7 and 8 we apply our abstract
theory to the main examples of interest in this paper, namely to the Brauer algebra acting on
symplectic or orthogonal tensor space.

There are four appendices in the arXiv version of this paper. In Appendix A we review
results of Härterich [20] regarding the action of the symmetric group and the Hecke algebra on
ordinary tensor space. In Appendices B and C we construct Murpy bases of the walled Brauer
algebras and of their quotients acting on mixed tensor space, following the techniques used in
the main text. In Appendix D we review results on diagrammatic minors and Pfaffians which
are needed for our treatment of the SFT.

Acknowledgements. We would like to thank the Royal Commission for the Exhibition of 1851
and EPSRC grant EP/L01078X/1 for financial support during this project. We are grateful to
the referees for many helpful suggestions and questions.
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1. Diagram algebras

For the remainder of the paper, we shall let R be an integral domain with field of fractions F.
In this section, we shall define diagram algebras and recall the construction of their Murphy bases
in terms of “up” and “down” branching factors, following [11]. As in [4], we emphasize crucial
factorization and compatibility relations between the “up” and “down” branching factors.

1.1. Cellular algebras. We first recall the definition of a cellular algebra, as in [19].

Definition 1.1. Let R be an integral domain and let A be a unital algebra over R. A cell

datum for A is a tuple (A, ∗, Â,Q, Std(·),A ) where:

(1) ∗ : A → A is an algebra involution, that is, an R–linear anti–automorphism of A such that
(x∗)∗ = x for x ∈ A.

(2) (Â,Q) is a finite partially ordered set, and for each λ ∈ Â, Std(λ) is a finite indexing set.
(3) The set

A =
{
cλst

∣∣ λ ∈ Â and s, t ∈ Std(λ)
}
,

is an R–basis for A.

Let A�λ denote the R–module with basis
{
cµst | µ� λ and s, t ∈ Std(µ)

}
.

(4) The following two conditions hold for the basis A .

(a) Given λ ∈ Â, t ∈ Std(λ), and a ∈ A, there exist coefficients r(a; t, v) ∈ R, for v ∈
Std(λ), such that, for all s ∈ Std(λ),

cλsta ≡
∑

v∈Std(λ)

r(a; t, v)cλsv mod A�λ, (1.1)

(b) If λ ∈ Â and s, t ∈ Std(λ), then (cλst)
∗ ≡ (cλts) mod A�λ.

A is called a cellular algebra if it has a cell datum. The basis A is called a cellular basis of A.

If A is a cellular algebra over R, and R → S is a homomorphism of integral domains, then
the specialization AS = A⊗R S is a cellular algebra over S, with cellular basis

A
S = {cλst ⊗ 1S | λ ∈ Â, and s, t ∈ Std(λ)}.

In particular, AF is a cellular algebra. Since the map a 7→ a ⊗ 1F is injective, we regard A as
contained in AF and we identify a ∈ A with a⊗ 1F ∈ AF.

An order ideal Γ ⊂ Â is a subset with the property that if λ ∈ Γ and µ Q λ, then µ ∈ Γ. It

follows from the axioms of a cellular algebra that for any order ideal Γ in Â,

AΓ = Span
{
cλst

∣∣ λ ∈ Γ and s, t ∈ Std(λ)
}

is an involution–invariant two sided ideal of A. In particular A�λ, defined above, and

AQλ = Span
{
cµst

∣∣ µ Q λ and s, t ∈ Std(µ)
}

are involution–invariant two sided ideals.

Definition 1.2. Let A be a cellular algebra over R and λ ∈ Â. The cell module ∆(λ) is the
right A–module defined as follows. As an R–module, ∆(λ) is free with basis indexed by Std(λ),
say {cλt | t ∈ Std(λ)}. The right A–action is given by

cλt a =
∑

v∈Âλ

r(a; t, v)cλv ,

where the coefficients r(a; t, v) are those of Equation (1.1).
4



Thus, for any s ∈ Std(λ), a model for the cell module ∆(λ) is given by

Span{cλst +A�λ | t ∈ Std(λ)} ⊆ AQλ/A�λ.

When we need to emphasize the algebra or the ground ring, we may write ∆A(λ) or ∆R(λ).
Note that whenever R → S is a homomorphism of integral domains, ∆S(λ) = ∆(λ)⊗R S is the
cell module for AS corresponding to λ.

If A is an R–algebra with involution ∗, then ∗ induces functors M → M∗ interchanging left
and right A–modules, and taking A–A bimodules to A–A bimodules. We identify M∗∗ with
M via x∗∗ 7→ x and for modules AM and NA we have (M ⊗R N)∗ ∼= N∗ ⊗R M∗, as A–A
bimodules, with the isomorphism determined by (m ⊗ n)∗ 7→ n∗ ⊗m∗. For a right A–module
MA, using both of these isomorphisms, we identify (M∗ ⊗M)∗ with M∗ ⊗M∗∗ = M∗ ⊗M , via
(x∗ ⊗ y)∗ 7→ y∗ ⊗ x. Now we apply these observations with A a cellular algebra and ∆(λ) a cell
module. The assignment

αλ : cλst +A�λ 7→ (cλs )
∗ ⊗ (cλt )

determines an A–A bimodule isomorphism from AQλ/A�λ to (∆(λ))∗ ⊗R ∆(λ). Moreover, we
have ∗ ◦ αλ = αλ ◦ ∗, which reflects the cellular algebra axiom (cλst)

∗ ≡ cλts mod A�λ.
A certain bilinear form on the cell modules plays an essential role in the theory of cellular

algebras. Let A be a cellular algebra over R and let λ ∈ Â. The cell module ∆(λ) can be
regarded as an A/A�λ module. For x, y, z ∈ ∆(λ), it follows from the definition of the cell
module and the map αλ that xα−1

λ (y∗ ⊗ z) ∈ Rz. Define 〈x, y〉 by

xα−1
λ (y∗ ⊗ z) = 〈x, y〉z. (1.2)

Then 〈x, y〉 is R-linear in each variable and we have 〈xa, y〉 = 〈x, ya∗〉 for x, y ∈ ∆(λ) and
a ∈ A. Note that

cλstc
λ
uv = 〈cλt , c

λ
u〉c

λ
sv,

which is the customary definition of the bilinear form.

Definition 1.3 ([16]). A cellular algebra, A, is said to be cyclic cellular if every cell module is
cyclic as an A-module.

If A is cyclic cellular, λ ∈ Â, and δ(λ) is a generator of the cell module ∆(λ), let mλ be a lift
in AQλ of α−1

λ (δ(λ)∗ ⊗ δ(λ)), i.e. α−1
λ (δ(λ)∗ ⊗ δ(λ)) = mλ +A�λ.

Lemma 1.4. The element mλ has the following properties:

(1) mλ ≡ m∗
λ mod A�λ.

(2) AQλ = AmλA+A�λ.
(3) (mλA+A�λ)/A�λ ∼= ∆(λ), as right A–modules.

Proof. Lemma 2.5 in [16]. �

We will call the elements mλ cell generators; in examples of interest to us, they are given
explicitly and satisfy m∗

λ = mλ.
We will need the following elementary lemma regarding specializations of algebras.

Lemma 1.5. Let R be a commutative ring with identity, A an R–algebra, and M an A–module
Let τ : R → S be a unital ring homomorphism. Note that M ⊗R S is an A ⊗R S module.
Let ϕ : A → EndR(M) be the homomorphism corresponding to the A–module structure of M ,
and ϕS : A ⊗R S → EndS(M ⊗R S) the homomorphism corresponding to the A ⊗R S–module
structure of M ⊗R S. Then there exists an R–algebra homomorphism θ : ϕ(A) → ϕS(A⊗R S),
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making the following diagram commute:

A ϕ(A)
ϕ

⊗1S θ

ϕS
A⊗R S ϕS(A⊗R S)

. (1.3)

Proof. Note that ϕS is defined by ϕS(a ⊗ 1S)(m ⊗ 1S) = ϕ(a)(m) ⊗ 1S . Define θ(ϕ(a)) =
ϕS(a⊗ 1S). This is well defined because if a ∈ ker(ϕ), then a⊗ 1S ∈ kerϕS . �

Remark 1.6. In case R ⊂ S are fields, the map θ in (1.3) is injective, because θ(ϕ(a))(m⊗1S) =
ϕ(a)(m)⊗ 1S . If θ(ϕ(a)) = 0, then ϕ(a)(m) = 0 for all m ∈ M , so ϕ(a) = 0.

1.2. Sequences of diagram algebras. Here and in the remainder of the paper, we will con-
sider an increasing sequence (Ar)r>0 of cellular algebras over an integral domain R with field of
fractions F. We assume that all the inclusions Ar →֒ Ar+1 are unital and that the involutions
are consistent; that is the involution on Ar+1, restricted to Ar, agrees with the involution on
Ar. We will establish a list of assumptions (D1)–(D6). For convenience, we call an increasing
sequence of cellular algebras satisfying these assumptions a sequence of diagram algebras.

Let (Âr,Q) denote the partially ordered set in the cell datum for Ar. For λ ∈ Âr, let ∆r(λ)
denote the corresponding cell module. If S is an integral domain with a unital homomorphism
R → S, write AS

r = Ar ⊗R S and ∆S
r (λ) for ∆r(λ) ⊗R S. In particular, write AF

r = Ar ⊗R F

and ∆F
r (λ) for ∆r(λ)⊗R F.

Definition 1.7. Let A be a cellular algebra over R. If M is a right A–module, a cell-filtration
of M is a filtration by right A–modules

{0} = M0 ⊆ M1 ⊆ · · · ⊆ Mr = M,

such that Mi/Mi−1
∼= ∆(λ(i)) for some λ(i) ∈ Â. We say that the filtration is order preserving if

λ(i)
� λ(i+1) in Â for all i > 1.

Definition 1.8. Let A ⊆ B be a unital inclusion of cellular algebras over an integral domain
R (with consistent involutions).

(1) Say the inclusion is restriction–coherent if for every µ ∈ B̂, the restricted module ResBA(∆B(µ))
has an order preserving cell-filtration (as an A–module).

(2) Say the inclusion is induction–coherent if for every λ ∈ Â, the induced module IndBA(∆A(λ))
has an order preserving cell-filtration (as a B–module).

Definition 1.9 ([17, 18]). Let (Ar)r>0 be an increasing sequence of cellular algebras over an
integral domain R. We say the tower is restriction–coherent if each inclusion Ar ⊆ Ar+1 is
restriction coherent, and induction–coherent if each inclusion is induction coherent. We say the
tower is coherent if it is both restriction– and induction–coherent.

Remark 1.10. We have changed the terminology from [17, 18, 11], as the weaker notion of
coherence, in which the order preserving requirement is omitted, plays no role here.

We now list the first of our assumptions for a sequence of diagram algebras:

(D1) A0 = R.
(D2) The algebras Ar are cyclic cellular for all r > 0.

For all r and for all λ ∈ Âr, fix once and for all a bimodule isomorphism αλ : AQλ
r /A�λ

r →
(∆r(λ))

∗ ⊗R ∆r(λ), a generator δr(λ) of the cyclic Ar–module ∆r(λ), and a cell generator
mλ ∈ AQλ

r satisfying αλ(mλ+A�λ
r ) = (δr(λ))

∗⊗δr(λ), as in the discussion preceding Lemma 1.4.
We require the following mild assumption on the cell generators.
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(D3) The cell generators satisfy mλ = m∗
λ.

Our list of assumptions continues as follows:

(D4) AF
r is split semisimple for all r > 0.

(D5) The sequence of algebras (Ar)r>0 is restriction–coherent.

As discussed in [11, Section 3], under the assumptions (D1)–(D5) above, there exists a

well-defined multiplicity–free branching diagram Â associated with the sequence (Ar)r>0. The

branching diagram is an infinite, graded, directed graph with vertices Âr at level r and edges

determined as follows. If λ ∈ Âr−1 and µ ∈ Âr, there is an edge λ → µ in Â if and only if

∆r−1(λ) appears as a subquotient of an order preserving cell filtration of ResAr

Ar−1
(∆r(µ)). In

fact, λ → µ if and only if the simple AF
r−1–module ∆F

r−1(λ) is a direct summand of the restric-

tion of ∆F
r (µ) to AF

r−1. Note that Â0 is a singleton; we denote its unique element by ∅. We can
choose ∆0(∅) = R, δ0(∅) = 1, and m∅ = 1.

Definition 1.11. Given ν ∈ Âr, we define a standard tableau of shape ν to be a directed path

t on the branching diagram Â from ∅ ∈ Â0 to ν,

t = (∅ = t(0) → t(1) → t(2) → · · · → t(r − 1) → t(r) = ν). (1.4)

We let Stdr(ν) denote the set of all such paths and we set Stdr = ∪
ν∈Âr

Stdr(ν).

Given an algebra satisfying axioms (D1) to (D5) it is shown in [11, Section 3] that there

exist certain “down–branching factors” dλ→µ ∈ Ar, for λ ∈ Âr−1 and µ ∈ Âr with λ → µ in Â,

related to the cell filtration of ResAr

Ar−1
(∆r(µ)). Given a path t ∈ Stdr(ν) as in (1.4) define the

ordered product dt of branching factors by

dt = dt(r−1)→t(r)dt(r−2)→t(r−1) · · · dt(0)→t(1). (1.5)

We say two cellular bases of an algebra A with involution are equivalent if they determine the
same two sided ideals AQλ and isomorphic cell modules.

Theorem 1.12 ([11], Section 3). Let (Ar)r>0 be a sequence of algebras satisfying assumptions
(D1)–(D5).

(1) Let λ ∈ Âr. The set {mλdt +A�λ
r | t ∈ Stdr(λ)} is a basis of the cell module ∆r(λ).

(2) The set {d∗smλdt | λ ∈ Âr and s, t ∈ Stdr(λ)} is a cellular basis of Ar, equivalent to the
original cellular basis.

(3) For a fixed λ ∈ Âr, we let µ(1) � µ(2) � · · · � µ(s) be a listing of the µ ∈ Âr−1 such that
µ → λ. Let

Mj = SpanR

{
mλdt +A�λ

r

∣∣∣ t ∈ Stdr(λ), t(k − 1) Q µ(j)
}
.

Then
(0) ⊂ M1 ⊂ · · · ⊂ Ms = ∆r(λ)

is a filtration of ∆r(λ) by Ar−1-submodules, and Mj/Mj−1
∼= ∆r−1(µ(j)).

We will now continue with our list of assumed properties of the sequence of algebra (Ar)r>0

with one final key axiom.

(D6) There exist “up–branching factors” uλ→µ ∈ AR
r for λ ∈ Âr−1 and µ ∈ Âr satisfying the

compatibility relations
mµdλ→µ = (uλ→µ)

∗mλ. (1.6)

Example 1.13. It is shown in [11] that the Hecke algebras of type A, the symmetric group
algebras, the Brauer algebras, the Birman–Wenzl–Murakami algebras, the partition algebras,
and the Jones–Temperley–Lieb algebras all are examples of sequences of algebras satisfying
properties (D1)–(D6). In Appendix B in the arXiv version of this paper, we show that one can
extract single sequences from the double sequence of walled Brauer algebras, so that properties
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(D1)–(D6) are satisfied. In each case the ground ring R can be taken to be the generic ground
ring for the class of algebras. For example, for the Hecke algebras, this is Z[q, q−1], and for the
Brauer algebras it is Z[δ], where q and δ are indeterminants.

Remark 1.14. In all the examples listed above, the branching factors dλ→µ and uλ→µ and
the cell generators mλ are determined explicitly. For the symmetric group algebras and the
Hecke algebras of finite type A, the branching factors can be chosen so that the basis {d∗smλdt}
coincides with Murphy’s cellular basis or its dual version, see Section 4. In all of these examples,
u-branching factors are related to cell filtrations of induced cell modules; see [11] for details.
However, for the purposes of this paper it is enough to know that the u-branching coefficients
exist and are explicitly determined.

Definition 1.15. We write mλ
st = d∗smλdt. Also write mt = mλdt + A�λ

r ∈ ∆r(λ). We refer

to the cellular basis {mλ
st | λ ∈ Âr and s, t ∈ Stdr(λ)} as the Murphy cellular basis of Ar and

{mλ
t | t ∈ Stdr(λ)} as the Murphy basis of the cell module ∆r(λ).

Remark 1.16. (Remark on notation for branching factors) Let λ ∈ Âr−1 and µ ∈ Âr with

λ → µ ∈ Â. In situations where it seems helpful to emphasize the level on the branching

diagram, we will write, for example, d
(r)
λ→µ instead of dλ→µ. See for instance, Theorem 1.24.

Definition 1.17. Given 0 6 s 6 r and λ ∈ Âs, ν ∈ Âr, we define a skew standard tableau of

shape ν \ λ and degree r − s to be a directed path t on the branching diagram Â from λ to µ,

λ = t(s) → t(s+ 1) → t(s+ 2) → · · · → t(r − 1) → t(r) = ν. (1.7)

We let Stds,r(ν \ λ) denote the set of all such paths with given λ and ν. Given 0 6 s 6 r, we
set Stds,r = ∪

λ∈Âs,ν∈Âr
Stds,r(ν \ λ).

Given two paths s ∈ Stdq,s(µ \ λ) and t ∈ Stds,r(ν \ µ) such that the final point of s is the
initial point of t, define s ◦ t ∈ Stdq,r(ν \ λ) to be the obvious path obtained by concatenation.

Remark 1.18. Given a path t ∈ Stds,r(ν \ λ) as in (1.7) define

dt = dt(r−1)→t(r)dt(r−2)→t(r−1) · · · dt(s)→t(s+1),

and

ut = ut(s)→t(s+1) · · ·ut(r−2)→t(r−1)ut(r−1)→t(r).

Then it follows from the compatibility relation (1.6) and induction on r − s that

u∗tmλ = mνdt. (1.8)

Because m∅ can be chosen to be 1, this gives in particular for t ∈ Stdr(ν),

u∗t = mνdt. (1.9)

Therefore the cellular basis {mν
st} can also be written in the apparently asymmetric form

mν
st = d∗smνdt = d∗su

∗
t .

Using the symmetry of the cellular basis (mν
st)

∗ = mν
ts (which follows from the assumption

(D3)), we also get

mν
st = usdt.

Using (1.9), we have the following form for the basis {mλ
t | t ∈ Stdr(ν)} of the cell module

∆r(ν):

mλ
t = u∗t +A�ν

r . (1.10)

Now, for any 0 6 q 6 s 6 r, let t[q,s] denote the truncated path,

t(q) → t(q + 1) → t(q + 2) → · · · → t(s− 1) → t(s).
8



The representative u∗t of mt has the remarkable property that for any 0 6 s 6 r,

u∗t = u∗t[s,r]u
∗
t[0,s]

, (1.11)

and

u∗t[0,s] = mt(s)dt[0,s] ∈ mt(s)As ⊆ AQt(s)
s . (1.12)

Here, (1.11) follows directly from the definition of ut, while (1.12) comes from applying (1.9) to
u∗t[0,s] in place of u∗t . The compatibility relations (1.8) together with the factorizability (1.11) of

representatives u∗t of the Murphy basis play a crucial role in this paper. In our view, these are
the distinguishing properties of the Murphy bases of diagram algebras, and even in the original
context of the Hecke algebras [34] these properties provide new insight.

1.3. Seminormal bases, dominance triangularity, and restriction of cell modules. We
have explored certain consequences of our standing assumptions (D1)–(D6) in an companion
paper [4]. We recall some of the results of that paper that will be applied here.

One can define analogues of seminormal bases in the algebras and the cell modules defined
over the field of fractions F, as follows. Let zλr denote the minimal central idempotent in AF

r

corresponding to the minimal two sided ideal labeled by λ ∈ Âr. For r > s and for a path
t ∈ Stds,r(ν \ λ) as in (1.7), define

Ft =
∏

s6j6r

z
t(j)
j .

The factors are mutually commuting so the order of the factors does not have to be specified. In

particular the set of Ft for t ∈ Stdr(ν) and ν ∈ Âr, is a family of mutually orthogonal minimal

idempotents, with
∑

t∈Stdr(ν)
Ft = zνr . The collection of idempotents Ft (for r > 1, ν ∈ Âr,

and t ∈ Stdr(ν)) is called the family of Gelfand-Zeitlin idempotents for the tower (Ar)r>0. The
family is characterized in [18, Lemma 3.10].

Define ft = mtFt in ∆F
r (ν) and Fst = Fsm

λ
stFt, for ν ∈ Âr and s, t ∈ Stdr(ν). These are

analogues for diagram algebras of the seminormal bases of the Hecke algebras of the symmet-
ric groups. This construction, and its relation to other constructions of seminormal bases, is
discussed in detail in [4].

The following two partial orders on standard tableaux play an important role in the theory
of diagram algebras.

Definition 1.19 (Dominance order for paths). For s, t ∈ Stds,r, define s Q t if s(j) Q t(j) for
all s 6 j 6 r.

This is evidently a partial order, which we call the dominance order. In particular the

dominance order is defined on Stdr and on Stdr(ν) for ν ∈ Âr. The corresponding strict partial
order is denoted s� t if s 6= t and s Q t.

Definition 1.20 (Reverse lexicographic order for paths). For s, t ∈ Stds,r, define s < t if s = t
or if for the last index j such that s(j) 6= t(j), we have s(j)� t(j).

This is also a partial order on paths. The corresponding strict partial order is denoted s ≻ t
if s 6= t and s < t. Evidently s� t implies s ≻ t.

We now review several results from [4]. The most useful technical result is that the Murphy
bases and the seminormal bases of the cell modules are related by a dominance–unitriangular
transformation.

Theorem 1.21 ([4], Theorem 3.3). Fix λ ∈ Âr. For all t ∈ Stdr(λ), there exist coefficients
rs, r

′
s ∈ F such that

mλ
t = fλ

t +
∑

s∈Stdr(λ)
s�t

rsf
λ
s fλ

t = mλ
t +

∑

s∈Stdr(λ)
s�t

r′sm
λ
s .

9



Corollary 1.22 ([4], Corollary 3.4). For r > 0, we have that

(1) {fλ
t | t ∈ Stdr(λ)} is a basis of ∆F

r (λ) for all λ ∈ Âr.

(2) {F λ
st | λ ∈ Âr and s, t ∈ Âr} is a cellular basis of AF

r .

Proposition 1.23 ([4], Proposition 3.9). Let 1 6 s < r, ν ∈ Âr, λ ∈ Âs and t ∈ Stds,r(ν \ λ).
Let x ∈ mλAs and write

x =
∑

s∈Stds(λ)

αsu
∗
s + y,

with y ∈ A�λ
s . Then there exist coefficients rz ∈ R, such that

u∗tx ≡
∑

s∈Stds(λ)

αsu
∗
tu

∗
s +

∑

z

rzu
∗
z mod A�ν

r ,

where the sum is over z ∈ Stdr(ν) such that z[s,r] � t and z(s)� λ.

Finally we mention, without going into details, the relation of the assumptions (D1)–(D6)
to Jucys–Murphy elements. Assume that (AS

r )r>0 is a tower of algebras satisfying assumptions
(D1)–(D6) and assume in addition that the tower has Jucys–Murphy elements, in the sense
of [18]. This assumption holds for Hecke algebras of type A, the symmetric group algebras,
the Brauer algebras, the Birman–Wenzl–Murakami algebras, the partition algebras, and the
Jones–Temperley–Lieb algebras. We will see in Sections 7 and 8 that it also holds for the
Brauer centralizer algebras acting on symplectic and orthogonal tensor spaces. It is shown
in [4] that the Jucys–Murphy elements act diagonally on the seminormal bases and dominance
unitriangularly on the Murphy bases, generalizing a result of Murphy [33, Theorem 4.6] for the
Hecke algebras.

1.4. Cellularity and the Jones basic construction. In this section, we recall the framework
of [17, 18, 11]. This framework allows one to lift the cellular structure from a coherent sequence
(Hr)r>0 of cyclic cellular algebras to a second sequence (Ar)r>0, related to the first sequence by
“Jones basic constructions”. Most importantly, we will recall how the branching factors and cell
generators for the tower (Ar)r>0 can be explicitly constructed from those of the tower (Hr)r>0.

The list of assumptions regarding the two sequence of algebras, from [11, Section 5], is the
following: (Hr)r>0 and (Ar)r>0 are both sequences of algebras over an integral domain R with
field of fractions F. The inclusions are unital, and both sequences of algebras have consistent
algebra involutions ∗. Moreover:

(J1) A0 = H0 = R and A1 = H1 (as algebras with involution).
(J2) There is a δ ∈ S and for each r > 2, there is an element er−1 ∈ Ar satisfying e∗r−1 = er−1

and e2r−1 = δer−1. For r > 2, er−1erer−1 = er−1 and erer−1er = er.
(J3) For r > 2, Ar/(Arer−1Ar) ∼= Hr as algebras with involution.
(J4) For r > 1, er commutes with Ar−1 and erArer ⊆ Ar−1er.
(J5) For r > 1, Ar+1er = Arer, and the map x 7→ xer is injective from Ar to Arer.
(J6) For r > 2, er−1Arer−1Ar = er−1Ar.
(J7) For all r, AF

r := Ar ⊗R F is split semisimple.
(J8) (Hr)r>0 is a coherent tower of cyclic cellular algebras.

The conclusion ([11, Theorem 5.5]) is that (Ar)r>0 is a coherent tower of cyclic cellular
algebras over R (in particular the tower (Ar)r>0 satisfies conditions (D1), (D2), (D4), and (D5).

We let (Ĥr,D) denote the partially ordered set in the cell datum for Hr. Then the partially
ordered set in the cell datum for Ar is

Âr = {(λ, l) | 0 6 l 6 ⌊r/2⌋ and λ ∈ Ĥr−2l},

with partial order (λ, l) D (µ,m) if l > m or if l = m and λ D µ. The branching diagram for

the tower (Ar)r>0 is Â =
⊔

r>0 Âr with the branching rule (λ, l) → (µ,m) if l = m and λ → µ
10



in Ĥ or if m = l+1 and µ → λ in Ĥ. We call this the branching diagram obtained by reflections

from Ĥ.
We will now explain how the branching factors and cell generators for the tower (Ar)r>0 can

be explicitly constructed from those of the tower (Hr)r>0. For r > 2, let

e
(l)
r−1 =





1 if l = 0

er−2l+1er−2l+3 · · · er−1︸ ︷︷ ︸
l factors

if l = 1, . . . , ⌊r/2⌋, and

0 if l > ⌊r/2⌋.

(1.13)

Let dλ→µ and uλ→µ denote down– and up–branching factors, and let mλ denote cell generators
for (Hr)r>0. Let d̄λ→µ, ūλ→µ, and m̄λ denote liftings of these elements in the algebras Ar. Then
we have the following two results:

Theorem 1.24 ([11], Theorem 5.7). The branching factors for the tower (Ar)r>0 can be chosen
to satisfy:

(1) d
(r+1)
(λ,l)→(µ,l) = d̄

(r+1−2l)

λ→µ e
(l)
r−1.

(2) u
(r+1)
(λ,l)→(µ,l) = ū

(r+1−2l)

λ→µ e
(l)
r .

(3) d
(r+1)
(λ,l)→(µ,l+1) = ū

(r−2l)

µ→λ e
(l)
r−1.

(4) u
(r+1)
(λ,l)→(µ,l+1) = d̄

(r−2l)

µ→λ e
(l+1)
r .

Lemma 1.25 ([11], Section 5.5). For (λ, l) ∈ Âr, the cell generator m(λ,l) in A
Q(λ,l)
r can be

chosen as m(λ,l) = m̄λe
(l−1)
r−1 .

Remark 1.26. Although these results involve unspecified liftings of elements from Hr to Ar,
in the examples, the liftings are chosen explicitly. Moreover, the cell generators mλ in Hr

and m(λ,l) in Ar are chosen to be ∗–invariant, so that the tower (Ar) satisfies axiom (D3).
Furthermore, in the examples, the branching factors and cell generators in the algebras Hr

satisfy the compatibility relation (D6), and their liftings can be chosen to satisfy these relations
as well. It then follows from Theorem 1.24 and Lemma 1.25 that the branching factors and cell
generators in the algebras Ar also satisfy the compatibility relations (D6).

Now the tower (Ar)r>0 in particular satisfies the conditions (D1)–(D6) over R, so each Ar

has a Murphy type cellular basis obtained by the prescription of Theorem 1.12, using ordered

product of d–branching factors along paths on Â.

Remark 1.27. For the standard examples of diagram algebras, for example the Brauer algebras,
all this works not over the generic ground ring R = Z[δ], but only over R[δ−1]. However, the
branching factors and cell generators obtained from Theorem 1.24 and Lemma 1.25 do lie in the
algebras over the generic ground ring. Furthermore, one can check that the transition matrix
between the diagram basis of the algebras and the Murphy type cellular basis is invertible over
the generic ground ring; this step is case–by–case and somewhat ad hoc. It follows that the
tower of algebras (AR

r )r>0 over the generic ground ring satisfies all of the conditions (D1)–(D6).
This is explained in detail in [11, Sections 5 and 6].

2. A framework for cellularity of quotient algebras

As explained in the introduction, cellularity does not pass to quotients in general, but never-
theless we intend to show that cellularity does pass to the quotients of certain abstract diagram
or tangle algebras acting on tensor space. In this section, we will develop an axiomatic frame-
work for this phenomenon. In the remainder of the paper, this framework will be applied to
Brauer’s centralizer algebras acting on orthogonal or symplectic tensor space. In Appendix C
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in the arXiv version of this paper we show that the walled Brauer algebras acting on mixed
tensor space can be treated in an identical fashion.

2.1. A setting for quotient towers. We consider a tower of cellular algebras (Ar)r>0 over
an integral domain R satisfying the properties (D1)–(D6) of Section 1.2. In particular, for each
r, we have the cellular basis

{d∗smλdt | λ ∈ Âr and s, t ∈ Stdr(λ)}

of Ar from Theorem 1.12, and we write mλ
st = d∗smλdt.

Suppose that S is an integral domain with field of fractions K and that π : R → S is a
surjective ring homomorphism. We consider the specialization AS

r = Ar ⊗R S of the algebras
Ar. Let (Q

K
r )r>0 be a tower of unital algebras over K, with common identity, and with surjective

homomorphisms φr : A
K
r → QK

r . We denote φr(A
S
r ) ⊆ QK

r by QS
r .

We suppose that the homomorphisms are consistent with the inclusions of algebras, φr+1◦ι =
ι ◦ φr, where ι denotes both the inclusions ι : AK

r → AK
r+1 and ι : QK

r → QK
r+1. In particular,

this implies that ker(φr) ⊆ ker(φr+1). Because of this, we will usually just write φ instead of
writing φr.

Definition 2.1. We say that (QS
r )r>0 is a quotient tower of (AS

r )r>0 if the following axioms
hold.

(Q1) There is a distinguished subset Âr,perm of “permissible” points in Âr. The point ∅ ∈ Â0 is

permissible, and for each r and permissible µ in Âr, there exists at least one permissible

ν in Âr+1 with µ → ν in Â, and (for r > 1) at least one permissible λ in Âr−1 with λ → µ

in Â.

A path t ∈ Stdr(ν) will be called permissible if t(k) is permissible for all 0 6 k 6 r. Write
Stdr,perm(ν) for the set of permissible paths in Stdr(ν).

(Q2) If t ∈ Stdr(ν) is not permissible, let 1 6 k 6 r be the first index such that µ = t(k) is not
permissible. Then there exist elements bµ and b′µ in AS

k such that
(a) mµ = bµ − b′µ.
(b) bµ ∈ ker(φ).
(c) b′µ ∈ mµA

K
k ∩ (AS

k )
�µ.

(Q3) With K the algebraic closure of K, we have

dim
K
(QK

r ) =
∑

ν∈Âr,perm

(♯Stdr,perm(ν))
2.

Remark 2.2. (Some notation and terminology) Let p = ker(π), a prime ideal in R, and let
Rp ⊂ F be the localization of R at p. Thus Rp is a local ring with unique maximal ideal pRp

and residue field K, and π : R → S extends to a surjective ring homomorphism π : Rp → K.

We have surjective evaluation maps, also denoted π from A
Rp

s to AK
s given by π(

∑
αα
uvm

α
uv) =∑

π(αα
uv)m

α
uv. and from ∆

Rp

As
(λ) to ∆K

As
(λ) given by π(

∑
t αtm

λ
t ) =

∑
π(αt)m

λ
t . We often refer

to Rp, or A
Rp

s , or ∆
Rp

As
(λ) as the set of evaluable elements (in F, or AF

s , or ∆
F
As
, respectively).

2.2. Cellular bases of quotient towers. We are now going to show that under the as-
sumptions (Q1)–(Q3), the quotient algebras QS

r are cellular algebras with a cellular basis

{φ(d∗smλdt) | λ ∈ Âr,perm and s, t ∈ Stdr,perm(λ)}. Furthermore, we will produce a cellular

basis {m̃λ
st} of AS

r , equivalent to the cellular basis {mλ
st}, with the properties that m̃λ

st = mλ
st in

case both s and t are permissible, and m̃λ
st ∈ ker(φ) otherwise. In particular, the set of m̃λ

st such
that at least one of s and t is not permissible constitutes an S–basis of ker(φ).

Lemma 2.3. Assume as in the discussion above that S is an integral domain with field of

fractions K and that π : R → S is a surjective ring homomorphism. Let 0 6 s < r, µ ∈ Âs, and
12



x ∈ mµA
K
s ∩ (AS

s )
�µ. Let λ ∈ Âr and suppose t ∈ Stds,r(λ \ µ). Then there exist coefficients

αz ∈ S such that

u∗tx ≡
∑

z

αzmλdz mod ((AS
r )

�λ ∩mλA
S
r ),

where the sum is over z ∈ Stdr(λ) with z[s,r] � t and z(s)� µ.

Proof. We will apply Proposition 1.23, but we cannot do so directly. Recall the notation from
Remark 2.2. By hypothesis, x = mµβ, where β ∈ AK

s and x ∈ (AS
s )

�µ. Lift β to an element

β0 ∈ A
Rp

s and let x0 = mµβ0. Since x0 ∈ mµA
Rp

s , we can write

x0 ≡
∑

v∈Stds(µ)

rvmµdv mod (A
Rp

s )�µ.

Since π(x0) = x ∈ (AS
s )

�µ it follows that π(rv) = 0 for all v ∈ Stds(µ). Now we can apply
Proposition 1.23 to x0, with R replaced by Rp, which gives us

u∗tx0 ≡
∑

v∈Stds(µ)

rvmλdtdv +
∑

z∈Stdr(λ)
z[s,r]�t

z(s)�µ

r′zmλdz mod (A
Rp

r )�λ,

Applying the evaluation map π and recalling that π(rv) = 0 gives

u∗tx =
∑

z∈Stdr(λ)
z[s,r]�t

z(s)�µ

αzmλdz + z (2.1)

where αz ∈ K and z ∈ (AK
r )

�λ. But since u∗tx ∈ AS
r , we must have αz ∈ S and z ∈ (AS

r )
�λ.

Finally, since u∗tx ∈ mλA
S
r , it follows from (2.1) that z ∈ mλA

S
r . �

Lemma 2.4. Assume (Q1)–(Q3). Let λ ∈ Âr and let t ∈ Stdr(λ). If t is not permissible, then
there exist coefficients rv ∈ S such that

mλdt =
∑

v∈Stdr,perm(λ)
v≻t

rvmλdv + x1 + x2,

where x1 ∈ ker(φ), and x2 ∈ (AS
r )

�λ ∩mλA
S
r . Hence for all for all s ∈ Stdr(λ),

mλ
st ≡

∑

v∈Stdr,perm(ν)
v≻t

rvm
λ
sv mod ((AS

r )
�λ + ker(φ)).

Proof. Since t is not permissible, by assumption (Q2) there exists 0 6 k 6 r such that µ = t(k)
satisfies the following: there are elements bµ and b′µ in AS

k such that mµ = bµ−b′µ, bµ ∈ ker(φ),
and

b′µ ∈ mµA
K
k ∩ (AS

k )
�µ. (2.2)

Write t1 = t[0,k] and t2 = t[k,r] Using the branching compatibility relation (1.8),

mλdt = mλdt2dt1 = u∗t2mµdt1 = u∗t2bµdt1 − u∗t2b
′
µdt1 (2.3)

The first term u∗t2bµdt1 in (2.3) lies in ker(φ). Recall b′µdt1 ∈ mµA
K
k ∩ (AS

k )
�µ by (2.2), and so

we can apply Lemma 2.3 to conclude that the second term −u∗t2b
′
µdt1 in (2.3) satisfies

− u∗t2b
′
µdt1 ≡

∑

v∈Stdr(λ)
v[k,r]�t2

αvmλdv mod ((AS
r )

�λ ∩mλA
S
r ), (2.4)
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where αv ∈ S. Note that the condition v[k,r] � t2 implies that v ≻ t. This gives us

mλdt ≡
∑

v∈Stdr(λ)
v≻t

αvmλdv mod (ker(φ) + (AS
r )

�λ ∩mλA
S
r ).

By induction on the ordering, ≻, on Stdr(ν) we obtain

mλdt ≡
∑

v∈Stdr,perm(λ)
v≻t

rvmλdv mod (ker(φ) + (AS
r )

�λ ∩mλA
S
r ),

where now the sum is over permissible paths only. This gives the first assertion in the statement
of the lemma. Finally, multiplying on the left by d∗s yields the second statement. �

We are now going to produce the cellular basis {m̃λ
st} of Ar, equivalent to the original cellular

basis {mλ
st} with the properties that m̃λ

st = mλ
st in case both s and t are permissible, and

m̃λ
st ∈ ker(φ) otherwise.
Let t ∈ Stdr(λ) be a non–permissible path. Let 1 6 k 6 r be the first index such that

µ = t(k) is not permissible. It follows from (Q2) that the element bµ is in ker(φ) ∩mµA
K
k , so

there exists a βµ ∈ AK
k with bµ = mµβµ. Let t1 = t[0,k] and t2 = t[k,r]. Following the proof of

Lemma 2.4, and using in particular (2.3) and (2.4), we get

mλdt ≡ u∗t2bµdt1 +
∑

v∈Stdr(λ)
v≻t

αvmλdv mod (AS
r )

�λ, (2.5)

for αv ∈ S. Since bµ = mµβµ, we have u∗t2bµdt1 = mλdt2βµdt1 , using (1.8). Substitute this into
(2.5) and transpose to get

mλdt2βµdt1 ≡ mλdt −
∑

v∈Stdr(λ)
v≻t

αvmλdv mod (AS
r )

�λ. (2.6)

Note that the left hand expression is in ker(φ). For any non-permissible path t, we define
at = dt2βµdt1 to be the element which we arrived at in (2.6). Although at is a priori in AK

r ,
(2.6) shows that mλat ∈ mλA

S
r . Passing to the cell module ∆r(λ), we have

mλat + (AS
r )

�λ = mλ
t −

∑

v∈Stdr(λ)
v≻t

αvm
λ
v . (2.7)

For t ∈ Stdr(λ) permissible, define at = dt. For any u, v ∈ Stdr(λ), permissible or not, define
m̃λ

v = mλav+(AS
r )

�λ, and m̃λ
uv = a∗umλav. We remark that in all examples, the elements bµ, b

′
µ,

and βµ will be explicitly described as elementary sums of Brauer-type diagrams.

Theorem 2.5. Assume (Q1)–(Q3). The set

Br =
{
m̃λ

st

∣∣∣ m̃λ
st := a∗smλat, λ ∈ Âr and s, t ∈ Stdr(λ)

}

is a cellular basis of AS
r equivalent to the original cellular basis. It has the property that m̃λ

st =
mλ

st if both s and t are permissible and m̃λ
st ∈ ker(φ) otherwise.

Proof. Equation (2.7) shows that {m̃λ
v | v ∈ Stdr(λ)} is related to the S–basis {mλ

v | v ∈ Stdr(λ)}
of the cell module ∆S

r (λ) by a unitriangular transformation with coefficients in S, and therefore
{m̃λ

v | v ∈ Stdr(λ)} is also an S–basis of the cell module.
For u and v arbitrary elements of Stdr(λ) we have αλ(m̃

λ
uv+(AS

r )
�λ) = (m̃λ

u)
∗⊗m̃λ

v . It follows

from [16, Lemma 2.3] that {m̃λ
uv | λ ∈ Âr, u, v ∈ Stdr(λ)} is a cellular basis of AS

r equivalent to
the original cellular basis {mλ

uv}.
It is evident from the construction that m̃λ

st = mλ
st if both s and t are permissible and

m̃λ
st ∈ ker(φ) otherwise. �
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Definition 2.6. Call µ ∈ Âs a marginal point if µ is not permissible and there exists a path
t ∈ Stds(µ) such that t(k) is permissible for all k < s.

Theorem 2.7. Assume (Q1)–(Q3). Then

(1) ker(φr) is globally invariant under the involution ∗. Hence one can define an algebra invo-
lution on QS

r = φ(AS
r ) by (φ(a))∗ = φ(a∗).

(2) The algebra QS
r = φ(AS

r ) is a cellular algebra over S with cellular basis

Ar =
{
φ(mλ

st)
∣∣∣ λ ∈ Âr,perm and s, t ∈ Stdr,perm(λ)

}
.

More precisely, the cell datum is the following: the involution * on QS
r defined in part (1);

the partially ordered set (Âr,perm,Q) of permissible points in Âr; for each λ ∈ Âr,perm, the
index set Stdr,perm(λ) of permissible paths of shape λ; and finally the basis Ar.

(3) The set

κr = {m̃λ
st | λ ∈ Âr and s or t is not permissible}

is an S–basis of ker(φr).

(4) ker(φr) is the ideal Ir in AS
r generated by the set of bµ, where µ is a marginal point of Âs

for some 0 < s 6 r.

Proof. Since Br is a basis of AS
r , by Theorem 2.5, it follows that φ(Br) spans Q

S
r = φ(AS

r ) over S.
But φ(m̃λ

st) = φ(mλ
st) if both s and t are permissible, and φ(m̃λ

st) = 0 otherwise. It follows that

Ar spans QS
r over S, hence spans QK

r over K. Since by assumption (Q3), dim
K
(QK

r ) = ♯(Ar), it

follows that Ar is linearly independent over K. Thus Ar is an S–basis of QS
r .

The S–span of κr is contained in ker(φr) by Theorem 2.5. On the other hand, it follows
from the linear independence of Ar that ker(φr) has trivial intersection with the S–span of

{m̃λ
st | λ ∈ Âr and s, t ∈ Stdr,perm(λ)}. It follows from this that κr spans, and hence is a basis

of, ker(φr).
The cellular basis Br of AS

r satisfies (m̃λ
st)

∗ = m̃λ
ts, and it follows that ker(φr), namely the

S-span of κr, is globally invariant under ∗. Hence one can define an algebra involution on
QS

r = φ(AS
r ) by (φ(a))∗ = φ(a∗).

So far, we have proved points (1) and (3), and shown that Ar is an S–basis of QS
r . Next

we check that Ar is a cellular basis of QS
r , by appealing to Theorem 2.5. For λ ∈ Âr,perm and

s, t ∈ Stdr,perm(λ), and for a ∈ AS
r , we have by cellularity of AS

r with respect to the basis Br,

m̃λ
sta ≡

∑

v∈Stdr(λ)

rvm̃
λ
sv mod (AS

r )
�λ,

where the coefficients are in S and independent of s, and the sum goes over all v ∈ Stdr(λ).
When we apply φ, only those terms with permissible v survive:

φ(mλ
st)φ(a) ≡

∑

v∈Stdr,perm(λ)

rvφ(m
λ
sv) mod φ((AS

r )
�λ).

Again by Theorem 2.5, we have φ((AS
r )

�λ) = (QS
r )

�λ. This verifies the multiplication axiom
for a cellular basis. The involution axiom is easily verified using part (1), namely φ(mλ

st)
∗ =

φ((mλ
st)

∗
) = φ(mλ

ts). This completes the proof of part (2).
It remains to check part (4). By construction of the basis Br, we have that

κr ⊆ Ir ⊆ ker(φr).

Therefore it follows from part (3) that ker(φr) = Ir. �

Since QS
r is a quotient of AS

r , in particular its cell modules are AS
r –modules. We observe that

the cell modules of QS
r are quotients of cell modules of AS

r , when regarded as AS
r –modules.

Corollary 2.8. Assume (Q1)–(Q3). Then
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(1) For λ a permissible point in Âr, κ(λ) = SpanS{m̃
λ
t | t is not permissible} is an AS

r –
submodule of the cell module ∆S

Ar
(λ), and ∆S

Qr
(λ) ∼= ∆S

Ar
(λ)/κ(λ) as Ar–modules.

(2) Assume QK
r is split semisimple and λ is a permissible point in Âr. Then κ(λ) ⊗S K =

SpanK{m̃
λ
t | t is not permissible} is the radical of ∆K

Ar
(λ).

Proof. By Theorem 2.5, we have φ((AS
r )

Qλ) = (QS
r )

Qλ and φ((AS
r )

�λ) = (QS
r )

�λ, so φ induces an
AS

r –A
S
r bimodule homomorphism (AS

r )
Qλ/(AS

r )
�λ → (QS

r )
Qλ/(QS

r )
�λ. For a fixed permissible

s ∈ Stdr,perm(λ),

m̃λ
st + (AS

r )
�λ 7→ φ(m̃λ

st) + (QS
r )

�λ

defines a right Ar–module homomorphism from ∆S
Ar

(λ) to ∆S
Qr

(λ), with kernel κ(λ). It follows

that ∆K
Qr

(λ) ∼= ∆K
Ar

(λ)/(κ(λ)⊗S K). If QK
r is split semisimple, then its cell modules are simple,

so ∆K
Qr

(λ) is the simple head of ∆K
Ar

(λ) and κ(λ)⊗S K is the radical. �

Let us review what we have accomplished here, with a view towards our applications in
Sections 7 and 8. Suppose we have a tower (AR

r )r>0 of diagram algebras, satisfying axioms (D1)
to (D6) of Section 1.2. and specializations AS

r together with maps φr : A
S
r → QS

r which satisfy
the conditions of Definition 2.1. Then we can produce all of the following:

(1) A modified Murphy basis {m̃λ
st} of each of the algebras AS

r which is equivalent to the
basis {mλ

st} of Theorem 1.12. If s and t are both permissible, then m̃λ
st = mλ

st. However,
if either s or t is impermissible, then m̃λ

st belongs to the kernel of φr.
(2) An S-linear basis of ker(φr) consisting of those m̃λ

st with at least one of s or t not
permissible.

(3) A (small) generating set for ker(φr) as an ideal in AS
r .

(4) A cellular basis of QS
r consisting of the image under φr of Murphy basis elements mλ

st

such that both s and t are permissible.

In the applications, points (2) and (3) of this list are two different versions of a second
fundamental theorem of invariant theory, while point (4) shows that the classical centralizer
algebras – Brauer’s centralizer algebras on orthogonal or symplectic tensor space, or the image
of the walled Brauer algebras on mixed tensor space – are cellular algebras over the integers.

3. Supplements on quotient towers

In this section, we provide some supplementary material on quotient towers. This material
is not strictly needed to appreciate the applications in the subsequent sections, so it could be
safely skipped on the first reading.

3.1. Quotient towers are themselves towers of diagram algebras. In this section, we
show that the tower (QS

r )r>0 is restriction coherent, and that the d–branching factors associated
to restrictions of cell modules in this tower are just those obtained by applying φ to the d–
branching factors of the tower (AS

r )r>0. It follows that the tower (QS
r )r>0 satisfies all of the

axioms (D1) to (D6) of Section 1.2, with the possible exception of axiom (D4). If we assume
that the quotient algebras QK

r are split semisimple – and this will be valid in our applications
– then all the consequences of (D1) to (D6) are available to us; see Section 1.3 and [4].

First we demonstrate that the tower of cellular algebras (QS
r )r>0 is restriction coherent. We

write Qk for QS
k . Write Q̂r for Âr,perm. We have the branching diagram Q̂ =

⊔
r Q̂r, with the

branching rule λ → µ for λ ∈ Q̂r−1 and µ ∈ Q̂r if and only if λ → µ in Â. For ν ∈ Q̂r, the set

of µ ∈ Q̂r−1 such that µ → ν is totally ordered, because it is a subset of the set of µ ∈ Âr−1

such that µ → ν. For ν ∈ Q̂r let ∆Qr(ν) denote the corresponding cell module of Qr,

∆Qr(ν) = SpanR
{
φ(mνdt) +Q�ν

r

∣∣ t ∈ Stdr,perm(ν)
}
.
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Lemma 3.1. Let r > 1, let ν ∈ Q̂r and µ ∈ Q̂r−1 with µ → ν. Let u = uµ→ν . Let x ∈

φ(mµ)Qr−1 ∩Q�µ
r−1. Then

φ(u∗)x ≡
∑

z

rzφ(mνdz) mod Q�ν
r ,

where the sum is over z ∈ Stdr,perm(ν) such that z(r − 1)� µ.

Proof. Since x ∈ φ(mµ)Qr−1, there exists b ∈ AS
r−1 such that x = φ(mµb). Using Lemma 2.4,

we can write

mµb =
∑

s∈Stdr−1,perm(µ)

rsmµds + y1 + y2,

where y1 ∈ ker(φ) and y2 ∈ (AS
r−1)

�µ ∩ mµA
S
r−1. But since x = φ(mµb) ∈ Q�µ

r−1, all the
coefficients rs are zero and

mµb = y1 + y2

Now apply Lemma 2.3 to y2,

u∗mµb = u∗y1 +
∑

v

αvmνdv + y3,

where the sum is over v ∈ Stdr(ν) such that v(r − 1) � µ, and y3 ∈ (AS
r )

�ν . The v appearing
in the sum may not be permissible, but we can apply Lemma 2.4 to any term mνdv with v not
permissible, to replace it with a linear combination of terms mνdz, modulo (ker(φ) + (AS

r )
�ν),

where z ∈ Stdr(ν) is permissible and satisfies z ≻ v. But if z ≻ v, then z(r−1) Q v(r−1)�µ. �

Corollary 3.2. Let r > 1, ν ∈ Q̂r, t ∈ Stdr,perm(ν), and a ∈ Qr−1. Write µ = t(r − 1) and
t′ = t[0,r−1]. Suppose

φ(mµdt′)a ≡
∑

s∈Stdr−1,perm(µ)

rsφ(mµds) mod Q�µ
r−1.

Then

φ(mνdt)a ≡
∑

s∈Stdr−1,perm(µ)

rsφ(mνdµ→νds) +
∑

z

rzφ(mνdz) mod Q�ν
r ,

where the sum is over z ∈ Stdr,perm(ν) such that z(r − 1)� µ.

Proof. Write

φ(mµdt′)a ≡
∑

s∈Stdr−1,perm(µ)

rsφ(mµds) + y,

where y ∈ Q�µ
r−1 ∩ φ(mµ)Qr−1. Multiply both sides on the left by φ(u∗), where u = uµ→ν , and

apply Lemma 3.1 to φ(u∗)y. �

Proposition 3.3. Let r > 1, let ν ∈ Q̂r, and let µ(1)�µ(2)� · · ·�µ(s) be the list of µ ∈ Q̂r−1

such that µ → ν. Define

Mj = SpanR
{
φ(mνdt) +Q�ν

r

∣∣ t ∈ Stdr,perm(ν), t(r − 1) Q µ(j)
}
.

and M0 = (0). Then

M0 ⊆ M1 ⊆ · · · ⊆ Ms = ∆Qr(ν)

is a filtration of ∆Qr(ν) by Qr−1 submodules, and Mj/Mj−1
∼= ∆Qr−1(µ(j)).

Proof. Immediate from Corollary 3.2. �

Corollary 3.4. The branching factors associated to the filtrations in Proposition 3.3 are φ(dµ→ν)

for µ ∈ Q̂r−1 and ν ∈ Q̂r with µ → ν.
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Proof. The isomorphism Mj/Mj−1 → ∆Qr−1
(µ(j)) is

φ(mνdµ(j)→νds) +Mj−1 +Q�ν
r 7→ φ(mµ(j)ds) +Q

�µ(j)
r−1 .

�

Proposition 3.5. Assume (Q1)–(Q3), and that QK
r is split semisimple for all r. It follows that

the tower (QS
r )r>0 satisfy axioms (D1)–(D6) of Section 1.2.

Proof. One only has to observe that the branching coefficients satisfy

φ(mν)φ(dµ→ν) = φ(uµ→ν)
∗φ(mµ).

�

Remark 3.6. The assumption that QK
r is split semisimple for all r implies that ∆S

Qr−1
(µ) appears

as a subquotient in a cell filtration of Res(∆S
Qr

(ν)) if and only if the simple QK
r−1–module

∆K
Qr−1

(µ) is a direct summand of Res(∆K
Qr

(ν)), if and only if µ → ν in Q̂. See [17, Lemma 2.2].

3.2. Jucys–Murphy elements in quotient towers. Consider a sequence of cellular algebras
(Ar)r>0 over an integral domain R with field of fractions F, satisfying the properties (D1)–(D6)
of Section 1.2. In [4, Definition 4.1], following [18], one defines a sequence {Li}i>1 of additive
Jucys–Murphy elements by the two conditions:

(JM1) For r > 1, Lr ∈ AR
r , Lr = L∗

r , and Lr commutes pointwise with AR
r−1.

(JM2) For all r > 1 and λ ∈ Âr, there exists d(λ) ∈ R such that L1+ · · ·+Lr acts as the scalar
d(λ) on the cell module ∆R

r (λ).

Using that AF
r is split semisimple for all r, condition (JM2) is equivalent to

(JM3) For all r > 1, L1 + · · ·+ Lr is in the center of AR
r .

For each edge λ → µ in the branching diagram Â for (AF
r )r>0, write κ(λ → µ) = d(µ)−d(λ) ∈ R,

where by convention d(∅) = 0. For a path t ∈ Stdr and i 6 r, write κt(i) for κ(t(i− 1) → t(i)).
The elements κ(λ → µ) or κt(i) are called contents since they generalize the contents of standard
tableaux in the theory of the symmetric group. It is shown in [4, Section 4], strengthening results
of [18], that

(JM4) fλ
t Li = κt(i)ft for all paths t ∈ Stdr(λ) and for i 6 r, and

(JM5) mλ
t Li = κt(i)m

λ
t +

∑
s�t rsm

λ
s , for some coefficients rs ∈ R.

Condition (JM5) is an instance of Mathas’s abstraction of Jucys–Murphy elements from [31].
We note that conditions (JM4) and (JM5) do not depend on Mathas’s separation condition
being satisfied, as in [31, Section 3].

Suppose we are given an additive sequence of JM elements. Then conditions (JM1), (JM2),
(JM3), and (JM5) remain valid in any specialization AS

r = AR
r ⊗R S, where Li is replaced by

Li ⊗ 1S and d(λ) and κ(λ → µ) by their images in S, so in particular every specialization has
JM elements in the sense of Mathas.

Now, finally, suppose the hypotheses (Q1)–(Q3) are satisfied and that the quotient algebras
QK

r are split semisimple, so that the quotient tower (QS
r )r>0 is a sequence of diagram algebras

satisfying the properties (D1)–(D6). Clearly, the defining conditions (JM1) and (JM2) for JM
elements are satisfied, with Li replaced by φ(Li ⊗ 1S), and (JM3) follows. (Of course, versions
of (JM4) and (JM5) must hold as well, but this is not very useful in this generality as we cannot
relate the seminormal bases of the quotient tower with that of the original tower. This defect
is removed in Section 3.3.)

This discussion holds just as well for multiplicative Jucys–Murphy elements, see [4, Definition
4.3] and [18].
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3.3. Seminormal bases of quotient towers. In this section we examine seminormal bases
and seminormal representations in quotient towers. We work in the following setting: we
assume the setting of Section 2.1, in particular that (Q1)–(Q3) are satisfied; in particular,
recall the notation and terminology from Remark 2.2. We assume this existence of additive or
multiplicative JM elements for the tower (AR

r )r>0, as in Section 3.2; in particular, conditions
(JM4) and (JM5) of Section 3.2 hold. We assume, moreover, that the separation condition
of Mathas holds; that is if s and t are distinct paths in Stdr, then there exists i 6 r such
that κt(i) 6= κs(i). We assume that the quotient algebras QK

r are split semisimple, so that
the quotient tower (QS

r )r>0 is a tower of diagram algebras satisfying (D1)–(D6). As a tower
of diagram algebras, (QS

r )r>0 has its own seminormal bases. Finally, we assume the following
condition, which will allow us to connect these seminormal bases to those of the original tower:

(SN) Whenever t ∈ Stdr,perm, it follows that Ft is evaluable.

It follows from (SN) that if s, t ∈ Stdr(λ) are permissible, then fλ
t and F λ

st are evaluable, and
also that 〈fλ

s , f
λ
t 〉 ∈ Rp.

We are interested in verifying these assumptions, and in particular condition (SN), for quo-
tients of diagram algebras acting on tensor spaces. The following lemma provides a sufficient
condition for (SN) to hold. Associate to each path t ∈ Stdr its content sequence κt(i) for
1 6 i 6 r and its residue sequence rt(i) = π(κt(i)). Say two paths s, t are residue equivalent,
and write t ≈ s, if they have the same residue sequences.

Lemma 3.7. Suppose that each permissible path in Stdr is residue equivalent only to itself.
Then (SN) holds.

Proof. This follows from [31, Lemma 4.2]. It is also easy to prove directly using the following
recursive formula for the idempotents Ft. For t ∈ Stdk+1, let t

′ denote the truncation t′ = t[0,k].
Then

Ft = Ft′

∏

s 6=t
s′=t′

Lr − κs(r)

κt(r)− κs(r)
.

�

Remark 3.8. We will use the hypothesis of Lemma 3.7 in the following equivalent form: For all
r > 1 and for all t, s ∈ Stdr with s′ = t′, if at least one of s, t is permissible, then π(κt(r)) 6=
π(κs(r)).

Example 3.9. In the case of the symmetric group algebras acting on ordinary or mixed tensor
space, no specialization of the ground ring is involved, so condition (SN) is vacuous. The
sufficient condition of Lemma 3.7 is verified for the Brauer algebras acting on symplectic tensor
space in Section 7.3, and for the walled Brauer algebras in Appendix C.4 in the arXiv version of
this paper. It is verified for the partition algebras, with an appropriate permissibility condition,
in [3, Section 6]. For the Brauer algebra acting on orthogonal tensor space, the sufficient
condition of Lemma 3.7 holds for odd integers values, but fails for even integer values; in the
latter case a more subtle argument is needed in order to verify (SN); for this, see [10].

Lemma 3.10. Let a ∈ AR
r and let a(s, t) denote the matrix coefficients of a with respect to the

seminormal basis {fλ
t } of ∆F

Ar
(λ),

fλ
t a =

∑
a(s, t)fλ

s .

If s, t are permissible paths in Stdr(λ), then a(s, t) ∈ Rp.

Proof. We have fλ
t aFs = a(s, t)fλ

s = a(s, t)mλ
s +

∑
v�s γvm

λ
v , using Theorem 1.21. By assumption

(SN), the element on the left side of the equation is evaluable, and hence the coefficients on the
right side lie in Rp. �
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We will now construct a cellular basis {hλst | λ ∈ Âr and s, t ∈ Stdr(λ)} with the properties
that

(1) If both s, t are permissible paths, then hλst = π(F λ
st).

(2) If at least one of s, t is not permissible, then hλst ∈ ker(φ).

If t ∈ Stdr is permissible, define [t] = {t}. If t is not permissible, then let [t] denote the set of
paths s ∈ Stdr such that s ≈ t. By assumption (SN) and [31, Lemma 4.2], F[t] :=

∑
s∈[t] Fs is

an evaluable idempotent. For any s, t ∈ Stdr(λ), permissible or not, define hλt = m̃λ
t π(F[t]), and

hλst = π(F[s])m̃
λ
stπ(F[t]).

Lemma 3.11. For λ ∈ Âr and t ∈ Stdr(λ) there exist coefficients βs ∈ K such that

hλt = mλ
t +

∑

s≻t

βsm
λ
s . (3.1)

Proof. We know from Equation (2.7) that the basis elements m̃λ
t of ∆S

Ar
(λ) are related to the

basis elements mλ
t by a unitriangular transformation with coefficients in S,

m̃λ
t = mλ

t +
∑

s≻t

αsm
λ
s .

Lift this relation to ∆R
Ar

(λ), defining m̃λ
t by m̃λ

t = mλ
t +

∑
s≻t α

′
sm

λ
s , where α′

s ∈ R and π(α′
s) =

αs. Apply Theorem 1.21 to get m̃λ
t = fλ

t +
∑

s≻t γsf
λ
s , where the coefficients are now in F.

Applying F[t] yields m̃
λ
t F[t] = fλ

t +
∑

s≻t,s∈[t] γsf
λ
s , and using Theorem 1.21 again produces

m̃λ
t F[t] = mλ

t +
∑

s≻t

β′
sm

λ
s .

The coefficients are a priori in F, but since m̃λ
t F[t] is evaluable, the coefficients are evaluable.

Finally applying π yields (3.1), with βs = π(β′
s). �

Corollary 3.12.

(1) For λ ∈ Âr, {hλt | t ∈ Stdr(λ)} is a basis of the cell module ∆K
Ar

(λ) and {hλst | λ ∈

Âr and s, t ∈ Stdr(λ)} is a cellular basis of AK
r equivalent to the Murphy basis.

(2) If both s, t are permissible paths, then hλst = π(F λ
st). If at least one of s, t is not permissible,

then hλst ∈ ker(φ).

Proof. The first assertion follows from Lemma 3.11 by familiar argument, compare Theorem 2.5.
The second assertion is evident from the construction and properties of {m̃λ

st}. �

When s, t ∈ Stdr(λ) are permissible, define F̄ λ
st = φ ◦ π(F λ

st) = φ(hλst) and F̄t = φ ◦ π(Ft).

Corollary 3.13.

(1) The set {F̄ λ
st | λ is permissible and s, t ∈ Stdr,perm(λ)} is a basis of QK

r .

(2) The set {hλst | λ ∈ Âr and s or t is not permissible} is a K–basis of ker(φr).

Proof. Adapt the proof of Theorem 2.7 parts (2) and (3). �

In Corollary 2.8, for λ ∈ Âr permissible, we identified ∆K
Qr

(λ) with the simple head of

∆K
Ar

(λ), and we showed that the radical of ∆K
Ar

(λ) is κK(λ) := SpanK{m̃
λ
t | t is not permissible}.

Overloading notation, let us write φ for the quotient map φ : ∆K
Ar

(λ) → ∆K
Ar

(λ)/κK(λ).

For t ∈ Stdr(λ) permissible, write f̄λ
t = φ(hλt ) = φ(m̃λ

t π(Ft)).

Corollary 3.14.

(1) For λ ∈ Âr permissible, {f̄λ
t | t is permissible} is a basis of ∆K

Qr
(λ).

(2) The set {hλt | t is not permissible} is a basis of rad(∆K
Ar

(λ)).
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Proof. Write ∆ for ∆K
Ar

(λ). For t not permissible, we have hλt = m̃λ
t π(F[t]) ∈ rad(∆) because

m̃λ
t ∈ rad(∆) by Corollary 2.8, and rad(∆) is a submodule. The two conclusions follow by a

dimension argument as in the proof of Theorem 2.7 parts (2) and (3). �

The following result says that the seminormal representations of the quotient algebras QK
r

are obtained as truncations of the seminormal representations of the diagram algebras AF
r . The

application of this result to the Brauer algebras and their quotients acting on orthogonal or
symplectic tensor space recovers a well-known phenomenon, which is implicit in [35, 28, 36],
and explicit in [6, Theorem 5.4.3]. See also [10].

Theorem 3.15.

(1) The family of idempotents F̄t = φ ◦ π(Ft), where r > 1 and t ∈ Stdr is permissible, is the
family of Gelfand-Zeitlin idempotents for the tower QK

r .

In the following statements, let λ and µ be permissible points in Âr for some r, and let s, t ∈
Stdr,perm(λ), and u, v ∈ Stdr,perm(µ).

(2) f̄λ
t F̄

µ
uv = δλ,µδt,uπ(〈f

λ
t , f

λ
t 〉)f̄

λ
v , and F̄ λ

stF̄
µ
uv = δλ,µδt,uπ(〈f

λ
t , f

λ
t 〉)F̄

λ
sv.

(3) π(〈fλ
t , f

λ
s 〉) 6= 0 if and only if t = s.

(4) π(〈fλ
t , f

λ
t 〉)

−1F̄ λ
tt = F̄t

(5) The set of elements Ēλ
st = π(〈fλ

s , f
λ
s 〉)

−1F̄ λ
st for λ ∈ Âr and s, t ∈ Stdr,perm(λ) is a complete

family of matrix units with Ēλ
stĒ

µ
uv = δλ,µδt,uĒ

λ
sv, and Ēλ

ss = F̄s.

(6) Suppose that a ∈ AR
r has matrix coefficients a(s, t) with respect to the seminormal basis

{fλ
t } of ∆F

Ar
(λ),

fλ
t a =

∑

s∈Stdr(λ)

a(s, t)fλ
s .

Then for t ∈ Stdr(λ) permissible, we have

f̄λ
t φ ◦ π(a) =

∑

s∈Stdr,perm(λ)

π(a(s, t))f̄λ
s . (3.2)

Proof. We remark that if t is permissible, then statement (2) follows from the definitions and
the corresponding properties of the elements fλ

t in ∆F
Ar

(λ) and Fµ
uv in AF

r , see [4, Lemma 3.8].
(This follows because [t] = {t} by definition, when t is permissible.) We already know from [4,
Lemma 3.8] that 〈fλ

t , f
λ
s 〉 = 0 if s 6= t and also that for all t, F λ

tt = 〈fλ
t , f

λ
t 〉Ft. It follows that

F̄ λ
tt = π(〈fλ

t , f
λ
t 〉)F̄t. If for some t, π(〈fλ

t , f
λ
t 〉) = 0, then F̄ λ

tt = 0, contradicting Corollary 3.13.
This proves points (3) and (4) and point (5) also follows from the previous statements.

For t ∈ Stdr,perm(λ) and v ∈ Stdr,perm(µ), we have f̄µ
v F̄t = δλ,µδv,tf̄

µ
v , and it follows that∑

t∈Stdr,perm(λ) F̄t is the minimal central idempotent in QK
r corresponding to the simple module

∆K
Qr

(λ). Let s 6 r, s ∈ Stds,perm, t ∈ Stdr,perm. We have FsFt = δs,t[0,s]Ft, in AF
r from the

definition of the Gelfand-Zeitlin idempotents. But then the corresponding property F̄sF̄t =
δs,t[0,s]F̄t holds in QK

r . By [18, Lemma 3.10], these properties characterize the family of Gelfand-

Zeitlin idempotents, so point (1) holds.
For point (6), suppose that a ∈ AR

r and that a has matrix coefficients a(s, t) with respect
to the seminormal basis {fλ

t } of ∆F
Ar

(λ). Then when t and s are both permissible elements of

Stdr(λ), we have mλ
t FtaFs = a(s, t)mλ

s Fs. As this equality involves evaluable elements, we can
apply φ ◦ π to get f̄λ

t φ ◦ π(a)F̄s = π(a(s, t))f̄λ
s . Now sum over s and use that

∑
s∈Stdr,perm(λ) F̄s

acts as the identity on the cell module ∆K
Qr

(λ). This yields (3.2). �

4. The Murphy and dual Murphy bases of the symmetric groups

A partition λ of r, denoted λ ⊢ r, is defined to be a weakly decreasing sequence λ =
(λ1, λ2, . . . , λℓ) of non-negative integers such that the sum |λ| = λ1 + λ2 + · · · + λℓ equals
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r. Let Ŝr denote the set of all partitions of r. With a partition, λ, is associated its Young
diagram, which is the set of nodes

[λ] =
{
(i, j) ∈ Z2

>0 | j 6 λi

}
.

We identify partitions with their Young diagrams. There is a unique partition of size zero,
which we denote ∅. We let λ′ denote the conjugate partition obtained by flipping the Young

diagram [λ] through the diagonal. Let λ, µ ∈ Ŝr, we say that λ dominates µ and write λ Q µ
if, for all 1 6 k 6 r, we have

k∑

i=1

λi >

k∑

i=1

µi.

Define column dominance order, denoted by Qcol, by λ Qcol µ if and only if λ′ Q µ′. It is known
that column dominance order is actually the opposite order to dominance order.

Young’s graph or lattice, Ŝ, is the branching diagram with vertices Ŝr on level r and a directed
edge λ → µ if µ is obtained from λ by adding one box. We define a standard tableau of shape

λ to be a directed path on Ŝ from ∅ to λ. (Such paths are easily identified with the usual
picture of standard tableaux as fillings of the Young diagram of λ with the numbers 1 through
r, so that the entries are increasing in rows and columns.) For λ ⊢ r, denote the set of standard
tableaux of shape λ by Stdr(λ). If s ∈ Stdr(λ) is the path

∅ = s(0) → s(1) → s(2) → · · · → s(r) = λ,

then the conjugate standard tableaux s′ ∈ Stdr(λ
′) is the path

∅ = s(0) → s(1)′ → s(2)′ → · · · → s(r)′ = λ′.

For any ring R, and for all r > 0, the group algebra RSr has an algebra involution determined
by w∗ = w−1 and an automorphism # determined by w# = sign(w)w for w ∈ Sr. The
involution ∗, the automorphism #, and the inclusions RSr →֒ RSr+1 are mutually commuting.
Let s1, . . . , sr−1 be the usual generators of the symmetric group Sr, si = (i, i+1). If 1 6 a 6 i,
define

sa,i = sasa+1 · · · si−1 = (i, i− 1, . . . , a) (4.1)

and si,a = s∗a,i. Therefore sa,a = 1, the identity in the symmetric group. We let

xλ =
∑

w∈Sλ

w yλ =
∑

w∈Sλ′

sign(w)w (4.2)

where Sλ = S{1,2,...,λ1} × S{λ1+1,...,λ1+λ2} × . . . is the Young subgroup labeled by λ and Sλ′

is the Young subgroup labeled by λ′. Given µ ⊢ i − 1 and λ ⊢ i with λ = µ ∪ {j, λj}, we set

a =
∑j

r=1 λr and let b =
∑λj

r=1 λ
′
r. We define the branching factors as follows:

dµ→λ = sa,i uµ→λ = si,a

µj∑

r=0

sa,a−r (4.3)

and (conjugating and applying the automorphism #) we obtain the dual branching factors

bµ→λ = (−1)b−isb,i vµ→λ = si,b

j∑

r=0

(−1)r+b−isb,b−r. (4.4)

For λ ∈ Ŝr and t ∈ Stdr(λ) let dt be the ordered product of the d–branching factors along
t and let bt be the ordered product of b–branching factors along t, i.e. bt = (dt′)

#. Given
s, t ∈ Std(λ) we let

xst = d∗sxλdt yst = b∗syλbt.
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Theorem 4.1 ([11, 34]). The algebra RSr has cellular bases

X = {xst | s, t ∈ Stdr(λ) for λ ∈ Ŝr} Y = {yst | s, t ∈ Stdr(λ) for λ ∈ Ŝr}

with the involution ∗ and the posets (Ŝr,Q) and (Ŝr,Qcol) respectively. These bases are the
Murphy and dual-Murphy bases defined in [34].

Proof. It is shown in [11, Corollary 4.8] that X coincides with the Murphy cellular basis defined
in [34, Theorem 4.17]. Since yst = (xs′t′)

#, it follows that Y is also a cellular basis; the basis Y
appears in [34] in a subsidiary role. �

It is shown in [11, Section 4 and Appendix A], following [34, 26, 25, 8, 32], that the sequence of
symmetric group algebras (ZSr)r>0, endowed with the Murphy cellular bases, satisfies axioms
(D1)–(D6) of Section 1.2. In fact, the sequence is induction coherent, and the u–branching
coefficients are those derived from cell filtrations of induced cell modules. The cell generators

are the elements xλ. The branching diagram associated to the sequence is Young’s lattice Ŝ.
The d– and u–branching factors satisfy the compatibility relations (1.6), by [11, Appendix A].
The corresponding results for the dual-Murphy basis follow by conjugating and applying the
automorphism #.

5. The Murphy and dual Murphy bases of the Brauer algebra

In this section we recall the definition of the Brauer algebra and the construction of its
Murphy and dual Murphy bases. In subsequent sections, we will require the Murphy basis
for examining Brauer algebras acting on symplectic tensor space, whereas we require the dual
Murphy basis for examining Brauer algebras acting on orthogonal tensor space.

An r–strand Brauer diagram is a figure consisting of r points on the top edge, and another
r on the bottom edge of a rectangle R together with r curves in R connecting the 2r points
in pairs, with two such diagrams being identified if they induce the same matching of the 2r
points. We call the distinguished points vertices and the curves strands. A strand is vertical if it
connects a top vertex with a bottom vertex and horizontal otherwise. We label the top vertices
by 1, . . . , r and the bottom vertices by 1, . . . , r from left to right.

Let S be an integral domain with a distinguished element δ ∈ S. As an S-module, the
r–strand Brauer algebra Br(S; δ) is the free S–module with basis the set of r–strand Brauer
diagrams. The product ab of two Brauer diagrams is defined as follows: stack a over b to obtain
a figure a ∗ b consisting of a Brauer diagram c together with some number j of closed loops.
Then ab is defined to be δjc. The product on Br(S; δ) is the bilinear extension of the product
of diagrams.

The Brauer algebra Br(S; δ) has an S–linear involution ∗ defined on diagrams by reflection in
a horizontal line. The r–strand algebra embeds in the r+1–strand algebra by the map defined
on diagrams by adding an additional top vertex r + 1 and an additional bottom vertex r + 1

on the right, and connecting the new pair of vertices by a vertical strand.
The r–strand Brauer algebra is generated as a unital algebra by the following Brauer dia-

grams:

si = · · · · · ·

i i+ 1

and ei = · · · · · ·

i i+ 1

(5.1)

We have e2i = δei, e
∗
i = ei and s∗i = si. An r–strand Brauer diagram with only vertical strands

can be identified with a permutation in Sr, and the product of such diagrams agrees with
composition of permutations. The linear span of the permutation diagrams is thus a subalgebra
of Br(S; δ) isomorphic to SSr. This subalgebra is generated by the diagrams si in (5.1).
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The linear span of r–strand Brauer diagrams with at least one horizontal strand is an ideal Jr
of Br(S; δ), and Jr is generated as an ideal by any of the elements ei. The quotient Br(S; δ)/Jr
is also isomorphic to the symmetric group algebra, as algebras with involution.

The rank of a Brauer diagram is the number of its vertical strands; the corank is 1/2 the
number of horizontal strands.

Denote the generic ground ring Z[δ] for the Brauer algebras by R, and let R′ = Z[δ, δ−1]. It
was shown in [11, Section 6.3] that the pair of towers of algebras (Br(R

′; δ))r>0 and (R′Sr)r>0

satisfy (J1)–(J8) of Section 1.4, where R′Sr is endowed with the Murphy cellular basis. But
the same is true if R′Sr is endowed instead with the dual Murphy cellular basis. Following
through the work outlined in Section 1.4, based on the Murphy basis or the dual Murphy
basis of the symmetric group algebras, one obtains two different cellular bases on the Brauer
algebras Br(R; δ) over the generic ground ring R, which we also call the Murphy and dual
Murphy cellular bases. The tower of Brauer algebras over R, with either cellular structure, is

restriction–coherent, with branching diagram B̂ obtained by reflections from Young’s lattice.

Explicitly, the branching rule is as follows: if (λ, l) ∈ B̂r and (µ,m) ∈ B̂r+1, then (λ, l) → (µ,m)
if and only if the Young diagram µ is obtained from the Young diagram λ by either adding or

removing one box. The partial order Q on B̂r for the Murphy cell datum is: (λ, l) Q (µ,m) if

l > m or if l = m and λ Q µ The partial order Qcol on B̂r for the dual Murphy cell datum is
analogous, but with dominance order replaced with column dominance order.

The branching factors and cell generators in the Brauer algebras, computed using Theo-
rem 1.24 and Lemma 1.25, involve liftings of elements of the symmetric group algebras to the
Brauer algebras; for any element x ∈ RSr, we lift x to the “same” element in the span of

permutation diagrams in Br(r; δ). Thus, for (λ, l) ∈ B̂r, define

x(λ,l) = xλe
(l)
r−1 and y(λ,l) = yλe

(l)
r−1. (5.2)

These are the cell generators for the Murphy and dual Murphy cellular structures on Br(R; δ).
The branching factors d(λ,l)→(µ,m) and u(λ,l)→(µ,m) for the Murphy basis are obtained using the
formulas of Theorem 1.24 from the d– and u–branching factors of the symmetric group algebras;
and similarly the b(λ,l)→(µ,m) and v(λ,l)→(µ,m) branching factors for the dual Murphy basis are
obtained from the b– and v–branching factors of the symmetric group algebras. These satisfy
the compatibility relations

x(µ,m)d(λ,l)→(µ,m) = u∗(λ,l)→(µ,m)x(λ,l) y(µ,m)b(λ,l)→(µ,m) = v∗(λ,l)→(µ,m)y(λ,l). (5.3)

The compatibility relation is established in [11, Appendix A] for the Murphy basis, and the

argument holds just as well for the dual Murphy basis. For (λ, l) ∈ B̂r and t ∈ Stdr(λ, l) let dt
be the ordered product of the d–branching factors along t, and bt the ordered product of the

b–branching factors along t. For (λ, l) ∈ B̂r and s, t ∈ Stdk(λ, l), define

x
(λ,l)
st = d∗sx(λ,l)dt y

(λ,l)
st = b∗sy(λ,l)bt.

We have that

{x
(λ,l)
st | (λ, l) ∈ B̂r and s, t ∈ Stdk(λ, l)} (5.4)

{y
(λ,l)
st | (λ, l) ∈ B̂r and s, t ∈ Stdk(λ, l)} (5.5)

are the Murphy and dual Murphy cellular bases of Br(R; δ).

Theorem 5.1. The sequence of Brauer algebras (Br(R; δ))r>0 over the generic ground ring R =
Z[δ] with either the Murphy cellular bases (5.4) or the dual Murphy cellular bases (5.5), satisfies
(D1)–(D6) of Section 1.2. The data entering into the definition of the Murphy bases and dual
Murphy bases are explicitly determined using equation (5.2) and the formulas of Theorem 1.24.
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Proof. For both the Murphy and dual Murphy bases, conditions (D1), (D2), (D4), and (D5)
follow from the general framework of [11], as outlined in Section 1.4. Condition (D3) follows
from (5.2) and condition (D6) from (5.3). �

We will require the following lemma in Sections 7 and 8.

Lemma 5.2. If D is an r–strand Brauer diagram of corank > m+ 1, then for all µ ⊢ r − 2m,
D is an element of the ideal Br(R; δ)�(µ,m) defined using the Murphy basis. Likewise, D is an

element of the ideal Br(R; δ)�col(µ,m) defined using the dual Murphy basis.

Proof. It follows from the computation of the transition matrix between the Murphy basis and

the diagram basis in [11, Section 6.2.3] that for all (λ, l) ∈ B̂r and all s, t ∈ Stdr(λ, l), the

Murphy basis element x
(λ,l)
st is an integer linear combination of Brauer diagrams with corank

l. Thus the transition matrix is block diagonal, and the inverse transition matrix is also block
diagonal. Hence if the corank of D is l > m, then D is a linear combination of Murphy basis

elements x
(λ,l)
st with λ ⊢ r − 2l and s, t ∈ Stdr(λ, l). It follows that D ∈ Br(R; δ)�(µ,m) for any

µ ⊢ r − 2m. The same argument holds for the dual Murphy basis. �

6. Bilinear forms and the action of the Brauer algebra on tensor space

Let V be a finite dimensional vector space over a field k with a non–degenerate bilinear form
denoted [ , ]. For the moment we make no assumption about the symmetry of the bilinear form.
The non–degenerate form induces an isomorphism η : V → V ∗, defined by η(v)(w) = [w, v] and
hence a linear isomorphism A : V ⊗V → End(V ) defined by A(v⊗w)(x) = η(v)(x)w = [x, v]w.
We write x · (v ⊗ w) = A(v ⊗ w)(x) = [x, v]w, and also (v ⊗ w) · x = v[w, x].

For all r > 1, extend the bilinear form to V ⊗r by [x1 ⊗ x2 · · ·xr, y1 ⊗ y2 · · · yr] =
∏

i[xi, yi].
Then this is also an non–degenerate bilinear form so induces isomorphisms ηr : V

⊗r → (V ∗)⊗r

and Ar : V
⊗2r → End(V ⊗r). We will generally just write η and A instead of ηr and Ar. In the

following, let G denote the group of linear transformations of V preserving the bilinear form.

Lemma 6.1. Let {vi} and {v∗i } be dual bases of V with respect to the bilinear form, i.e. bases
such that [vi, v

∗
j ] = δi,j, and let ω =

∑
i v

∗
i ⊗ vi. Then:

(1) For all x ∈ V , x · ω = ω · x = x. In particular, ω = A−1(idV ) and ω is independent of the
choice of the dual bases.

(2) For all x, y ∈ V , [x⊗ y, ω] = [y, x].
(3) ω is G–invariant.

Proof. For any j, vj ·ω =
∑

i[vj , v
∗
i ]vi = vj . Similarly, ω·v∗j = v∗j . Hence, for all x, x·ω = ω·x = x.

We have [x ⊗ y, ω] =
∑

i[x, v
∗
i ][y, vi] = [y, x · ω] = [y, x]. For the G–invariance of ω, note that

for g ∈ G, g · ω =
∑

i gv
∗
i ⊗ gvi = ω, because {gvi} and {gv∗i } is another pair of dual bases. �

For the remainder of this section, we assume that the bilinear form [ , ] is either symmetric
or skew–symmetric. Note that in both cases the bilinear form induced on V ⊗ V is symmetric.
Because the bilinear form on V ⊗r is non–degenerate, End(V ⊗r) has a k–linear algebra involution
∗ defined by [T ∗(x), y] = [x, T (y)], for T ∈ End(V ⊗r) and x, y ∈ V ⊗r. (The involution property
depends on the bilinear form being either symmetric or skew–symmetric.)

Define E,S ∈ End(V ⊗ V ) by (x⊗ y)E = [x, y]ω, and (x⊗ y)S = y ⊗ x. These will be used
to define a right action of Brauer algebras on tensor powers of V .

Lemma 6.2. Write ǫ = 1 if the bilinear form [ , ] on V is symmetric and ǫ = −1 if the bilinear
form is skew symmetric.

(1) ES = SE = ǫE
(2) E2 = (ǫ dimV )E.
(3) E = E∗ and S = S∗ in End(V ⊗ V ).
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(4) E and S commute with the action of G on V ⊗ V .

Proof. These statements follow from straightforward computations. The proof of the last state-
ment, on G–invariance, uses Lemma 6.1, part (3). �

For r > 1 and for 1 6 i 6 r − 1 define Ei and Si in End(V ⊗r) to be E and S acting in the
i–th and i+ 1–st tensor places.

Proposition 6.3 (Brauer, [5]). Let V be a finite dimensional vector space over k with a non–
degenerate symmetric or skew–symmetric bilinear form [ , ], and let G be the group of linear
transformations of V preserving the bilinear form. Then for r > 1, ei 7→ Ei and si 7→ ǫSi

determines a homomorphism

Φr : Br(k; ǫ dimV ) −→ EndG(V
⊗r).

Proof. Brauer works over the complex numbers, but his argument in [5, page 869] is equally
valid over any field. Alternatively, one can use the presentation of the Brauer algebra, see
[2, Proposition 2.7] for example, and verify that the images of the generators si, ei satisfy the
defining relations. �

Note that the symmetric group (contained in the Brauer algebra) acts on V ⊗r by place
permutations if the bilinear form [ , ] on V is symmetric and by signed place permutations if
the bilinear form is skew–symmetric.

We have Φr+1◦ι = ι◦Φr, where we have used ι to denote both the embedding of Br into Br+1

and the embedding of End(V ⊗r) into End(V ⊗(r+1)), namely ι : T 7→ T ⊗ idV . In particular,
this implies ker(Φr) ⊆ ker(Φr+1). Because of this, we will sometimes just write Φ instead of Φr.

Lemma 6.4. The homomorphism Φr respects the involutions on Br(k; ǫ dimV ) and End(V ⊗r),
i.e. Φr(a

∗) = Φr(a)
∗. Consequently, the image im(Φr) is an algebra with involution, and ker(Φr)

is a ∗–invariant ideal in Br(k; ǫ dimV ).

Proof. Follows from Lemma 6.2, part (3). �

7. The Brauer algebra on symplectic tensor space

Let V be a 2N–dimensional vector space over a field k with a symplectic form 〈 , 〉, i.e., a
non–degenerate, alternating (and thus skew–symmetric) bilinear form. One can show that V
has a Darboux basis, i.e. a basis {vi}16i62N such that the dual basis {v∗i } with respect to the
symplectic form is v∗i = v2N+1−i if 1 6 i 6 N and v∗i = −v2N+1−i if N + 1 6 i 6 2N . Hence,
one can assume without loss of generality that V = k2N with the standard symplectic form

〈x, y〉 =

N∑

i=1

(xiy2N+1−i − yix2N+1−i).

For r > 1, let Φr : Br(k;−2N) → End(V ⊗r) be the homomorphism defined as in Section 6
using the symplectic form. When required for clarity, we write Vk for V = k2N and Φr,k for Φr.
The image im(Φr,k) is known as the (symplectic) Brauer centralizer algebra.

Theorem 7.1 ([7]). Let Λ : k Sp(V ) → End(V ⊗r) denote the homomorphism corresponding to
the diagonal action of the symplectic group Sp(V ) on V ⊗r.

(1) If k is a quadratically closed infinite field, then im(Φr) = EndSp(V )(V
⊗r) and im(Λ) =

EndBr(k;−2N)(V
⊗r).

(2) The dimension of im(Φr) is independent of the field and of the characteristic, for infinite
fields k.

Remark 7.2. The special case when k is the field of complex numbers is due to Brauer [5].
The statement of part (1) in [7] is more general, allowing general infinite fields at the cost of
replacing the symplectic group with the symplectic similitude group.
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Let Φr,Z denote the restriction of Φr,C to Br(Z;−2N); the image im(Φr,Z) is the Z-subalgebra

of End(V ⊗r
C ) generated by Ei and Si for 1 6 i 6 r − 1. Let VZ be the Z-span of the standard

basis {ei | 1 6 i 6 2N}. Thus V ⊗r
Z ⊂ V ⊗r

C and EndZ(V
⊗r
Z ) ⊂ End(V ⊗r

C ). Since Ei and Si leave

V ⊗r
Z invariant, we can also regard im(Φr,Z) as a Z-subalgebra of EndZ(V

⊗r
Z ).

For any k, Br(k;−2N) ∼= Br(Z;−2N) ⊗Z k and Vk
∼= VZ ⊗Z k. For a ∈ Br(Z;−2N) and

w ∈ VZ, we have Φr,k(a⊗ 1k)(w ⊗ 1k) = Φr,Z(a)(w)⊗ 1k. Therefore, we are in the situation of
Lemma 1.5, and there exists a map θ : im(Φr,Z) → im(Φr,k) making the diagram commute:

Br(Z;−2N) im(Φr,Z)
Φr,Z

⊗1k θ

Φr,k

Br(k;−2N) im(Φr,k)

. (7.1)

7.1. Murphy basis over the integers.

Definition 7.3. Write As
r(∗∗) = Φ(Br(∗∗;−2N)), where ∗∗ stands for C, Q, or Z. Thus As

r(Z)
is the Z–algebra generated by Ei = Φ(ei) and Si = −Φ(si). (The superscript “s” in this notation
stands for “symplectic”.)

Let R = Z[δ]. Endow Br(R; δ) with the Murphy cellular structure described in Section 5
with the Murphy type basis

{
x
(λ,l)
st

∣∣∣ (λ, l) ∈ B̂r and s, t ∈ Stdr(λ, l)
}
.

By Theorem 5.1, the tower (Br(R; δ))r>0 satisfies the assumptions (D1)–(D6) of Section 1.2.
We want to show that the maps Φr,Z : Br(Z;−2N) → As

r(Z) satisfy the assumptions (Q1)–
(Q3) of Section 2. It will follow that the integral Brauer centralizer algebras As

r(Z) are cellular
over the integers.

First we need the appropriate notion of permissibility for points in B̂r and for paths on B̂.

Definition 7.4. A (−2N)–permissible partition λ is a partition such that λ1 6 N . We say that

an element (λ, l) ∈ B̂r is (−2N)–permissible if λ is (−2N)–permissible. We let B̂s
r,perm ⊆ B̂r

denote the subset of (−2N)–permissible points.
A path t ∈ Stdr(λ, l) is (−2N)–permissible if t(k) is (−2N)–permissible for all 0 6 k 6 r.

We let Stdsr,perm(λ, l) ⊆ Stdr(λ, l) denote the subset of (−2N)–permissible paths.

Note that this set of permissible points satisfies condition (Q1).

For any ring U and any δ ∈ U , and any natural numbers r, s, there is an injective U–algebra
homomorphism Br(U ; δ) ⊗ Bs(U ; δ) → Br+s(U ; δ) defined on the basis of Brauer diagrams by
placing diagrams side by side. We also write x⊗ y for the image of x⊗ y in Br+s(U ; δ).

Definition 7.5. Define br ∈ Br(Z;−2N) to be the sum of all Brauer diagrams on r strands
and b′r to be the sum of all Brauer diagrams on r strands of corank > 1. For λ = (λ1, . . . , λs)
a partition of r, write

bλ = bλ1 ⊗ x(λ2,...,λs) and b′λ = b′λ1
⊗ x(λ2,...,λs). (7.2)

For (λ, l) ∈ B̂r, write

b(λ,l) = bλe
(l)
r−1 and b′(λ,l) = b′λe

(l)
r−1. (7.3)

Remark 7.6. Thus, for all r > 0 and for all (λ, l) ∈ B̂r,

x(λ,l) = b(λ,l) − b′(λ,l). (7.4)

Lemma 7.7. There exists β′
r ∈ Br(Q;−2N) such that b′r = x(r)β

′
r.
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Proof. Sr acts on the left on the set of Brauer diagrams on r strands with corank > 1. Choose
a representative of each orbit. Then

b′r = x(r)
∑

x

1

|Stab(x)|
x,

where the sum is over orbit representatives x and |Stab(x)| is the cardinality of the stabilizer
of x in Sr. �

It follows that for all r > 0 and for all (λ, l) ∈ B̂r,

b′(λ,l) = x(λ,l)β
′
λ1
. (7.5)

Fix r > 1. The multilinear functionals on V 2r of the form (w1, . . . , w2r) 7→
∏
〈wi, wj〉, where

each wi occurs exactly once, are evidently Sp(V)–invariant. Moreover, there are some obvious
relations among such functionals. If we take r = N +1, then for any choice of (w1, . . . , w2r), the
2r–by–2r skew-symmetric matrix (〈wi, wj〉) is singular and therefore the Pfaffian of this matrix
is zero, which provides such a relation. These elementary observations are preliminary to the
first and second fundamental theorems of invariant theory for the symplectic groups, see [41,
Section 6.1]. The following proposition depends on the second of these observations.

Proposition 7.8. The element bN+1 is in ker(Φ). Hence if r > N + 1 and (λ, l) ∈ B̂r with
λ1 = N + 1, then b(λ,l) ∈ ker(Φ).

Proof. Set r = N + 1. There exist linear isomorphisms A : V ⊗2r → End(V ⊗r) and η : V ⊗2r →
(V ⊗2r)∗. The proof consists of showing that (η ◦A−1 ◦Φ(bN+1))(w1 ⊗ · · · ⊗w2r) is up to a sign
the Pfaffian of the singular matrix (〈wi, wj〉). Hence bN+1 ∈ ker(Φ). This is explained in [12,
Section 3.3]. We have also provided an exposition in Appendix D in the arXiv version of this
paper. Another proof can be found in [21, Proposition 4.6]. �

We can now verify axiom (Q2). Let t ∈ Stdr(λ, l) be a path which is not (−2N)-permissible.
Let k 6 r be the first index such that t(k) = (µ,m) satisfies µ1 = N + 1. It follows from
Proposition 7.8 that

b(µ,m) ∈ ker(Φr). (7.6)

By (7.5) and (5.2), we have that

b′(µ,m) = x(µ,m)β
′
µ1

= xµβ
′
µ1
e
(m)
k−1

is a linear combination of Brauer diagrams of corank at least m + 1, and therefore b′(µ,m) ∈

Br(Z;−2N)�(µ,m), using Lemma 5.2. Hence

b′(µ,m) ∈ x(µ,m)Br(Q;−2N) ∩Br(Z;−2N)�(µ,m) (7.7)

as required. Taken together, (7.4)–(7.7) show that axiom (Q2) holds.
Finally, it is shown in [38, Theorem 3.4, Corollary 3.5] that

dimC(A
s
r(C)) =

∑

(λ,l)∈B̂s
r,perm

(♯Stdsr,perm(λ, l))
2.

Thus axiom (Q3) holds.
Since assumptions (Q1)–(Q3) of Section 2 are satisfied, we can produce a modified Murphy

basis of Br(Z;−2N), {
x̃
(λ,l)
st

∣∣∣ (λ, l) ∈ B̂r and s, t ∈ Stdk(λ, l)
}
,

following the procedure described before Theorem 2.5. The following theorem gives a cellular
basis for Brauer’s centralizer algebra acting on symplectic tensor space, valid over the integers.
It also gives two descriptions of the kernel of the map Φr,Z : Br(Z;−2N) → End(V ⊗r), one
by providing a basis of ker(Φr,Z) over the integers, and the other by describing the kernel as
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the ideal generated by a single element. Each of these statements is a form of the second
fundamental theorem of invariant theory for the symplectic groups.

Theorem 7.9. The integral (symplectic) Brauer centralizer algebra As
r(Z) is a cellular algebra

over Z with basis

As
r(Z) =

{
Φr,Z(x̃

(λ,l)
st ) | (λ, l) ∈ B̂s

r,perm and s, t ∈ Stdsr,perm(λ, l)
}

with the involution ∗ determined by E∗
i = Ei and S∗

i = Si and the partially ordered set

(B̂s
r,perm,Q). The ideal ker(Φr,Z) ⊆ Br(Z;−2N) has Z-basis

κr =
{
x̃
(λ,l)
st | (λ, l) ∈ B̂r and s or t not (−2N)–permissible

}
.

Moreover, for r > N , ker(Φr,Z) is the ideal generated by the single element bN+1 ∈ Br(Z;−2N).
For r 6 N , ker(Φr,Z) = 0.

Proof. The construction of the cellular basis of As
r(Z) and the basis of ker(Φr) follows immedi-

ately from Theorem 2.7 since (Q1)–(Q3) have been verified.

Now, if r 6 N then ker(Φr,Z) = 0, since all paths on B̂ of length 6 N are (−2N)–permissible.
For r > N , the kernel is the ideal generated by all the b(µ,m) such that (µ,m) is a marginal

point in B̂k for some 0 < k 6 r, using Theorem 2.7. But the marginal points are all of the form
(µ,m) for some µ with µ1 = N + 1. Now, by (7.2) and (7.3) we have that

b(µ,m) = bµe
(m)
r−1 = bN+1 ⊗ x(λ2,...,λs)e

(m)
k−1

and so we are done. �

Remark 7.10. Applying Corollary 2.8, for every r > 0 and for every permissible point (λ, l) ∈ B̂r,
the cell module ∆C

As
r
((λ, l)), regarded as a Br(C;−2N)–module, is the simple head of the cell

module ∆Br(C;−2N)((λ, l)). Thus the cell module ∆Z
As

r
((λ, l)) is an integral form of the simple

Br(C;−2N)–module LBr(C;−2N)((λ, l)). In this way, all the simple Br(C;−2N)–modules that
factor through the representation on symplectic tensor space are provided with integral forms.

7.2. Murphy basis over an arbitrary field. We return to the general situation described at
the beginning of Section 7: V is a vector space of dimension 2N over an arbitrary field k, with
a symplectic form, and for r > 1, Φr,k : Br(k;−2N) → End(V ⊗r) is Brauer’s homomorphism.

We assume without loss of generality that V = k2N , with the standard symplectic form. We
have the commutative diagram (7.1).

For the modified Murphy basis {x̃
(λ,l)
st } of Br(Z;−2N), we also write x̃

(λ,l)
st instead of x̃

(λ,l)
st ⊗1k

for the corresponding basis element of Br(k;−2N).

Theorem 7.11. Let V be a 2N–dimensional vector space over a field k. Assume that V has
a symplectic form, and let Φr,k : Br(k;−2N) → End(V ⊗r) be Brauer’s homomorphism defined
using the symplectic form. Write As

r(k) for the Brauer centralizer algebra im(Φr,k).
The Brauer centralizer algebra As

r(k) is a cellular algebra over k with basis

As
r(k) =

{
Φr,k(x̃

(λ,l)
st ) | (λ, l) ∈ B̂s

r,perm and s, t ∈ Stdsr,perm(λ, l)
}

with the involution ∗ determined by E∗
i = Ei and S∗

i = Si and the partially ordered set

(B̂s
r,perm,Q). The ideal ker(Φr,k) ⊆ Br(k;−2N) has basis

κr =
{
x̃
(λ,l)
st | (λ, l) ∈ B̂r and s or t not (−2N)–permissible

}
.

Moreover, ker(Φr,k) is the ideal generated by the single element bN+1 ∈ Br(k;−2N) for r > N
(and is zero for r 6 N).
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Proof. Refer to the commutative diagram (7.1). If s or t is not (−2N)–permissible, then

Φr,k(x̃
(λ,l)
st ) = θ ◦ Φr,Z(x̃

(λ,l)
st ) = 0. Thus κr ⊂ ker(Φr,k). It follows from this that As

r(k) spans
As

r(k). Once we have established that As
r(k) is linearly independent, the argument of Theo-

rem 2.7 shows that κr is a basis of ker(Φr,k), and that As
r(k) is a cellular basis of the Brauer

centralizer algebra As
r(k).

Suppose first that k is an infinite field. By Theorem 7.1 part (2), the dimension of ker(Φr,k)
and the dimension of As

r(k) are independent of the (infinite) field k and of the characteristic.
Therefore As

r(k) is a basis of As
r(k).

Now consider the case that k is any field; let k be the algebraic closure of k. Applying
Lemma 1.5 again, we have a commutative diagram

Br(k;−2N) As
r(k)

Φr,k

⊗1
k

η

Φ
r,k

Br(k;−2N) As
r(k)

.

We conclude that As
r(k) is linearly independent over k, since η(As

r(k)) = As
r(k) is linearly

independent over k. As noted above, it now follows that As
r(k) is a cellular basis of As

r(k), and
κr is a basis of ker(Φr,k). For the final statement, it suffices to show that elements of κr are in
the ideal generated by bN+1 and this follows from Theorem 7.9. �

Remark 7.12. Theorem 7.11 extends the constancy of dimension of Brauer’s centralizer algebras
As

r(k) and of ker(Φr,k), from Theorem 7.1 part (2), to all fields k.

We also have the following corollary.

Corollary 7.13. Adopt the hypothesis of Theorem 7.11. The Brauer centralizer algebra As
r(k)

acting on V ⊗r is the specialization of the integral Brauer centralizer algebra As
r(Z), i.e. A

s
r(k)

∼=
As

r(Z)⊗Z k.

Proof. In general, if A is and R–algebra which is free as an R–module with basis {bi} and
structure constants rkij ∈ R, then any specialization AS = A⊗R S is characterized by being free

as an S–module with basis {bi ⊗ 1S} and structure constants rkij ⊗ 1S . Now As
r(Z) has Z–basis

{Φr,Z(x̃
(λ,l)
st ) | (λ, l), s, t permissible}; and if

x̃
(λ,l)
st x̃

(µ,m)
uv =

∑
r(ν, n, α, β) x̃

(ν,n)
α,β

in Br(Z;−2N), where the sum runs over all (ν, n) and α, β, then

Φr,Z(x̃
(λ,l)
st )Φr,Z(x̃

(µ,m)
uv ) =

∑
′ r(ν, n, α, β) Φr,Z(x̃

(ν,n)
α,β ),

where now the sum is restricted to permissible (ν, n) and α, β.

As
r(k) has k–basis {Φr,k(x̃

(λ,l)
st ) | (λ, l), s, t permissible}. Moreover, in Br(k;−2N), we have

x̃
(λ,l)
st x̃

(µ,m)
uv =

∑
(r(ν, n, α, β)⊗ 1k) x̃

(ν,n)
α,β ,

and in As
r(k),

Φr,k(x̃
(λ,l)
st )Φr,k(x̃

(µ,m)
uv ) =

∑
′ (r(ν, n, α, β)⊗ 1k) Φr,k(x̃

(ν,n)
α,β ),

with the sum again restricted to permissible (ν, n) and α, β. This shows that As
r(k) is a spe-

cialization of Ar(Z), as required. �
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7.3. Jucys–Murphy elements and seminormal representations. We verify that the set-
ting of Section 3.3 applies to the Brauer algebras, their specializations Br(Z;−2N), and the
quotients of these specializations acting on symplectic tensor space.

We have R = Z[δ], the generic ground ring, and the quotient map π : Z[δ] → Z determined
by δ 7→ −2N . The kernel of this map is the prime ideal p = (δ+2N). The subring of evaluable
elements in F = Q(δ) is Rp. The subring of evaluable elements in Br(F; δ) is Br(Rp; δ); c.f.
Remark 2.2. The sequence of Brauer algebras with the Murphy cellular basis satisfies (D1)–(D6)
according to Theorem 5.1. We have verified in Section 7.1 that the quotient axioms (Q1)–(Q3)
are satisfied by the maps Φr from Br(Z;−2N) to endomorphisms of symplectic tensor space.
Jucys–Murphy elements for the Brauer algebras were defined by Nazaorv [35]. It is shown in
[18] that these are an additive family of JM elements, with contents

κ((λ, l) → (µ,m)) =

{
c(a), if µ = λ ∪ {a},

1− δ − c(a), if µ = λ \ {a}.
(7.8)

where the content c(a) of a node a of a Young diagram is the column index of a minus the row
index of a. It is easy to check that the separation condition is satisfied. It remains to check
condition (SN).

Lemma 7.14. Let t be an −2N–permissible path in Stdr. Then Ft is evaluable.

Proof. We apply Lemma 3.7 and Remark 3.8. Let s, t be two paths of length r > 1 with s′ = t′

and with at least one of the paths −2N permissible. We have to show that κt(r) − κs(r) 6≡ 0
mod (δ+2N). In order to reach a contradiction, assume κt(r)−κs(r) ≡ 0 mod (δ+2N). This
can only happen if one of the two edges t(r − 1) → t(r) and t(r − 1) → s(r) involves adding a
node to t(r − 1) and the other involves removing a node. Assume wlog that t(r − 1) = (λ, l),
t(r) = (λ ∪ {α}, l) for an addable node α of λ, and s(r) = (λ \ {β}, l+ 1), for a removable node
β of λ. Our condition is then c(α) + c(β) = 1 + 2N . But since λ1 6 N , we have c(a), c(β) 6 N
and c(a) + c(β) 6 2N . �

8. The Brauer algebra on orthogonal tensor space

Let V be an N–dimensional vector space over a field k with char(k) 6= 2, with a non–
degenerate, symmetric bilinear form ( , ); we will call such forms orthogonal forms for brevity.
For r > 1, let Ψr : Br(k;N) → End(V ⊗r) be Brauer’s homomorphism defined in Section 6 using
the orthogonal form. The image im(Ψr) is known as the (orthogonal) Brauer centralizer algebra.

Over general fields, the classification of orthogonal forms is complicated. However, if the
field is quadratically closed, then one can easily show that V has an orthonormal basis, or
alternatively a basis {vi}16i6N whose dual basis {v∗i } with respect to the orthogonal form is
v∗i = vN+1−i. Therefore, we can assume (when k is quadratically closed) that V = kN with the
standard orthogonal form (x, y) =

∑
i xiyN+1−i.

Theorem 8.1 ([9]). Let Λ : kO(V ) → End(V ⊗r) denote the homomorphism corresponding to
the diagonal action of the orthogonal group O(V ) on V ⊗r.

(1) If k is a quadratically closed infinite field, with char(k) 6= 2, then im(Ψr) = EndO(V )(V
⊗r)

and im(Λ) = EndBr(k;N)(V
⊗r).

(2) The dimension of im(Ψr) is independent of the field and of the characteristic, for infinite
quadratically closed fields k with char(k) 6= 2.

The special case of this theorem when k = C is due to Brauer [5]. Let us continue to assume,
for now, that k is quadratically closed and that V = kN with the standard orthogonal form.
When we need to emphasize the field we write Vk for V and Ψr,k for Ψr.

Let Ψr,Z denote the restriction of Ψr,C to Br(Z;N); the image im(Ψr,Z) is the Z-subalgebra

of End(V ⊗r
C ) generated by Ei and Si for 1 6 i 6 r − 1. Let VZ be the Z-span of the standard
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basis {ei | 1 6 i 6 2N}. Thus V ⊗r
Z ⊂ V ⊗r

C and EndZ(V
⊗r
Z ) ⊂ End(V ⊗r

C ). Since Ei and Si leave

V ⊗r
Z invariant, we can also regard im(Ψr,Z) as a Z-subalgebra of EndZ(V

⊗r
Z ).

For any (quadratically closed) k, Br(k;N) ∼= Br(Z;N) ⊗Z k and Vk
∼= VZ ⊗Z k. For a ∈

Br(Z;N) and w ∈ VZ, we have Ψr,k(a⊗ 1k)(w⊗ 1k) = Ψr,Z(a)(w)⊗ 1k. Therefore, we are in the
situation of Lemma 1.5, and there exists a map θ : im(Ψr,Z) → im(Ψr,k) making the diagram
commute:

Br(Z;N) im(Ψr,Z)
Ψr,Z

⊗1k θ

Ψr,k

Br(k;N) im(Ψr,k)

. (8.1)

8.1. Murphy basis over the integers.

Definition 8.2. Write Ao
r(∗∗) = Ψr(Br(∗∗;N)), where ∗∗ stands for C, Q, or Z. Thus Ao

r(Z) is
the Z–algebra generated by Ei = Ψr(ei) and Si = Ψr(si). (The superscript “o” in this notation
stands for “orthogonal”.)

Let R = Z[δ]. Endow Br(R; δ) with the dual Murphy cellular structure described in Section 5,
with cellular basis {

y
(λ,l)
st

∣∣∣ (λ, l) ∈ B̂r and s, t ∈ Stdr(λ, l)
}
.

By Theorem 5.1, the tower (Br(R; δ))r>0 satisfies the assumptions (D1)–(D6) of Section 1.2.
We want to show that the maps Ψr,Z : Br(Z;N) → Ao

r(Z) satisfy the assumptions (Q1)–(Q3)
of Section 2. It will follow that Brauer’s centralizer algebras Ao

r(Z) are cellular over the integers.

First we define the appropriate permissible points in B̂r and permissible paths in B̂.

Definition 8.3. An N–permissible partition λ is a partition such that λ′
1 + λ′

2 6 N . We say

that an element (λ, l) ∈ B̂r is N–permissible if λ is N–permissible. We let B̂o
r,perm ⊆ B̂r denote

the subset of N–permissible points.
A path t ∈ Stdr(λ, l) is N–permissible if t(k) is N–permissible for all 0 6 k 6 r. We let

Stdor,perm(λ, l) ⊆ Stdr(λ, l) denote the subset of N–permissible paths.

Note that this set of permissible points satisfies condition (Q1).
We will require the notion of a walled Brauer diagram. Consider Brauer diagrams with a+ b

strands. Divide the top vertices into a left cluster of a vertices and a right cluster of b vertices,
and similarly for the bottom vertices. The (a, b)–walled Brauer diagrams are those in which no
vertical strand connects a left vertex and a right vertex, and every horizontal strand connects
a left vertex and a right vertex. For any ground ring U and loop parameter δ, the U–span of
(a, b)–walled Brauer diagrams is a unital involution–invariant subalgebra of Ba+b(U ; δ), called
the walled Brauer algebra, and denoted Ba,b(U ; δ). (One imagines a wall dividing the left and
right vertices; thus the terminology “walled Brauer diagram” and “walled Brauer algebra”.)

Definition 8.4. If d is an (a, b)-walled Brauer diagram, then the diagram obtained by exchang-
ing the top and bottom vertices to the right of the wall is a permutation diagram. Define the
sign of d, denoted sign(d) to be the sign of the permutation diagram.

Example 8.5. For a, b ∈ N, let ea,b be the (a, b)–walled Brauer diagram with horizontal edges

{1,a + b} and {1,a+ b} and vertical edges {j, j} for j 6= 1, a + b . Then the permutation
corresponding to ea,b is the transposition (1, a+ b), and hence sign(ea,b) = −1.

Definition 8.6. Let a, b > 0. We define elements da,b and d′a,b in Ba,b ⊆ Ba+b.

(1) Let da,b =
∑

d sign(d) d, where the sum is over all (a, b)-walled Brauer diagrams.
(2) Let d′a,b =

∑
d sign(d) d, where now the sum is over all (a, b)-walled Brauer diagrams of

corank > 1.
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Definition 8.7. For a composition λ , the row antisymmetrizer of λ is Aλ =
∑

π∈Sλ
sign(π) π.

In case λ is a partition, we have Aλ = yλ′ , where λ′ is the conjugate partition.

Lemma 8.8. For a, b > 0, there exists an element β′
a,b ∈ Ba,b(Z;N) ⊆ Ba+b(Z;N) such that

d′a,b = A(a,b)β
′
a,b.

Proof. Sa×Sb acts freely (by multiplication on the left) on the set D′
a,b of (a, b)-walled Brauer

diagrams with corank > 1, and

sign(w d) = sign(w) sign(d),

for w ∈ Sa ×Sb and d ∈ D′
a,b. Choose a representative of each orbit of the action. Then

d′a,b = A(a,b)

∑

x

sign(x)x,

where the sum is over the chosen orbit representatives. �

Given λ a Young diagram with more than two columns, we vertically slice λ into two parts
after the second column. The left and right segments of the sliced partition are then defined as
follows,

λL = (λ′
1, λ

′
2)

′ λR = (λ′
3, λ

′
4, . . .)

′.

Definition 8.9.

(1) If λ is a Young diagram with at most two columns, define dλ = dλ′

1,λ
′

2
and d′λ = d′λ′

1,λ
′

2
.

(2) For λ a Young diagram, with more than 2 columns we write

dλ = dλL ⊗ yλR and d′λ = d′λL ⊗ yλR . (8.2)

(3) For (λ, l) ∈ B̂r, write

d(λ,l) = dλe
(l)
r−1 and d′(λ,l) = d′λe

(l)
r−1. (8.3)

Remark 8.10. It is immediate that for all r and for all (λ, l) ∈ B̂r,

y(λ,l) = d(λ,l) − d′(λ,l). (8.4)

Moreover, it follows from Lemma 8.8 that

d′(λ,l) = y(λ,l)β
′, (8.5)

where β′ = β′
λ′

1,λ
′

2
.

Fix r > 1. The multilinear functionals on V 2r of the form (w1, . . . , w2r) 7→
∏
(wi, wj),

where each wi occurs exactly once, are evidently O(V )–invariant. Moreover, there are some
evident relations among such functionals, stemming from the following observation. If we take
r = N + 1 and fix disjoint sets S, S′ of size N + 1 with S ∪ S′ = {1, 2, . . . , 2N + 2}, then
(w1, . . . , w2r) 7→ det((wi, wj))i∈S,j∈S′ is zero, because the matrix ((wi, wj))i∈S,j∈S′ is singular.
These elementary observations are preliminary to the first and second fundamental theorems
of invariant theory for the orthogonal groups. See the preamble to [41, Theorem 2.17.A]. The
following proposition depends on the second of these observations.

Proposition 8.11. If a + b = N + 1, then da,b ∈ ker(Ψ). Hence if r > N + 1 and (λ, l) ∈ B̂r

with λ′
1 + λ′

2 = N + 1, then d(λ,l) ∈ ker(Ψ).

Proof. Set r = N + 1. There exist linear isomorphisms A : V ⊗2r → End(V ⊗r) and η : V ⊗2r →
(V ⊗2r)∗. The proof consists of showing that η◦A−1◦Ψ(da,b) is a functional of the sort described
above, (η ◦ A−1 ◦ Ψ(da,b))(w1 ⊗ · · · ⊗ w2r) = det((wi, wj))i∈S,j∈S′ , for suitable choice of S, S′.
Hence da,b ∈ ker(Ψ). This is explained in [12, Section 3.3] or [29, Lemma 3.3]. We have also
provided an exposition in Appendix D in the arXiv version of this paper. �
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We can now verify axiom (Q2). Let t ∈ Stdr(λ, l) be a path which is not N–permissible.
Let k 6 r be the first index such that t(k) = (µ,m) satisfies µ′

1 + µ′
2 = N + 1. It follows from

Proposition 8.11 that
d(µ,m) ∈ ker(Ψ). (8.6)

By (8.5) and (5.2), we have that

d′(µ,m) = y(µ,m)β
′ = yµβ

′e
(m)
k−1,

where β′ = β′
µ′

1,µ
′

2
. This exhibits d(µ,m) as an element of y(µ,m)Br(Z;N). Moreover, it shows

that d′(µ,m) is a linear combination of Brauer diagrams of corank at least m + 1, and therefore

d′(µ,m) ∈ Br(Z;N)�col(µ,m), using Lemma 5.2. Hence

d′(µ,m) ∈ y(µ,m)Br(Z;N) ∩Br(Z;N)�col(µ,m). (8.7)

Equations (8.4)–(8.7) show that axiom (Q2) holds. It is shown in [38, Theorem 3.4, Corollary
3.5] that

dimC(A
o
r(C)) =

∑

(λ,l)∈B̂o
r,perm

(♯Stdor,perm(λ, l))
2.

Thus axiom (Q3) holds.
Since assumptions (Q1)–(Q3) of Section 2 are satisfied, we can produce a modified dual

Murphy basis of Br(Z;N),
{
ỹ
(λ,l)
st

∣∣∣ (λ, l) ∈ B̂r and s, t ∈ Stdr(λ, l)
}
,

following the procedure described before Theorem 2.5. The following theorem gives a cellular
basis for Brauer’s centralizer algebra acting on orthogonal tensor space, valid over the integers.
It also gives two descriptions of the kernel of the map Ψr : Br(Z;N) → End(V ⊗r), one by
providing a basis of ker(Ψr) over the integers, and the other by describing the kernel as the
ideal generated by a small set of elements. Each of these statements is a form of the second
fundamental theorem of invariant theory for the orthogonal groups.

Theorem 8.12. The integral (orthogonal) Brauer centralizer algebra Ao
r(Z) is a cellular algebra

over Z with basis

Ao
r =

{
Ψ(ỹ

(λ,l)
st ) | (λ, l) ∈ B̂o

r,perm and s, t ∈ Stdor,perm(λ, l)
}
,

with the involution ∗ determined by E∗
i = Ei and S∗

i = Si and the partially ordered set

(B̂o
r,perm,Qcol). The ideal ker(Ψr) ⊆ Br(Z;N) has Z-basis

κr =
{
ỹ
(λ,l)
st | (λ, l) ∈ B̂r,perm and s or t is not N–permissible

}
.

Moreover, for r > N , ker(Ψr) is the ideal generated by the set {da,b | a+b = N+1}. For r 6 N ,
ker(Ψr) = 0.

Proof. The construction of the cellular basis of Ao
r(Z) and of the basis of ker(Ψr) follows imme-

diately from Theorem 2.7 since (Q1)–(Q3) have been verified.

Now, if r 6 N then ker(Ψr) = 0 since all paths on B̂ of length 6 N are N–permissible. For
r > N , the kernel is the ideal generated by all the d(µ,m) such that (µ,m) is a marginal point in

B̂k for some 0 < k 6 r, using Theorem 2.7. But the marginal points are all of the form (µ,m)
for some µ with µ′

1 + µ′
2 = N + 1. Now by (8.2) and (8.3),

d(µ,m) = dµe
(m)
k−1 = (dµL ⊗ yµR)e

(m)
k−1,

and so the result follows. �

Remark 8.13. As in Remark 7.10, our construction provides an integral form of the simple
Br(C;N)-modules labeled by permissible partitions.
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8.2. Murphy basis over an arbitrary field. We return to the general situation described at
the beginning of Section 8: V is a vector space of dimension N over an arbitrary field k, with
char(k) 6= 2, with an orthogonal form, and for r > 1, Ψr,k : Br(k;N) → End(V ⊗r) is Brauer’s
homomorphism. The map Ψr,k actually depends upon the particular orthogonal form, and, in
contrast to the symplectic case, we may not assume in this generality that we are dealing with
the standard orthogonal form on kN .

For the modified Murphy basis {ỹ
(λ,l)
st } of Br(Z;N), we also write ỹ

(λ,l)
st instead of ỹ

(λ,l)
st ⊗ 1k

for the corresponding basis element of Br(k;N) ∼= Br(Z;N)⊗ k.

Theorem 8.14. Let V be a vector space of dimension N over a field k with char(k) 6= 2. Assume
V has an orthogonal form ( , ), and let Ψr,k : Br(k;N) → End(V ⊗r) be Brauer’s homomorphism
defined using the orthogonal form. Write Ao

r(k) for the Brauer centralizer algebra im(Ψr,k).
The algebra Ao

r(k) is a cellular algebra over k with basis

Ao
r(k) =

{
Ψr,k(ỹ

(λ,l)
st ) | (λ, l) ∈ B̂o

r,perm and s, t ∈ Stdor,perm(λ, l)
}
.

with the involution ∗ determined by E∗
i = Ei and S∗

i = Si and the partially ordered set

(B̂o
r,perm,Qcol). The ideal ker(Ψr,k) ⊆ Br(k;N) has basis

κr =
{
ỹ
(λ,l)
st | (λ, l) ∈ B̂r and s or t not N–permissible

}
.

Moreover, for r > N , ker(Ψr,k) is the ideal generated by the set {da,b | a + b = N + 1}. For
r 6 N , ker(Ψr,k) = 0.

Proof. Assume first that k is infinite and quadratically closed. In this case, we may assume that
V = kN with the standard orthogonal form, and moreover, we have the commutative diagram
(8.1). Now we can argue exactly as in the proof of Theorem 7.11, using the constancy of
dimension of the orthogonal Brauer centralizer algebra from Theorem 8.1, to obtain the desired
conclusions.

Now consider the general case. Let k be the algebraic closure of k. Extend the orthogonal
form to V

k
= V ⊗k k by (v ⊗ 1

k
, w ⊗ 1

k
) = (v, w) ∈ k ⊂ k. Let Ψr,k : Br(k;N) → End(V ⊗r

k
) be

the corresponding Brauer homomorphism. It is easy to check that we are again in the situation
of Lemma 1.5, and we have a commutative diagram:

Br(k;N) Ao
r(k)

Ψr,k

⊗1
k

η

Ψ
r,k

Br(k;N) Ao
r(k)

. (8.8)

Moreover, from the first paragraph of the proof, we know that Ao
r(k) is a k–basis of Ao

r(k). The
map η in (8.8) is injective, by Remark 1.6. If y ∈ κr ⊂ Br(k;N), then 0 = Ψr,k(y ⊗ 1

k
) =

η(Ψr,k(y)). Since η is injective, it follows that κr ⊆ ker(Ψr,k), and from this it follows that

Ao
r(k) spans Ao

r(k). But Ao
r(k) is linearly independent over k, because η(Ao

r(k)) = Ao
r(k) is

linearly independent over k. Now we conclude as in the proof of Theorem 2.7 that κr is a basis
of ker(Ψr,k) and that Ao

r(k) is a cellular basis of Ao
r(k). To finish, it suffices to observe that κr is

contained in the ideal generated by the elements da,b, and this follows from Theorem 8.12. �

Remark 8.15. Over fields of characteristic not equal to 2, it is shown in [29, 24] that ker(Ψr,k)
is actually generated by the single element d⌈N/2⌉,⌊N/2⌋.

Remark 8.16. As in the symplectic case, Theorem 8.14 extends the constancy of dimension
of the Brauer centralizer algebras Ao

r(k) and of ker(Ψr,k) from Theorem 8.1 to all fields k of
characteristic different from 2, and, moreover, to all orthogonal forms on a finite dimensional
k–vector space.
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We observe that the isomorphism type of the Brauer centralizer algebra Ao
r(k) is independent

of the choice of the orthogonal bilinear form; for example, when k = R, the field of real numbers,
the isomorphism type of Ao

r(R) does not depend on the signature of the form:

Corollary 8.17. Adopt the hypotheses of Theorem 8.14. The Brauer centralizer algebra Ao
r(k)

acting on V ⊗r is the specialization of the integral Brauer centralizer algebra Ao
r(Z), i.e. A

o
r(k)

∼=
Ao

r(Z) ⊗Z k. Consequently, the isomorphism type of Ao
r(k) is independent of the choice of the

orthogonal form on V .

Proof. The proof is exactly the same as that of Corollary 7.13. The final statement holds since
Ao

r(Z)⊗Z k doesn’t depend on the choice of the bilinear form. �

8.3. Jucys–Murphy elements and seminormal representations. The discussion in Sec-
tion 7.3 before Lemma 7.14 carries over to the orthogonal case with small changes. However, the
condition of Lemma 3.7 fails for even integer values of the parameter, so a different argument
is needed to verify condition (SN). This is done in [10].

Example 8.18. Let N = 2M be a positive even integer. Let λ = (M,M − 1)′, µ+ = (M +
1,M − 1)′ and µ− = (M − 1,M − 1)′. Then all three Young diagrams are 2M–permissible, and
κ((λ, 0) → (µ+, 0)) ≡ κ((λ, 0) → (µ−, 1)) mod (δ − 2M).
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